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Abstract

Domain walls (DWs) are the transition regions between two magnetic domains. These objects have
been very relevant during the last decade, not only due to their intrinsic interest in the devel-
opment of novel spintronic devices but also because of their fundamental interest. The study
of DW has been linked to the research on novel spin–orbit coupling phenomena, such as the
Dzyaloshinskii–Moriya interaction and the spin Hall effect. DWs can be nucleated in ferromag-
netic (FM) nanostrips and can be driven by conventional magnetic fields and spin currents due to
the injection of electrical pulses, which make them very promising for technological applications
of recording and logic devices. In this article, based on full micromagnetic simulations supported
by extended one-dimensional models, we describe the static and dynamic properties of DWs in
thin FM and ferrimagnetic wires with perpendicular magnetic anisotropy. This article aims to pro-
vide a fundamental theoretical description of the fundaments of DWs, and the numerical tools and
models that allow describing the DW dynamics in previous and future experimental setups.
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1 Introduction

Domain walls (DWs) are the transition
regions between two adjacent magnetic
domains, where the magnetization (M(r))
adopts an almost uniform configuration [1,
2]. The domain theory assumed that the DWs

were abrupt regions without internal struc-
ture, and therefore, the magnetic state of a
ferromagnetic (FM) system was a balance
between the different contributions to the
total energy of the system, which includes
magnetostatic and anisotropy interactions.
The domain pattern was traditional modified

Materials Science and Technology.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA.
DOI: http://dx.doi.org/10.1002/9783527603978.mst0459



Trim Size: 178mm x 254mm Two Column mst mst0459.tex V1 - 02/17/2020 9:36pm Page 2�

� �

�

2 Domain Wall Motion in Magnetic Nanostrips

by external magnetic fields (Hext), which
promote growth in size of the domains
magnetized in the parallel direction to
the external field at expenses of the other
domains. Hysteresis loops under exter-
nal fields are therefore a sequence of local
equilibrium states.

More recently, with the advent of novel
fabrication and observation techniques, it
has been evident that the DWs indeed have
an internal structure, which is essential
to understand not only due to the mag-
netic configuration of FM samples at the
nanoscale but also because it plays a key role
to further understand the dynamic proper-
ties of these samples. The micromagnetic
model (mM) is the continuous theory of the
magnetization [3–5], which in parallel with
the development of numerical techniques
and observation methods has been essential
to understand the interesting physics of
these systems, not only from a fundamental
point of view but also to envisage novel
technological applications, where DWs are
the main ingredients of recording and logic
devices. This model assumes that the local
magnetization M(r) is a continuous vector
function, where the local magnitude is equal
to the saturation magnetization of the sample
(Ms), and its direction, which is given by a
unit vector m(r, t), changes smoothly over a
nanometer scale. Besides of the mentioned
interactions, the micromagnetic formalism
takes into account the exchange interac-
tion, which is mainly responsible for the
FM order. Therefore, the magnetic state
of a FM system results from the balance
between the exchange, magnetostatic, and
anisotropy interactions in the absence and
the presence of external magnetic fields.
Hysteresis loops, which are a sequence of
equilibrium states under a series of external
magnetic fields, are naturally obtained in the
mM by minimizing the energy of the system
for each field. However, the mM does not
only allow to compute equilibrium states and
hysteresis loops but also allow us to study the
magnetization dynamics at the nanoscale,
where besides from domains and DWs, other

magnetic patterns, such as magnetic vortices
and skyrmions, appear. The temporal evolu-
tion of the local magnetization (dm(r, t)/dt)
is dictated by the Landau–Lifshitz–Gilbert
(LLG) equation [1–5], which is obtained
from Newton’s law. It includes precession
and damping terms. In the presence of
a magnetic field (B=𝜇0H, with 𝜇0 being
the permeability of the free space), a mag-
netic moment (𝝁) experiences a torque
(𝝉 = −𝝁×B) which makes it precess around
the field, that is d𝝁

dt
= −𝛾𝜇0𝝁 × H. Simi-

larly, in the context of the micromagnetic
formalism, the magnetization of an ele-
mentary volume cell m(r, t)=M(r, t)/Ms
precesses around the local effective field
(Heff =Heff(r)) which includes all the mag-
netic interactions, and it is derived from the
energy density of the system (𝜀) by means of
a functional derivative, Heff (r) = − 1

𝜇0Ms

𝛿𝜀

𝛿m
.

The magnetization dynamics in the absence
of damping read as dm(r,t)

dt
= −𝛾0m × Heff ,

where 𝛾0 = |𝛾𝜇0|= 2.21× 105 m A−1s−1 is the
gyromagnetic factor. The damping term is
included to account for the observation of the
relaxation of the local magnetization toward
the local effective field. There exist several
mechanisms which introduce losses: eddy
currents [6, 7], macroscopic discontinuities
(Barkhausen jumps), diffusion and reorienta-
tion of the lattice defects, or spin-scattering
mechanism can all introduce losses [2].
The damping term is a phenomenological
contribution accounting for the dissipation
phenomena involved, which are described
by a dimensionless Gilbert damping 𝛼.
The resulting Gilbert equation reads as [1,
2]:

dm
dt

= −𝛾0m × Heff + 𝛼m × dm
dt

(1)

Equation (1) describes the magnetization
dynamics under the presence of magnetic
fields, which are applied externally. In par-
ticular, the field-driven DW dynamics can be
studied by numerically solving this equation,
where the effective field Heff includes the
exchange (Hexc), the magnetostatic (Hdmg),
the magnetic anisotropy, the Zeeman (Hdc)
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Domain Wall Motion in Magnetic Nanostrips 3

interactions, and other classical electro-
magnetic interactions. Further details of
these contributions can be consulted else-
where [1–4, 8, 9]. Indeed, the interactions
included in the effective field determine
the equilibrium state of FM samples, and
particularly, the DW configurations in strips.
These equilibrium magnetization config-
urations will be reviewed in this article.
Also, the field-driven DW dynamics will
be reviewed in systems with perpendicular
magnetic anisotropy (PMA). In particular,
we will focus our attention on thin strips,
where 𝓁 is the length along the longitudinal
x-axis, w is the strip width along the trans-
verse y-axis, and t represents the thickness
along the out-of-plane direction (z-axis)
with 𝓁≫w≫ t. In these PMA strips, a DW
separates two domains magnetized along the
easy axis (uk =uz), that is either along the +z
(or up domain) or the −z (or down domain)
directions. When an out-of-plane field is
applied, Bext =𝜇0Hext =Buz, the size of the
up domain increases, and consequently, the
DW moves along the x-axis. The motion of
DWs by external fields has been studied from
both theoretical and experimental points
of view during the last decades [10–15],
and here we will review the main features
of the field-driven DW motion. However,
driving DWs by external field has both
experimental and technological limitations.
For instance, due to the reduction of the
scale (the need of miniaturization) of the
systems of interest, with dimensions at the
nanoscale, it is difficult to generate local
external field to excite the dynamics of a sin-
gle DW in a real device without perturbing
the magnetic state of other DWs. Besides,
adjacent DWs, up–down and down–up, in
a single FM strip are driven in opposite
directions under a static magnetic field,
which could result in the annihilation of the
DWs. Therefore, the manipulation of DWs
by magnetic fields is not very promising
for magnetic recording and logic appli-
cations, where series of DWs need to be
driven back and forth without destroying

the coded information within the domain
between them.

It is possible to drive DWs by using spin
polarized currents, which could be of differ-
ent nature depending on the architecture.
For instance, DWs can be driven by injecting
an electrical current along a conductive FM
strip. The mechanism behind is the spin
transfer torque (STT), an effect which was
first predicted theoretically by Berger [16]
and Slonczewski [17]. See Ref. [18] for a
review of most experimental observations
and the progress in the understanding on
the current-driven DW dynamics through
2011. STT corresponds to a torque on the
magnetization which is due to a transfer of
angular momentum between the conduction
electrons and the local magnetization. An
electrical current corresponds to a flux of
electrons. Each electron carries a magnetic
moment 𝝁 that can interact with the local
magnetization by exchange interaction. As
a consequence, electrons’ spins are aligned
with the magnetization and the current
becomes spin-polarized (namely, there is
also a spin current associated with the elec-
trical current since all the electron have the
same spin alignment). On top of that, the
spin current affects the local magnetization
if it differs from the spin-polarization direc-
tion: as the spin-polarized current follows
the magnetic texture, it exchanges angular
momentum with the local magnetization.
Therefore, the STT can move DWs along
nanostrips. Additional torques −→𝜏 STT are
included in the LLG equation (1) to account
for these STT mechanisms. The explicit form
of these STTs will be introduced later in
Section 2.2. The direction of DW motion
only depends on the sign of the current and
not on the alignment of the domains, as
in the case of field-driven DW motion. As
already commented, in this latter case, two
DWs would move either toward or away from
each other, depending on the applied field.
On the contrary, neighboring DWs can be
moved in the same direction under the STT.
This feature has paved the way for promising
applications based on DW motion, such
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4 Domain Wall Motion in Magnetic Nanostrips

as racetrack memories [19] or DW logic
devices [20], where series of DWs can be
driven along FM strips. Under the STT, the
DWs are displaced along the electron flow
direction, that is in the opposite direction to
the electrical current.

More recently, several experiments on
current-driven DW dynamics [21–24] have
been demonstrated to be inconsistent with
the STTs introduced above: DWs are driven
along the current direction (against the
electron flow). The evaluated systems con-
sist of an ultrathin FM strip sandwiched
between a heavy metal (HM) and a non-
magnetic layer, e.g. an oxide (Ox). In this
case, the DWs are driven along the elec-
tric current or against it depending on the
HM and the spin orbit coupling [22]. In
particular, the internal structure of the mag-
netic DW has been found to be essential
to understand the DW dynamics in these
systems. In a typical thin FM strip, the inter-
nal magnetization within a DW tends to
be aligned along the transversal direction,
i.e. mDW ≈ ±uy, and it rotates from the up
to the down domain in the yz-plane. This
is the so-called Bloch DW configuration,
which results from the balance between the
exchange and the magnetostatic interac-
tions. On the other hand, it was recently
shown that when an ultrathin FM strip is
sandwiched between a HM and an oxide, the
DW adopts a Néel configuration where its
internal moment aligns along the longitu-
dinal direction, that is mDW ≈ ±ux [22, 23].
Therefore, the magnetization rotates from
the up to the down domain in the xz plane
with a fixed chirality. The key new ingredient
responsible for these chiral DW patterns
is an interfacial effect, which results from
the combination of spin–orbit interaction
and structural broken inversion symmetry
of the stacks. The interfacial effect is the
Dzyaloshinskii–Moriya interaction (DMI)
[25, 26] and gives rise to an antisymmet-
ric exchange interaction, which needs to
be accounted for in the energetic balance
with the rest of micromagnetic interactions.
Experimentally, several effects of the DMI

have been observed in ultrathin multilayers,
such as chiral DW [22–24, 27–34], asymmet-
ric bubble expansion [35, 36], or asymmetric
spin wave propagation [37]. Furthermore,
DMI can also favor new types of magneti-
zation patterns, such as skyrmions [38] or
helices [39].

