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ABSTRACT: In this machine learning (ML) study, we delved
into the unique properties of liquid lanthanum and the Li4Pb alloy,
revealing some unexpected features and also firmly establishing
some of the debated characteristics. Leveraging interatomic
potentials derived from ab initio calculations, our investigation
achieved a level of precision comparable to first-principles methods
while at the same time entering the hydrodynamic regime. We
compared the structure factors and pair distribution functions to
experimental data and unearthed distinctive collective excitations
with intriguing features. Liquid lanthanum unveiled two transverse
collective excitation branches, each closely tied to specific peaks in
the velocity autocorrelation function spectrum. Furthermore, the
analysis of the generalized specific heat ratio in the hydrodynamic
regime investigated with the ML molecular dynamics simulations uncovered a peculiar behavior, impossible to discern with only ab
initio simulations. Liquid Li4Pb, on the other hand, challenged existing claims by showcasing a rich array of branches in its
longitudinal dispersion relation, including a high-frequency LiLi mode with a nonhydrodynamic optical character that maintains a
finite value as q → 0. Additionally, we conducted an in-depth analysis of various transport coefficients, expanding our understanding
of these liquid metallic systems. In summary, our ML approach yielded precise results, offering new and captivating insights into the
structural and dynamic aspects of these materials.

1. INTRODUCTION
Computer simulation techniques play an important role in
providing new insights into many problems concerning
condensed matter physics and materials science as well as an
additional explanation and confirmation of experimental results.

Starting with the groundbreaking work of Alder and
Wainwright1 on the fluid to solid phase transition of a model
hard sphere system, the molecular dynamics (MD) simulation
technique has undergone a huge development. The next step
into this process was to account for the interactions beyond
simple elastic collisions so as to provide a more realistic
description of the dynamic behavior of atoms and/or molecules.
This was achieved by Rahman2 who implemented a classical
molecular dynamics (CMD) simulation, where the classical
equations of motion were solved for a realistic model of a
physical system, made up of real (argon) atoms interacting via a
Lennard-Jones-type pair potential. Subsequently, this CMD
approach was extended tomore complex systems by introducing
more elaborated types of interatomic potentials intended to
describe the physics behind the interactions among the atoms.
Nevertheless, in certain cases, such as systems where the

electronic and atomic structures are closely interwoven, relying
solely on interatomic empirical potentials is insufficient. It
becomes imperative to incorporate an explicit description of the
electronic properties into the simulation.

A significant advancement was made by merging MD
simulations with density functional theory (DFT).3−5 This
breakthrough enabled the direct determination of the potential
responsible for the interactions in a many-body system, starting
directly from the electronic configuration of its components,
thereby making possible the simulation of covalently bonded
andmetallic systems. This approach has proved to be so accurate
that the ab initio molecular dynamics (AIMD) methods based
on DFT have now become the usual technique for the study of a
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wide range of condensed matter systems. Most AIMD methods
are based on the Kohn−Sham orbital representation of DFT;
however, its application poses heavy computational demands
and therefore AIMD simulations are severely limited by the
finite system size (∼100 s of atoms) and short time scales (∼10 s
of ps). However, there are some physical magnitudes whose
accurate determination would involve the use of length and time
scales which are not currently accessible by these AIMD
simulation methods. For example, and within the realm of liquid
systems, we mention the long wavelength limit of a range of
static and time-dependent correlation functions as well as some
transport coefficients. A proper account of these physical
magnitudes requires the use of large number of atoms (tens of
thousands) along with much longer simulation times (∼100−
1000 s of ps), impossible nowadays with AIMD methods, but
achievable by resorting to CMD simulations based on
interatomic potentials at the cost of a significantly reduced
accuracy.

Over the past decade, machine learning (ML) interatomic
potentials have been developed as a way of addressing the
abovementioned problems. By employing a database of
quantum-mechanical (commonly DFT-based) calculations, it
is possible to construct interatomic potentials that allow system
sizes and simulation times typical of CMD simulations but with
quantum mechanical accuracy.

We have chosen two distinct systems, liquid lanthanum (l-La)
and liquid Li4Pb, to show the versatility and capability of ML
potentials to study various aspects of liquid metal behavior
inaccessible to AIMD.

Two basic magnitudes related to the structural short-range
order in a liquidmetal are the static structure factor, S(q) and the
pair distribution function, g(r).

In the case of l-La near melting, the available experimental
structural data were obtained more than 40 years ago by Breuil
and Tourand6 by means of neutron diffraction (ND) and, a few
years later, by Waseda and Tamaki7 through X-ray diffraction
(XD). Since then, no additional measurements of S(q) have
been reported for this metal. As for the thermophysical
magnitudes of l-La, there are experimental data for the adiabatic
velocity of sound8 and shear viscosity.9 On the theoretical side,
few works have studied the structural properties of l-La, and
among them, we mention the study by Waseda et al.10 who used
effective interionic pair potentials, derived within the
pseudopotential perturbation theory, combined with the
Percus−Yevik integral equation to calculate static structure,
i.e., S(q) and g(r), of some liquid rare-earth metals. More
recently, Patel et al.11−13 used a pseudopotential combined with
the hard sphere reference system to evaluate the S(q) and g(r) as
well as some thermodynamic and electronic properties of the
liquid lanthanide metals.

The Li4Pb liquid alloy has already attracted a great deal of
both theoretical and experimental work. In common with other
binary alloys with a large mass disparity between both
components, it exhibits a high-frequency mode with an
associated phase velocity much greater than the extended
hydrodynamic sound as found in both MD studies14−18 and
inelastic neutron scattering (INS) experiments.19,20 In fact, this
high-frequency mode was first found in a CMD study of
Li4Pb

14,15 using interionic pair potentials modeled with a hard
core repulsion plus a screened Coulombic interaction. These
results showed that the high-frequency mode produced a high-
frequency side peak appearing in the Li−Li partial dynamic
structure factor. It was interpreted as an extended hydrodynamic

mode with an associated phase velocity of ≈7500 m/s and was
named the “fast sound” mode.

