
Toward Efficient and Robust Software Speculative
Parallelization on Multiprocessors∗

Marcelo Cintra
School of Informatics

University of Edinburgh
Edinburgh, UK

mc@inf.ed.ac.uk

Diego R. Llanos
Departamento de Informática

Universidad de Valladolid
Valladolid, Spain

diego@infor.uva.es

ABSTRACT
With speculative parallelization, code sections that cannot be fully
analyzed by the compiler are aggressively executed in parallel.
Hardware schemes are fast but expensive and require modifications
to the processors and memory system. Software schemes require
no extra hardware but can be inefficient.

This paper proposes a new software-only speculative paralleliza-
tion scheme. The scheme is developed after a systematic eval-
uation of the design options available and is shown to be effi-
cient and robust and to outperform previously proposed schemes.
The novelty and performance advantage of the scheme stem from
the use of carefully tuned data structures, synchronization poli-
cies, and scheduling mechanisms. Experimental results show that
our scheme has small overheads and, for applications with few
or no data dependence violations, realizes on average 71% of the
speedup of a manually parallelized version of the code, outperform-
ing two recently proposed software-only speculative parallelization
schemes. For applications with many data dependence violations,
our performance monitors and switches can effectively curb the per-
formance degradation.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Concurrent Programming

General Terms
Performance

Keywords
Speculative parallelization, Thread-Level Speculation

1. INTRODUCTION
Although parallelizing compilers have proven successful for a

large set of codes, they fail to parallelize codes when data de-
pendence information is incomplete. Such is the case of accesses
through pointers or subscripted subscripts, complex interprocedural
data flow, or input-dependent data and control flow. In these cases,

∗
This work was supported in part by the European Commission under grant HPRI-CT-

1999-00026 and by EPSRC under grant GR/R65169/01.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03,June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

run-time parallelization in software has been explored under two
major approaches: inspector-executor[15, 25] and speculative par-
allelization[7, 8, 21, 23, 24]. With the inspector-executor scheme,
an inspector loop is extracted from the original loop with the pur-
pose of computing the cross-iteration data dependences to guide
the execution of the executor loop. This approach is effective when
computing the address reference stream is cheap compared to the
actual computation. In many cases, however, the overhead of the
inspector loop limits the performance benefits of this approach. Un-
der the speculative parallelization (also called thread-level specula-
tion) approach, the code is speculatively executed in parallel while
the reference stream is monitored for data dependence violations.
If a dependence violation is found, the system reverts the state back
to some safe condition and threads are re-executed.

While various degrees of hardware support for speculative par-
allelization on multiprocessors have been proposed in the litera-
ture (e.g., [5, 9, 16, 20, 26, 29, 31]), these are costly and require
modifications to the processors and caches. In this paper, we focus
on software-only implementations of speculative parallelization. In
this case, the user application itself is augmented with code to per-
form all the speculative operations.

The contributions of this paper are twofold. First, we system-
atically explore the design options for software speculative paral-
lelization and analyze the tradeoffs involved. In this process we
place previously proposed schemes into a single framework of high-
level design choices and we quantitatively evaluate part of this de-
sign space. The second contribution of this paper is the design of
a highly cost-effective software speculative parallelization scheme.
The novelty and performance advantage of the scheme stem from:

• Aggressive scheduling mechanism based on a sliding win-
dow, which reduces the impact of load imbalance across
threads as well as the memory overheads associated with the
speculative access and version data structures.

• Synchronization policies that relax the critical section re-
quirements of previous work, while still allowing checks
for cross-thread data dependence violations upon speculative
memory operations.

• Speculative access data structures that allow for efficient im-
plementation of the speculative operations regardless of the
size of the user speculative data structures.

Experimental results show that our scheme has small overheads
and is able to reach a large fraction of the potential parallel exe-
cution performance. In particular, for applications with few or no
data dependence violations, the scheme realizes on average 71% of
the speedup of a manually parallelized version of the code. The re-
sults also show that the scheme outperforms two recently proposed

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F781498.781501&domain=pdf&date_stamp=2003-06-11

software-only speculative parallelization schemes: one by 25% on
average and with similar memory overhead, and the other by 7%
on average but with significantly less memory overhead. For ap-
plications with many data dependence violations, our performance
monitors and switches can effectively curb the performance degra-
dation.

The rest of the paper is organized as follows: Section 2 describes
speculative parallelization and highlights the operations involved;
Section 3 presents our proposed speculative parallelization scheme
and its rationale; Section 4 describes our evaluation methodology;
Section 5 presents the experimental results; Section 6 discusses re-
lated work; and Section 7 concludes the paper.

2. SOFTWARE-ONLY SPECULATIVE
PARALLELIZATION

2.1 Basic Concepts
Under speculative parallelization threads are extracted from se-

quential code and run in parallel, hoping not to violate any sequen-
tial semantics. The control flow of the sequential code imposes a
total order on the threads. At any time during execution, the earli-
est thread in program order is non-speculativewhile the others are
speculative. The terms predecessorand successorare used to relate
threads in this total order. Stores from speculative threads generate
unsafe versionsof variables, while loads from speculative threads
are provided with potentially incorrect versions. At special points
in time data versions that have become safe must be committedto
safe storage.

As execution proceeds, the system tracks memory references to
identify any cross-thread data dependence violation. Read-after-
write (RAW) dependence violations occur whenever a speculative
thread consumes some version of the data other than the one pro-
duced by the proper store by a predecessor thread. When the mem-
ory accesses of such dependences occur in-order at run time, a
violation can be prevented by forwarding the value produced by
the predecessor thread. Write-after-write(WAW) dependences can
cause violations when the speculative parallelization scheme main-
tains access information at a coarser granularity than that of the user
data structure. In this case it is not possible to disambiguate the two
modifications and a violation by the successor thread must be as-
sumed. Write-after-read(WAR) dependences usually do not cause
violations as modifications by successor threads are contained in
their respective versions and cannot be consumed by predecessor
threads.

When data dependence violations are detected, the offending
thread must be squashed, along with any other threads that may
have an inconsistent state. These usually include all successors of
the offending thread. When a thread is squashed, all the data that it
speculatively modified must be purged from the memory hierarchy
and the thread then restarts execution from its beginning. During re-
execution the thread can be then provided with the updated value.

From the above discussion, we can summarize the main opera-
tions required by speculative parallelization as follows: (1) identify
and mark data that can be accessed in an unsafe manner (the spec-
ulative data) and the loads and stores that can potentially access
these data (the speculative loads and stores), (2) maintain access
information to speculative data (the speculative access state), (3)
schedule speculative threads, (4) buffer speculative data and com-
mit it to safe storage when appropriate, (5) detect data dependence
violations, squash, and restart threads as necessary. In the following
sections we give an overview of these operations and present some
of the design options available.

2.2 Identifying Speculative Data and Memory
References

The first step in preparing the application code for speculative
parallelization is to identify and mark the speculative data. The
compiler analysis required can be easily built on top of the data de-
pendence and data flow analyses of existing automatic parallelizing
compilers. All data that can potentially be used by a thread before
being modified by it have to be marked as speculative. In this case
we must both maintain multiple versions of the data and look out
for cross-thread RAW dependence violations. Data that is identi-
fied by the compiler as read-only does not need to be marked as
speculative. Finally, for data that is guaranteed to be defined before
being used in the same thread, the system must maintain multiple
versions of the data, but there is no need to look out for data depen-
dence violations.

Once the speculative data are identified, the compiler must iden-
tify all their uses and definitions (loads and stores) and replace these
with special operations to update the speculative access information
appropriately (Section 2.3). When the compiler can identify that a
load to a certain speculative datum is dominated by some other load
or store to the same datum, then the dominated load does not have
to be augmented with speculative operations. This is not always
true for stores. Idempotent loads and stores also do not need to be
augmented with speculative operations [13].

2.3 Maintaining Access Information
To maintain multiple speculative versions and track data depen-

dences, special data structures are generated for every user specu-
lative data. To maintain multiple versions, the user data structure
must be replicated for each thread that can be active at any given
time (Section 2.4). These are called the version copiesof the user
data. To track accesses to different parts of the user speculative
data structure, we must create a speculative access structurethat
keeps per-thread access information for each of such parts. How
closely the speculative access structure identifies individual data in
the user data structure is referred to as the granularity of the access
information.