The current-driven DW motion in these
multilayers is essentially due to the spin Hall
effect (SHE), which describes the conversion
of charge current into spin current due to
spin–orbit coupling [40–44]. In ultrathin
multilayers, such effect can be exploited to
inject a spin current into the FM layer, which
affects the magnetization dynamics through
spin–orbit torques (SOTs) [45–47]. Due to
its small thickness, ultrathin FM films (with
thicknesses of ∼1 nm or below) have a high
electrical resistance and, therefore, it is possi-
ble to inject electrical current mainly passing
through the neighboring high conductive
metallic layers. If the layers have a high
spin–orbit coupling, electrons with different
spins are scattered in opposite directions,
resulting in a spin current perpendicular
to the injected charge current. The spin
polarization of the spin current (𝝈) will also
be perpendicular to the charge current (J e)
and the spin current (J s). For instance, a spin
current along the z-direction is polarized
along the y-direction since the charge cur-
rent is flowing along the x-direction. More
details about the microscopic origin of the
SHE can be found in [40, 41]. The SHE and
other SOTs can be included in the magne-
tization dynamics by adding a new torque
into the LLG equation (1) (𝝉SOT). As it will
be discussed here, this SOT drives chiral
DWs along FM strips with high efficiency, a
feature which makes these multilayers very
promising for DW-based applications.

The rest of this article is structured as
follows. We firstly present in Section 2
the details of the mM, which allows us to
describe the static and dynamic proper-
ties of DWs in thin FM strips with high
PMA. In Section 3, we present micromag-
netic results of DWs and, in parallel, the
bases of the one-dimensional model (1DM).
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The different approaches in the 1DM are
described and the corresponding results
are compared to full micromagnetic sim-
ulations. In particular, both mM and 1DM
models will be used in the rest of the article
to describe the different types of DWs and
the different systems which have been the
object of study by several groups during the
last decade. We will review the field-driven
case and the current-driven DW dynam-
ics in single FM strips. We will study this
dynamics in multilayers where the FM strip
is sandwiched between a HM and an oxide.
In the first systems, the current-driven DW
dynamics is a consequence of the spin cur-
rent flowing through the FM strip, which
interacts with the DWs by a spin-transfer
torque (STT) mechanism. In multilayers,
the spin current is mainly generated in
the HM due to the SHE. This spin current
interacts with the DWs in the FM strip, in
particular, when the spin–orbit coupling
imposes chiral configurations of the DWs.
Also in Section 3, we will present results of
the current-driven DW motion in systems
with curved parts, a study which will be
also essential for the development of novel
DW-based devices in the next years. In the
last part of Section 3, we will analyze other
platforms for current-driven DW dynam-
ics, such as synthetic AF multilayers and
ferrimagnetic stacks. Therefore, the topics
covered in the present article aim to provide
a full description of the current state of the
art of DWs in systems with high PMA. The
objective of the present article is to expose
a detailed and compressive description of
the numerical and theoretical models on
current-driven DW dynamics along strips
with high PMA, with the intention of being
useful for researchers in the development of
novel DW-based devices in the next future.
We state here, that is not our goal here to
present an exhaustive enumeration of exper-
imental results, and consequently, we refer to
the interested reader on these experimental
aspects to other works that are not cited here
but can be easily reached from the references
provided in this document.

2 Micromagnetic Model (mM)

2.1 Total Energy and Effective Field

Within the micromagnetic formalism, a FM
system is discretized in elementary volume
cells, and the equilibrium magnetic state is
the result of the balance of several interac-
tions [1–5]. The dominant interaction is the
exchange interaction, which is responsible
for the FM order. FM materials show sponta-
neous magnetization above the microscopic
scale. This is due to the tendency of mag-
netic moments in such materials to align
parallel to each other, giving rise to magnetic
order inside the material. The origin is the
exchange interaction, a quantum mechan-
ical effect whose description and complete
treatment can be found in Refs [1, 2]. It all
boils down to a spin-dependent effective
Hamiltonian, the Heisenberg Hamiltonian

̂ = −2
∑
⟨ij⟩ JijSi ⋅ Sj = −2JS2

∑
⟨ij⟩ cos𝜙ij (2)

where the sum is over first neighbors, J ij is
the exchange integral between spins i and j,
and 𝜑ij is the angle between the two spins (Si
and Sj). Such interaction is of short range.
When J ij > 0, the energy of the system is
minimized when spins lie parallel to one
another. The formulation of this require-
ment in the continuum micromagnetic
formalism considers that the angle between
neighboring spins is small so that the scalar
product in Eq. (2) can be approximated as
cos𝜑ij ≈ 1 − 1

2
𝜑2

ij [3, 4] and the exchange
energy E = cte + 2JS2 ∑⟨ij⟩𝜑2

ij. The passage to

the continuous approximation results in the
exchange energy density term

𝜀exch = A(∇m)2 (3)

where A= n2JS2/a is the exchange stiffness
constant, which has units of J m−1, and a is
the lattice constant, with n depending on the
type of lattice (n= 1 for simple cubic, n= 2
for bcc, and n= 4 for fcc). Exchange energy
favors uniform magnetic patterns for which
∇−→m = 0.
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Exchange interaction is isotropic, which
means that in the ideal situation of a mag-
netic specimen whose spins are all aligned,
the energy level will be the same regardless
of the orientation of the magnetization M. In
the common case in which the specimen has
a crystalline structure, the atoms, and hence
the magnetic moments, are positioned at the
vertices of the lattice. Due to spin–orbit inter-
actions, orientations of magnetization along
certain crystallographic axes are favored
over others, breaking the symmetry of the
isotropic exchange interaction. This effect
is described by the so-called magnetocrys-
talline anisotropy. Hexagonal and tetragonal
crystals show a uniaxial anisotropy. In the
present work, we will focus our attention
to strips with high uniaxial PMA. The
corresponding energy density is [1, 2]

∈ani = Ku[1 − (m•uk)2] (4)

where Ku is the anisotropy constant (in
J m−3) and uk =uz is the unit vector along
the easy axis.

The energy of the FM sample also includes
the magnetostatic (𝜀dmg) and Zeeman (𝜀ext)
interactions, which are given by

𝜀dmg = −1
2
𝜇0MsHdmg ⋅

−→m (5)

𝜀ext = −𝜇0MsHext ⋅
−→m (6)

where Hdmg is the demagnetizing field, and
Hext is the external magnetic field. The mag-
netostatic field Hdmg is the classical magnetic
field generated by the magnetization M. It
can be obtained from Maxwell’s equations,
which in the absence of electrical current are

∇ ⋅ Hdmg = 𝜌m (7)

∇ × Hdmg = 0 (8)

where Hdmg =B/𝜇0 −M and 𝜌m =− ∇ ⋅M.
Mathematically, Eqs. (7) and (8) have the
same form of the electrostatic Maxwell’s
equations relating charges and electrical field
(note that the analogy holds only in this par-
ticular case where there are no free electrical
currents). In this case, 𝜌m = − ∇ ⋅M plays

the role of magnetic charge per unit volume.
Thus, it is possible to write

Hdmg = −∇𝜑m (9)

where 𝜑m is the magnetic scalar potential,
and ∇𝜑m represents its gradient. As Hdmg
satisfies Eq. (8), the 𝜑m satisfies the Laplace
equation ∇2𝜑m = − 𝜌m, which can be solved
as

𝜑m = 1
4𝜋 ∫V ′

𝜌m|r − r′|dv′ + 1
4𝜋∮S′

𝜎m|r − r′|ds′

(10)

where 𝜌m = − ∇ ⋅M and 𝜎m =M ⋅n are the
magnetic charge densities per unit volume
and surface, respectively. The first integral
is over the volume of the magnetic system
(V ′ ) and the second one is over the closed
surface S′ surrounding V ′ . n is the unit vec-
tor perpendicular to the surface pointing
outward from the volume V ′ . For a given
magnetization distribution M(r)=Msm(r),
the magnetic potential 𝜑m can be computed
from Eq. (10), and from it, Eq. (9) determines
the magnetostatic field Hdmg.

The total energy of a magnetic system is
therefore,

E = ∫V ′
[𝜀exch + 𝜀ani + 𝜀dmg + 𝜀ext]dv′ (11)

The energy of the FM system is a function
of the magnetization over the sample, i.e.
E =E[M(r)], and the equilibrium state is the
minimum of Eq. (11), which must satisfy
𝛿E = 0, where 𝛿E represents the variational
of the energy, and which can be calculated
explicitly with the energy terms that we have
introduced above. Since for exchange inter-
action M(r)=Msm(r), at T ≪TC (TC is the
Curie temperature of the FM material), the
energy can be considered as a functional of
the unitary vector m(r) and the minimization
is performed with the constrain |m(r)|= 1.
The variation of the system energy is given
by [1]

𝛿E[m(r)] = ∫V ′

[
2A(∇m) ⋅ ∇(𝛿m)

−2K(m ⋅ uk)m ⋅ 𝛿m
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−𝜇0MsHdmg ⋅ 𝛿m

− 𝜇0MsHext ⋅ 𝛿m
]

dv′ (12)

where (∇m) ⋅∇ (𝛿m) stands for (∇mx)∇ (𝛿mx)
+ (∇my)∇ (𝛿my)+ (∇mz)∇ (𝛿mz), and we
have used the reciprocity theorem for the
variation of the magnetostatic energy. In
fact, a variation of m generates a varia-
tion of Hdmg as well. By using the identity
∇ ⋅ (ab)= a(∇ ⋅ b)+ b ⋅ (∇a) and the diver-
gence theorem, Eq. (12) can be expressed
as

𝛿E[m(r)] = −∫V ′
[2A∇ ⋅ (∇m) + 2K(m ⋅ uk)m

+𝜇0MsHdmg + 𝜇0MsHext]

