
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/380547114

Four abstract array distribution operators

Conference Paper · January 2016

DOI: 10.5281/zenodo.11213594

CITATIONS

0
READS

4

3 authors:

Ana Moreton-Fernandez

Universidad de Valladolid

16 PUBLICATIONS 51 CITATIONS

SEE PROFILE

Arturo Gonzalez-Escribano

Universidad de Valladolid

144 PUBLICATIONS 801 CITATIONS

SEE PROFILE

Diego R. Llanos

Universidad de Valladolid

155 PUBLICATIONS 915 CITATIONS

SEE PROFILE

All content following this page was uploaded by Diego R. Llanos on 14 May 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/380547114_Four_abstract_array_distribution_operators?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/380547114_Four_abstract_array_distribution_operators?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ana-Moreton-Fernandez?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ana-Moreton-Fernandez?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Valladolid?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ana-Moreton-Fernandez?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arturo-Gonzalez-Escribano?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arturo-Gonzalez-Escribano?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Valladolid?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arturo-Gonzalez-Escribano?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Valladolid?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-70a5f023bb779f5c6a3f0f9b97ed3b26-XXX&enrichSource=Y292ZXJQYWdlOzM4MDU0NzExNDtBUzoxMTQzMTI4MTI0MzI2MTAzN0AxNzE1Njg5NDUwMjEz&el=1_x_10&_esc=publicationCoverPdf

Noname manuscript No.
(will be inserted by the editor)

Four abstract array distribution operators

Ana Moreton-Fernandez · Arturo
Gonzalez-Escribano · Diego R. Llanos

Received: date / Accepted: date

Abstract Programming for distributed-memory systems imposes specific chal-
lenges. In these systems, minimizing synchronization and communication over-
heads is key for performance improvement. A typical approach is to use a
message-passing paradigm to exploit static partition policies and to generate
coarse-grain computations with aggregated communication phases. However,
irregular or data-dependent programs that need dynamic data redistributions
become more complicated to develop and debug.

In this paper we present four abstract array distribution operators that al-
low to efficiently implement programs on distributed-memory systems, making
the data partition, relocation, and data movement transparent to the program-
mer. Our experimental results show that our approach does not imply signif-
icant overheads, while achieving good scalability for combinations of data-
dependent, irregular, or recursive parallel structures on distributed-memory
systems.

Keywords distributed-memory systems · data redistributions · external
libraries

1 Introduction

The message-passing paradigm (implemented for example by MPI libraries)
has been shown to be a programming method for distributed-memory systems

Ana Moreton-Fernandez
Departamento de Informatica, Universidad de Valladolid, Campus M. Delibes, 47011 Val-
ladolid, Spain
E-mail: ana@infor.uva.es

Arturo Gonzalez-Escribano
E-mail: arturo@infor.uva.es

Diego R. Llanos
E-mail: diego@infor.uva.es

2 Moreton-Fernandez et al

that leads to highly efficient programs in terms of performance. However, the
programmer still has to deal with many decisions not related with the parallel
algorithms, but with implementation issues, such as decisions about partition
and locality vs. synchronization/communication costs, scheduling details, etc.

Parallel programming models based on tasks, data-flow approaches, or the
creation of data dependence graphs are commonly used in dynamic, recursive,
and divide & conquer applications. Many of this kind of programming models
have been proposed during the last years. These works provide an easy-to-use
methodology to parallelize dynamic applications, that reduces the effort for
the programmer. However, the task creation and destruction, the management
of distributed queues, the synchronization and load balancing mechanisms, or
the data communications due to dynamic task scheduling and/or migration,
produce performance penalties, especially in distributed-memory systems. Pro-
grams with static-scheduled processes that perform coarse-grain computation
and communication phases can minimize synchronization overheads. However,
applications that use irregular domains have a very limited support in compile-
time frameworks that automatically generate static-scheduled programs from
sequential codes [4]. Thus, the ease of managing parallelism using distributed
data has become an important feature for software developers.

In this paper we present four array distribution operators to efficiently
implement distributed-memory algorithms, making the data partition, reloca-
tion, and data movement transparent to the programmer. These unary op-
erators are applied on an array divided across distributed processes, and the
result is another array containing all or part of the original array elements
relocated on the available processes. These operators can be freely combined,
even in a recursive algorithm.

To show the applicability of our proposal we have developed the four oper-
ators in the Trasgo system [10], a parallel programming model and compilation
framework to generate parallel programs from a high-level parallel specifica-
tion. As an example, we show how these four operators allow to implement for
distributed-memory systems many of the array routines included in the C++
Standard Library, also known as STL [19], which is a foundation for many
complex algorithms. In summary, our main contributions are the following:

– The design of four new operators that allow the efficient development of
recursive or irregular array-based algorithms on distributed-memory sys-
tems.

– The implementation of these operators in a high-level parallel programming
model; including new supporting communication structures in its runtime
system.

– We have developed a parallel implementation of many algorithms of the
C++ STL library using the proposed operators to show their applicability
and benefits.

We present an experimental study, using applications based on STL rou-
tines, to show that our proposal achieves a good performance and scalability
for data-dependent, irregular, or recursive applications.