Typically, each entry in the speculative access structure should
record whether the corresponding part of the user data structure has
been: not accessed by the thread, modified by the thread, exposed
loaded by the thread, or exposed loaded and later modified by the
thread. An exposed loadoccurs when a thread issues a load without
having previously issued a store to the same data. Such loads can
potentially cause RAW dependence violations.

Upon a speculative store, the corresponding entry in the access
structure must be updated: from not accessed to modified and from
exposed loaded to exposed loaded and modified. The store is then
performed to the corresponding version copy of the data. Upon a
speculative load, if the corresponding entry in the access structure is
not accessed then it must be changed to exposed loaded, otherwise
it remains in the same state. If forwarding is supported then the
most up-to-date version is located by searching the access structure
backward for the closest predecessor entry in state other than not
accessed. Otherwise, the current (or reference) value is returned.

2.4 Scheduling Speculative Threads
In the simplest approach to scheduling threads under speculative

parallelization, we can divide the iteration space in as many chunks
as there are processors and statically assign chunks to processors.
Alternatively, we can create more chunks than there are processors
and dynamicallyschedule these chunks on the processors.

Recall that under speculative parallelization, each thread must be
assigned a version copy and a speculative access structure. Thus,
the number of such structures must be equal to the maximum num-

14

ber of chunks that can be active at any time. With the static and
dynamic scheduling policies, this corresponds to the total number
of chunks created. An alternative to these policies is to decouple the
number of possibly active threads from the total number of chunks
by using a sliding windowover the iteration space [5, 7]. In this
case a window of W active threads slides over the series of chunks
created, which can be much larger than W .

2.5 Committing Safe Data
Speculative modifications to the user data are temporarily stored

in the version copies. Physically, these version copies can be imple-
mented as private or as shared data. Supporting forwarding requires
that the version copies be shared. At some point after becoming
safe, version copies must be committed to safe storage, which is
usually the user data structure itself. The commit at the end of
the speculative execution we call a final commit. After the final
commit the user data structure is in the state it would have been if
the speculative section had been executed sequentially. In addition
to the final commit, we can perform intermediate partial commits.
Performing intermediate partial commits simplifies the roll-back in
case of squash, frees up version storage, and reduces the amount
of data that has to be committed at the end of the speculative exe-
cution. The main disadvantage of partial commits is the execution
time overhead.

2.6 Squashing and Restarting Threads
Data dependence violations are detected by looking at the spec-

ulative access structures: a RAW dependence violation has oc-
curred whenever there is an entry in state exposed loaded or ex-
posed loaded and modified, with some predecessor entry in state
modified or exposed loaded and modified. Checking for violations,
and squashing, regularly can incur execution overheads but prevents
processors from performing much useless work.

We can check for data dependence violations upon the specula-
tive loads and stores themselves. When scheduling policies based
on windows are used, violation checks must be performed at least
when the window must be advanced, since at this time the specula-
tive access information is lost. With static or dynamic scheduling
policies we can postpone the checks to the end of the execution of
the speculative section.

When data dependence violations are detected we must squash
and re-execute threads that may have consumed incorrect values.
These are usually the offending thread and all its successors.

When a squash occurs the speculative data generated by
squashed threads must be purged and the speculative access infor-
mation cleared. Additionally, when the threads are restarted some
mechanism must be provided to prevent the same violation from
occurring again. One way is to perform forwarding. Another way
is to remember the violation and avoid it with synchronization [6,
19, 30]. Alternatively, we can wait to restart threads until all the
predecessors have committed, in which case the squashed threads
can use the safe version of the data.

3. COST-EFFECTIVE SOFTWARE SPECU-
LATIVE PARALLELIZATION

In this section we present the design of a new scheme for soft-
ware speculative parallelization. We highlight the major features
and design decisions along with the rationale for the choices.

3.1 Sliding Window
The main design decision in our scheme was to implement in

software a sliding window mechanism similar to the hardware
mechanism of [5]. Traditionally, scheduling of parallel loops is
either static or dynamic. With static scheduling, the iteration space

is partitioned into P chunks of iterations, where P is the number
of processors. With dynamic scheduling individual iterations are
dynamically assigned to processors. Both policies are undesirable
under speculative parallelization. Static scheduling will perform
poorly when there is load imbalance or when there are data depen-
dence violations. Dynamic scheduling is not practical when the
number of iterations, T , is very large, because the memory over-
head of the speculative structures is proportional to the number of
iterations. Alternatively, we can partition the iteration space in C
chunks of iterations, with P < C < T , and dynamically sched-
ule these chunks on processors. This alleviates, but does not solve,
the problems of the static and dynamic policies. In fact, tolerance
to load imbalance and data dependence violations is now propor-
tional to C, but memory overhead is also proportional to C. To
keep memory overhead tolerable, C must be a small multiple of P ,
which may not be enough to limit the impact of load imbalance and
data dependence violations.

A sliding windowmechanism [5, 7] can better decouple the mem-
ory overhead from the number of iterations. In these schemes,
threads consist of chunks of a small number of iterations, but
scheduling is limited to a window of W chunks at a time. If
W > P then threads within a window can be statically or dynam-
ically scheduled. At any time there are only W active threads and
the memory overhead is proportional to W , regardless of the to-
tal number of chunks, C. Nevertheless, tolerance to load imbalance
and data dependence violations is significantly increased because C
can still be very large and the sliding of the window approximates
the behavior of a dynamic schedule across C.

There are two possible schemes for sliding the window: once
all threads in the window are completed [7], and every time non-
speculative threads commit [5]. Despite their larger complexity and
management overhead, we expect schemes based on windows to
perform better across a broad range of situations.

In our implementation, the sliding window mechanism consists
of an array of characters of length W containing a status descriptor
for each uncommitted (active) thread. Additionally, two integers
mark the boundaries of the window at any time, pointing to the non-
speculative and the most-speculative threads (top part of Figure 1).

In the window array, thread slots can be in the following states:
FREE, meaning that there is no thread associated with this slot at
the moment; RUN, meaning that the thread is still being executed;
DONE, meaning that the thread has been executed to completion;
and SQUASHED, meaning that the thread has been involved in a
violation, directly or indirectly, and must be squashed.

During speculative execution, the non-speculative and most-
speculative pointers in the window structure are used by speculative
loads and stores to determine the section of the speculative access
array that must be checked. At the end of a thread’s execution, the
thread states in the window structure are used to determine what
threads must be committed, if any, and what thread to run next.

3.2 Speculative Access Structure
The implementation of the speculative access structure has a di-

rect impact on the execution overheads of checking for data depen-
dence violations and committing. The simplest data structure that
we can choose is an array of access state of size M for each active
thread (M is then the number of parts of the user data structure that
can be unambiguously tracked). This approach is very efficient for
checking for data dependence violations on speculative memory op-
erations, since then the system knows exactly where to obtain the
relevant access information for the part of the user data structure
being accessed. However, this approach is very inefficient when
committing and when checking for data dependence violations on

15

NotAcc NotAcc NotAcc NotAcc

NotAccNotAcc

NotAcc Mod

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc NotAcc NotAcc NotAccMod

���
���
���
���

���
���
���
���

���
���
���
���

...

Version copies

1 2 3 4 W

Window

...
1 2 3 4 Wnon_spec most_spec

2 4 FREE RUN RUN RUN FREE

T

GlExpLd

F

F

1

2

3

structure
User data

...

F

...

M

...3 M

AM AM AM AM AMIM IM IM IM

1

2

3

IM

1

ExpLd

Structures
Access

...

M

...

Figure 1: Data structures used in our software speculative parallelization scheme. In the version copies, the single-striped boxes correspond
to Mod data and the double-striped boxes correspond to ExpLd data.

multiple elements of the user data structure, since in these occasions
all M access information would have to be checked.

When the user speculative data is very large compared to the
amount of data actually used by each thread, we can reduce these
overheads by implementing the speculative access structure as a list
of the indices of the user data elements actually touched. With such
a structure, the search for violations and the commit of modified
data stop when the end of the list is reached. This approach, how-
ever, is not well suited for checking data dependence violations on
every speculative memory operation because of the extra overhead
of walking the list.

To support both fast commits and fast checks for data depen-
dence violations upon memory accesses, we use a set of three spec-
ulative access structures. The first structure is an MxW array of
characters, where W is the maximum number of active threads (the
window size). In our system, M is equal to the total number of
elements of the user structure that can be independently accessed.
We call it AM, for Access Matrix(bottom part of Figure 1). Each
element in this speculative access structure encodes the follow-
ing four states: not accessed data (NotAcc), exposed loaded data
(ExpLd), modified data (Mod), and exposed loaded and modified
data (ExpLdMod). This access structure allows for quick lookups
upon speculative loads and stores for any particular element of the
user structure.