⋅𝛿m dv′ + 2∮S′
A
[
𝜕m
𝜕n

⋅ 𝛿m
]

ds′

= −∫V ′
𝜇0MsHeff ⋅ 𝛿m dv′

+ 2∮S′
A
[
𝜕m
𝜕n

⋅ 𝛿m
]

ds′ (13)

where the first integral is over the body vol-
ume and the second over the body surface.
𝜕m
𝜕n

represents the derivative across the direc-
tion normal to the body surface and Heff is the
effective field defined as

Heff = − 1
𝜇0Ms

𝛿𝜀

𝛿m

= − 1
𝜇0Ms

[
𝜕𝜀

𝜕m
− ∇

(
𝜕𝜀

𝜕(∇m)

)]
(14)

where 𝜀= 𝜀(m) is the energy density per unit
volume defined in the integrand of Eq. (11).
Since 𝛿m must obey the constrain |m(r)|= 1,
a generic variation 𝛿m can be expressed as
𝛿m=m× 𝛿𝜽 (𝛿𝜽 represents the variation of
the magnetization orientation), and Eq. (13)
can be written as

𝛿E[m(r)] = −∫V ′
[𝜇0MsHeff × m] ⋅ 𝛿𝜽 dv′

+2∮S′
A
[
𝜕m
𝜕n

× m
]
⋅ 𝛿𝜽 ds′ (15)

Since the minima of the functional must
satisfy that 𝛿E[m(r)]= 0 for any arbitrary
variation 𝛿𝜽, Eq. (15) implies that equi-
librium states must satisfy the following

conditions:

Heff × m = 0, ∀r ∈ V ′ (16)[
𝜕m
𝜕n

× m
]
= 0,∀r ∈ S′ (17)

which state the mathematical conditions that
an equilibrium configuration must satisfy.
Equation (16) means that, at equilibrium,
the magnetization m in each elementary
volume within the FM sample (V ′ ) is aligned
with the local effective field Heff. In other
words, the torque between m and Heff is null.
Equation (17) indicates that the variation of
the magnetization must be null at the surface
(S′ ) of the FM object.

Exchange, anisotropy, demagnetizing, and
Zeeman are the energy terms usually consid-
ered in standard micromagnetics. Recently,
the fabrication of nanostructures with broken
inversion symmetry led to the appearance
of an additional interaction at the inter-
faces between magnetic materials and HMs,
which turns out to have an important effect
on the magnetization dynamics. Therefore,
we present it in the following paragraphs.
When an ultrathin FM strip is sandwiched
between a HM and an oxide, or between two
different HMs with strong orbit coupling,
the energy of the FM system must include
the corresponding interfacial interaction.
Exchange interaction has been presented
with a fully symmetric Hamiltonian. How-
ever, its generalized form can be written
as

ij = Si ⋅ (ijSj) (18)

where ij is a tensor representing the bilin-
ear form of the energy of two spins. This
can be decomposed in a symmetric and an
antisymmetric part [39]. The symmetric part
represents the usual exchange interaction
that we presented as fully isotropic with a
scalar product in Eq. (2). The antisymmetric
part can be rewritten as a cross product by a
vector Dij:

ij = Si ⋅ (ijSj) = JijSi ⋅ Sj − Dij ⋅ (Si × Sj)
(19)
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This antisymmetric energy term (Dij ⋅ (Si
× Sj)) is due to the presence of a spin–orbit
interaction, which connects the lattice with
the spin symmetry. The broken parity of the
lattice gives rise to an additional interac-
tion that breaks the inversion invariance of
the Heisenberg Hamiltonian, which is the
DMI. In the systems studied in this article,
DMI is an interfacial effect, arising from the
interaction of a FM layer with an adjacent
lattice of HM atoms with large spin–orbit
coupling (see Figure 1f in [48]). The vector
D is then determined by the interaction at
the interface as ∝ rij ×n, where rij is the
vector connecting spins Si and Sj and n is
here the interface plane vector. Here, we
consider a broken inversion symmetry along
the uz direction, so that the DMI vector D is
directed as D=Duz ×uip, with D being the
magnitude of D, for any in-plane direction
uip. To minimize the DMI energy, Si × Sj
must be parallel or antiparallel to D, depend-
ing on the sign of D. Thus, the DMI competes
with the symmetric exchange interaction
and promotes spin spiral states and other
nonuniform magnetization patterns.

In the context of micromagnetics, Thiav-
ille et al. [26], following the same approach
shown for the exchange interaction, intro-
duced the DMI in a continuous approxima-
tion, which reads as

EDM = ∫V ′
𝜀DM dv′

= ∫V ′
D[mz(∇m) − (m ⋅ ∇)mz] dv′

= ∫V ′
D
[(

mz
𝜕mx
𝜕x

− mx
𝜕mz
𝜕x

)
−
(

mz
𝜕my

𝜕y
− my

𝜕mz
𝜕y

)]
dv′ (20)

By calculating the variation 𝛿EDM, it is pos-
sible to include the DMI into the equilibrium
equations. After some algebra we get

𝛿EDM[m(r)] = ∫V ′
𝜇0MsHDM ⋅ 𝛿m dv′

+2∮S′
D[m × (n × uz)]

⋅𝛿m ds′ (21)

where HDM is the additional DMI contribu-
tion to the effective field

HDM = 2D
𝜇0Ms

[∇mz − (∇ ⋅ m)uz]

= 2D
𝜇0Ms

[
𝜕mz
𝜕x

ux +
𝜕mz
𝜕y

uy

−
(
𝜕mx
𝜕x

+
𝜕my

𝜕y

)
uz

]
(22)

and the variational calculus shows that DMI
also affects the system boundary conditions.
In fact, the surface integral, including the
exchange contribution, now reads like [26,
49]

∮S′

[
2A𝜕m

𝜕n
+ D[m × (n × uz)]

]
⋅ 𝛿mds′ (23)

which must be zero for any arbitrary varia-
tion of m. Hence, the boundary conditions
are given by

𝜕m
𝜕n

= D
2A

[m × (n × uz)],∀r ∈ S′ (24)

By combining these results with Eq. (13),
it is possible to see that the effect of DMI is
the addition of the HDM field to the previously
defined effective field Heff, and the modifica-
tion of the boundary conditions according to
Eqs. (17) and (24). In summary, the energy
density of a FM specimen is

𝜀 = 𝜀exch + 𝜀ani + 𝜀dmg + 𝜀ext + 𝜀DM

= A(∇m)2 + Ku[1 − (−→m ⋅ −→u k)2]

− 1
2
𝜇0MsHdmg ⋅

−→m − 𝜇0MsHext ⋅ m

+D[mz(∇m) − (m ⋅ ∇)mz] (25)

and the general form of the effective field is

Heff = 2A
𝜇0Ms

∇2m + 2K
𝜇0Ms

(m ⋅ uk)m

+Hdmg + Hext +
2D
𝜇0Ms

×[∇mz − (∇ ⋅ m)uz] (26)

Note that other classical magnetic fields,
such as the Oersted field generated by an
electrical current, can also be included in
these expressions.
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2.2 Magnetization Dynamics

As it was anticipated, the magnetization
dynamics of a FM sample under an exter-
nal field can be described by the LLG
equation (1). This equation can be gener-
alized to include the torques generated by
injection of electrical currents along the FM
strip (JFM) and/or along a HM in contact with
it (JHM). The general equation now reads

dm
dt

= −𝛾0m × Heff + 𝛼m × dm
dt

+𝝉STT + 𝝉SOT (27)

where 𝝉STT and 𝝉SOT represent the STTs
and the SOTs, respectively. When an electric
current is injected along a conducting FM
strip (JFM = JFMuJ , where JFM is the mag-
nitude of the current density and uJ the
unit vector along the current direction), the
spin of the conduction electrons becomes
spin-polarized along the local magnetization
direction. When this spin polarized current
crosses a DW or any nonuniform magnetic
texture, spin angular momentum is trans-
ferred from the current to the magnetization,
thereby inducing a torque which causes the
DW to be pushed in the direction of the elec-
tron flow. This STT phenomenon, which was
first predicted by Berger [5], has adiabatic
(A) and nonadiabatic (NA) contributions
[50–52]:

𝝉STT = 𝝉A + 𝝉NA

= −u(uJ ⋅ ∇)m
+𝛽u m × (uJ ⋅ ∇)m (28)

where u ≡ − |g|𝜇BPJFM

2|e|Ms
, with 𝜇B being the Bohr

magneton, P the polarization factor, and
e the electric charge of the electron. 𝛽 is
the dimensionless nonadiabatic parameter.
The adiabatic STT (𝝉A =u(uJ ⋅∇)m) rep-
resents the transfer of angular momentum
between conduction electrons and the local
magnetization, namely, it assumes that cur-
rent polarization follows adiabatically the
local magnetization, thus exchanging its
total angular momentum. It is expected
to be dominant in wide DWs. It acts
as a hard-axis field perpendicular to the

magnetization inside the DW and controls
the initial DW velocity. The nonadiabatic
STT (𝝉NA = 𝛽um× (uJ ⋅∇)m) represents the
linear momentum transfer, which considers
the transfer of linear momentum between
conduction electrons and the local mag-
netization and it accounts for the fact that
electron polarization might not entirely
follow the local magnetization. The nonadia-
batic STT is expected to be dominant in thin
DWs. It mimics an easy axis magnetic field,
and it is responsible for the terminal DW
velocity as it will be discussed later.

Additionally, SOTs are a generic term for
spin transport phenomena that can occur in
systems with high spin–orbit coupling. In
particular, these SOTs emerge as the elec-
trical current is injected along a HM/FM
stack. They can be classified in two types of
torques: damping-like (DL) (𝝉DL, also called
Slonczewski-like) and field-like (FL) (𝝉FL)
SOTs [21–23, 42–44], and they are essen-
tially related to the SHE and/or to the Rashba
effects.

The SHE was first proposed by Dyakonov
and Perel although its current name was
introduced later by Hirsch [40]. It describes
how the spins accumulate at the interface of
certain materials, due to the spin-dependent
deflection of electrons in the transverse
directions to the current flow direction.
When a FM strip is present on top of such a
spin Hall material (a HM), the vertical cur-
rent (polarized in the transverse y-direction)
can be injected into it. The maximum per-
pendicular spin current J s induced by a
longitudinal charge current density JHM
is characterized by the spin Hall angle,
J s = 𝜃SHJHM. This spin current is injected into
and absorbed by the FM layer, exerting a
torque on the magnetization because of the
angular momentum conservation. A similar
process was firstly studied by Slonczewski
[17], who used a perpendicular charge cur-
rent polarized by a reference magnetic layer.
Apart from the different generation of the
spin current, the torques are identical, and
therefore it is usually called Slonczewski-like
or DL torque. Regarding the origin of the
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spin-dependent deflections that cause the
SHE, several mechanisms exist, and different
mechanisms dominate in different HMs. This
fact manifests itself in a different sign of the
spin Hall angle, as for example in Pt and Ta:
𝜃SH(Pt)> 0 and 𝜃SH(Ta)< 0.