Additional CMD simulations using the same interionic
interaction but with a larger number of particles16 confirmed
the previous results and were able to discern two branches of
collective excitations, as obtained from the maxima in the
longitudinal current correlation spectra, that were identified as
the fast sound mode and a new slow sound mode. It was
concluded that these two modes merged, at very low q-values,
into the usual hydrodynamic sound. Both modes showed a sharp
transition in their phase velocities around qc ≈ 0.08 Å−1, with an
abrupt increase for q > qc toward a “fast velocity” around 8000
m/s in the case of the high-frequency mode and a decrease
toward a “slow velocity” around 1200 m/s in the case of the low
frequency one. However, another study using CMD simulations
in combination with the generalized collective modes (GCM)
method17 found two branches of collective excitations which in
the q → 0 limit were identified as a hydrodynamic (low-
frequency) branch and an optic-like (high frequency) branch
that tends to a nonzero frequency instead of merging with
hydrodynamic sound. Similar conclusions were also obtained
from CMD simulations analyzed within the viscoelastic model
by Anento et al.18

On the other hand, the INS experiments,19,20 that were
limited to q larger than 0.6 Å−1 due to kinematic conditions,
confirmed the existence of this high-frequency mode but with an
associated phase velocity around 4500 m/s. Moreover, they
suggested that this branch had features that pointed to a kinetic
(nonhydrodynamic) mode with a nonzero value in the q → 0
limit.

There are therefore two contradicting interpretations on the
behavior of the high-frequency mode as the wavelength
increases (either it merges with hydrodynamic sound or it
behaves as a kinetic mode). The comparison with the
experiment is not conclusive due to the wavevector region
explored and moreover is somewhat hindered by the use of an
effective potential in the CMD simulations that may not capture
all the details of the true interactions among atoms in the alloy.
Recent first-principles simulations with realistic interactions
derived from electronic structure calculations21,22 appear to
support the optic-like view, but in this case, the problem lies in
the value of the smallest wavevector allowed by the periodic
boundary conditions inherent to the calculations, which is 0.32
Å−1. This value is a direct consequence of the small number of
particles affordable in such high cost simulations and is quite
large so as to make conclusive statements on the behavior of the
modes for q → 0.

This paper reports a simulation study of several static and
dynamic properties of l-La at thermodynamic conditions just
above melting at ambient pressure and the liquid Li4Pb alloy just
above its liquidus temperature. The study has been performed
first using AIMD simulations, then creating the corresponding
ML interatomic potentials based on the aforementioned AIMD
simulations, and finally using these ML potentials in CMD runs
with much larger time and length scales.

An important aim of this study is to calculate, using ML
simulation methods, the spectrum of collective excitations in the
liquid Li4Pb alloy and analyze them, with special emphasis in its
controversial high-frequency branch, and in particular its
behavior in the long wavelength region. For l-La, we provide
the first AIMD study and use the ML derived interatomic
potential to better analyze the results in the hydrodynamic
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regime, uncovering an unconventional behavior in the
generalized specific heat ratio.

The review is structured as follows: the next section
summarizes the basic ideas underlying the AIMD and ML
simulation methods along with some technical details. In
Section 3, we report the results of the calculations for both l-La
and the Li4Pb alloy, which are compared with the available
experimental data along with some discussion. Finally, a brief
summary and conclusions are given in Section 4.

2. COMPUTATIONAL METHOD
The reference database of l-La was generated by AIMD
simulations performed using the DFT-based QUANTUM
ESPRESSO (QE) package.23,24 Within this framework, the
electronic exchange-correlation energy was described by the
generalized gradient approximation (GGA) of Perdew−Burke−
Ernzerhof.25 The ion−electron interaction was accounted for by
means of an ultrasoft pseudopotential generated from a scalar-
relativistic calculation including nonlinear core corrections. In
this pseudopotential, the 5s, 5p, 5d, 6s, and 6p orbitals are
explicitly considered as valence states, and 11 valence electrons
per atom were employed during simulations. The kinetic energy
cutoff for the plane-wave expansion of the wave function was 530
eV, and the single Γ point was used for sampling the Brillouin
zone.

For the liquid Li4Pb alloy, the reference database was obtained
by AIMD simulations performed with the DFT-based VASP
package.26−29 We used the projector augmented wave all-
electron description of the electron−ion-core interaction
provided by the VASP distribution, which considers one and
four valence electrons for Li and Pb, respectively; moreover, the
exchange correlation functional used was again GGA, while the
kinetic energy cutoff for the plane-wave expansions was taken as
480 eV.

We have employed the SIMPLE-NN package30 to develop
deep neural network potentials (DNNPs) which, due to their
high flexibility, are a suitable model to represent the challenging
problem of the potential energy surface of a liquid metal or alloy.
To transform the atomic coordinates into atomic descriptors,
SIMPLE-NN employs Behler−Parrinello Gaussian func-
tions.31,32 For l-La, we used the Gastegger method33 to select
the parameters of the 35 total Gaussian functions employed,
whereas for Li4Pb, the Imbalzano method34 provided better
parameters for the 36 Gaussian functions of each element.

The choice of either method (Gastegger or Imbalzano) is
based on the better performance obtained when applying the
learning process to the training data sets. The main difference
between both methods lies in the expressions employed to select
the widths and positions of the Gaussians. In particular, the
Gastegger method uses a fixed width for the shifted Gaussians
that is equal to the distance between the centers of the two

adjacent functions, whereas the Imbalzano method increases the
width as the distance increases, effectively creating a finer grid
closer to the central atom, where small variations of the position
can have a greater impact on the potential.

The neural network employed for the DNNP of l-La consisted
of three layers, with 50 neurons per layer. The loss function
included the energy per atom, atomic forces, and stress. The
DNNP was trained on more than 11,700 configurations, using a
training and validation split of 80:20.