The second speculative access structure is an MxW array of in-
tegers where the first elements in each column point to elements of
AM in states other than NotAcc . We call this structure IM, for
Indirection Matrix (bottom part of Figure 1). The last element in
each column of IM that corresponds to an accessed element of AM
is identified by a tail pointer that is part of an array of W integers
(not shown in Figure 1). The IM access structure is traversed on
commits to quickly identify the user data actually used by a thread.

To further speed up the search for data dependence violations, we
use a third access structure: a single array of M logical values. Each

element can be in state either ExpLd (TRUE) or Safe (FALSE).
The ExpLd state indicates that at least some thread, since the start
of the speculative execution, has performed an exposed load to this
particular element of the user data, while the Safe state indicates
that no thread has ever performed an exposed load to this element.
This access structure is useful in applications where the memory
accesses of threads do not overlap at all, or overlap but are write-
first. We call this structure GlExpLd, for Global Exposed Load(left
part of Figure 1).

In addition to the type of data structure used, the actual layout
in memory of the access structure has a second-order effect due to
locality of references and cache misses. For instance, the structure
can be laid out in memory such that elements along W or M are
consecutive. When checking for data dependence violations on a
speculative load or store, multiple access information data corre-
sponding to the same user element are checked in sequence along
W . On a commit, multiple access information data corresponding
to elements of the user data belonging to the committing thread are
accessed in sequence along M . Thus, these operations call for con-
flicting layouts in memory. Since in practice we expect W to be
much smaller than M , we lay out our speculative access structure
such that elements along M are consecutive in memory.

3.3 Speculative Loads and Stores
Fast response to data dependence violations requires frequent

checks for violations. In general, detecting data dependence viola-
tions can be done on every speculative load and store, when threads
commit, or simply at the end of the speculative section. Although
it may seem that looking for data dependence violations on every
speculative load and store is too expensive, this is not necessarily
the case. This is because in this case we must only check for viola-
tions on a particular element of the user speculative data, while in
the other cases we must check for violations on at least all the el-
ements exposed loaded by the threads involved, and potentially on

16

all elements of the user speculative data. In our system we imple-
ment the checks for data dependence violations in the speculative
loads and stores.

Figures 2a and 2b show abridged implementations of our specu-
lative load and speculative store operations, respectively, in a C-like
syntax. From these figures we can highlight the following features
of our scheme. Only the first load to a datum requires special han-
dling by the protocol (line 1 in Figure 2a). The search for prede-
cessor versions of the datum on loads only requires looking up one
element of AM per thread (lines 6 to 11 in Figure 2a). Similarly,
the search for data dependence violations on stores only requires
looking up one element of AM per thread (lines 11 to 15 in Fig-
ure 2b). The use of the GlExpLd structure avoids searching for
data dependence violations when no thread has performed an ex-
posed load to the datum (line 10 in Figure 2b). Also, the search for
data dependence violations can stop early if a successor thread is
found to have modified the datum without an exposed load (lines
12 and 13 in Figure 2b). Note that squashes can only be triggered
by stores since forwarding is supported. The squash() operation
simply involves setting the window state of the successor threads
to SQUASHEDand moving the non-speculative pointer backward.
Later when a thread commits (Section 3.4) this will trigger the re-
execution of the thread.

3.4 Commits
Figure 3 shows an abridged implementation of the code executed

at the end of each thread, in a C-like syntax. This code is divided
in two main sections: the commit proper (lines 3 to 16) and the
assignment of a new thread (lines 22 to 29). From this figure we
can highlight the following features of our scheme. Only the non-
speculative thread performs commits (line 3), and it is responsible
for committing itself and all successor threads that have already
finished (lines 5 to 14). Committing the modified data is limited to
checking the elements accessed by the threads, as identified by the
IM structure (lines 10 and 11). When the window is full, processors
spin-wait without contention until a thread slot is freed (line 22).
Finally, before starting a new thread the AM structure is efficiently
cleared for reuse by using IM (lines 24 and 25). After increment-
ing the most-speculative pointer and securing a slot in the window,
the processor is ready to grab another thread to execute (code not
shown, for simplicity). The do squash() operation in practice
simply requires setting the window slot to FREE.

3.5 Protocol Races
As described so far, our protocol for detecting data dependence

violations and for partial commits suffers from race conditions.
These races are caused by uses of and updates to the shared win-
dow structure and the shared speculative access structures. More
specifically, races appear between the speculative loads and stores
upon accesses to GlExpLd, AM, and version; between speculative
loads and commit upon accesses to ref and non spec; between spec-
ulative stores and commit upon accesses to AM and most spec;
and between commit and thread start upon accesses to non spec,
most spec, and window. We have marked these conflicting memory
operations in Figures 2 and 3. For instance, Ld2 in Figure 2a refers
to the load of non spec embedded in line 6 and Ldd in Figure 2b
refers to the load embedded in lines 12 and 14 of the particular el-
ement of AM that can cause a conflict with an ongoing speculative
load.

We can divide the races in two major cases: those that appear
due to the protocol itself when executed in strict program order
and when the memory operations follow a sequential consistency
memory model [1]; and those that appear when the compiler may
re-order the operations in the protocol and/or when the system

only enforces some relaxed memory consistency model that allows
both loads and stores to bypass each other, as is the case in Sun’s
SPARC [27] and IBM’s PowerPC systems [18].

• Race 1: speculative load vs. speculative store

According to the protocol in Figure 2a, upon an exposed
speculative load the consumer must perform the following
three actions: set the corresponding state in the specula-
tive access structures (St1), scan the access array backward
for the most up-to-date version of the data (Ld3), and copy
the forwarded value (Ld4). In contrast, as shown in Fig-
ure 2b, upon a speculative store the producer must perform
the following three actions: modify its version copy (Sta),
set the corresponding element in the access array (Stb), and
scan the access array forward for possible data dependences
(Ldd). It can be shown that, as long as the operations oc-
cur in program order and follow a sequential consistency
model, all possible interleavings of these operations main-
tain the semantics of the original sequential program, with
either the new value being forwarded or a data dependence
violation being detected. Note, however, that some interleav-
ings can lead to the detection of a data dependence viola-
tion even when a successful forwarding is performed. For in-
stance, consider the following interleaving of the operations:
Sta → Stb → St1 → Ld3 → Ld4 → Ldd. In this case the
consumer performs a forwarding with the correct up-to-date
value, but the producer still detects a data dependence viola-
tion. The problem is that we do not guarantee atomicity of
the speculative store operation. We note, however, that this
does not affect the correctness of the execution and will lead
to some performance degradation only in the presence of data
dependences and races.

Consider again the operations described above. It can be
shown that incorrect behavior occurs if those loads and stores
are not globally performed in program order. For instance, if
loads and stores are allowed to bypass preceding stores, then
the order Stb → Ld3 → Ld4 → Ldd → St1 → Sta

can lead to a consumer performing a forwarding with a stale
value while the producer fails to detect a data dependence vi-
olation. The problem in this case is that the store to the AM
element by the producer thread (Stb) performs with respect
to the consumer thread before the store to the version copy
(Sta).

• Race 2: speculative load vs. commit

According to the protocol in Figure 3, when a thread com-
mits, it must perform the following two actions: update
the reference values (StA) and advance the non-speculative
pointer (StB). Upon a speculative load, a successor con-
sumer thread scans the access array backward for the most
up-to-date version of the data, using the non-speculative
pointer to delimit the end of the search (Ld2 in Figure 2a),
and may read the reference copy (Ld5) if no such version is
found. As long as the operations occur in program order and
follow a sequential consistency model, all possible interleav-
ings of these operations maintain the semantics of the origi-
nal sequential program, with the correct value being loaded
by the consumer thread either from the already updated ref-
erence copy or from the still up-to-date version copy.