Another SOT originates from the Rashba
effect [53–56]. This effect can arise when
there is an electric field gradient due to the
symmetry breaking at an interface. Although
first identified in semiconductors, the effect
could also arise in metallic ferromagnets,
particularly in a system consisting of a metal
with large spin–orbit coupling, a FM layer,
and an oxide layer. Due to a symmetry crys-
tal field potential at the interface between
two different materials, electric fields E can
build up at the interfaces when the lateral
current flows through the multilayer. In a
classical picture, these electric fields trans-
form to magnetic fields HR in the rest frame
of the electrons flowing at the interfaces.
This effective field couples to the magnetic
moment of the adjacent magnetic layers
through the s–d exchange interaction. This
can be modeled simply as an effective mag-
netic field in the y-direction, transverse to
the current flow. Key ingredients to achieve
a significant Rashba effect are a strong
spin–orbit coupling (characterized by the
Rashba parameter 𝛼R), a strong effective
electric field at the interfaces, and a strong
structural inversion asymmetry (SIA), i.e.
asymmetry between the top and bottom
interfaces. In addition to this effective field,
a secondary SOT due to the Rashba effect
was predicted to occur, perpendicular to the
first. This nonadiabatic contribution to the
Rashba effect can be caused by spin diffusion
inside the FM layer.

Having introduced the sources of SOTs,
we now describe how they enter in the
LLG equation that governs the magne-
tization dynamics. The SHE acts as a
transverse-polarized spin current that is
injected in the magnetic layer, and therefore,
it has the form of a Slonczewski-like torque
(or DL),

𝝉SL = −𝛾0HSLm × (m × 𝝈) (29)

where HSL = ℏ𝜃SHJHM

2|e|𝜇0Mst
with ℏ being the Planck

constant, and 𝜃SH the spin Hall angle, which
determines the ratio between the electric
current and the spin current (J s = 𝜃SHJHM).
−→𝜎 = uJ × uz is the unit vector along the
polarization direction of the spin current
generated by the SHE in the HM. 𝝈 is orthog-
onal to both the direction of the electric
current uJ and the vector uz standing for
the normal to the HM/FM interface. t is
the thickness of the FM layer. For a longitu-
dinal current along the HM (JHM = JHMuJ ,
uJ =ux), the spin current is polarized along
the transverse direction, 𝝈 = −uy. Note that
uJ does not include the sign of the current
flow, which is taken into account in the sign
of JHM.

Differently, the Rashba effect acts as
an effective field along the transverse
y-direction, and although there could exist
other physical origin for such a transverse
field, the torque it exerts is often called the
FL torque, and it has the form [56]

𝝉FL = −𝛾0HFL(m × 𝝈) (30)

where HFL = 𝛼RPJFM

𝜇BMs
, with 𝛼R being the men-

tioned Rashba parameter and P is the
spin polarization in the FM layer. As for
the DL-SOT, 𝝈 = −uy for a longitudinal
current.

Since the two effects take different form in
the LLG equation, it is possible in principle
to separate the two contributions by mea-
surements of the magnetization dynamics.
However, several theoretical works have
suggested that both the SHE and the Rashba
effect could have a “nonadiabatic” coun-
terpart. This makes it less straightforward
to distinguish both, since the nonadiabatic
SHE torque has the same FL form as the
direct Rashba torque, and the nonadiabatic
Rashba torque takes the DL form as the
SHE. However, nowadays most experiments
suggest that the main driving force for DWs
in HM/FM multilayers is due to the SHE,
and that the Rashba effect plays a minor role.
Consequently, in this article we will assume
that the SOTs that enter in the LLG equation



Trim Size: 178mm x 254mm Two Column mst mst0459.tex V1 - 02/17/2020 9:36pm Page 11�

� �

�

Domain Wall Motion in Magnetic Nanostrips 11

have the following form:

𝝉SOT = 𝝉DL + 𝝉FL

= −𝛾0HSLm × (m × 𝝈)
−𝛾0HFL(m × 𝝈) (31)

where HSL and HFL represent the magnitude
of the DL-SOT and the FL-SOT, respectively,
as defined above.

2.3 Numerical Details

Most of the micromagnetic results presented
in the following sections were performed
using Mumax3 [8]. This is an open-source
micromagnetic software, which runs on
graphic processing units (GPUs). As we will
study different systems, the corresponding
magnetic parameters and dimensions will be
given where corresponds in Section 3. The
micromagnetic results presented in Section
3.8 were obtained by using a homemade
micromagnetic solver [9]. The modeling is
done by using computational cells well below
than the characteristic length along which
the magnetization changes spatially. Further
details on numerical methods to find equi-
librium states and solve the magnetization
dynamics can be consulted in Refs [8, 9].

3 One-Dimensional Models
(1DMs). Micromagnetic and
1DM Results

Once the micromagnetic equations in
Section 2 have been established, here we
are going to introduce the 1DM. In parallel,
we present different micromagnetic results,
and we compare them to the 1DM predic-
tions. In the context of the DW motion,
a useful tool is the collective-coordinates
(CC) model, which is also called the 1DM. It
rearranges the LLG equation (27) in terms
of the DW position q and the internal DW
angle 𝜓 , and it implies an assumption on the
magnetization profile, which is considered to
follow a one-dimensional DW solution [57,
58]. In developing the 1DM, it is convenient

to write the LLG equation (27) in spherical
coordinates. The magnetization is written as
m= (sin 𝜃 cos𝜑, sin 𝜃 sin𝜑, cos 𝜃), where the
angles 𝜃 and 𝜑 are defined in Figure 1a. The
dimensions of the single FM strip and the
FM strip on top of a HM are also shown in
Figure 1b and c, respectively.

3.1 Derivation of the 1DM Equations

In spherical coordinates (dm= d𝜃u𝜃 + sin 𝜃
d𝜑u𝜑, dm

dt
= d𝜃

dt
u𝜃 + sin 𝜃 d𝜑

dt
u𝜑 = 𝜃̇u𝜃 +

sin 𝜃𝜑̇ u𝜑, 𝜕m
𝜕x

= 𝜕𝜃

𝜕x
u𝜃 + sin 𝜃 𝜕𝜑

𝜕x
u𝜑), the LLG

equation (27) including the STTs and the
SOTs reads as

𝜃̇ = − 𝛾0
𝜇0Ms sin 𝜃

𝛿𝜀

𝛿𝜑
− 𝛼 sin 𝜃 𝜑̇

−u
(
𝜕𝜃

𝜕x

)
− 𝛾0HFL cos𝜑

−𝛾0HSL cos 𝜃 sin𝜑 (32)

sin 𝜃 𝜑̇ = 𝛾0
𝜇0Ms

𝛿𝜀

𝛿𝜃
+ 𝛼𝜃̇ + 𝛽u

(
𝜕𝜃

𝜕x

)
+𝛾0HFL cos 𝜃 sin𝜑 − γ0HSL cos𝜑

(33)

where we have assumed that 𝜕𝜑

𝜕x
= 0, as it

is the case with the 1DM approach, 𝜀 is the
energy density of the system (see Eq. (25)),
and Heff = − 1

𝜇0Ms

𝛿𝜀

𝛿𝜃
u𝜃 −

1
𝜇0Ms sin 𝜃

𝛿𝜀

𝛿𝜑
u𝜑 is the

effective field. From (27), (28), and (30),
𝛿𝜀

𝛿𝜑
= −𝜇0Ms sin 𝜃

𝛾0

{
𝜃̇ + 𝛼 sin 𝜃 𝜑̇

+u
(
𝜕𝜃

𝜕x

)
+ 𝛾0HFL cos𝜑

+𝛾0HSL cos 𝜃 sin𝜑
}

(34)

𝛿𝜀

𝛿𝜃
= 𝜇0Ms

𝛾0

{
sin 𝜃 𝜑̇ − 𝛼𝜃̇ − 𝛽u

(
𝜕𝜃

𝜕x

)
−𝛾0HFL cos 𝜃 sin𝜑 + γ0HSL cos𝜑

}
(35)

The different contributions to the energy
density in polar coordinates are expressed as

𝜀exch = A(∇m)2 = A[(∇𝜃)2 + sin2𝜃 (∇𝜑)2]
(36)

𝜀ani = Ku(1 − (m ⋅ uk)2) = Kusin2𝜃 (37)
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Figure 1 (a) Definition of the angles 𝜃 and 𝜑. (b) Scheme of a single FM layer with an up–down Bloch DW
(mDW = + uy). (c) Scheme of a Neel DW (mDW = + ux) in a HM/FM bilayer, where the gray strip represents the
HM. The cross section of the FM strips (w × t) and the DW width (Δ) are also defined.