In the case of the DNNP of liquid Li4Pb, the neural network
architecture was composed of four layers with 50 neurons each.
The training configurations included data from four different
concentrations of the Li−Pb alloy: Li0.17Pb, Li0.50Pb, Li0.62Pb,
and Li0.80Pb. We selected 200 configurations from each
concentration, taken from a previous AIMD study,21 and the
corresponding energies and forces were computed with VASP.
However, due to extrapolation errors that appeared when testing
the DNNP, additional AIMD runs were performed for liquid
Li0.17Pb and liquid Li0.80Pb, maintaining the temperature but
increasing the atomic density by a 20% and by a 40% so as to
allow for configurations where shorter interatomic distances
were present. From these new AIMD runs, a total of 190
additional configurations were included in the training of the
final DNNP. Due to the small number of total configurations, a
training and validation split of 90:10 was employed. The loss
function included the energy per atom and the atomic forces.

While in principle, it would seem unnecessary to include
additional compositions apart from the 80% Li in the training
data set in order to develop the NN potential, in fact it turns out
to be profitable to do so for two reasons: first because the
instantaneous local atomic arrangements in the alloy can
fluctuate departing from the nominal alloy concentration,
especially when considering samples with a large number of
atoms; and second, from a more practical viewpoint, because
such strategy will allow the future study of the alloy at different
concentrations using the same DNNP.

Note that the inclusion of the stress in the loss function for l-
La, as well as the larger number of configurations included in the
data set for that system, as compared to the case of Li4Pb, is
justified by the higher degree of complexity of the interactions in
this system, as evinced by the much higher number of valence
electrons needed in the AIMD study in order to produce
accurate forces and energies.

Both DNNPs employed fully connected layers, with the
hyperbolic tangent as the activation function, were trained using
a mini-batch of 30, used random sampling along with Adam
optimizer with a learning rate of 0.001, and employed an L2

regularization of 10−6. Themean-squared-error was employed as
the objective function during all training. The coefficients for
various quantities when included in the loss function were as
follows: 1.0 for the energy per atom, 0.1 for the atomic forces,

Table 1. Input Data for the Systems Studied in This Worka

La Li4Pb

code QE ML VASP ML

N 100 6400 330 21,120
ρ (Å−3) 0.0258 0.0258 0.0436 0.0436
T (K) 1250 1250 1075 1075
Nc 13,200 180,000 10,500 100,000
Δt (fs) 6.0 1.0 4.0 4.0

aρ is the total ionic number density, T is the temperature, N is the number of particles in the simulation cell, Δt is the ionic timestep, and Nc is the
total number of configurations.
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and 10−4 for the pressure. Once the DNNPs were trained, they
were utilized in LAMMPS35 to perform the large-scale MD
simulations.

Table 1 provides details of the different kinds of simulations
performed for the two systems considered in the study. In all
cases, the simulation samples with N particles were enclosed
inside a periodic cubic cell with a size determined by the
experimental ionic number density. After thermal equilibration,
the number of equilibrium configurations, Nc, given in Table 1
was subsequently used for the evaluation of the static and
dynamic properties of both systems.

3. RESULTS AND DISCUSSION
3.1. Static Properties. 3.1.1. Liquid La. Figure 1 depicts the

calculated static structure factor, S(q) as obtained from the

AIMD calculation along with the ML result and the XD data of
Waseda et al.7 Notice that the AIMD and ML results are
practically identical, and the comparison with the XD data shows
agreement for the position of the main peak, qp = 2.1 Å−1,
although the calculated amplitudes are more marked; moreover,
both simulations predict an asymmetric shape of the second
peak of the S(q) which is not found as pronounced in the XD
data. Nevertheless, we notice that this feature has been
experimentally observed in several liquid metals36−38 and has
been related to the presence of a substantial amount of
icosahedral order in the liquid.

Concerning the evaluation of q-dependent magnitudes, the
use of ML interatomic potentials allows us to reach considerably
smaller q-vectors, allowing for a more detailed investigation into
the long-wavelength (q → 0) region. The smallest attainable
value by the ML method was q = 0.099 Å−1, whereas in the case
of the AIMD calculation, the smallest value was q = 0.400 Å−1.
We have exploited this feature of theMLmethod to estimate the
isothermal compressibility, κT, by resorting to the relation
S(q→ 0) = ρkBTκT, where kB is Boltzmann’s constant. First, the
ML-calculated S(q) has been extrapolated to q → 0 by a least-
squares fit, S(q) = s0 + s2q2, of the q-values for q ≤ 1.0 Å−1. It
yields a value of S(q → 0) = 0.0160 ± 0.001, which gave κT =
3.60 ± 0.20 (in units of 1011 m2 N−1). Other evaluations for this
magnitude at the melting point have been proposed by some
authors; thus, McAlister et al.8 estimated a value of κT = 4.24
from speed of soundmeasurements, while Blairs39,40 suggested a
value κT = 4.30 obtained by using an empirical formula
connecting isothermal compressibility, surface tension, and the

Ornstein−Zernike correlation length. However, no direct
experimental measurement is available to date.

Figure 2 shows the pair distribution function, g(r), which
provides some insights into the short-range order in the liquid.

Both AIMD andML results are depicted along with the available
experimental data.6,7 There is a fair agreement concerning the
position of the oscillations, but the calculated amplitudes are
greater with both AIMD and ML.

The average number of nearest neighbors (also called the
coordination number, CN) around any given ion is evaluated by
integrating the radial distribution function, 4πρr2g(r), up to the
position of its first minimum, rmin ≈ 4.97 Å. The calculated CN
with AIMD andML is ≈13.0, similar to those obtained for other
simple liquid metals near melting.41

The common neighbor analysis42−44 (CNA) method
provides additional insights into the short-range order as it
gives three-dimensional information about the ions surrounding
each pair of ions which are near neighbors. Each pair is
characterized by four indices which allow us to discern among
different local structures like fcc, hcp, bcc, and icosahedral
environments. The present calculations (both AIMD and ML)
show that the five-fold symmetry dominates in l-La because the
sum of perfect and distorted icosahedral structures reaches a
value of ≈53% of the pairs with the number of perfect ones being
around 30%. The amount of local bcc-type pairs is also
significant, ≈27%; however, there is virtually no vestige of fcc
and hcp-type pairs.