If, however, the update to the non-speculative pointer is al-
lowed to bypass the updates to the reference array, then the
consumer thread could obtain a stale version from the not yet
updated reference copy, leading to incorrect execution. For

17

Stb

Stb

Ldd

Ldd

Ldc

 1. version[I][tid]=rvalue;
 2. #pragma memory fence
 3. if (AM[I][tid] == NotAcc) {
 4. AM[I][tid]=Mod;
 5. IM[++tail[tid]][tid]=I;
 6. }
 7. if (AM[I][tid] == ExpLd)
 8. AM[I][tid]=ExpLdMod;
 9. #pragma memory fence;
10. if (GlExpLd[I])

12. if (AM[I][j] == Mod)
13. break;
14. else if (AM[I][j] != NotAcc)
15. {squash(j); break;}

Sta

11. for (j=tid+1; j<=most_spec; j++)

(b)

 1. if (AM[I][tid] == NotAcc) {
 2. GlExpLd[I]=TRUE;
 3. AM[I][tid]=ExpLd;

 4. IM[++tail[tid]][tid]=I;
 5. #pragma memory fence

 7. if (AM[I][j] != NotAcc) {
 8. version[I][tid]=version[I][j];
 9. forwarded=TRUE;
10. break;
11. }
12. if (!forwarded)
13. version[I][tid]=ref[I];
14. }
15. lvalue=version[I][tid];

3

2

4

5

Ld
Ld
Ld

Ld

(a)

 6. for (j=tid−1; j>=non_spec; j−−)

1St

Figure 2: Abridged C-like code for speculative loads (a) and speculative stores (b). The memory fence directives are discussed in Section 3.5.
In this figure I is the index corresponding to the element of the user structure being operated on, tid identifies the thread performing the
operation, ref corresponds to the original user data structure, and lvalue and rvalue correspond to the variable or expressions used in
the original operations.

StB

StA

StD

StC

 1. #pragma critical
 2. if (window[tid] != SQUASHED) {
 3. if (tid == non_spec) {
 4. window[tid]=DONE;

 6. if (window[i] == DONE &&
 window[i+1] != DONE)
 7. {last=i; break;}
 8. }

10. for (k=1; k<=tail[j]; k++)
11. ref[IM[k][j]]=
 version[IM[k][j]][j];
12. #pragma memory fence

14. }
13. window[j]=FREE

 5. for (i=non_spec; i<=most_spec; i++) {

 9. for (j=non_spec; j<=last; j++) {

15. non_spec=last+1;

19. }

16. }

18. window[tid]=DONE;

20. else do_squash();
21. #pragma end critical

23. #pragma critical

26. #pragma memory fence

29. most_spec++;
30. #pragma end critical

17. else

22. while(window[most_spec+1] != FREE) {}

24. for (j=1; j<=tail[most_spec+1]; j++)
25. AM[IM[j][most_spec+1]][most_spec+1]=NotAcc;

27. tail[most_spec+1]=0;
28. window[most_spec+1]=RUN;

Figure 3: Abridged C-like code executed at the end of each thread’s execution. The memory fence and critical directives are discussed
in Section 3.5. In this figure ref corresponds to the original user data structure.

instance, in the order StB → Ld2 → Ld5 → StA, the con-
sumer will see the new value of the non-speculative pointer
and will stop the backward search before reaching the com-
mitting producer and will read the reference value before it is
actually updated.

• Race 3: speculative store vs. thread start

According to the protocol in Figure 3, when a new specula-
tive thread starts it must reset the old elements of the access
structure (StC) and increment the most-speculative pointer
(StD). Upon a speculative store, a predecessor thread scans
the access array forward for any data dependence violation,
using the most-speculative pointer to delimit the end of the
search (Ldc) and checks the access structure for an exposed
load (Ldd). As long as the operations occur in program order
and follow a sequential consistency model, all possible inter-
leavings of these operations lead to correct behavior and no
unnecessary squashes.

If, however, the update to the most-speculative pointer is al-
lowed to bypass the updates to the access structure, then the
producer thread could incorrectly detect a violation based on
an old value of the access array, leading to an unnecessary
squash. For instance, in the order StD → Ldc → Ldd →
StC , the producer will search for violations based on the new

value of the most-speculative pointer and may detect a vio-
lation based on the value of the access structure before it is
cleared. This does not affect program correctness.

• Race 4: commit vs. thread start and thread start vs. thread
start

If multiple threads are allowed to start simultaneously or
while a thread is committing, it can be shown that some im-
proper interleavings of the commit and thread start operations
shown in Figure 3 can lead to inconsistent states of the win-
dow and speculative access structures. For instance, a dead-
lock could occur when the earliest running speculative thread
finishes while the non-speculative thread is committing. In
this case, the non-speculative thread might not realize that
one extra thread must be committed (lines 5 and 6), while the
speculative thread will not commit itself as it is not yet non-
speculative (line 3). Thus this speculative thread will never
be committed and once the window becomes full the pro-
gram will stop making progress. As another instance, if two
threads are allowed to start simultaneously they could use the
same value of the most-speculative pointer to select the ele-
ments of the access structure for reuse (lines 24 and 25), be-
fore either of them updates the most-speculative pointer (line

18

29). In this case, part of the access structure will contain
incorrect stale values and will lead to incorrect execution.

• Race 5: commit vs. squash and thread start vs. squash

The squash operations encapsulated in line 15 of Figure 2b
and line 20 of Figure 3, which are not shown in detail for
simplicity, require updating the shared window structure. If
threads are allowed to commit or start while a squash is being
performed, it can lead to inconsistent states of the window
and speculative access structures. For instance, if the state
of the window is changed to SQUASHED(in the squash()
procedure) after the squashed thread executes line 2 in Fig-
ure 3 but before it executes line 18 in this figure, then the final
state of the window will be DONE, instead of SQUASHEDand
this thread will not be squashed after all.

The simplest way to avoid all the race conditions described above
is to envelop all the speculative operations in critical sections,
which guarantees mutual exclusivity and atomicity. This solution
was used in the approach with simple locks in [24]. This approach,
while correct, can be very inefficient and can be shown to be too
conservative. In practice, we can relax the constraints on the or-
dering of the speculative operations and reduce the use of critical
sections.

We note that races 1 through 3 only lead to incorrect behavior
when program order and sequential consistency are not guaran-
teed. If the processor and memory system as well as the compiler
enforce sequential consistency [1], then correct behavior is guar-
anteed. However, if the system uses some relaxed memory con-
sistency model then memory fences must be inserted to guarantee
correctness. A memory fence tells the processor that all pending
memory operations must be globally performed before any follow-
ing memory operation can be issued. It also tells the compiler not
to reorder any memory access instructions across the fence.

The fence directives shown in Figures 2 and 3 show the set
of fences that must be used when the memory consistency model
allows for all types of reordering of memory references. For
instance, the fence in line 5 in Figure 2a enforces St1 →
Ld2, Ld3, Ld4, Ld5 and the fence in line 2 in Figure 2b enforces
Sta → Stb, Ldc, Ldd. Note that the orders Ld2 → Ld3 →
Ld4, Ld5 and Ldc → Ldd are guaranteed by the control flow con-
straints and require no extra memory fences. Some subset of these
fences may be sufficient in systems that support more strict memory
consistency models. To see that these fences guarantee correct be-
havior one can easily check all the remaining possible interleavings
of the operations that respect the memory fences, critical sections
and control flow.

In contrast, avoiding races 4 and 5 without a critical section is
not as straightforward. In this case, program order of the operations
is not enough to guarantee correct behavior. We do not attempt to
eliminate this critical section. Note that, despite the critical section
around the commit operation, the memory fences to avoid races 2
and 3 are still necessary, since there may be no guarantee on the
order of memory operations generated inside a critical section.

3.6 Overhead Monitors
Automatic speculative parallelizing compiler technology is still

in its infancy. In many cases we expect the compiler to incorrectly
suggest speculative parallelization when in fact there are too many
cross-thread data dependences. Moreover, the number of data de-
pendences may vary with the input data. A robust speculative par-
allelization scheme must provide mechanisms to dynamically limit
the slowdowns in such cases. We implement in our scheme a per-
formance monitor that tracks the amount of data dependence viola-
tions. It is implemented as two shared counters, commit count and

squash count; a flag, speculate; and a threshold, squash threshold.
When a thread commits, commit count is incremented by the num-
ber of threads being committed. The squash count counter is incre-
mented whenever a squash is detected. Note that since both commit
and squash operations are protected by critical sections there is no
race condition to update these shared variables. At the end of the
speculative section if the ratio of the squash and commit counters is
greater than the threshold, then the speculate flag is set to FALSE
and no speculation is attempted on future invocations of the specu-
lative section. To switch off speculative execution we simply imple-
ment two versions of the loop, one speculative and one sequential,
guarded by a test of the speculate flag.