Four abstract array distribution operators 3

** Distributed algorithm in message-passing
Inputs:

int Size: Vector size
int sel: Elements to update
int id: Local process identifier
int P: Number of processes
A<type> M[]: Distributed Vector,

with initial values
Outputs:

A<type> M2[]: Distributed Vector

1. myRange.begin= id * Size/P;
myRange.end= myRange.begin + Size/P -1;
for (i=myRange.begin;

i<=myRange.end; i++)
sum=sum+M[i]

2. AllReduce (sum)

** Calculate a redistribution
3. myRange2.begin= id * sel/P;

myRange2.end= myRange2.begin + sel/P -1;

for(id_p=0; id_p< P ;id_p++){
range.begin= id_p * Size/P;
range.end= range.begin + Size/P -1;
range2.begin= id_p * sel/P;
range2.end= range2.begin + sel/P -1;

Range send_p =
intersect(<myRange.begin,myRange.end>,

<range2.begin,range2.end>);
Send(M, send_p, id_p);
Range recv_p =
intersect(<myRange2.begin,myRange2.end>,

<range.begin, range.end>);
Recv(M2, recv_p, id_p);

}

4. for (i=myRange2.begin;
i<=myRange2.end; i++)

M2[i]=M2[i]* sum

** Distributed algorithm
using proposed operators

Inputs:
int Size: Vector size
int sel: Elements to update
int id: Local process identifier
int P: Number of processes
Map L: Mapping function
A<type> M[]: Distributed Vector,

with initial values

Outputs:
A<type> M2[]: Distributed Vector

1. for (i=L(id,Size,P).begin;
i<=L(id,Size,P).end; i++)

sum=sum+M[i]
2. AllReduce (sum)

3. M2= ArrayRemapRange(M,<0,sel-1>,L)

4. for (i=L(id,sel,P).begin;
i<=L(id,sel,P).end; i++)

M2[i]=M2[i]*sum

Fig. 1 Motivating example algorithms using two different approaches: Reference algorithm
in message-passing style (left); and programmed using the proposed operators in a single-
program-multiple-data model (right).

The rest of the paper is organized as follows: Section 2 shows a motivating
example. Section 3 describes the proposal. Section 4 presents the Trasgo model.
Section 5 describes the proposal implementation. Section 6 shows an experi-
mental evaluation. Section 7 discusses some related work. Section 8 presents
the conclusions and future work.

2 Motivating example

This section presents a motivating example to show the advantages of our pro-
posal. We have chosen an example where redistributing data is needed to create
load-balance and improve efficiency. However, programming this data redis-
tribution in a plain message-passing model is complicated and error-prone.

4 Moreton-Fernandez et al

The parallel algorithm of the motivating example using a message-passing ap-
proach is presented on the left of Fig. 1. It sums in parallel all the elements
of the whole vector (each process sums its local part and reduces the result),
and then, it updates also in parallel the elements of a sub-selected range of
the whole array using the previously calculated sum (each process updates its
elements assigned after balancing the load). The input parameters are: (1) An
integer Size that determine the size of the input array. (2) An integer named
sel that determines the amount of elements to update. (3) An integer id that
represents the identifier of the local process. (4) An integer P that determine
the number of processes, and (5) an array M of Size elements distributed
among the P processes. The output will be a distributed array M2 containing
the first sel elements of M updated.

Let Range be the type to represent a contiguous subdomain of indexes
expressed as a pair of natural numbers 〈begin, end〉. Let L : N3 → Range be
a Mapping function, where L(id, Size, P) returns the range of indexes to be
mapped to the process id. For simplicity, in this example, we assume that Size
is divisible by P , and that the mapping function L assigns to each process
Size/P elements with contiguous indexes. Finally, let AL〈type〉 denote an
array A distributed using the mapping function L.

In the first stage of the algorithm, each process calculates the sum of the
elements of its local part (being myRange.begin the first element assigned
to the local process, and myRange.end the last one). Then, a reduction is
needed to sum the calculated values of the different process (Stage 2 of Fig. 1
(left)). Our example updates only the first sel elements of the input array.
For this reason, the program first redistributes the sel selected elements in
a distributed-balanced output array among the available processes (Step 3 in
the left of Fig. 1). Finally in the stage 4, each process updates its new local
part using the sum calculated in Stage 2.

A data redistribution (stage 3) is not needed, but it is desirable to balance
the computational load. For example, if we execute the application with Size =
10 000, sel = 2 000 and P = 4, without redistributing the data, as long as we
apply a function only on the first 2 000 elements, the computation will be
performed only by the first process in a sequential way, and we will not take
advantage of parallelism at that stage. To achieve a good performance, we
should perform a data redistribution. Thus, in the case of Size = 10 000,
sel = 2 000 and P = 4, each process computes 500 elements.

On the right of Fig 1, we show the motivating algorithm using one of our
operators that performs a transparent data redistribution operation. As we
observe in the figure, the programming effort is highly reduced avoiding to the
programmer the need to deal with all the necessary communications.

Data redistributions are only appropriated when the computation is per-
formed in a unbalanced way according to the initial data distribution. They
are convenient when the overhead produced by the communications needed to
perform the redistribution is less than the potential performance gain. More-
over, there are algorithms based on recursive, divide & conquer, or similar
paradigms, like for example QuickSort, which imply dynamic modifications or

Four abstract array distribution operators 5

1 3 4 1 2 8 5 6 5

Proc: 0 Proc: 1 Proc: 2 Proc: 3

5 9 1 3 4 1 2 8 5 6 5 5 1 4 2 1

0 4 8 15

0 8

M [2:10]

M_out

Fig. 2 Data redistribution performed by the ArrayRemapRange operator. In this case the
call to the operator is M out = ArrayRemapRange(M, 〈2, 10〉, L).

subselections of array structures where data redistributions are totally neces-
sary to execute the algorithms on distributed-memory systems.