3.1.2. Liquid Li4Pb Alloy. Figure 3 depicts the ML calculated
partial pair distribution functions gij(r) and partial static
structure factors Sij(q) along with the corresponding AIMD
results. Both sets of results are practically identical, with very
minor discrepancies concerning the amplitudes of the gPbPb(r).

We have evaluated the isothermal compressibility in the alloy
by using the expression45

=
+

k T
S S S

x S x S x x S
(0) (0) (0)

(0) (0) 2 (0)TB
11 22 12

2

1 22 2 11 1 2 12 (1)

where ρ is the number density of the alloy, xi is the concentration
of component i, and Sij(0) are the q → 0 values of the partials.
These latter values were derived by extrapolating the ML-
calculated Sij(q) in the same way that was performed for l-La.
Now the smallest wavevector attained was q = 0.080 Å−1. Thus,
we obtained (with an uncertainty ≈±0.001) SLiLi(0) = 0.0715,

Figure 1. Static structure factor, S(q), of l-La. Lines: present AIMD
(dashed red) andML (continuous black) calculations; open circles: XD
data from ref 7. The inset shows a closer view of the second maximum.

Figure 2. Pair distribution function, g(r), of l-La. Lines: present AIMD
(dashed red) andML (continuous black) calculations; open circles: XD
data from ref 7; and full diamonds: ND data for l-La at 1250 K from ref
6.
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SLiPb(0) = −0.0275 and SPbPb(0) = 0.0920. The application of eq
1 yielded a value of κT = 8.18 ± 0.20 (in 1011 m2 N−1 units).
There are no experimental data for this magnitude, but we will
later compare it with the data for the adiabatic compressibility.
Finally, we note that information about the ordering tendencies
in the alloy is given by the long-wavelength limit of the Bhatia−
Thornton (BT) concentration−concentration partial structure
factor, Scc(q), which can be evaluated in terms of the previous
partials.45 For this alloy, we have obtained Scc(q → 0)/(x1x2) =
0.0975, which clearly indicates a strong heterocoordinating
tendency in the liquid Li4Pb alloy.
3.2. Collective Dynamics. 3.2.1. Liquid La. The collective

dynamics of density fluctuations in a liquid can be described by
the intermediate scattering function, F(q, t), which is the
autocorrelation function of the microscopic q-dependent
number density.41 Its time Fourier transform (FT) gives the
frequency spectrum known as the dynamic structure factor,
S(q, ω).

Figure 4 shows, for several q-values, the AIMD results for
F(q, t) along with the corresponding ML results. The calculated
F(q, t) show a structure qualitatively similar to other liquid
metals: at small q’s, there is an oscillatory form, suggesting wave
propagation, which is combined with a decaying term that
indicates the existence of relaxation modes. The interplay

between these two terms evolves with increasing q-values with
the decaying term smoothly and progressively overcoming the
propagating mode, leading at q ≈ qp to a very slow monotonic
decay of F(q, t).

Further insights into the physical causes behind the
propagation and relaxation mechanisms can be obtained from
theoretical models where the F(q, t) is expressed using the
formalism of memory functions,41 more specifically its second-
order memory function N(q, t), i.e.

= +
+

i
k
jjjjj

y
{
zzzzzF q z S q z

M q
z N q z

( , ) ( )
( )
( , )

0
1

(2)

where F̃(q, z) and Ñ(q, z) are the Laplace transforms of F(q, t)
and N(q, t), respectively,M0(q) = kBTq2/(mS(q)), and m is the
atomic mass. The N(q, t) can be modeled by an analytical
function with two exponentially decaying terms (slow and fast
ones), i.e.

= +N q t A q A q( , ) ( )e ( )et q t q
s

/ ( )
f

/ ( )s f (3)

where τs(q) and τf(q) represent slow and fast relaxation times,
respectively. Physically, one term has a thermal origin, whereas
the other is associated to the viscoelastic behavior of the
liquid.46−48

We used F(q, t) obtained by the AIMD andML simulations in
order to evaluate the associated functions N(q, t). Then, they
were fitted to eq 3 and were analyzed to find out whether they
are consistent with a generalized hydrodynamic model (fast
viscoelastic mode and a slow thermal one) or a generalized
viscoelastic model, where the fast term is the thermal one.
Specifically, we evaluated the generalized heat capacity ratio,
γ(q), which in the q→ 0 limit leads to the thermophysical value
γ0, i.e., the ratio between the specific heats at constant pressure
and constant volume.

If the slow mode is associated to the thermal relaxation, then
As(q) = (γ(q) − 1)M0(q), but if it is connected to the viscoelastic
relaxation, then As(q) = ωL

2(q) − γ(q)M0(q),
47,48 where ωL

2(q) is
the second frequency moment of the longitudinal current
correlation function (see below), which is obtained directly from
the simulations.

By exploring both possibilities, we have calculated the
functions γth(q) and γv(q), which represent the values obtained
for γ(q) when either the thermal or the viscoelastic relaxations
proceed by the slow mode, respectively.

The results are depicted in Figure 5, which shows the obtained
γth(q) and γv(q) values within the range q/qp ≤ 0.70 Å−1. Both
functions exhibit a very different conformation, with γv(q) taking
values which are always greater than those of γth(q); moreover,
when q → 0, the γv(q) becomes unphysically large. As for the
γth(q), we observe that the AIMD results show a monotonous
increasing behavior down to the smallest attainable q-value
(q/qp = 0.19 Å−1); however, the ML values show that a
noticeable change around that same q-value and the associated
γth(q) displays a slowly decreasing behavior toward q = 0, with a
γth(q → 0) ≡ γ0 ≈ 1.25.