𝜀dmg = −1
2
𝜇0Ms

−→Hdmg ⋅ m

= −1
2
𝜇0M2

s m ⋅
=
Nm

= −1
2
𝜇0M2

s (Nxm2
x + Nym2

y + Nzm2
z )

= −1
2
𝜇0M2

s [Nz + (Nx − Nz)sin2𝜃

+(Ny − Nx)sin2𝜃 sin2𝜑] (38)

𝜀ext = −𝜇0MsHext ⋅ m
= −𝜇0Ms(Hx sin 𝜃 cos𝜑
+Hy sin 𝜃 sin𝜑 + Hz cos 𝜃) (39)

𝜀DM = D[mz(∇m) − (m ⋅ ∇)mz]

= D
[

cos𝜑𝜕𝜃
𝜕x

+ sin𝜑𝜕𝜃
𝜕y

+ sin 𝜃 cos 𝜃

×
(

sin𝜑𝜕𝜑
𝜕x

− cos𝜑𝜕𝜑
𝜕y

)]
(40)

In calculating these terms, we have consid-
ered a demagnetizing field Hdmg = Ms

=
Nm

where
=
N is the demagnetizing tensor, which

is assumed to be diagonal [59, 60]. PMA and
demagnetizing terms are usually combined
in an effective anisotropy energy density,
which reads as

𝜀ani + 𝜀dmg =
[
Ku +

1
2
𝜇0M2

s (Nx − Nz)
]

sin2𝜃

+
[1

2
𝜇0M2

s (Ny − Nx)
]

sin2𝜃 sin2𝜑

= Keff sin2𝜃 + Kshsin2𝜃 sin2𝜑 (41)

where the constant 1
2
𝜇0M2

s Nz has been
omitted, since it does not affect the sys-
tem. The demagnetizing factors (Nx, Ny,
Nz) depend on the geometry of the sys-
tem and can be calculated analytically as
a function of the DW width (Δ), the strip
width (w), and the strip thickness (t) [57,
58]. For the ultrathin films considered
here Nz∼1 (t≪w), and Nz ≫Nx, Ny. The
effective out-of-plane anisotropy constant
(Keff = Ku +

1
2
𝜇0M2

s (Nx − Nz)) reduces to
Keff ≈ Ku −

1
2
𝜇0M2

s Nz. Besides, the shape
anisotropy constant Ksh = 1

2
𝜇0M2

s (Ny − Nx)
determines the stable DW configuration
in the absence of DMI, depending on the
sign of (Ny −Nx). If Ny >Nx, K sh > 0 and
the DW shape anisotropy favors Néel DWs.
On the contrary, if Ny <Nx, K sh < 0 and
Bloch DWs are favored. For the samples
studied here w≫Δ, and therefore, Nx ≫Ny.
In this case, the shape anisotropy reduces
to Ksh ≈ − 1

2
𝜇0M2

s Nx which is negative, and
therefore, favors the Bloch DW configuration
in the absence of DMI. We will come back
to the discussion of the equilibrium DW
configurations later on.
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The magnetization profile of a DW in a sys-
tem with out-of-plane magnetization can be
described by the following ansatz [57, 58],

𝜃(x, t) = 2 arctan
{

exp
[

Q
(

x − q(t)
Δ

)]}
(42)

𝜑(x, t) = 𝜓(t) (43)

where q is the DW position along the lon-
gitudinal x-axis, 𝜓 is the internal DW angle
with respect to the longitudinal x-axis, and
Δ is the DW width. The parameter Q selects
if the domain configuration is up–down
(Q= + 1) or down–up (Q= − 1) from left
to right along the longitudinal x-axis (this
convention will be used for all studies of DWs
along straight strips). Expressions ((42)) and
((43)) only depend on the x coordinate along
the nanostrip. In this sense, the model is a 1D
model since the variation of the magnetiza-
tion along the transverse (y) and out-of-plane
(z) directions are neglected. Figure 2 shows
the vector representation of the Bloch (a)
and Néel (b) DWs and the corresponding
dependence of the Cartesian components
of the magnetization along the longitudinal
axis (c)–(d) (Eqs. (42) and (43)).

By using this ansatz, we have that

∇𝜃 = 𝜕𝜃

𝜕x
= +Q sin 𝜃

Δ
,∇𝜑 = ∇𝜓 = 0 (44)

𝛿𝜃 = −Q sin 𝜃
Δ

dq, 𝛿𝜑 = 𝛿𝜓 = 0 (45)

𝜃̇ = −Q sin 𝜃
Δ

q̇, 𝜑̇ = 𝜓̇ = 0 (46)

and the energy density becomes

𝜀 = A sin2𝜃

Δ2 + Keff sin2𝜃 + KSh sin2𝜃 sin2𝜑

+QD cos𝜑
(sin 𝜃

Δ

)
−𝜇0Ms(Hx sin 𝜃 cos𝜑

+Hy sin 𝜃 sin𝜑 + Hz cos 𝜃) (47)

where we have used the fact that Q2 = 1. By
integrating 𝜀 along the x-direction, it is possi-
ble to obtain the DW surface energy density 𝜎
(J m−2) in terms of the DW coordinates (q,𝜓),

namely

𝜎 = ∫
+∞

−∞
𝜀dx = 2A

Δ
+ 2Δ(Keff + Kshsin2𝜓)

+𝜋QD cos𝜓 − 𝜇0Ms𝜋Δ(Hx cos𝜓
+Hy sin𝜓) − 2Q𝜇0MsqHz (48)

where we have used ∫ +∞−∞ sin2𝜃dx = 2Δ and
∫ +∞−∞ cos 𝜃dx = 2Qq. Hence, the variation of
the DW energy density, in terms of the DW
coordinates, reads as

𝛿𝜎 = 𝜕𝜎

𝜕q
𝛿q + 𝜕𝜎

𝜕𝜓
𝛿𝜓 (49)

where
𝜕𝜎

𝜕q
= −2Q𝜇0MsHz (50)

𝜕𝜎

𝜕𝜓
= 4ΔKsh sin𝜓 cos𝜓 − 𝜋QD sin𝜓

−𝜇0Ms𝜋Δ(Hy cos𝜓 − Hx sin𝜓)
(51)

At the same time, by using the LLG
equations (32) and (33), we have

𝛿𝜀 = 𝜕𝜀

𝜕𝜃
𝛿𝜃 + 𝜕𝜀

𝜕𝜑
𝛿𝜑

= 𝜇0Ms
𝛾0

{[
sin 𝜃 𝜑̇ − 𝛼𝜃̇ − 𝛽u

(
𝜕𝜃

𝜕x

)
−𝛾0HFL cos 𝜃 sin𝜑 + γ0HSL cos𝜑

]
𝛿𝜃

}
− 𝜇0Ms sin 𝜃

𝛾0

{[
𝜃̇ + 𝛼 sin 𝜃 𝜑̇ + u

(
𝜕𝜃

𝜕x

)
+𝛾0HFL cos𝜑 + 𝛾0HSL cos 𝜃 sin𝜑

]
𝛿𝜑

}
(52)

and integrating along the x-axis

d𝜎 = ∫
+∞

−∞
𝛿𝜀 dx

= 2𝜇0Ms
𝛾0

{[
−Q𝜓̇ − 𝛼 q̇

Δ
+ 𝛽u

Δ

−𝛾0
𝜋

2
QHSL cos𝜓

]
dq

+
[
Qq̇ − 𝛼Δ𝜓̇ − Qu

−𝛾0
𝜋

2
Δ HFL cos𝜓

]
d𝜓

}
(53)

where we have used ∫ +∞−∞ sin2𝜃dx = 2Δ,
∫ +∞−∞ sin 𝜃dx = 𝜋Δ, and ∫ +∞−∞ sin 𝜃 cos 𝜃dx = 0.
From (53) and (50) and (51), we finally obtain
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Figure 2 (a) and (b) show the vector representation of the Bloch (𝜓0 =𝜋/2) and Neel (𝜓0 = 0) DW profiles along
the x-axis. In (c) and (d), we plot the Cartesian components of the magnetization along the longitudinal x-axis
as given by the Eqs. (42) and (43). The up–down DW configuration (Q= + 1) is shown in all cases. The DW width
parameter is Δ= 5 nm.

(
𝛼

q̇
Δ

+ Q𝜓̇
)

= 𝛾0Q
[
Hz −

𝜋

2
HSL cos𝜓

]
+ 𝛽 u

Δ
(54)

(
−Q q̇

Δ
+ 𝛼𝜓̇

)
= 𝛾0

[
−Hk

2
sin(2𝜓) + 𝜋

2
QHD sin𝜓

+ 𝜋

2
(Hy cos𝜓 − Hx sin𝜓)

−𝜋
2

HFL cos𝜓
]
− Q u

Δ
(55)

where

HD = D
𝜇0MsΔ

(56)

Hk = 2Ksh
𝜇0Ms

= Ms(Ny − Nx) (57)

HSL = ℏ𝜃SHJHM
2|e|𝜇0Mst

(58)

u = −g𝜇BPJFM
2|e|Ms

(59)

represent the magnitude of the DMI (HD),
the shape anisotropy (Hk), and the SOT
(HSL, HFL) fields, respectively, and u is
the constant related to the STT with
units of m s−1. Note that here we are
interested in strips where w≫Δ. There-
fore, Ksh = 1

2
𝜇0M2

s (Ny − Nx) ≈ − 1
2
𝜇0M2

s Nx

and 2Ksh

𝜇0Ms
≈ −NxMs. In this context, we

can write 2Ksh

𝜇0Ms
≈ −Hk , where Hk =NxMs.

Equations (53) and (54) describe the
DW dynamics under an applied field
−→Hext = (Hx,Hy,Hz) and STTs and/or SOTs
in the framework of the 1DM. They can
be easily written in a different manner to
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separate q̇ and 𝜓̇ . By defining

ΩA = 𝛾0Q
[
Hz −

𝜋

2
HSL cos𝜓

]
(60)

ΩB = 𝛾0

[
−Hk

2
sin(2𝜓) + 𝜋

2
QHD sin𝜓

+𝜋
2
(Hy cos𝜓−Hx sin𝜓)−𝜋

2
HFL cos𝜓

]
(61)

we have

(1 + 𝛼2) q̇
Δ

= 𝛼ΩA − QΩB + (1 + 𝛼𝛽) u
Δ

(62)

(1 + 𝛼2)𝜓̇ = QΩA + 𝛼ΩB + Q(𝛽 − 𝛼) u
Δ

(63)

Before describing the field-driven DW dyn-
amics and the current-driven DW dynamics,
we here firstly review the DW static configu-
rations.

3.2 DW Static Configurations

The DW surface energy density was derived
in Eq. (48). In the absence of external
fields Hext = (Hx, Hy, Hz)= 0 and currents
JFM = JHM = 0, it reduces to

𝜎 = 2A
Δ

+ 2Δ(Keff + Kshsin2𝜓)

+𝜋QD cos𝜓 (64)

The static DW configuration with qeq = 0
and Δeq ≡Δ0, and 𝜓eq ≡𝜓0 must satisfy 𝜕𝜎

𝜕Δ
=

0 and 𝜕𝜎

𝜕𝜓
= 0, which yield respectively to

Δ0 =
√

A
Keff + Ksh sin2𝜓eq

(65)

𝜓0 =
⎧⎪⎨⎪⎩

0 |𝜋D| > |4KshΔ|,QD < 0
𝜋 |𝜋D| > |4KshΔ|,QD > 0
arccos

(
𝜋QD

4ΔKsh

) |𝜋D| < |4KshΔ|
(66)

For ultrathin films with high PMA,
K eff ≫K sh and the DW width at rest is
Δ0 ≈

√
A

Keff
. Regarding the equilibrium DW

angle 𝜓0 with respect to the longitudinal
x-axis, we can distinguish two cases:

1. In the absence of DMI (D= 0), the
condition 𝜕𝜎

𝜕𝜓
= 0 means 4K shΔ cos

𝜓0 sin𝜓0 = 0, and therefore, 𝜓0 : 0, 𝜋

(Néel) or 𝜓0 ∶ 𝜋

2
, 3𝜋

2
(Bloch) depending

on the sign of Ksh = 1
2
𝜇0M2

s (Ny − Nx).
Typically, for ultrathin films, Ny <Nx and
K sh < 0, which favors Bloch DWs.