3 Proposal: Redistribution operators

In this section we describe four new high-level operators to perform array-data
redistributions at runtime. They can be freely combined, even recursively, to
transparently implement the communication structures of a wide range of
array applications. Our operators receive an already-distributed array and dif-
ferent compulsory or optional parameters to select subdomains of the original
array in different ways. The selected elements are redistributed across the
whole range of available processes using a mapping function that assigns in-
dexes to processes according to its predefined policy. The function is also a
parameter for the operators. Thus, the operators are not dependent on the
mapping policy chosen by the programmer. We name AL to the array A that
is distributed using the mapping function L. For simplicity, the L mapping
function used in all the figures of the paper is a contiguous blocking function
for homogeneous load balance.

3.1 ArrayRemapRange: Remap of array range

The possibility to redistribute only a given selection or range of the original
array is necessary to allow the development of recursive or divide & conquer
algorithms, and it is appropriated for other kinds of functions to improve load-
balance (such as the case of our motivating example in Sect. 2). This operator
selects a range of an already distributed input array, and copy the selected
elements in a new distributed output array that is created and allocated by
the operator. The interface of this operator is the following:

ArrayRemapRange : AL〈type〉, Range, L′ → AL′〈type〉

Both arrays (input and output) are distributed among the different processes
not necessarily using the same mapping function. Thus, several data commu-
nications per process can be needed to perform the data movement. Figure 2
shows a visual representation of how this operator works.

6 Moreton-Fernandez et al

5 3 4 2 5 5 5 1 1

Proc: 0 Proc: 1 Proc: 2 Proc: 3

5 9 1 3 4 1 2 8 5 6 5 5 1 4 2 1

0 8

Input: M

Output: M_out

1 0 0 1 1 1 1 1 11 10 0 0 0 0Input: Mask

Fig. 3 Data redistribution performed by the ArrayRemapMask operator. In this case the
call to the operator is M out = ArrayRemapMask(M,Mask, L).

3.2 ArrayRemapMask : Remap of an irregular selection using a mask

There are cases where the data that we want to select are not contiguous in
memory. We propose a method based on masks to select this kind of sparse
subdomains. The goal of this operator is similar to the ArrayRemapRange
operator but using a mask to select the desired elements to be remapped. The
mask is a boolean array with the same size than the input array. The mask
has to be also distributed using the same partition policy that the input array.
This ensures that the mask value, for any given index, is mapped to the same
process as the corresponding data element of the array. The interface of this
operator is the following:

ArrayRemapMask : AL〈type〉, AL〈bool〉, L′ → AL′〈type〉

The operator will select the elements whose associated value on the mask
is 1 (true), the other ones are discarded. Figure 3 shows a visual representation
of how this operator works.

9 1 1 8 6 4 2

Proc: 0 Proc: 1 Proc: 2 Proc: 3

9 1 3 4 1 2 8 6 5 5 1 4 2 1Input: M

M:0

1

0 4 8 15

0 0 2 1 2 1 1 22 10 0 0 0 0Input: Mask

5 4 5 5 1M:1 Output: M*

3 2 5 1M:2

5 5

Fig. 4 Data redistribution performed by the ArrayDivide operator. In this case the call to
the operator is M∗ = ArrayDivide(M,Mask, L, T). The chosen T function for this example
assigns to every group all the processes.

Four abstract array distribution operators 7

Proc: 0 Proc: 1 Proc: 2 Proc: 3

5 9 1 3 4 1 2 8 5 6 5 5 1 4 2 6

0 4 8 15

Mask_1:

1 3 4 1 2 1 4 2

Mask_2:

1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1

0 1 1 0 1 0

QuickSort: Pivot = 5

ArrayDivide (data, Mask_1, L',T)

QuickSort(data, 5)

QuickSort(data:0, 2)

ArrayMerge (data,L',T)

1 1

1 4 41 21 32

1 4 41 21 532 6 855 965

First recursive level:

First recursive level:

...

QuickSort(data:1, 5)

D
iv

id
e

s
ta

g
e

M
e
rg

e
s
ta

g
e

R
e
c
u

rs
io

n

QuickSort: Pivot = 2

5 9 8 5 6 5 5 6

QuickSort: Pivot = 5

5 5 5 5 6 6 8 9

0 1 1 0 1 0 0 1

...
T(0) = 0, 1 T(1) = 2, 3

Fig. 5 Sequence of operations performed in the QuickSort algorithm in a distributed-
memory system using the ArrayDivide and ArrayMerge operators. T function assigns to
each group array a number of processes that is proportional to the size of the group array.