We are not aware of any experimental data for the γ(q) of l-La
but we note that the qualitative structure of the ML calculated
γth(q) is very similar to that reported in the experimental data of
Hosokawa et al.49 for the γ(q) of l-Fe near melting. Specifically,
the γexp,Fe(q) begins with a value of ≈1.40 at q/qp,Fe ≈ 0.07 Å−1

and smoothly increases reaching a value of ≈1.55 at q/qp,Fe ≈
0.21 Å−1 and then decreases toward a value of ≈1.1 at q/qp,Fe ≈
0.67 Å−1 (where qp,Fe ≈ 2.98 Å−1).

Figure 3. Ashcroft−Langreth (AL) partial pair distribution functions
and static structure factors Sij(q) for the liquid Li4Pb alloy at 1075 K.
Full blue, red, and green lines are the ML results, whereas dashed lines
are the AIMD results.

Figure 4.Normalized intermediate scattering function, F(q, t)/F(q, t =
0), of l-La at T = 1250 K for several q values.
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Although there are no experimental data for γ(q→ 0) ≡ γ0 of
l-La near melting, we can compare it with two estimates, namely,
γ0 = 1.2339,40 and 1.31,50 which were obtained by combining the
experimental data of the adiabatic compressibility and the
calculated isothermal compressibility.

The previous results suggest that the slow mode is associated
with the thermal relaxation, and therefore, the generalized
hydrodynamic model seems to be the appropriate one for
describing the microscopic dynamics of l-La; moreover, it
predicts a behavior for γ(q) which is qualitatively consistent with
the experimental data for l-Fe and, furthermore, it also provides
an estimate for γ0 that compares well with some semiempirical
values.

The dynamic structure factors, S(q, ω), are plotted in Figure
6, and show side peaks up to q ≈ (3/5)qp, whereas for greater q-
values, we observe a monotonic decreasing behavior.

We have determined the frequency of the side peaks as a
function of the wavevector, namely, the function ωm(q), which
represents the associated dispersion relation of the density
excitations; therefrom, a q-dependent adiabatic sound velocity
cs(q) = ωm(q)/q is obtained and has been depicted in Figure 7.
Again, the AIMD and ML simulation results are practically
identical but only the latter ones are able to clearly indicate the
existence of positive dispersion. In the cs(q → 0) limit, this
magnitude reduces to the bulk adiabatic sound velocity, cs, and
by extrapolating the previous ML simulation results, we have
obtained an estimate cs = 2230 (±150) m/s which qualitatively
agrees with the experimental data cs,exp = 2022 m/s.8

Another important magnitude in the collective dynamics is
the current due to the overall motion of the particles, j(q, t)

= [ · ]
=

q t
N

t i tj v q R( , )
1

( )exp ( )
j

N

j j
1 (4)

where N is the total number of particles and vj(t) is the velocity
of particle j at time t.41 From its longitudinal, jL(q, t), and
transverse, jT(q, t), components, we have evaluated the
associated longitudinal and transverse current correlation
functions

= * =C q t q t L q tj j( , ) ( , ) ( , 0)L L (5)

= · * =C q t q t T q tj j( , )
1
2

( , ) ( , 0)T T
(6)

and their respective time FT, the associated spectraCL(q, ω) and
CT(q, ω).

For any fixed q-value, when the CL(q, ω) is plotted as a
function of ω, we observe a maximum, and its associated
frequency, namely, ωL(q), stands for the dispersion relation of
the longitudinal modes. These are plotted in Figure 8 where it is
observed that the AIMD and ML simulation results are very
similar, although theML approach again provides closer insights
into the small q-region.

Figure 9 depicts, for a range of q-values, the calculated AIMD
and ML results for CT(q, t). For both small and large q, this
function must be monotonically decreasing with time, but for
intermediate q values, it shows oscillations.

Correspondingly, its spectrum, CT(q, ω), when plotted as a
function of ω, shows within some q-range clear peaks that are
related to propagating shear waves. According to the presentML
results, the peaks start at q ≈ 0.15 Å−1 and last until q ≈ 3.0qp

Figure 5. Generalized specific heat ratio, γ(q), as obtained from the
generalized hydrodynamic model (circles) and the generalized
viscoelastic model (lozenges). The red and gray symbols are the
AIMD and ML simulation results, respectively.

Figure 6.ML results for the dynamic structure factors, S(q, ω)/S(q), of
l-La at T = 1250 K and several q values.

Figure 7. q-dependent adiabatic sound velocity of l-La at T = 1250 K.
The red and gray symbols are the AIMD and ML simulation results,
respectively.

Figure 8. Longitudinal dispersion relation of l-La, as obtained from the
maxima in the spectra of the longitudinal current, CL(q, ω).
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when they fade away. Moreover, we have found a second, higher
frequency peak that shows up over a much smaller q-range.

Some examples of the behavior of CT(q, ω), along with the
corresponding longitudinal spectrum, CL(q, ω), are shown in
Figure 10, where the appearance and later disappearance of the

high-frequency peak for increasing q is observed. Moreover, it is
also seen that the peak in the longitudinal spectrum at a given q is
mostly unrelated to the peaks in the transverse one at that same
value of q.

The high- and low-frequency dispersion relations for the
transverse modes are plotted in Figure 11. Some proximity is
observed between the values of the high-frequency transverse
peak, which is almost nondispersive, and the maximum in the
longitudinal dispersion relation, as shown in Figure 8, which is
located around qp/2. Such behavior has been previously

observed in other systems51−53 and explained in terms of
mode-coupling theories. This type of theories describes an
indirect coupling between the transverse current at the
wavevector considered, q, and the longitudinal magnitudes at
all wavevectors, k, each one affected by a q and k (and also
|q− k|)-dependent weight.41,52,53 It turns out that the maximum
weight is obtained for k around qp/2 and q roughly in the range
between qp/2 and qp, leading to the behavior observed in Figure
11.