4. EVALUATION METHODOLOGY

4.1 Applications
To evaluate our scheme, we choose the following applications:

TREE from [3], WUPWISE and LUCAS from SPECfp2000 [28],
MDG from the PERFECT Club suite [4], and AP3M from [12].
These applications are representative of legacy as well as recent se-
quential scientific Fortran programs. The input sets are the standard
ones provided with the applications. All applications spend a large
fraction of their sequential execution time on loops that cannot be
automatically parallelized by state-of-the-art compilers.

Table 1 shows, for each application, the loops that we attempt
to parallelize speculatively, the fraction of the sequential execu-
tion time taken on our Sun server (Section 4.2), the average num-
ber of iterations executed per loop invocation, the size of the data
accessed through speculative references, and whether the loops
present cross-iteration data dependences. In the case of WUP-
WISE, we obtain loops muldeo 200’ and muldoe 200’ by merging
the three outer loops in loop nests muldeo 200 and muldoe 200,
respectively. For that, it is necessary to hoist some induction vari-
ables and compute the loop indices appropriately, which is within
the capabilities of recent compilers 1.

Application

WUPWISE

MDG

LUCAS

% of Seq.
Time

Iterations
per Invocation

RAW
Dependences

Spec data
size (KB)

41 8,000

No

12,000

86 343

No

< 1

20 4,194,304

Loops to
Parallelize

muldeo_200’

muldoe_200’

interf_1000

mers_mod_square

(line 444)
4,000 Yes

AP3M 343 to 2,197 Yes3,000shgravll_700

TREE 94 4,096 No< 1accel_10

78

Table 1: Characteristics of the applications studied.

4.2 Parallel Execution Environment
We ran the applications described in Section 4.1 on a 24-

processor Sun Sunfire 6800 symmetric multiprocessor (SMP). The
machine is equipped with 750MHz UltraSPARC-III processors,
each with a private 64KByte 4-way set-associative L1 cache, a
private 8MByte direct-mapped L2 cache, and 48GBytes of shared
main memory. The system runs SunOS 5.8. The system intercon-
nect has a sustained bandwidth of 9.6GBytes/s. The SPARC V9 ar-
chitecture supports any of three different memory consistency mod-
els: relaxed memory order (RMO), partial store order (PSO), and
total store order (TSO) [27]. The model enforced depends on the
actual configuration of the system. We developed our code assum-
ing RMO, as it is the most relaxed of the three and a program that
1Recently, as part of the SPEC OMP parallelization effort [2], loops similar to
muldeo 200 and muldoe 200 have been parallelized with help from hand analysis.
Such analysis is still beyond the capabilities of automatic parallelization alone.

19

correctly executes in this model is guaranteed to correctly execute
in the other two.

The applications were compiled with Sun Workshop 6 update
2 using the highest optimization settings for our execution en-
vironment: -fast -xchip=ultra3 -xarch=v8plusb -
cache=64/32/4:8192/64/1 . They had exclusive use of the
processors during the entire execution and we use wall-clock time
in our time measurements. For the execution time breakdowns we
use the performance collector tool which is part of Sun Workshop.
In our experiments the performance collector introduced negligible
execution overheads.

We used OpenMP 2.0 to parallelize the loops because of its wide
acceptance and portability. The memory fences described in Sec-
tion 3.5 were then implemented using the OpenMP flush direc-
tive. The semantics of this directive is different from that of the
memory fences: it simply enforces that the processor and memory
have a consistent view of some shared object specified in the di-
rective. With proper declaration and placement of these directives
we can guarantee that all processors and memory have a consistent
view of the shared objects and then mimic the behavior of the mem-
ory fences of Section 3.5. A more aggressive implementation of our
scheme could use the more selective MEMBARfence provided in the
SPARC processor [27].

4.3 Systems Evaluated
The goal of our experiments is to quantitatively evaluate some of

the design tradeoffs available to software speculative parallelization
schemes as well as to compare our proposed scheme against other
possible designs, some of which are similar to schemes previously
proposed in the literature. The schemes that we evaluate are the
following.

Baseline: uses a window scheme with partial commits when the
non-speculative thread finishes, checks for data dependence viola-
tions on every speculative store operation, and supports forwarding.
This is our baseline system described in Section 3.

sys2: a variation of our baseline scheme that only checks for data
dependence violations when threads commit, and does not support
forwarding. We evaluate this system to assess the cost of our de-
pendence checking mechanism.

sys3: uses a window scheme with partial commits only when all
threads in the window complete, checks for data dependence viola-
tions on every speculative store operation, and supports forwarding.
This system is similar in concept to the SW-R-LRPD scheme of [7],
except that there violations are only checked when the window is
moved and the data structures used are different.

sys4: has no window and no partial commits, uses dynamic
scheduling of iterations to processors, checks for data dependence
violations on every speculative store, and supports forwarding. This
system is similar in concept to the scheme of [24], except that we
use our own speculative access structures and do not use locks 2.

In addition to the speculative parallelization schemes described
above, we also quantitatively evaluate three other scenarios: Am-
dahl: the maximum speedup obtained according to Amdahl’s law
and the coverage of the speculative loops given in Table 1; Auto par:
applications automatically parallelized with Sun’s compiler using
the -autopar flag; DOALL: speculative loops hand-parallelized
with OpenMP directives without any speculative scheme (obvi-
ously, this is only possible when the loops have no RAW depen-
dences). In the latter case, SCHEDULE(DYNAMIC,1)was used.
2In [24], a parallel implementation of the final commit is proposed to reduce its cost
when only an access structure equivalent to our AM is used. This optimization is
complicated with the use of the IM structure, but it then becomes somewhat redundant
as the IM structure already cuts to a minimum the amount of searching for data to
commit.

5. EXPERIMENTAL RESULTS
Sections 5.1 to 5.5 evaluate our system with speculative sections

that do not suffer from cross-thread data dependence violations
(TREE, WUPWISE, and MDG). Section 5.6 evaluates our system
with speculative sections that suffer from frequent data dependence
violations (LUCAS and AP3M).

5.1 Overall Speedups
We start by presenting the overall speedup results for the whole

applications in Figure 4 (top charts). The systems shown are de-
scribed in Section 4.3. In this plot, Baseline uses the best window
sizes we found (Section 5.2). The speedup is given for 2, 4, 8 and,
for TREE and MDG, 16 processors. It is computed with respect to
the sequential execution of the unmodified application on a single
processor. Because the coverage of the speculative section in WUP-
WISE is below 60% of the sequential execution time, scalability is
poor and, thus, we do not present results for 16 processors.

From the figure we observe that, in contrast to automatic paral-
lelization, our scheme delivers speedups for all applications. This
demonstrates the importance of speculative parallelization as a
complementary technique to traditional parallelization techniques.
In all cases, the performance of our scheme is very close (within
82% on average) to the DOALL parallel execution speedup and also
close (within 79% on average) to the ideal Amdahl’s law speedups.

To better visualize how our speculative parallelization scheme
compares to manual parallelization, Figure 4 also presents the
speedups for the speculative sections only (bottom charts). From
this figure we observe that the overheads introduced by our scheme
do not prevent it from delivering speedups close to the DOALL par-
allel execution. In fact, our scheme realizes an average of 71% of
the parallelization speedup of DOALL. This demonstrates that, de-
spite its overheads compared to manual parallelization, speculative
parallelization can deliver a large fraction of the total potential per-
formance improvements.

5.2 Effects of Commit Policy
To evaluate the performance impact caused by commits we com-

pare our scheme, Baseline, with systems that vary from ours in
their commit policies: sys3 and sys4. For the window-based sys-
tems we vary the window size to evaluate its impact on the commit
overheads and execution times. Figure 5 shows the execution time
breakdowns of the speculative sections only, on 4 and 8 processors.
On top of each bar we show the speedups relative to sequential ex-
ecution time. The bars are normalized to the sequential execution
time and are broken down into the following components:

Busy: execution time of the original loop body plus OpenMP
overhead.

Init: initialization time of the speculative access structures at the
beginning of the speculative sections and, for the window based
systems, when these structures are re-assigned to new threads (lines
24 to 27 in Figure 3).

Spin: idle time due to load imbalance when waiting for other
threads to complete in order to advance the window (line 22 in
Figure 3), plus idle time due to load imbalance at the end of the
speculative section.