2. On the other hand, the DMI (D≠ 0)
favors chiral Néel DWs if |𝜋D|> |4K shΔ|.
If |𝜋D|< |4K shΔ|, the equilibrium DW
angle is between Bloch and Néel config-
urations. Note that the sign of D and the
DW configuration (Q) fix the chirality, as
it was anticipated. The in-plane internal
magnetic moments and equilibrium DW
angle 𝜓0 are plotted in Figure 3a and b,
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Figure 3 (a) Micromagnetically computed in-plane components of the internal DW moment (mDW
x and mDW

y ) at
rest as a function of the DMI parameter (D> 0 ). (b) Internal DW angle (𝜓eq) at rest as a function of the DMI
parameter. The following inputs were adopted: A= 16 pJ m−1, Ms = 0.8× 106 A m−1, K u = 0.8× 106 J m−3,

Ksh = − 7.0× 106 J m−3, Δ0 ≈
√

A

Keff
, and Q= + 1.
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(a) D > 0: Left–handed

du DW

du DW

ud DW

ud DW

y

y

x

x

u

u

ψ = π

ψ = π

ψ = 0

ψ = 0

(b) D < 0: Right–handed

d

d

Figure 4 Typical micromagnetic snapshots of the
DW states at rest for the left-handed (D> 0, (a)) and
right-handed (D< 0 (b)) cases when |𝜋D|> |4KshΔ|.

respectively, as a function of the DMI
parameter for an up–down DW. A good
agreement with micromagnetic results is
achieved. See Ref. [61] for an alternative
derivation of Eq. (66) for thicker FM
samples.

Figure 4 presents the micromagnetic
equilibrium DW configurations for the
left-handed (D> 0) and right-handed
(D< 0) cases, when |𝜋D|> |4K shΔ|. In the
left-handed case, the up–down DW has its
internal magnetic moment aligned along the
−x-axis (mDW = −ux, 𝜓 =𝜋), whereas in the
down–up DW the internal moments points
along the +x-axis (mDW = +ux, 𝜓 = 0). The
opposite occurs for the right-handed case.
This naming can be understood looking to
the palm of the corresponding hand: for
instance, if the DW is left-handed, looking
to the palm of the left hand with the four
fingers pointing along the magnetization
of the domain at the left side of the DW,
the thumb will indicate the direction of the
internal DW moment (mDW). Same crite-
rion is valid for all up–down and down–up
combinations. Obviously, for right-handed
DWs, we must look to the palm of the
right hand.

3.3 Field-Driven DW Dynamics

Once the static DW configurations have been
described, here we analyze the predictions
of the 1DM for the field-driven DW dynam-
ics, firstly in the absence of currents
(JFM = JHM = 0). We consider an up–down
DW (Q= + 1). Under an out-of-plane field
Hext =Hzuz, the domain aligned with the
field will tend to expand while the domain
opposite to the field will shrink, and DWs
will move accordingly. The magnetization
dynamics is driven by two kind of torques:
the precessional torque, which leads to the
spin precession around the effective field, and
the dissipative torque (or damping torque),
which leads to the spin alignment with the
effective field. Consider, for instance, an
out-of-plane strip with a Néel DW, whose
internal magnetization points in the positive
x-direction (see Figure 2b and d) and an
external field along the positive z-direction.
The precession torque −𝛾0mDW ×Hzuz
points in the positive y-direction, lead-
ing to a DW rotation in the plane of the
strip (xy). On the other hand, the dissi-
pative torque (−𝛼𝛾0mDW × (mDW ×Hzuz)
or (𝛼mDW × ( dmDW

dt
)) points in the positive

z-direction, leading to DW motion and
expansion of the up domain. Note indeed
that it is the damping torque that does not
conserve the system energy and drives the
system toward the energy minimum. The
DW rotation further triggers the internal
DW field, which includes the shape (Hk) and
the DMI (HD) fields, which both will try to
restore the DW equilibrium configuration.
Hence, the DW motion is characterized by
two types of dynamics: DW precession and
DW translation.

All these effects are enclosed in the 1DM
Eqs. (54) and (55). We can look for a station-
ary solution for the DW angle (𝜓 s). By impos-
ing 𝜓̇ = 0, and Hx =Hy = 0 in Eqs. (54) and
(55), we obtain

Hz = 𝛼

[
Hk
2

sin(2𝜓s) −
𝜋

2
QHD sin𝜓s

]
(67)
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In the absence of DMI (D= 0),

sin(2𝜓s) =
2Hz
𝛼Hk

(68)

where 𝜓 s represents the dynamical equi-
librium angle (or steady state), which is the
result of compensation between Hz and the
shape anisotropy field (Hk). As a conse-
quence, the DW moves at constant velocity,
given by

vs ≡ q̇ = Δ𝛾0
𝛼

Hz (69)

where the ratio vs/Hz defines the DW mobil-
ity, 𝜇 = Δ𝛾0

𝛼
. However, there is a limit for this

rigid DW motion since sin(2𝜓 s)< 1, which
implies that

|Hz| ≤ ||||𝛼2 Hk
|||| (70)

This threshold field is called Walker break-
down field (HW = | 𝛼

2
Hk|). For fields larger

than the Walker breakdown, |Hz| > | 𝛼
2

Hk|,
the precessional torque cannot be com-
pensated by the internal DW field, and the
internal DW angle 𝜓 steadily precesses dur-
ing the DW motion. Due to this precessional

motion, the DW velocity drops abruptly
just above the Walker breakdown HW. For
driving fields high above Walker breakdown
(Hz ≫HW), the DW velocity scales again
linearly with Hz, but the mobility is smaller
than in the rigid regime.

In the presence of a strong DMI, that is in
the limit of HD ≫Hk , the equilibrium angle is
given by

sin(2𝜓s) =
2Hz

𝛼𝜋QHD
(71)

In this case, the rigid DW velocity is still
given by (69). However, the Walker field is
now given by

HW =
||||𝛼2𝜋QHD

|||| (72)

Since HD ≫Hk , the DMI can lead to con-
siderably faster DW motion by increasing
the Walker field. In the presence of strong
DMI, the threshold internal DW angle before
Walker breakdown is 𝜓W =𝜋/2, whereas in
the absence of DMI, the limiting angle is
𝜓W =𝜋/4.

Figures 5 and 6 show the mM snap-
shots of the magnetization evolution

t (ns)

x

0 2

Up–down, Bz = 1.5 mT

my

mx

4 6

8 10 12 14

16 18 20 22

Figure 5 Micromagnetic snapshots showing the field-driven DW dynamics along a ferromagnetic strip with
D= 0 for a static field smaller than the Walker field (Bz = 1.5 mT). The vertical dashed line indicates the initial
DW position. Notice that the color representing the internal DW moment holds during the whole dynamics.
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Figure 6 Same as Figure 5 but for a static field larger than the Walker field (Bz = 5 mT).
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Figure 7 (a) Temporal evolution of the DW position (q) as predicted by the 1DM for two different driving fields
below and above the Walker breakdown: Bz = 1.5 mT and Bz = 5 mT. (b) DW velocity as a function of the driving
field Bz predicted by both the 1DM (lines) and the compared to micromagnetic results (mM, dots). Parameters
and dimensions for the mM results are the same as for Figures 5 and 6. For 1DM results, Hk = 1.25× 104 A m−1

and Δ= 8.5 nm.

under two different fields: Bz = 1.5 mT<
BW and Bz = 5 mT>BW, respectively. In both
cases, material parameters are the follow-
ing: A= 10 pJ m−1; Ms = 0.3× 10 vs Am−1;
Ku = 0.2× 106 Jm−3; 𝛼 = 0.1; and 𝜃SH = 0.
The strip has a w× t = 120× 3 nm2 cross
section. For Bz = 1.5 mT<BW, the DW
moves rigidly, whereas for Bz = 5 mT>BW,
the internal DW moment precesses as the
DW is displaced along the longitudinal strip

axis. The temporal evolutions of the DW
position predicted by the 1DM are presented
in Figure 7a for the same fields. Figure 7b
shows the average DW velocity as a func-
tion of the driving field Bz predicted by the
1DM (lines) and the mM results (dots). A
good agreement between both models is
observed.

Figure 8a shows “vDW vs. Bz” in a HM/FM
stack with DMI (D= 1 mJ m−2). Again, a good
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Figure 8 Field-driven DW dynamics in a HM/FM stack with DMI (D= 1 mJ/m2). (a) v vs. Bz . Here, the material
parameters are A= 16 pJ; Ms = 0.8× 106A; K u = 0.8× 106 J m−3; 𝛼 = 0.1; P = 𝜃SH = 0, and the cross section
w × t = 120× 0.6 nm2. (b) 1DM results for different values of the DMI parameter and fixed damping (𝛼 = 0.1).
(c) 1DM results for different values of the damping (𝛼) and fixed DMI (D= 1 mJ m−2). The shape anisotropy field
used in the 1DM is Hk = −MsNx , where Nx = t log 2/(𝜋Δ) [60] and Δ =

√
A∕Keff. Source: Tarasenko et al. [60].

Reproduced with permission of Elsevier.

agreement is observed between the 1DM and
the mM results. Figure 8b and c show the
1DM predictions for “vDW vs. Bz” for different
combinations of D and 𝛼. As predicted by the
analytical calculations (Eq. (72)), the Walker
breakdown field increases with D and 𝛼.