3.3 ArrayDivide: Dividing an array in several balanced parts using a mask

This operator is designed to tackle recursive, divide & conquer, and similar
applications that need to split the data in several groups, with each group
redistributed across processes independently. The operator receives an integer
mask. The elements with the same natural value in the mask will be stored
and redistributed in an independent output group array. Thus, the output is a
collection of group arrays. The processes assigned to each group are determined
by a new kind of function that assigns a subset of the processes indexes [0..P−
1] to each group, T : N → P ′ ⊂ {0, ..., P − 1}. T is received as parameter by
the operator. L′ is used to redistribute each group across its assigned subset
of processes. This operator is an extension of ArrayRemapMask with groups
(equivalent to simultaneous instances of ArrayRemapMask), and adding the T
parameter that introduces the possibility of mapping to a subset of processes.
The definition of this operator is the following:

ArrayDivide : AL〈type〉, AL〈int〉, L′, T → 〈A0
L′〈type〉, ..., An

L′〈type〉〉

In Fig. 4 we show an example of how this operator works for a specific
mask with three group numbers (0, 1, 2), and a T function that assigns to
every group all the processes.

As another example, the QuickSort algorithm can be programmed in par-
allel using this operator (see Fig. 5). The algorithm divides a large array into
two smaller sub-arrays: the elements lower and the elements higher than a
pivot element. The program creates a mask that keeps the information about
if each element is lower or higher than the pivot (0 if the value is lower, or 1
if it is higher, as we see in the Divide stage). Using this mask, the program
calls the ArrayDivide operator, which perform the data repartition. After that,

8 Moreton-Fernandez et al

the algorithm recursively calls again the QuickSort() function for each group
array (see Recursion stage). For proper load balance, in QuickSort we use a
T function that assigns to each group array a number of processes that is
proportional to its size. In the figure, for the first group array the function T
returns the processes 0, 1 and for the second group array the processes 2, 3.

3.4 ArrayMerge: Merging array parts

This fourth operator is designed to merge several distributed arrays in one.
This operator receives an array of group arrays and concatenates them in
one distributed output array remapping the data, in terms of the results of
a mapping function and a processes assignment function T . The definition of
this operator is the following:

ArrayMerge : 〈A0
L〈type〉, ..., An

L〈type〉〉, L′, T → AL′〈type〉

Such operation is needed, for example in the Merge stage of the QuickSort
algorithm. In QuickSort, it merges all the sorted subarrays when exiting the
recursion. Figure 6 shows a visual representation of how this operator works.

Proc: 0 Proc: 1 Proc: 2 Proc: 3

9 1 1 8 6 4 2 5 3 4 2 5 5 5 1 1Output: M

9 1 1 8 6 4 2M0

5 3 4 2 5 5 5 1 1M1

Input:

Fig. 6 Operation performed by the ArrayMerge operator. In this case the call to the oper-
ator is M = ArrayMerge(M∗, L, T). The chosen T function for this example assigns to the
output array all the processes.

4 Trasgo, CMAPS and Hitmap in a nutshell

In this section we briefly present Trasgo, the parallel programming model
that we have chosen to implement our solution. Trasgo is adequate to imple-
ment our solution due to it has independent mapping functions, hierarchical
data selections on distributed data, and aggregated data communications. The
Trasgo model [10] proposes the use of an explicitly parallel but high-level and
structured representation of parallel algorithms. The input language (currently
CMAPS) is expressed in nested bulk synchronous steps, while the generated
code can relax these synchronizations to improve efficiency using point-to-
point communications when it is appropriated.

Four abstract array distribution operators 9

Trasgo transforms the global address space into a partitioned address space,
building the functions to compute communications across virtual processes
using a run-time library, named Hitmap [11].

4.1 CMAPS programming language

CMAPS [14] is the current input programming language for Trasgo. It pro-
vides both native data types, and tile types for more complex data structures,
such as arrays. See an example of a CMAPS code for the motivating example
in the left of Fig. 7. In this code, first, we define the sequential functions to
apply to each element to reduce the sum and to multiply an array element
by a value. The parallel function is defined using the coordination modifier.
In its body, the parallel coordination statements spawn as many logical pro-
cesses as indexes were defined in its control expression. In this example, the
first parallel statement launches a logical process for each element in the M
array accumulating the sum of all elements of M. The parallel statement con-
tains do: clauses, with the functions to be executed by each logical processes
and a reduce clause to consolidate the value of the variable. After that, the
function ArrayRemapRange() redistributes the selected range of data across
all the processes for load balancing. Range selections are expressed in CMAPS
with a similar notation to the Fortran90 colon notation inside square brackets
[begin:end:stride]. Finally, the code updates each element of M out in parallel.

4.2 Run-time system: Hitmap

Hitmap is a library designed for hierarchical tiling and mapping of dense and
sparse arrays. Hitmap is based on a distributed SPMD programming model,
using abstractions to declare data structures with a global view. It automatizes
the partition, mapping, and communication of hierarchies of tiles, while still
delivering good performance [11].

An object hit shape represents a subspace of domain indexes defined as
an n-dimensional rectangular parallelotope. The limits on each dimension are
represented with a hit sig object, containing the range limits (begin, end, and
stride).

A hit tile maps actual data elements to the index subspace defined by a
shape. New allocated tiles internally use a contiguous block of memory to
store data. Subsequent hierarchical subselections of a tile reference data of
the ancestor tile, using the signature information to locate and access data
efficiently. Tile subselections may be also allocated to have their own memory
space.