Ld+St: overhead time spent on speculative loads and stores, ex-
cluding the original memory operation (all of Figure 2a except line
8 or line 13, and all of Figure 2b except line 1).

Commit: overhead time of the commit operations and setting up
of a new thread (lines 2 to 19 and 28 to 29 in Figure 3).

Contention: idle time waiting at the locks and barriers required
by the different schemes.

From the figure we see that Baseline performs consistently better
than sys3 and, with a large enough window, better than sys4. For

20

0

1

2

3

4

5

6

7

8

9

10

0 1 2 4 8 16

S
pe

ed
up

Processors

Speedups for TREE

Amdahl
DOALL

Baseline
Auto par

0

1

2

0 1 2 4 8

S
pe

ed
up

Processors

Speedups for WUPWISE

Amdahl
DOALL

Baseline
Auto par

0

1

2

3

4

5

6

7

8

9

10

0 1 2 4 8 16

S
pe

ed
up

Processors

Speedups for MDG

Amdahl
DOALL

Baseline
Auto par

0

2

4

6

8

10

12

14

16

18

0 1 2 4 8 16

S
pe

ed
up

Processors

Speedups for speculative section, TREE

Amdahl
DOALL

Baseline
Auto par

0

2

4

6

8

10

0 1 2 4 8

S
pe

ed
up

Processors

Speedups for speculative section, WUPWISE

Amdahl
DOALL

Baseline
Auto par

0

2

4

6

8

10

12

14

16

18

0 1 2 4 8 16

S
pe

ed
up

Processors

Speedups for speculative section, MDG

Amdahl
DOALL

Baseline
Auto par

Figure 4: Overall speedups (top charts) and speedups for the speculative sections only (bottom charts).

these 4 and 8 processor configurations, Baseline is on average 26%
faster than sys3 and 13% faster than sys4 for TREE; 43% faster
than sys3 for WUPWISE; and 5% faster than sys3 and 1% faster
than sys4 for MDG. As expected, Baseline suffers less from load
imbalance than sys3 for the same window size, and is able to reduce
Spin to levels comparable to sys4 even with small window sizes.
The main reason for the performance advantage of Baseline over
sys4 is the large commit time required by the final commit in sys4.

We also note that with sys4, tolerance to load imbalance comes
at a high cost of memory overhead and in the case of WUPWISE
this overhead prevented us from running this scheme in our multi-
processor system.

Finally, we note that as we increase the window size, there is an
increase in Commit and Init for Baseline and sys3, as expected. This
effect reduces the benefits of larger window sizes with Baseline and
sys3, especially for WUPWISE. In general we find that a window
size of 2 or 4 times the number of processors performs consistently
well across all speculative sections.

5.3 Constrained Memory Overhead
In Section 5.2, Baseline and sys3 had the same memory over-

heads with a given window size, while sys4 had significantly higher
overheads, which even prevented us from running WUPWISE with
this system. One way to bring the memory overhead of sys4 to
the same levels of Baseline and sys3 is to block the iterations in
sys4 so that the resulting number of chunks is equal to the size of
the window in Baseline and sys3. Figure 6 shows the normalized
execution times of the speculative sections only for Baseline and a
blocked version of sys4, on 4 and 8 processors with minimum mem-
ory overhead, i.e., window size or number of chunks equal to the
number of processors. Again, the numbers on top of the bars show
the speedups relative to sequential execution time and the bars are
broken down as before.

From this figure we see that blocking sys4 leads to mixed results.
When iterations are not well balanced locally but blocking itera-
tions leads to well balanced chunks, as in TREE, sys4 outperforms
Baseline (in this case by 31% on average). When iterations are

��
��
��

��
��
��

��
��
��
������

����

��
��
��
��

������
��
��
��

����

��
��
��
��

��
��
��
��
��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

������
��
��
��

����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

TREE

1.6

B
as

el
in

e

2.0

Sy
s4

B

2.9

B
as

el
in

e

3.9

Sy
s4

B

WUPWISE

B
as

el
in

e

1.9

Sy
s4

B

3.0

B
as

el
in

e

2.7

Sy
s4

B

MDG

2.8

B
as

el
in

e

2.6

Sy
s4

B

5.1

B
as

el
in

e

3.5

Sy
s4

B

0

50

100

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

Busy

Init

Spin

Ld+St

Commit

Contention

P=4 P=8

P=8P=4

P=8P=4

2.1

Figure 6: Normalized execution time breakdown for Baseline and a
blocked version of sys4 with minimum memory overhead. Results are
shown for 4 and 8 processors (P). The numbers on top of the bars are
the speedups relative to sequential execution.

locally well balanced but blocking iterations leads to unbalanced
chunks, as in MDG, Baseline outperforms sys4 (in this case by 27%
on average). Finally, when both iterations and chunks are well bal-
anced, as in WUPWISE, other factors, such as the commit over-
head, determine the better performing system (in this case Baseline
by 12% on average).

Blocking iterations with sys4 seems a viable option when load
imbalance is not significant. However, this technique still has seri-
ous limitations when the speculative sections suffer occasional data
dependence violations.

5.4 Effects of Dependence Violation Checks
To verify the cost of our policy of checking for data dependence

violations on every store operation, we compare our baseline sys-
tem, Baseline, with a similar system that only checks for depen-
dence violations when threads commit, sys2. Figure 7 shows the

21

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Busy

Init

Spin

Ld+St

Commit

Contention

��
��
��

��
��
��

����
����

����

������
��
��
��

��
��
��
��

����������
��
��
��
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
�����������������
���
���
���

��
��
��
��

��
��
��
��
��

��
��
��
��
��

����

��
��
��
��
��

��
��
��
��
��

����

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
���� ���

���
���
���

��
��
��
��
��������

TREE

1.6

W
=

P

1.9

W
=

2*
P

1.9
W

=
4*

P
1.9

W
=

8*
P

1.4

W
=

P

1.5

W
=

2*
P

1.6

W
=

4*
P

1.7

W
=

8*
P

1.8

Sy
s4

WUPWISE

W
=

P

W
=

2*
P

W
=

4*
P

2.0

W
=

8*
P

1.6

W
=

P

1.6

W
=

2*
P

1.5

W
=

4*
P

1.4

W
=

8*
P

NA

Sy
s4

MDG

2.8

W
=

P

2.8

W
=

2*
P

2.8

W
=

4*
P

2.8

W
=

8*
P

2.6

W
=

P

2.6

W
=

2*
P

2.7

W
=

4*
P

2.7

W
=

8*
P

2.8

Sy
s4

0

50

100

sys3

sys3
sys3

Baseline
Baseline

Baseline

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

2.1 2.1 2.1

��
��
��
��

������
��
��
��

����

������
��
��
��

����

������
��
��
��

��
��
��
��
����

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

����

��
��
��
��

����

��
��
��

��
��
��

����

��
��
��

��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��
��
��
��
��
����

����

��������

���
���
���
���
������������

����

��
��
��
��

��
��
��
��

����

��
��
��
��
��

��
��
��
��
��

����

��
��
��
��
��
��

��
��
��
��
��
��

������

���
���
���
���
���
���

���
���
���
���
���
���

����
������������

��
��
��
��
������������������

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

TREE

2.9

W
=

P

3.6

W
=

2*
P

3.7

W
=

4*
P

3.8

W
=

8*
P

2.4

W
=

P

2.5

W
=

2*
P

2.8

W
=

4*
P

2.8

W
=

8*
P

3.2

Sy
s4

WUPWISE

3.0

W
=

P

3.2

W
=

2*
P

3.1

W
=

4*
P

2.9

W
=

8*
P

W
=

P

2.0
W

=
2*

P

2.0
W

=
4*

P

1.7

W
=

8*
P

NA

Sy
s4

MDG

5.1

W
=

P

5.3

W
=

2*
P

5.3

W
=

4*
P

5.2

W
=

8*
P

4.7

W
=

P

4.8

W
=

2*
P

4.9

W
=

4*
P

5.0

W
=

8*
P

5.2

Sy
s4

0

50

100

sys3Baseline

sys3Baseline

sys3Baseline

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

Busy

Init

Spin

Ld+St

Commit

Contention

2.1

Figure 5: Normalized execution time breakdown for Baseline, sys3, and sys4. For Baseline and sys3 the window size (W) is varied from 1 to
8 times the number of processors (P). Results are shown for 4 processors (top chart) and 8 processors (bottom chart). The numbers on top of
the bars are the speedups relative to sequential execution.

normalized execution time of the speculative sections only, on 4 and
8 processors with the best window sizes from Section 5.2. Again,
the numbers on top of the bars show the speedups relative to se-
quential execution time and the bars are broken down as before.