3.4 Current-Driven DW Dynamics
Under STTs

As it was already mentioned in Section 2
(see Eqs. (27)–(31)), DWs can also be driven
by electrical currents. When the electric
current is injected along a conducting FM
layer (JFM), it is usually called current-driven
DW motion by STTs, which are related to
the exchange interaction between the spin
of the conduction electrons and the local
magnetic moments of the FM strip. The
main advantage over the field-driven DW

motion is that neighboring DWs within a FM
strip can be displaced in the same direction,
which is along the electron flow (or against
the current). Again, the DW dynamics is
given by Eqs. (54) and (55). For the moment,
we assume a single FM layer or no current
injected along the HM, so JHM = 0 and only
JFM ≠ 0. In the perfect adiabatic case, 𝛽 = 0,
the DW does not move until a critical current
density is reached, which can be calculated
analogously to the Walker breakdown field
by imposing 𝜓̇ = 0. For 𝛽 = 𝛼, the DW moves
rigidly, independently of the current (infinite
Walker breakdown). In any other case, that
is if 𝛽 ≠ 0 and 𝛽 ≠ 𝛼, the current-driven DW
motion presents rigid and turbulent regimes
below and above a threshold Walker current
density JW

FM, respectively. In these cases,
analogously to the field-driven dynamics, the
dynamical equilibrium internal DW angle
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Figure 9 Current-driven DW dynamics in a single FM
strip in the absence of DMI under STTs. Here, the
injected current flows through the FM layer and it is
supposed to generate adiabatic and nonadiabatic
STTs. The presented results correspond to 1DM
predictions. The material parameters are A= 10 pJ;
Ms = 0.3× 106A; K u = 0.2× 106 J m−3; 𝛼 = 0.2, P = 0.5,
and 𝜃SH = 0= 0. The strip has a w × t = 120× 3 nm2

cross section. The shape anisotropy field is
Hk = 1.25× 104 A m−1 and Δ= 8.5 nm.

increases as JFM approaches to JW. Note that
for positive currents (JFM > 0), the DW veloc-
ities are always negative, i.e. the DW moves
along the electron flow. Both up–down and
down–up DWs move with the same velocity
for a given JFM.

An example of a typical “vDW vs. JFM”
curve is shown in Figure 9 for different val-
ues of the nonadiabatic parameter 𝛽. These
are 1DM results, but full mM simulations
(not shown here) are also in good quan-
titative agreement (see Refs [62–64]). In
the perfect adiabatic case (𝛽 = 0, black line
in Figure 9), there is a threshold density
current (JW

FM(𝛽 = 0)) below which the DW
stops after a short transient, and therefore
no monotonous DW motion is achieved.
Above this threshold, the DW moves by
precessing similar to the field-driven case
for fields larger than the Walker breakdown.
In the nonadiabatic case (𝛽 ≠ 0), the DW
moves for any finite current, and it does
it without changing its initial structure if
the nonadiabatic parameter matches the
damping (𝛽 = 𝛼, green line in Figure 9). For
any other case, there is a Walker breakdown
density current JW

FM(𝛽) above which the inter-
nal DW moment rotates periodically around

the z-axis. Analytical expressions for the
Walker current density (JW

FM(𝛽)) and for the
DW velocity as a function of the injected
current can be directly obtained from the
1DM. These expressions can be consulted,
for instance, in Refs [64, 65].

3.5 Current-Driven DW Dynamics
Under SOTs

DWs can also be driven by SOTs. The dom-
inant driving contribution due to a current
along a HM (JHM) under the FM layer is
the Slonczewski-like SOT (SL-SOT or the
damping-like DL-SOT). This SOT is typically
due to the SHE, which takes place in a HM
under the FM layer [62], as it was already
discussed. Again, in this case, Eqs. (54) and
(55) provide an explanation of this DW
dynamics. Besides, the FL-SOT, represented
by the HFL =HFLuy, could also influence the
DW dynamics. However, this FL-SOT, which
enters in the 1DM equation similarly to a
transverse magnetic field Hy, is not the main
driving force and it cannot drive DWs by
itself [62].

In the absence of applied fields (Hext = 0),
STTs (P = JFM = 0), and FL-SOT (k = 0), the
SL-SOT has no effect if the internal DW angle
is already aligned along the spin polarization
(𝝈 = −uy). Therefore, Bloch DWs (𝜓 = ± 𝜋

2
)

are not driven by the SL-SOT, because the
DW needs to have a finite longitudinal com-
ponent of the magnetization (mx ≠ 0) to be
driven by the SL-SOT. Indeed, Néel DWs are
efficiently driven by the SL-SOT. Depending
on the current density along the HM, JHM,
the DW reaches a new equilibrium dynami-
cal regime where the internal DW angle and
the DW velocity are given by

𝜓s = arctan
(

QHSL
𝛼HD

)
(73)

vDW ≡ q̇ = −Δ
𝛼
𝛾0Q𝜋

2
HSL cos𝜓s (74)

The direction of the DW velocity depends
on both the sign of the spin Hall angle 𝜃SH
and the chirality of the DW imposed by the
DMI parameter D. For a left-handed DW
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(D> 0) with |𝜋D|> |4K shΔ|, mDW = ±ux for
Q= ∓ 1, and therefore, vDW > 0 for 𝜃SH > 0
and JHM > 0, so DWs move along the current
direction (−→u J ). As the current increases,
the equilibrium angle 𝜓 s approaches to
− 𝜋

2
(which is also the direction of the spin

polarization, 𝝈 =uJ ×uz = −uy), and the effi-
ciency of the SHE is reduced. Eventually, the
DW approaches asymptotically to a limiting
velocity (see Figure 13b), which only depends
on the DMI field, HD, namely

vDW ≡ q̇ = 𝛾0
𝜋

2
HD (75)

Before presenting the 1DM predictions,
we show in Figure 10 the micromagnetic
snapshots of the current-driven DW velocity
in a HM/FM stack with |D|= 1 mJ m−2. The
rest of material parameters are A= 16 pJm−1;
Ms = 0.8× 106 A m−1; Ku = 0.8× 106 J m−3;
𝛼 = 0.1; P = 0, and |𝜃SH|= 0.1. The cross
section w× t = 120× 0.6 nm2. Different com-
binations of the signs of the DMI parameter

(D) and the spin Hall angle (𝜃SH) are shown:
(a) D> 0 and 𝜃SH > 0; (b) D> 0 and 𝜃SH < 0; (c)
D< 0 and 𝜃SH > 0; and (d) D< 0 and 𝜃SH < 0.
D> 0 corresponds to left-handed DWs,
whereas D< 0 corresponds to right-handed
DWs [22, 23]. Top graphs show the static
equilibrium configuration at rest (JHM = 0,
t = 0) for up–down and down–up DWs
simultaneously. The corresponding bottom
graphs depict the micromagnetic snap-
shots under a current of JHM = 1 TA m−2 at
t = 0.5 ns. Left-handed DWs (D> 0) move
along the current flow if the spin Hall angle
is positive (𝜃SH > 0, Figure 10a). On the
contrary, right-handed DWs move with neg-
ative velocity (vDW < 0) for the same current
(Figure 10c). Note that the internal DW angle
rotates toward the direction of the spin polar-
ization, i.e. 𝝈 = −uy. If the spin Hall angle
is negative 𝜃SH < 0, the opposite behavior is
observed: the left-handed DWs move with
vDW < 0 (Figure 10b), whereas right-handed
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Figure 10 (a–d) Micromagnetic results of the current-driven DW dynamics in a HM/FM stack for different
combinations of the DMI and the spin Hall angle parameters. The material parameters and the value of the
injected current along the HM are given in the text. (e,f ) A schematic representation of the spin Hall effect in
HM with 𝜃SH > 0 and 𝜃SH < 0, respectively.
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DWs move with vDW > 0 (Figure 10d). In this
case (𝜃SH < 0), the rotation of the internal
DW angle is toward the positive transverse
direction, which is the direction of the spin
accumulation, −𝝈 = +uy.

This convention allows us to describe the
experimental observation that a left-handed
DW in a FM strip on top of a Pt HM (𝜃SH > 0)
is driven along the current direction (uJ ).
Although the choice of the sign of DMI
parameter (D) is arbitrary, here we will adopt
the convention that D> 0 corresponds to the
left-handed chirality. In such a case, and if
D is sufficiently high, an up–down DW has
its internal magnetization pointing along the
−x-axis, i.e. ⊙←⊗, with the central arrow
indicating the internal DW moment (𝜓 =𝜋)
and the circles the up (⊙) and down (⊗)
symbols represent domains at the left and
the right side of the DW. The corresponding
left-handed down–up configuration will be
therefore ⊗→⊙ (𝜓 = 0). The right-handed
chirality (D< 0) results in the opposite
behavior: ⊙→⊗ and ⊗←⊙, which will be
driven along the electron flow (against the
current, −−→u J ) for 𝜃SH > 0.

Apart from these observations, which are
naturally explained by the presented 1DM
model (see Eqs. (73)–(75)), the micromag-
netic snapshots also indicate that the DW
plane, or the normal of the DW plane (nDW),
also tilts (rotates) as DWs are driven by the
current [66, 67]. This DW tilting is a degree
of freedom which is not taken into account
in the already presented 1DM (Eqs. (54) and
(55)), and therefore, it is convenient to extend
the 1DM to account for this DW tilting. This
is done in the following section.

3.6 Lagrangian Formalism and 1DM
Equations Including DW Tilting

Here we add a new degree of freedom to the
DW dynamics in the 1DM equations, which
is the rotation of the DW normal plane. To
do it, here we also illustrate the derivation of
the 1DM based on the Lagrangian formalism.
Note that this formalism could alternatively
be followed to obtain the same 1DM Eqs. (54)

y

x y
ψ χ

mDW

mDW

nDW

nDW

x

Figure 11 Definitions of the internal DW angle 𝜓
and the DW tilting angle 𝜒 .

and (55) that we already presented in previ-
ous sections.

Our micromagnetic simulations of
Figure 10 clearly shown that in asymmetric
multilayers consisting of a FM layer sand-
wiched between a HM and an oxide with
strong interfacial DMI, the DW normal
(nDW) can rotate along with the internal
DW angle (𝜓) under external fields and/or
currents. To consider this observation, we
can extend the 1DM by including an addi-
tional tilting angle, 𝜒 , which represents the
orientation of the DW normal with respect
to the longitudinal x-axis. The definition of
the DW plane and the DW angles are given
in Figure 11.