Topology and Layout abstract classes are interfaces for two different plug-
in systems. These plug-in modules are selected by name in the invocation
of the constructor method. Topology plug-ins implement simple functionali-
ties to arrange physical processors in virtual topologies, with their own rules

10 Moreton-Fernandez et al

Fig. 7 Left: Trasgo input code for the motivating example (CMAPS). Right: Generated
code for the ArrayRemapRange operator (Hitmap) in the motivating example.

to build neighborhood relationships. Layout plug-ins implement methods to
distribute a domain shape across the processors of a virtual topology. The re-
sulting Layout object contains information about the local part of the domain,
neighborhood relationships, and methods to locate the remote subdomains.

Finally, hit comm and hit patt objects represent information to synchro-
nize or communicate data tiles among processes. The class provides multiple
constructor methods to build different communication schemes based on point-
to-point or collective communications. The library is built on top of the MPI
communication library, for portability across different architectures. Hitmap
internally exploits MPI techniques that increase performance, such as MPI
derived data-types and asynchronous communications.

5 Implementation of the operators

In this section we present the extensions developed in our runtime system,
Hitmap, and in Trasgo to support the new operators proposed.

5.1 Supporting data redistributions at Hitmap runtime level

Trasgo framework transforms a high-level code with a global index space in
a low-level code where each process has its own local index space. We have
introduced in Hitmap a new function named localRange(Tile, Shape). It re-
ceives a distributed tile structure, and a selection range in global coordinates.
It returns a hit shape object representing the part of the input range that

Four abstract array distribution operators 11

is allocated in the local process. For example, in Fig. 2, the function local-
Range(M, [2:10]) returns for the process 0 the shape that selects its last two
local elements, and for process 2 the shape that contains its first three local
elements.

We have also developed in Hitmap a generic redistribution communication
pattern constructor (hit patRedistribute()). It receives two already distributed
arrays (that in Hitmap contains a reference to their respective layout functions
L and L′ originally used to distribute their domains). The constructor simply
traverses the process-identifiers space with two loops. In the first loop, we com-
pute the intersections of the result of applying L at the local process, with the
result of applying L′ at each remote process, to calculate the indexes of data to
be sent. In the same way, the second loop computes the inverse intersections,
applying L′ at the local process, and L at each remote process to calculate
the data to be received. The loops traverse the process identifiers in a cyclic
way, starting at the local identifier plus 1; (myRank + 1) mod P . This gener-
ates a skewed communication scheme, that helps in reducing communication
saturation bottlenecks on specific processes.

5.2 Implementation and code generation of the new operators in Trasgo

In this section we describe how we have implemented the support for the
high-level operators in Trasgo as CMAPS functions.

We have introduced in CMAPS a ArrayRemapRange(in tileSelection, out tile)
function. Figure 2 shows a diagram of how this operator works when it is used
as in the expression: ArrayRemapRange (M[2:10], M out). Figure 7 (right)
shows the code generated by Trasgo for this operator applied in the motivat-
ing example. It first calculates and allocates the local part of the output array
(step 1). Then, it calculates and selects from the input array, the part of the
selection range in the local process (step 2). The last step creates and executes
the pattern containing the needed communications.

Similarly, the ArrayRemapMask operator has been designed for the CMAPS
language with the following syntax: ArrayRemapMask(in tile, in mask, out tile).
The code generated by Trasgo, when this operator is used, follows the same
structure than the previous operator. It selects for each process the data ele-
ments that the local process has (the data elements whose mask value is 1). In
this case, to select the data, we generate a loop that traverses the local domain
analysing the mask (to know the selected elements), copying contiguously the
needed data elements in an auxiliary array with contiguous memory, in order
to perform the redistribution using ranges as in the first operator.

The ArrayDivide operator is designed in CMAPS as: ArrayDivide(tile,
mask, T function). The function creates an array of arrays, where each array
stores the elements that belong to the same group. The new CMAPS notation
tile : group selects the desired group array. The code generated is similar to
the second operator, but, in this case, every element is stored separately in its

12 Moreton-Fernandez et al

corresponding array of the group after traversing the mask. A redistribution
call is issued for each group.

The ArrayMerge operator is designed in CMAPS as: ArrayMerge(tile, T
function). The generated code for this operator calls the Hitmap redistribution
function for each group array, concatenating the groups in consecutive ranges
of the single output data.

6 Experimental studies

We have conducted experimental studies to validate our approach, and to ver-
ify the efficiency of the resulting codes that use the new operators. We present
three different experimental studies. The first one, using a shared-memory sys-
tem, aims to show the overhead of our distributed-memory portable approach
compared with the main-trend parallel STL libstdc++ implementation. The
second and the third studies, using a distributed-memory system, aim to show
the scalability delivered by our proposal. We have chosen as benchmarks many
routines of the Standard Template Library (STL) for one dimensional arrays
(summarized in Tab. 1). During the last years, many works have presented
parallel versions of this library [9,15,18], as well as new parallel programming
models that support the development or use of this library in parallel [20]. It
includes many useful algorithms, and it is a well-known supporting tool for
developers [17]. For all the routines and examples tested, we have always used
a mapping policy of contiguous balanced blocks.