From this figure we see that in all cases the cost of checking
for data dependence violations in Baseline does not lead to notice-
able performance degradation with respect to sys2. As expected,
Ld+St is greater with Baseline while Commit is greater with sys2.
This indicates that moving the checks for dependence violations
from the memory operations to the end of threads simply moves
the overheads from the loads and stores to the commit. However,
in the case of WUPWISE with 8 processors, the additional time
spent on violation checks at commit time with sys2 significantly in-
crease the contention overhead. This is because the violation checks
are then inside the critical section. In this case sys2 performs sig-
nificantly worse than Baseline. We expect this behavior to occur
when the speculative data is large and a large number of processors
is used. Overall, Baseline offers good and consistent performance
along with the opportunity for quicker response to dependence vio-
lations.

5.5 Effects of Speculative Access Structure
In this section we evaluate the performance impact of our opti-

mized speculative access structures. Figure 8 shows the normalized
execution time breakdown of the speculative sections only for our

base system, Baseline, and a variation of it without the IM opti-
mization, noIM. The bars are broken down as before. Note that to
keep the plot readable we truncate several sections of the bar for
WUPWISE noIM and the height of the bars are much bigger than
shown.

Comparing Baseline to noIM in this figure we see that the IM
optimization is crucial for applications with very large speculative
data (WUPWISE). The cost of scanning all elements of the AM ac-
cess structure at commit and initialization increases these overheads
significantly. The added time at commit also leads to significant in-
crease in both load imbalance and contention overheads.

5.6 Effects of Performance Feedback
In this section we study the performance of speculative paral-

lelization in the presence of cross-thread data dependence viola-
tions and we evaluate the importance of having performance mon-
itors and feedback. The loops we use, from LUCAS and AP3M,
are examples of cases where an automatic speculative parallelizing
compiler would likely suggest, incorrectly, that speculative paral-
lelization should be used. Figure 9 shows the normalized execution
time breakdown of the speculative sections only for our Baseline
configuration with some values of squash threshold and for a simi-
lar system without our squash overhead monitor (noMonitor).

We can see from this figure that without squash monitors signif-
icant slowdowns are possible. Contention for the squash and com-

22

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
����

��
��
��
������

���
���
���
���
���
���
���
���
������

��
��
��
����
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���

���
���
���
���
���
���
���

��������

��
��
��
��
����

��
��
��
��
��������

TREE

B
as

el
in

e

Sy
s2

B
as

el
in

e

Sy
s2

WUPWISE

B
as

el
in

e

Sy
s2

B

as
el

in
e

Sy
s2

MDG

B
as

el
in

e

Sy
s2

B
as

el
in

e

Sy
s2

0

50

100

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

Busy

Init

Spin

Ld+St

Commit

Contention

1.9 1.9

3.2

2.5
2.2

P=8P=4

2.8 2.9

5.3 5.2

3.8 4.0

P=4 P=8
P=8P=4

2.1

Figure 7: Normalized execution time breakdown for Baseline and sys2
with the best window size from Figure 5. Results are shown for 4 and
8 processors (P). The numbers on top of the bars are the speedups
relative to sequential execution.

mit operations account for most of the execution time increase, but
re-execution of the original instructions and the speculative oper-
ations also contribute to the overall slowdown. With the addition
of a squash monitor, our scheme is able to keep the slowdowns to
tolerable levels.

A complete study of the sensitivity of the slowdowns to the
squash threshold value is beyond the scope of this paper and we
present here only some preliminary observations. In the case of
LUCAS the number of data dependence violations increases for
each invocation of the speculative section and we observe a gradual
increase in execution time up to threshold values around 0.15. Be-
tween 0.15 and 0.2 there is a sharp rise in execution time and with
a threshold of 0.2 all the invocations of the speculative section are
run speculatively. In the case of AP3M, the knee is even sharper
since the number of data dependence violations is effectively the
same in all invocations. Thus, as we increase the threshold value,
we observe little change in execution time as only the first few in-
vocations run speculatively; after a certain point, all invocations run
speculatively. Overall, our experiments seem to indicate that small
thresholds (0.01 to 0.1) are required to keep the slowdowns tolera-
ble in most cases, but further study is necessary.

6. RELATED WORK
Run-time speculative parallelization in software was introduced

in the LRPD test [23]. Data dependence violations are checked
at the end of the tentative parallel execution, and the loop is re-
executed sequentially if a violation is detected. Thus, this scheme
can only handle fully parallel loops. The scheme in [8] proposed
a series of run-time tests, also at the end of the tentative parallel
execution. They are tailored for different access patterns and rely
on the compiler to identify the most likely behavior. More recently,
[7] extended the LRPD work with two new mechanisms. The most
aggressive, SW-R-LRPD test, uses a sliding window mechanism
somewhat similar to ours. This system differs from ours in three
ways: the window only moves when all threads in the window
complete; checking for data dependences only occurs after all the
threads within a window are finished; and the threads in a window
are statically partitioned and assigned to processors. The scheme
in [24] applied in software many of the ideas of hardware-based
speculative parallelization, such as checking for data dependence
violations on memory operations and forwarding. It differs from
ours in two ways: no window is used and either locks or a non-
scalable byte-vector implementation of the access structures are

P=4 P=8

��
��
��
��
������������

B
as

el
in

e

no
IM

3.8 3.9

P=8P=4

P=8P=4

��
��
��
��
��
��
��
��
����

3.2

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Busy

Init

Spin

Ld+St

Commit

Contention

��
��
��
��
������������

��
��
��
��
��
��
��
��

����

����

����
����

B
as

el
in

e

no
IM

0

50

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

1.9 1.9

TREE WUPWISE MDG

B
as

el
in

e

0.03

no
IM

63

2188

485

2.1

278

B
as

el
in

e

no
IM

2.8 2.8

no
IM

B
as

el
in

e

5.3 5.1

B
as

el
in

e

no
IM

2753

62

258

0.03

151

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

Figure 8: Normalized execution time breakdown for Baseline with and
without the IM data structure optimization. In all cases we use the best
window size from Figure 5. Results are shown for 4 and 8 processors
(P). Note that the bars for WUPWISE noIM are truncated and the
height of the bars are bigger than shown. The values of these truncated
sections are shown in the figure. The numbers on top of the bars are the
speedups relative to sequential execution.

used to avoid races in the protocol. The work in [21] takes a differ-
ent approach to software speculative parallelization by placing most
of the operations in the software distributed coherence engine.

Several hardware approaches for speculative parallelization have
been proposed (e.g., [5, 9, 16, 20, 26, 29, 31]). While these allevi-
ate many of the overheads of speculative parallelization by moving
some of the operations to hardware, they require significant changes
to the hardware structures, such as caches, protocol controllers, and
even the processors.

Alternatively to speculative parallelization, inspector-executor
schemes [15, 25] pre-compute the reference stream and use the de-
pendence information to execute the loop in parallel with explicit
synchronization where necessary. This approach works well only
when computation of the reference stream is cheap compared to the
actual loop computation.

Finally, speculative parallelization is also related to optimistic
concurrency control and synchronization [10, 14], including
hardware-assisted schemes [11, 17, 22]. Under these schemes,
which target explicitly parallel code, threads are allowed to specu-
latively enter critical sections simultaneously or speculatively pro-
ceed past a barrier before all threads have reached it. In these, there
is no need to enforce a total order on the memory accesses to shared
objects, but only that such accesses satisfy some valid partial or-
der (mutual exclusion in the case of critical sections or pre-barrier
before post-barrier accesses in the case of barriers). Speculative
parallelization schemes, on the other hand, tackle a more general
problem that requires enforcing a total order of accesses that satis-
fies the execution semantics of the original sequential code.

7. CONCLUSIONS
In this paper, we proposed and evaluated a new scheme for soft-

ware speculative parallelization. After systematically considering
the design space we implemented our scheme with carefully tuned
data structures, synchronization policies, and scheduling mecha-
nisms. The access information structures are shown to work well on
speculative load and store operations as well as commit operations,
regardless of the size of the user data structure. The synchroniza-
tion policies relax the constraints of previous work with software

23

����
������
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��������

����
��
��
��
��

��
��
��

��
��
��

��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��
��
����

��
��
��

��
��
��

��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��
��
��
��
��

��
��
��

��
��
��
��
����

LUCAS

0.69

th
rs

=
0.