Recently, it has been observed53−60 that some liquid metals
exhibit the simultaneous appearance of such high-frequency
transverse branch and the presence of a marked high-frequency
peak/shoulder in the spectra of its velocity autocorrelation
function, namely, Z(ω). The latter is defined as the FT into the
frequency domain of =Z t v t v v( ) ( ) (0) /1 1 1

2 , where the index
1 refers to a tagged ion in the fluid and ⟨····⟩ stands for the
ensemble average. As shown in Figure 11, the present results for
l-La confirm this connection between the structure of the Z(ω)
and the existence of one or two transverse dispersion branches.
There is not a complete theory that explains the common
absence or presence of a high-frequency peak in Z(ω) and in
CT(q, ω) for a certain q-range, especially because in case the peak
exists in Z(ω), it is naturally assigned to the influence of
longitudinal modes.61 Nevertheless, the possible existence of
such a correlation has witnessed increasing computational
evidence, and the present results for l-La engross the list of
systems, where both features appear together.

The self-diffusion coefficient, D, can be determined from the
time integral of Z(t), which has led to a value of D = 0.22 ± 0.01
Å2/ps. There are no experimental self-diffusion data for l-La;
nevertheless, Iida and Guthrie62 inferred a valueD = 0.34 Å2/ps,
derived from some semiempirical expressions based onmodified
Stokes−Einstein-type formulas which relate the self-diffusion
coefficient to other thermophysical magnitudes such as the
density and the viscosity.

From the calculated CT(q, t), we also estimated the shear
viscosity coefficient η, as follows.41 The memory function
representation of CT(q, t), namely

= +
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
C q z

k T
m

z
q
m

q z( , ) ( , )T B
2 1

(7)

where the tilde denotes the Laplace transform and introduces a
generalized shear viscosity coefficient η̃(q, z). The area under
the normalized CT(q, t) gives =mC q z k T( , 0)/( )T

B , and the
extrapolation q→ 0 of η̃(q, z = 0) ≡ η(q) gives the shear viscosity
coefficient η. This procedure has been performed by fitting the

Figure 9.Normalized transverse current correlation function, CT(q, t)/
CT(q, t = 0), of l-La at T = 1250 K for several q values.

Figure 10. ML calculated spectral functions of the normalized
longitudinal and transverse current correlation function, CL(q, ω)
and CT(q, ω), respectively, for several q values.

Figure 11. Transverse dispersion relation of l-La, as obtained from the
maxima in the spectra of the transverse current, CT(q, ω). The blue
dashed line represents the corresponding Z(ω).
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ML simulation results with the expression, η(q) = η/(1 + a2q2),
which was first proposed to analyze the results for a dense hard-
sphere system1 but has also been applied to more complex
systems.63

Figure 12 shows the AIMD and ML simulation results for
η(q) with the ML ones delving deeper into the small q-region.

We have evaluated its long-wavelength limit, yielding a value for
the shear viscosity, η = 3.40 ± 0.25 (GPa ps) which is close to
one of the two reported experimental data η = 2.65, 3.27.9

3.2.2. Liquid Li4Pb Alloy. For a two-component system, the
AL partial intermediate scattering functions, Fij(q, t), are defined
as a straightforward generalization of the definition previously
given for a one-component system. Along with the BT partial
intermediate scattering functions, they provide information
about the collective dynamics of the fluctuations in the partial
number densities, componentwise in the case of the AL
functions, and topological and chemical in the case of the BT
ones. Their time FT yields the respective AL and BT partial
dynamic structure factors, Sij(q, ω) (see refs 64 and 65 for more
details).

Another interesting magnitude is the i-type component
particle current

= [ · ]
=

q t
N

t i R tj v q( , )
1

( )exp ( )i
i l

N

l i l i
1

( ) ( )

i

(8)

because by evaluating the autocorrelation functions of its
longitudinal, jiL(q,t), and transverse jiT(q, t) components, we
obtain the partial longitudinal CijL(q, t), and transverse, CijT(q, t),
current correlation functions, respectively.64,65 Moreover, it can
be shown that the partial dynamic structure factors are related to
the spectra of the partial longitudinal current correlation
functions (both AL and BT), CijL(q, ω), through the equation
CijL(q, ω) = (ω2/q2)Sij(q, ω).

All of the abovementioned partial correlation functions have
been evaluated by both AIMD and ML simulations, and below
we report the more interesting results as yielded by the ML
simulations.

Figure 13 shows, for several q-values, the AIMD and ML
results for the number−number intermediate scattering
function, FNN(q, t). This function represents the autocorrelation
function of the total number density in the alloy, and therefore,
its behavior is qualitatively similar to the intermediate scattering
function in a one-component system; namely, it has an
oscillatory structure at small q-values which is depleted by the
effect of a decaying contribution.

The existence of propagating density fluctuations can be
revealed by the appearance, within some q-range, of side peaks in
the partial dynamic structure factors Sij(q, ω). Figure 14 shows,

for the set of smallest attainable q-values, the obtained ML
results for SLiLi(q, ω) and SNN(q, ω). The peaks are clearly
visible, and with increasing q-values, its amplitude diminishes,
and its position moves to higher frequencies.

From the frequencies associated with the positions of the side
peaks, we have derived the corresponding dispersion curves,
ωLiLi(q), ωPbPb(q), and ωNN(q), which are plotted in Figure 15.
Notice that the ωLiLi(q) and ωNN(q) show two branches (high-
and low-frequency branches), whereas the ωPbPb(q) displays

Figure 12. q-dependent shear viscosity, η(q) of l-La. The dashed line
represents the fitting to the expression η(q) = η/(1 + a2q2). Figure 13. Normalized number−number intermediate scattering

function, FNN(q, t)/FNN(q, t = 0), in the liquid Li4Pb alloy for several
q values.

Figure 14. ML simulation results for the partial dynamic structure
factors, SLiLi(q, ω), (full lines) and SNN(q, ω), (broken lines) in the
liquid Li4Pb alloy for several small q-values.
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one, low-frequency, branch. The low-frequency ωLiLi(q) branch
appears for a range of q ≤ 0.45 Å−1 and basically coincides with
the ωPbPb(q) and ωNN(q) branches. All of them, when q → 0
smoothly merge into a hydrodynamic sound. On the other hand,
the high-frequency branch of ωLiLi(q) begins at around the same
q-value where the low frequency one vanishes and, in principle,
would be compatible with a phase velocity of ≈5000 m/s which
is similar to the value associated to the high-frequency mode
revealed in the INS data of Alvarez et al.20 Our results for the
high-frequency branch of ωLiLi(q) show its appearance at q ≈
0.45 Å−1 but do not allow us to conclude anything about its
existence for smaller q values because it does not show up due to
a small weight and/or, additionally, it is shielded by other,
diffusive, modes.