6.1 Experimental platforms and setup

The experiments were executed in two platforms. The first one is a pure shared-
memory machine (Heracles), a Dell PowerEdge R815 server, with 4 AMD
Opteron 6376 processors at 2.3 GHz, with 16 cores each, and 64 cores in total.
The second platform (CETA) is a hybrid cluster that belongs to CIEMAT
and the Spanish government. The cluster nodes are connected by Infiniband
technology, and each one has two Intel Xeon 5520 CPUs at 2.27 GHz, with 4
cores each. Using 4 nodes of the cluster, we exploit up to 32 computational
units. We have compiled the codes with the GCC v4.8.3 compiler, using the
optimization flag -O3, and the flag -fopenmp for the codes generated for shared-
memory systems. We use mpich3 v3.0.4 as MPI implementation for the codes
generated for distributed-memory systems.

6.2 Performance study on a shared-memory system

In this performance study, we show the overhead of our distributed-memory
portable approach, compared with the main-trend parallel STL libstdc++
v6.0.19 implementation [16]. Due to space restrictions, in this paper we only
show the results of three specific routines. They cover the different kinds of

Four abstract array distribution operators 13

Table 1 Summary of the implemented STL routines for one dimensional numeric arrays
for distributed-memory systems using the new four operators.

Algorithm Class Function Call(s)

Embarrassingly
Parallel

all of, any of , none of, copy, copy if, copy n, count, count if,
fill, fill n, for each, generate, generate n, replace if, transform,
swap ranges

Find find, find if, find end, find first of, adjacent find, mismatch, equal

Search search, search n, lower bound, upper bound

Numerical Algo-
rithms

min element, max element, minmax element, accumulate, adja-
cent difference, inner product, rotate, rotate copy

Partition is partitioned, partition, partition copy, partition point

Merge merge, inplace merge

Sort quickSort, is sorted, is sorted until, partial sort copy,

Complex Set Op-
erations

remove if, remove copy if, set difference, set symmetric difference,
set intersection, set union, unique, unique copy

data redistributions that together can support all the other implemented STL
algorithms. These representative results can be extrapolated to the other STL
routines tested. The examples we have chosen are:

– for each: This example performs 1 000 floating point operations for each
element on the selected range of an array. The kind of data redistri-
bution used in this algorithm appears in most of the algorithms in the
STL, to remap a selected range of a distributed array. We use the Ar-
rayRemapRange operator.

– unique copy: This example copies the elements of a range of an array to
a range in a second array, skipping the consecutive duplicates. The size of
the second data structure is created in function of the amount of elements
copied from the first data structure. We use the ArrayRemapMask operator
to select data elements that have to be eliminated.

– quickSort: This example sorts the elements of an array. To implement
this algorithm in a distributed-memory system, it is necessary to perform
a sequence of recursive data redistributions repartitioning and merging the
pivoted subarrays. We use the ArrayDivide and ArrayMerge operators.

Table 2 shows the comparison in terms of execution time, between the par-
allel shared-memory version included in the C++ standard template library
of libstdc++ (based on OpenMP), and our approach (based on Hitmap). We
see that, for algorithms like for each, where the number of data redistributions
is low compared with the computational load, we obtain similar performance
in both codes. As expected, in cases such as the quickSort, we observe some
penalty performance, due to the data movements and buffer replications asso-
ciated to the message-passing programming. It is worth while to note that, in
shared-memory programming models, communicating pointer values is enough
to recursively assign the subarrays to the working threads. Even so, we see that
we achieve a good scalability in the execution time when we increase the num-
ber of processes. The extreme case is the unique copy routine. Due to the low

14 Moreton-Fernandez et al

Table 2 Performance results (in seconds) for experiments in Heracles, the shared-memory
system, using 107 elements.

for each quickSort unique copy

Processors Ref C++ Trasgo Ref C++ Trasgo Ref C++ Trasgo
1 5.43 5.45 1.57 3.26 0.025 0.72
4 1.36 1.38 0.39 1.13 0.023 0.19
8 0.68 0.74 0.22 0.91 0.029 0.21
16 0.34 0.40 0.13 0.65 0.029 0.14
32 0.18 0.21 0.08 0.37 0.03 0.06
64 0.10 0.11 0.07 0.21 0.035 0.04

computational load and calculations performed only by the master in the lib-
stdc++ implementation, it does not reach a good scalability. Our approach
introduces a penalty due to extra calculations and communications inherent
to the distributed-memory management. These extra costs make a noticeable
difference when the number of processes is low, although when the number of
processes increases the gap is quickly reduced.

6.3 Redistribution load balancing impact on scalability

In this section, we study the performance obtained on a distributed-memory
system when comparing our redistribution approach with a solution that does
not apply data redistributions for load balancing. We test the for each routine
with 1 000 floating point operations like in the previous experimental study on
an array of 107 elements (for each routine contains the operator that is more
used in the rest of the STL routines implemented). The first CMAPS imple-
mentation redistributes the data in the selected range across all the processes
to balance the computational load (Redis). The second CMAPS implementa-
tion does not include data redistributions (Without-Redis), and each process
works with its originally mapped data that are in the selected range (if any).
Both implementations use the same sequential functions and semantic struc-
ture, so we only see the performance penalty or gain that comes from using
our data-redistribution operators, that is the focus of our study.

We have designed experiments to study the impact of two parameters in
the data-redistribution operations:

1. The amount of data selected from the original array where applying the
routine. We have performed the experimentation selecting 20, 50 and 80%
of data of a whole vector in a contiguous range.