05

AP3M

0

100

200

300

400

500

600

700

800

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

Busy

Init

Spin

Ld+St

Commit

Contention

0.23

no
M

on
ito

r

0.95

th
rs

=
0.

1

0.13

no
M

on
ito

r

0.92

th
rs

=
0.

05

0.13

th
rs

=
0.

2

0.65

th
rs

=
0.

1

0.92

th
rs

=
0.

2

Figure 9: Normalized execution time breakdown for Baseline with
and without a squash monitor. With a squash monitor thresholds of
0.05 (thrs=0.05), 0.1 (thrs=0.1), and 0.2 (thrs=0.2) were used. Results
are shown for 4 processors. The numbers on top of the bars are the
speedups relative to sequential execution.

speculative parallelization and allow for faster dependence viola-
tion checks on every speculative store operation. We also show
how to guarantee proper synchronization in the common case that
the hardware and the compiler only enforce relaxed memory con-
sistency models. Finally, the scheduling mechanism, based on an
aggressive sliding window, offers increased tolerance to load im-
balance and data dependence violations while keeping the memory
overhead associated with the access structures tolerable. Experi-
mental results show that our scheme has small overheads and is
able to reach a large fraction of the potential parallel execution per-
formance. In particular, for applications with few or no dependence
violations, the scheme realizes on average 71% of the speedup of
a manually parallelized version of the code. The results also show
that the scheme outperforms two recently proposed software-only
speculative parallelization schemes: one by 25% on average and
with similar memory overheads, and the other by 7% on average
but with significantly less memory overhead. For applications with
many data dependence violations, our performance monitors and
switches can effectively curb the performance degradation.

ACKNOWLEDGMENTS
We would like to thank the anonymous referees for their valuable
suggestions. We also thank Michael O’Boyle, José F. Martı́nez, and
Pedro Trancoso for their helpful comments on earlier drafts of this
paper. Finally, we thank the Edinburgh Parallel Computing Center
(EPCC) for the main computing resources used in this work and its
support staff, in particular Mark Bull and Catherine Inglis.

8. REFERENCES
[1] S. V. Adve and K. Gharachorloo. “Shared Memory Consistency Models: A

Tutorial.” IEEE Computer, Vol. 29, No. 12, pages 66-76, December 1996.
[2] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and B. Parady.

“SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance.” Wksp. on OpenMP Applications and Tools, pages 1-10, July 2001.

[3] J. E. Barnes. Institute for Astronomy, University of Hawaii.
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/.

[4] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A.
Sameh, E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C.
Hsiung, J. Schwarzmeier, K. Lue, L. Orszag, F. Seidl, O. Johnson, R. Goodrum,
and J. Martin. “The PERFECT Club Benchmarks: Effective Performance Eval-
uation of Supercomputers.” Intl. Journal of Supercomputer Applications, Vol.
3, No. 3, pages 5-40, Fall 1989.

[5] M. Cintra, J. F. Martı́nez, and J. Torrellas. “Architectural Support for Scalable
Speculative Parallelization in Shared-Memory Multiprocessors.” Intl. Symp. on
Computer Architecture, pages 13-24, June 2000.

[6] M. Cintra and J. Torrellas. “Eliminating Squashes Through Learning Cross-
Thread Violations in Speculative Parallelization for Multiprocessors.” Intl.
Symp. on High Performance Computer Architecture, pages 43-54, February
2002.

[7] F. Dang, H. Yu, and L. Rauchwerger. “The R-LRPD Test: Speculative Paral-
lelization of Partially Parallel Loops.” Intl. Parallel and Distributed Processing
Symp., pages 20-29, April 2002.

[8] M. Gupta and R. Nim. “Techniques for Run-Time Parallelization of Loops.”
Supercomputing, November 1998.

[9] L. Hammond, M. Wiley, and K. Olukotun. “Data Speculation Support for a
Chip Multiprocessor.” Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 58-69, October 1998.

[10] M. Herlihy. “Apologizing Versus Asking Permission: Optimistic Concurrency
Control for Abstract Data Types.” ACM Trans. on Database Systems, Vol. 15,
No. 1, pages 96-124, March 1990.

[11] M. Herlihy and J. E. B. Moss. “Transactional Memory: Architectural Support
for Lock-free Data Structures.” Intl. Symp. on Computer Architecture, pages
289-300, May 1993.

[12] The Hydra Consortium. Department of Physics and Astronomy, McMaster Uni-
versity. http://hydra.mcmaster.ca/hydra/.

[13] S. W. Kim, C.-L. Ooi, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar. “Refer-
ence Idempotency Analysis: A Framework for Optimizing Speculative Execu-
tion.” Symp. on Principles and Practice of Parallel Programming, pages 2-11,
June 2001.

[14] H. T. Kung and J. T. Robinson. “On Optimistic Methods for Concurrency Con-
trol.” ACM Trans. on Database Systems, Vol. 6, No. 2, pages 213-226, June
1981.

[15] S.-T. Leung and J. Zahorjan. “Improving the Performance of Runtime Paral-
lelization.” Symp. on Principles and Practice of Parallel Programming, pages
83-91, May 1993.

[16] P. Marcuello and A. González. “Clustered Speculative Multithreaded Proces-
sors.” Intl. Conf. on Supercomputing, pages 365-372, June 1999.

[17] J. F. Martı́nez and J. Torrellas. “Speculative Synchronization: Applying Thread-
level Speculation to Explicitly Parallel Applications.” Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Systems, pages 18-
29, October 2002.

[18] C. May, E. Silha, R. Simpson, and H. Warren, editors. The PowerPC Architec-
ture: A Specification for a New Family of RISC Processors. Morgan Kaufmann
Publishers Inc., San Francisco, second edition, 1994.

[19] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. “Dynamic Spec-
ulation and Synchronization of Data Dependences.” Intl. Symp. on Computer
Architecture, pages 181-193, June 1997.

[20] C.-L. Ooi, S. W. Kim, I. Park, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar.
“Multiplex: Unifying Conventional and Speculative Thread-Level Parallelism
on a Chip Multiprocessor.” Intl. Conf. on Supercomputing, pages 368-380, June
2001.

[21] S. Papadimitriou and T. Mowry. “Exploring Thread-Level Speculation in Soft-
ware: The Effects of Memory Access Tracking Granularity.” School of Com-
puter Science, Carnegie Mellon University, Technical Report CMU-CS-01-145,
July 2001.

[22] R. Rajwar and J. R. Goodman. “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution.” Intl. Symp. on Microarchitecture, pages
294-305, December 2001.

[23] L. Rauchwerger and D. Padua. “The LRPD Test: Speculative Run-Time Par-
allelization of Loops with Privatization and Reduction Parallelization.” Conf.
on Programming Language Design and Implementation, pages 218-232, June
1995.

[24] P. Rundberg and P. Stenström. “Low-Cost Thread-Level Data Dependence
Speculation on Multiprocessors.” Wksp. on Scalable Shared Memory Multipro-
cessors, June 2000.

[25] J. Saltz, R. Mirchandaney, and K. Crowley. “Run-time Parallelization and
Scheduling of Loops.” IEEE Trans. on Computers, Vol. 40, No. 5, pages 603-
611, May 1991.

[26] G. Sohi, S. Breach, and T. Vijaykumar. “Multiscalar Processors.” Intl. Symp. on
Computer Architecture, pages 414-425, June 1995.

[27] SPARC International Inc. The SPARC Architecture Manual Version 9. Prentice
Hall PTR, Englewood Cliffs, 2000.

[28] Standard Performance Evaluation Corporation. http://www.spec.org/.
[29] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. “A Scalable Approach

to Thread-Level Speculation.” Intl. Symp. on Computer Architecture, pages 1-
12, June 2000.

[30] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. “Improving Value Com-
munication for Thread-Level Speculation.” Intl. Symp. on High-Performance
Computer Architecture, pages 55-66, February 2002.

[31] Y. Zhang, L. Rauchwerger, and J. Torrellas. “Hardware for Speculative Run-
time Parallelization in Distributed Shared-Memory Multiprocessors.” Intl.
Symp. on High-Performance Computer Architecture, pages 161-173, February
1998.

24