The adiabatic sound velocity in the alloy, cs, has been obtained
from the slope of ωNN(q→ 0) with a value cs ≈ 2030 ± 150 m/s
which agrees very well with the experimental data of
≈2000 m/s.66 From the previous value for cs, along with the
formula = c( )ad m s

2 1, where ρm is themass density of the alloy,
we have evaluated the adiabatic compressibility κad in the alloy,
obtaining a value κad = 7.50 ± 0.20 (in units of 1011 m2 N−1)
which is similar to the estimates suggested by Ruppersberg and
Speicher.67 Moreover, taking into account that κT = γ0κad, where
γ0 stands for the ratio of specific heats, and using the previous
value for κT, we obtain an estimate γ0 ≈ 1.09 (±0.05) which
compares well with the theoretical value of γ0 ≈ 1.10 obtained by
Bryk and Mryglod17 in their GCM study of this alloy.

In order to gather additional information about the previous
collective excitation modes, we calculated the spectra of the
longitudinal current correlation functions, CijL(q, ω). These
functions allow the exposure of longitudinal modes that are not
visible in the Sij(q, ω) because the appearance of the factor ω2

attenuates the low-frequency modes (namely, the diffusive
ones) and enhances the high frequency ones.

Figure 16 shows theML calculated CijL(q, ω) values for several
small-q values. For q ≤ 0.26 Å−1, the CPbPb

L (q, ω) displays just
one peak, whereas the CLiLi

L (q, ω) and CNN
L (q, ω) exhibit two

peaks. At greater q’s, all just show one peak, which is the high
frequency one in the case of the LiLi and NN functions. On the
other hand,CLiPb

L (q, ω) has extrema that can be either positive or
negative. Interestingly, in the region q ≤ 0.26 Å−1, the positive
peak in CLiPb

L (q, ω) coincides in the position with the peaks in
CLiLi
L (q, ω) and CPbPb

L (q, ω), which suggests the existence of an
acoustic mode, where all the atoms/ions vibrate in phase.

From the positions of the peaks in CijL(q, ω), we have obtained
the longitudinal dispersion relations, ωij

L(q), which are plotted in
Figure 17. There appear two branches for ωLiLi

L (q) and ωNN
L (q)

and one branch for ωPbPb
L (q). From the ML results, we can get

full insights into the small q behavior of the high-frequency
branch of ωLiLi

L (q) which clearly tends to a finite value when
q → 0; this result clearly shows the kinetic (nonhydrodynamic)
nature of this excitation and discards previous claims concerning
the fast sound character of this mode.

In order to make connection with the previous simulations
that interpreted a merging of fast and slow sound into the
hydrodynamic sound mode as q → 0,16 we have calculated the
phase velocities corresponding to the dispersions of the
longitudinal currents, which are plotted in Figure 18.

As in ref 16, we observe a merging of two phase velocities into
the hydrodynamic cs, one from below (corresponding to Pb) and
the other one from above (corresponding to Li). However, it is
clear that the higher one cannot be identified with the fast sound
mode. The fast sound phase velocity, when q→ 0, does not bend
down abruptly to match the one that goes toward cs from above
as inferred in ref 16. On the contrary, it increases toward infinity
as a consequence of the optical character of the mode with a
nonzero frequency at q = 0.

We have also evaluated the partial transverse current
correlation functions as they provide information about the
shear modes in the alloy and its viscosity. An important
magnitude in the following discussion is the total transverse
current correlation function Ctt

T(q, t) = ⟨jtT(q, t)jtT*(q, 0)⟩, where

Figure 15. ML simulation results for the dispersion relations ωLiLi(q)
(blue circles), ωPbPb(q) (red squares), and ωNN(q) (gray triangles) of
the maxima in the partials SLiLi(q, ω), SPbPb(q, ω), and SNN(q, ω) for the
Li4Pb liquid alloy. The slope of the dashed line corresponds to the
experimental adiabatic sound velocity, whereas that of the full line
corresponds to a phase velocity of 5000 m/s. (b) Closer insights into
the low wavevector region. Figure 16. ML simulation results for the partial longitudinal current

correlation functions, CijL(q, ω), in the liquid Li4Pb alloy. Full blue line:
CLiLi
L (q, ω), red line: CPbPb

L (q, ω), and green line: CLiPb
L (q, ω). The PbPb

and LiPb components for q = 0.554 and 0.835 Å−1 have been multiplied
by a factor of 5 to ease comparison.

Figure 17. (a) ML simulation results for the longitudinal dispersion
relations ωLiLi

L (q) (blue circles), ωPbPb
L (q) (red squares), and ωNN

L (q)
(gray triangles) for the Li4Pb liquid alloy. (b) Closer insights of the low
wavevector region.
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= +j q t x m j q t x m j q t( , ) ( , ) ( , )t
T T T

1
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1/2

2 2 (9)

is the total transverse current, mi (i = 1, 2) is the atomic mass of
component i, and jiT(q, t) is the transverse component of the
current defined in (8).

The CPbPb
T (q,ω) and Ctt

T(q,ω) are found to have just a low-
frequency peak, whereas CLiLi

T (q,ω) has a high-frequency peak
and, for a limited q range, also another low-frequency one. The
corresponding transverse dispersion relations, ωii

T(q), are shown
in Figure 19.