2. The place in the original array where the range of data is selected. Data
redistributions can obtain different performance in function of the number
of processes actually implied in the communications. Thus, we have per-
formed the experimentation selecting the data in three ways: (1) Selecting
the data chosen at the beginning of the array (Left), (2) selecting the data
chosen at the end of the array (Right), and (3) selecting the data chosen,
with the middle of the selected range at the middle point of the whole
array (Center).

Four abstract array distribution operators 15

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Left 20%

Redis (20%)
Without-Redis (20%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Left 50%

Redis (50%)
Without-Redis (50%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Left 80%

Redis (80%)
Without-Redis (80%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Center 20%

Redis (20%)
Without-Redis (20%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Center 50%

Redis (50%)
Without-Redis (50%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Center 80%

Redis (80%)
Without-Redis (80%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Right 20%

Redis (20%)
Without-Redis (20%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Right 50%

Redis (50%)
Without-Redis (50%)

 1

 10

 100

1 2 4 6 8 10 12 16 20 24 28 32

S
C

Processors

For_each Right 80%

Redis (80%)
Without-Redis (80%)

Fig. 8 Performance scalability results for the for each algorithm in CETA, the distributed-
memory system (logarithmic scale). SC(p) = time(p)/T1 being T1 the time spent for one
process in Redis implementation.

Figure 8 shows the performance obtained for the different versions and
parameters of the for each routine in CETA, the distributed-memory system.
We observe that, when the data selection is 80%, both codes obtain approx-
imately same performance. However, when the amount of data selection is
low (20 or 50%) the performance obtained using our approach is significantly
better than the codes which do not use it. Our approach redistributes the
range of data that needs computation, avoiding idle processors and creating
load balance that alleviates the extra communication costs, only increasing
the development effort in one line.

6.4 Scalability of a combination of routines/operators

The last experimental study analyzes the performance obtained by an applica-
tion that use a combination of several STL routines on a distributed-memory
system. We have selected a simple algorithm that combines the three previous
routines discussed, together with a find routine that implies a reduction. This
covers the main redistribution combinations using the four operators. See the
algorithm in Fig. 9 (left). First, the application sorts an array. Then, it applies
the unique copy routine to eliminate the duplicated elements. After that, the
program applies to all the non-duplicated elements a function (executing 1 000
floating point operations for each element). It finally finds the first element
that fulfils a condition using the find routine.

16 Moreton-Fernandez et al

1 ** Combination of routines
2 Inputs:
3 A<type> M[]: Distributed Vector,
4 with initial values
5 Outputs:
6 <type> Fvalue: First value
7

8 1. stl:quickSort(M);
9 2. M2=stl:unique_copy(M);

10 3. stl:for_each(M2, func);
11 4. Fvalue=find(M2);

 1

 10

1 4 8 12 16 20 24 28 32

S
C

Processors

Combination of routines

Size=100000

Size=500000

Size=1000000

Fig. 9 Algorithm (left) and scalability results (right) for an application combining differ-
ent STL routines in CETA, the distributed-memory system (logarithmic scale). func ap-
plies 1000 floating point dummy operations to simulate real applications load. SC(p) =
time(p)/time(1).

Figure 9 (right) shows the scalability obtained by this application in CETA,
the distributed-memory system, for different data input sizes, and using dif-
ferent number of processes. We observe that our approach, despite the over-
head produced by dealing with distributed data, and applying irregular data-
dependent operations, allows to transparently obtain a good scalability.

7 Related Work

Many parallel programming languages and models have arisen following the
task-parallelism approach [3,6,7,13] for both shared- and distributed-memory
systems, with the goal of abstracting to the programmer decisions about
load-balancing, granularity, etc. as our proposal. All these programming mod-
els based on task parallelism generate performance penalties, especially in
distributed-memory systems due to, for example, the task creation and de-
struction, the management of distributed queues, or the synchronization and
load balancing mechanisms. In data-flow approaches, such as the distributed-
memory extension for FastFlow [1], the task construction implies a data par-
tition and a dynamic control of task that leads to load balance. However,
this dynamic scheduling prevents the exploitation of affinities and data lo-
cality across tasks. In our proposal, we use a fixed scheduled SPMD model,
focused on exploiting data localities, and redistributing only the data when
it is necessary. PGAS (Partitioned Global Address Space) languages, such as
Chapel [5], X10 [6], or UPC [8], present a middle point approach by explicitly
managing local and global memory spaces. Some PGAS models like Chapel,
present an abstraction to work with mixed distributed- and shared-memory
environments at the same level than Trasgo. However, they cannot aggregate
communications derived from irregular data accesses. Our proposed operands
perform only one aggregated communication step for each operator, deriving
in a reduced number of coarse-grained computations and communications.

Four abstract array distribution operators 17

There are many parallel code generators based on data-parallelism that
transform code to statically scheduled coarse-grain processes at compile time.
Most of them are based on the polyhedral model [4]. All the techniques pre-
sented so far need to parametrize the iteration space polyhedra and to anal-
yse dependencies at compile time. Unlike these approaches, our approach can
tackle nested, recursive, or data-dependent applications with dynamic behav-
ior, such as Quicksort, etc.

There are many works that provide external libraries to ease the parallel
programming or to demonstrate the power of a parallel language. In particu-
lar, the STL library has been one of the most parallelized and studied libraries
in the literature. For example, the work in [20] presents an implementation
for multicore architectures of the STL library using Cilk++. Works like [15,
18] developed parallel versions of this library for shared- and distributed-
memory systems using OpenMP and MPI respectively. Another works, such
as HPC++ [12], also includes more sophisticated distributed versions of the
STL containers, iterators and algorithms. STAPL [2] provides, through the
usage of the STL library, a model of parallelism that supports recursive paral-
lelism and recursive data decomposition, generating a data dependence graph
to distribute tasks among the processes ensuring the right execution order. Our
proposed operators provide similar programming expressiveness as these STL
approaches, while also can be used to program new routines to cover different
applications with new synchronization and communication structures.

8 Conclusion and future work

This paper presents four array data-redistribution operators to efficiently im-
plement distributed-memory algorithms, making the data partition, relocation
and data movement transparent to the programmer. Experimental results
show that our implementation of the STL routines for distributed memory
in terms of the four proposed operators achieves good scalability for data-
dependent, irregular, or recursive parallel applications in distributed memory.
Future work includes the automatic generation of parallel codes from sequen-
tial ones, exploiting the presented four operators, and the implementation of
the four operators as library functions to be used in other SPMD models.

Acknowledgment

This research has been partially supported by MICINN (Spain) and ERDF program of
the European Union: HomProg-HetSys project (TIN2014-58876-P), and COST Program
Action IC1305: Network for Sustainable Ultrascale Computing (NESUS). By the computing
facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT),
funded by the European Regional Development Fund (ERDF). CETA-CIEMAT belongs to
CIEMAT and the Government of Spain.

18 Moreton-Fernandez et al

References

1. Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Targeting dis-
tributed systems in fastflow. In: European Conference on Parallel Processing, pp. 47–56.
Springer (2012)

2. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato, N.,
Rauchwerger, L.: STAPL: an adaptive, generic parallel C++ library. In: Languages and
Compilers for Parallel Computing, pp. 193–208. Springer (2001)

3. Barik, R., Budimlic, Z., Cave, V., Chatterjee, S., Guo, Y., Peixotto, D., Raman, R.,
Shirako, J., Taşırlar, S., Yan, Y., et al.: The Habanero multicore software research
project. In: Proceedings of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications, pp. 735–736. ACM (2009)

4. Bondhugula, U.: Compiling affine loop nests for distributed-memory parallel architec-
tures. In: Proc. SC’2014. ACM, Denver, CO, USA (2013)

5. Chamberlain, B., Deitz, S., Iten, D., Choi, S.E.: User-defined distributions and layouts
in Chapel: Philosophy and framework. In: 2nd USENIX Workshop on Hot Topics in
Parallelism (2010)

6. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
Von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. Acm Sigplan Notices 40(10), 519–538 (2005)

7. Chatterjee, S., Tasırlar, S., Budimlic, Z., Cavé, V., Chabbi, M., Grossman, M., Sarkar,
V., Yan, Y.: Integrating asynchronous task parallelism with MPI. In: Parallel & Dis-
tributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pp. 712–
725. IEEE (2013)

8. El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC: distributed shared-memory
programming. Wiley-Interscience (2003)

9. Frias, L., Singler, J.: Parallelization of bulk operations for STL dictionaries. In: Euro-Par
2007 Workshops: Parallel Processing, pp. 49–58. Springer (2007)

10. Gonzalez-Escribano, A., Llanos, D.: Trasgo: A nested-parallel programming system. The
Journal of Supercomputing 58(2), 226–234 (2011)

11. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.: An extensible system for
multilevel automatic data partition and mapping. IEEE TPDS 25(5), 1145–1154 (2013).
(doi:10.1109/TPDS.2013.83)

12. Johnson, E., Gannon, D.: HPC++: Experiments with the parallel standard template
library. In: Proceedings of the 11th international conference on Supercomputing, pp.
124–131. ACM (1997)

13. Kumar, V., Zheng, Y., Cavé, V., Budimlić, Z., Sarkar, V.: HabaneroUPC++: A
compiler-free PGAS library. In: Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, p. 5. ACM (2014)

14. Moreton-Fernandez, A., Gonzalez-Escribano, A., Llanos, D.R.: A new high-level parallel
portable language for hierarchical systems in Trasgo. In: Computational and Mathe-
matical Methods in Science and Engineering (CMMSE) (2015)

15. Sheffler, T.J.: A portable MPI-based parallel vector template library. Tech. Rep. RIACS-
TR-95.04, Research Institute for Advanced Computer Science (1995)

16. Singler, J., Konsik, B.: The GNU libstdc++ parallel mode: software engineering con-
siderations. In: Proceedings of the 1st international workshop on Multicore software
engineering, pp. 15–22. ACM (2008)

17. Singler, J., Sanders, P.: The GNU libstdc++ parallel mode: Benefit from Multi-Core
using the STL

18. Singler, J., Sanders, P., Putze, F.: MCSTL: The multi-core standard template library.
In: Euro-Par 2007 Parallel Processing, pp. 682–694. Springer (2007)

19. Stepanov, A., Lee, M.: The Standard Template Library. Tech. Rep. 95-11(R.1), HP
Laboratories

20. Szugyi, Z., Török, M., Pataki, N.: Towards a multicore C++ standard template library.
In: Proc. of Workshop on Generative Technologies (WGT 2011), pp. 38–48 (2011)

View publication stats

https://www.researchgate.net/publication/380547114