The low-frequency transverse excitations correspond to shear
waves that appear after a finite propagation gap. Near the edge of
the propagation gap, the frequencies of the shear waves can be
reasonably described by a viscoelastic model,68 with

=q q q( )T
tt

2
c
2

(10)

where qc is the minimum wavevector for the existence of shear
waves which in the present calculation gave the value qc = 0.401
Å−1. For q values somewhat larger than qc the low-frequency
branch can also be described by a linear form, ωtt

T(q) ∼
cT(q − qT), where the slope, cT, yields an estimate of the velocity
of propagation of the shear modes in the alloy, cT ≈ 1250 ±
150 m/s.

The high-frequency branch of ωLiLi
T (q) tends to a finite

nonzero frequency in the long wavelength limit. This value is

observed to coincide with the value taken by the longitudinal
high-frequency branch, also shown in Figure 19, in this limit.
This is the expected behavior for the optical longitudinal and
transverse modes of a non-ionic binary liquid. Should
unscreened Coulombic interactions between ions exist, then a
gap between the longitudinal optic and transverse optic modes
at q → 0 would appear.68

We finally report the alloy shear viscosity, which has been
evaluated by a method that is just an extension of the one-
component formulation (see eq 6) to the case of binary systems,
using the total transverse current correlation function, Ctt

T(q,t),
defined previously (for more details, consult refs 69 and 70). By
resorting to the memory function representation of Ctt

T(q, t), we
obtain a generalized shear viscosity coefficient, η̃(q, z), and the
extrapolation to q→ 0 of η(q) ≡ η̃(q, z = 0) gives the alloy shear
viscosity.

Figure 20 shows the AIMD and ML results for η(q). The
q→ 0 limit of theML results yields a value for the shear viscosity

of η = 0.89 ± 0.05 (GPa ps). We are unaware of any
experimental data to compare with, but there is some
experimental trend according to which if an alloy exhibits
heterocoordinating tendencies, as is the case in this alloy, then its
shear viscosity usually shows a positive deviation from linearity.
From the experimental values of the pure components at T =
1075 K,9 i.e., η(Li) = 0.27 ± 0.05 and η(Pb) = 1.22 ± 0.10 (GPa
ps), a linear variation gives a value that is half the present result.
Therefore, a positive deviation from linearity clearly occurs, as
might be expected from the strong heterocoordinating tendency
of Li4Pb.

4. CONCLUSIONS
We have applied the ML method to develop accurate
interatomic potentials for both l-La and the Li4Pb alloy. These
potentials were trained on AIMD simulations and tested by
comparing a range of static, dynamics, and transport properties
with those previously calculated by the AIMD simulations.

The results reported for l-La constitute the first AIMD study
of its static and dynamic properties, with previous studies
employing only semiempirical models. We analyzed the static
structure through the pair distribution function, g(r), and the
static structure factor, S(q). We identified an asymmetric shape
in the second peak in S(q) with a marked shoulder. This feature
has been linked to the existence of icosahedral short-range order
in the liquid. A further calculation using the CNA method
revealed a significant presence of perfect and distorted

Figure 18. Phase velocities, ω(q)/q corresponding to the dispersion
relations of the longitudinal currents. Symbols are the same as in the
previous figure, and lines correspond to the hydrodynamic sound
velocity and the fast sound velocity deduced from the peak positions of
SLiLi(q, ω).

Figure 19.ML simulation results for the transverse dispersion relations
ωLiLi
T (q) (full and shaded blue circles), ωPbPb

T (q) (shaded red squares),
and ωtt

T(q) (open green triangles), for the Li4Pb liquid alloy. The
magenta diamonds correspond to the high-frequency longitudinal
ωLiLi
L (q). The continuous line represents the data obtained from eq 10.

Figure 20. q-dependent shear viscosity, η(q) of the liquid Li4Pb alloy.
The dashed line represents the fitting to the expression mentioned in
the text.
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icosahedral structures, consistent with previous results linking
the icosahedral structure to an asymmetric second peak in S(q).

In addition, we have determined the generalized specific heat
ratio, γ(q) by analyzing the relaxation processes behind the
intermediate scattering function. The ML simulation results
have proven to be crucial in revealing the low-q shape of γ(q)
which appears qualitatively similar to the experimental γ(q) of l-
Fe, as found by Hosokawa.49 Although no direct experimental
data are available, the extrapolated value γ(q → 0) ≡ γ0 agrees
with some semiempirical estimates.

The calculated dynamic structure factors, S(q, ω), show side
peaks that are indicative of collective density excitations.
According to ML results, the associated dispersion relation
shows the existence of a positive dispersion that could not be
detected within the AIMD calculations. The transverse
dispersion relation for l-La exhibit two branches consistent
with the suggested connection between the structure of the
spectra of the VACF and the existence of one/two transverse
dispersion branches. Results have also been reported for several
transport coefficients, namely, the self-diffusion, adiabatic sound
velocity, and shear viscosity coefficients. Taking into account the
scarcity of data for most of these transport coefficients, we expect
that the present results will be of interest for future experimental
and theoretical research.

Despite all the previous work on the liquid Li4Pb alloy, there
remained some controversial points about its properties, in
particular about the nature of the high-frequency excitation
associated with the LiLi dispersion relation, that have been
addressed in detail in the present study. The reported ML
simulations have delivered results for its static and dynamic
properties with a precision matching the AIMD simulation
results. However, the capability of the ML simulations to
provide accurate information about the q→ 0 behavior of any q-
dependent physical magnitude has been key to perform a very
detailed investigation of the high-frequency excitation branch
related to the LiLi dispersion relation. The ML simulation
results show that this excitation is a kinetic (nonhydrodynamic)
optic mode, and given the near ab initio precision of the present
ML simulations, we can confidently rule out the fast sound
character of this excitation. We have moreover reconciled the
different views on the behavior of this alloy, showing that indeed,
despite the kinetic optical nature of the high-frequency “fast
sound” mode, a merging does exist between the phase velocities
associated with the low-frequency peaks of the longitudinal
currents associated with the heavy and light particles.

Overall, we have shown the power of ML interatomic
potentials to analyze with higher accuracy multiple properties
while, at the same time, finally discern the origin of some special
features discovered in recent years.
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