Including the DW tilting angle (𝜒), the
magnetization profile of a DW can be
described by the following ansatz [66, 67],

𝜃(x, t)
= 2 arctan

{
exp

[
Q

(
(x−q(t)) cos𝜒+y sin𝜒

Δ

)]}
(76)

𝜑(x, t) = 𝜓(t) (77)

We could also proceed anomalously as
we did for the rigid 1DM case (no tilting)
to derive the new 1DM equations from the
LLG equation (27) augmented with the STTs
and SOTs. However, here we derive the 1DM
equations including the DW tilting by using
the Lagrangian formalism. Indeed, the LLG
equation (27) in spherical coordinates can
be derived from the following Lagrangian
(, in [J m−3]) and Rayleigh dissipative ( , in
[J/(m3s)]) functions:

 =  + 𝜀 (78)
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 = 𝛼𝜇0Ms
2𝛾0

{
dm
dt

− 𝛽

𝛼
u(uJ ⋅ ∇)m

−𝛾0
𝛼

HSLm × 𝜎
}2

(79)

where 𝜀 is again the energy density of the
system and  the kinetic energy density (in
[J m−3]), which is given by

 =
[
𝜇0Ms
𝛾0

𝜙 sin 𝜃𝜃̇− 𝜇0Ms
𝛾0

𝜙 sin 𝜃u (uJ ⋅𝛁)𝜃
]

(80)

The 1DM equations can be deduced from
the Euler–Lagrange–Rayleigh equations:

𝜕L
𝜕X

− d
dt

(
𝜕L
𝜕Ẋ

)
+ 𝜕F
𝜕Ẋ

= 0 (81)

where X = {q,𝜓 ,𝜒}. By using the ansatz (76)
and (77) and integrating along the x-axis,
we can obtain the Lagrangian (L = ∫ dx)
and the dissipation function (F = ∫ dx)
in terms of the DW coordinates {q,𝜓 ,𝜒}.
The resulting Lagrangian (L = 1

wt
∫ dv) and

the dissipation function (F = 1
wt
∫ dv) are

expressed in terms of the DW coordinates
{q,𝜓 ,𝜒} as follows:

L = 1
wt ∫ dv

= −2Q𝜇0Ms
𝛾0

(q̇ + u) 𝜓

+ 1
cos𝜒

{
4
√

AKeff + 2ΔKshsin2(𝜓 − 𝜒)

+Q𝜋D cos(𝜓 − 𝜒) − 𝜇0Ms𝜋Δ(Hx cos𝜓
+Hy sin𝜓) + 𝜇0Ms𝜋ΔHFL sin𝜓

}
−2Q𝜇0MsqHz (82)

F = 1
wt ∫ dv

= 1
wt ∫

𝛼𝜇0Ms
2𝛾0

{
dm
dt

− 𝛽

𝛼
u(uJ ⋅ ∇)m

− 𝛾0
𝛼

HSLm × 𝝈
}2

dv

= 𝛼𝜇0Ms
𝛾0

Δ
cos𝜒

[
q̇2

Δ2 cos2𝜒

+ 𝜒̇
2

12

(
𝜋2tan2𝜒 + w2

Δ2
1

cos2𝜒

)
+ 𝜓̇2

]

+ 𝜇0Ms
𝛾0

2𝛽u q̇
Δ

cos𝜒

+Q𝜇0Ms𝜋HSLq̇ cos𝜓 +… (83)

where in the last equality of (83) we only
write down the relevant terms, i.e. the ones
depending on q̇, 𝜓̇ , or 𝜒̇ . In the deriva-
tion of these expressions we have used
the following identities: 𝜕𝜃

𝜕x
= Q sin 𝜃

Δ
cos𝜒 ,

𝜕𝜃

𝜕y
= Q sin 𝜃

Δ
sin𝜒 , 𝜃̇ = −Q sin 𝜃

Δ
q̇, ∫ +∞−∞ d𝜃 = Q𝜋,

∫ +∞−∞ sin2𝜃dx = 2Δ
cos𝜒

, ∫ +∞−∞ cos 𝜃dx = 2Qq,
∫ +∞−∞ sin 𝜃dx = 𝜋Δ

cos𝜒
, ∫ +∞−∞ 𝜃̇ sin 𝜃dx = −2Qq̇,

∫ +∞−∞ sin 𝜃 cos 𝜃dx = 0, and ∫ +∞−∞ 𝜃̇2 dx =
Δ

cos𝜒
[ q̇2

Δ2 cos2𝜒 + 𝜒̇2

12
(𝜋2tan2𝜒 + w2

Δ2

1
cos2𝜒

) + 𝜓̇2].
The equations describing the DW dynam-

ics in the framework of the 1DM can be
directly deduced from the Euler–Lagrange–
Rayleigh Eq. (81). Including the tilting [67]
the resulting equations are the following:(
𝛼

q̇
Δ

cos𝜒 + Q𝜓̇
)

= 𝛾0Q
(

Hz −
𝜋

2
HSH cos𝜓

)
− 𝛽 u

Δ
cos𝜒

(84)(
−Q q̇

Δ
cos𝜒 + 𝛼𝜓̇

)
= 𝛾0

[
−Hk

2
sin[2(𝜓 − 𝜒)] + 𝜋

2
QHD

× sin(𝜓 − 𝜒) + 𝜋

2
(Hy cos𝜓 − Hx sin𝜓)

−𝜋
2

HFL cos𝜓
]
+ Q u

Δ
cos𝜒 (85)

𝛼
𝜋2

12
𝜒̇

(
tan2𝜒 + w2

𝜋2Δ2
1

cos2𝜒

)
= −𝛾0

𝜎 sin𝜒
2𝜇0MsΔ

+ 𝛾0
Hk
2

sin[2(𝜓 − 𝜒)]

− 𝛾0
𝜋

2
QHD sin(𝜓 − 𝜒)

− 𝛾0
𝜋

2
HFL cos𝜓 tan𝜒 (86)

where

𝜎 = 1
cos𝜒

{
4
√

AKeff + 2ΔKsh sin2(𝜓 − 𝜒)

+Q𝜋D cos(𝜓 − 𝜒) − 𝜇0Ms𝜋Δ(Hx cos𝜓
+Hy sin𝜓)

}
(87)
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Note that here the STT parameter is
defined as u= g𝜇BPJFM/(2|e|Ms), whereas in
the derivation of the rigid 1DM equations, we
used the notation u= − g𝜇BPJFM/(2|e|Ms).
The rest of parameters are the same (see
Eqs. (56)–(59)). As it can be verified,
these Eqs. (84)–(87) reduce to the rigid
1DM Eqs. (54)–(55) in the absence of DW
tilting (𝜒 = 0).

With the inclusion of the DW tilting
in the 1DM, we can now provide a more
accurate description of the micromagnetic
results. To show it, we fix the DW chirality
to the left-handed case (D> 0) and consider
𝜃SH > 0. The dependence of terminal values
of the DW velocity (vDW) and DW angles
(𝜓 , 𝜒) on the current along the HM (JHM)
is shown in Figure 12 for both up–down

(Q= + 1) and down–up (Q= − 1) DW con-
figurations. The predictions of the 1DMs (red
line: rigid 1DM; blue line: 1DM including
tilting) are compared to the micromagnetic
results (dots) for “vDW vs. JHM.” Although the
rigid 1DM already provides a good descrip-
tion, the 1DM including the tilting provides
a more accurate quantitative description of
the micromagnetic results.

The 1DM predictions of the velocity
vs. JHM for different combinations of the
material parameters 𝜃SH, 𝛼, and D are pre-
sented in Figure 13. For high currents, the
velocity increases with D (Figure 13a). In
the linear regime, the mobility increases
with 𝜃SH (Figure 13b) and decreases with
𝛼 (Figure 13c). These results were already
explained by the analytical expressions
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Figure 12 Current-driven DW dynamics in a HM/FM stack with DMI (D= 1 mJ m−2). Here, the material
parameters are A= 16 pJ; Ms = 0.8× 106 A m−1; K u = 0.8× 106 J m−3; 𝛼 = 0.1; P = 0, and 𝜃SH = 0.1. The FM layer
cross section is w × t = 120× 0.6 nm2. (a,b) Correspond to the predictions of the 1DM including the DW tilting
for the terminal DW angles 𝜓 and 𝜒 as a function of JHM for up–down (Q= + 1) and down–up (Q= − 1)
configurations. (c) Shows the comparison of “vDW vs. JHM” between the micromagnetic model (dots) and the
1DMs, without (red line) and with (blue line) tilting. The shape anisotropy field used in the 1DMs is
Hk = −MsNx , where Nx = t log 2/(𝜋Δ) and Δ =

√
A∕Keff.
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Figure 14 Current-driven DW dynamics in a HM/FM stack with DMI (D= 1 mJ m−2) under longitudinal fields.
The magnitude of the applied current is |JHM|= 1 TA m−2. The material parameters and the cross section of the
FM layer are the same as in previous Figure 12. Micromagnetic (mM) results are represented by dots, whereas
lines correspond to the 1DM predictions: (a) 1DM-rigid and (b) 1DM-tilting. “ud” indicates an up/down DW: u,
up; d, down.

(72)–(75). Extensions of these expressions
including the DW tilting can be consulted
in [67].

It is also interesting to evaluate the
current-driven DW dynamics in the pres-
ence of longitudinal fields (Bx =𝜇0Hx), which
directly support or act against the DMI
effective field. In Figure 14, we compare

the micromagnetic results (dots) to the
predictions of the 1DM (lines) for differ-
ent combinations of the DW configuration
(up–down Q= + 1, and down–up Q= − 1)
and the direction of the injected current
along the HM (JHM > 0 and JHM < 0). Lines
in Figure 14a correspond to the rigid 1DM,
whereas in Figure 14b, the 1DM includes the
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DW tilting. Again, a better agreement with
the micromagnetic results is obtained with
the 1DM, which includes the DW tilting. See
also Ref. [67] for the analytical expression
describing these results.

3.7 Curved Samples. Micromagnetic
Results and 1DM Equations for Curved
Strips

Up to here, we have studied the DW dynam-
ics along straight strips or straight HM/FM
stacks. However, it is also interesting to
evaluate the DW dynamics along systems
with curved parts, both for the development
of DW-based devices and from a theo-
retical point of view also. We consider a
HM/FM stack with the geometry presented
in Figure 15a and b, where all the geometrical
parameters are defined. The criteria for pos-
itive and negative currents are also defined
in Figure 15b. The FM layer has inner and
outer radius given by ri and ro, respectively.

Its thickness is again t, and the cross section
is w× t with w= ro − ri. The FM layer is on
top of a HM with the same ri and ro. Here,
we will consider the case where the electrical
current is mainly flowing along the HM in
the azimuthal direction (JHM = JHM(𝜌)u𝜙).
Due to the curvature, the current density
JHM(𝜌) is no longer homogeneous over the
HM cross section, but its magnitude depends
on the polar radial coordinate (𝜌). A simple
calculation allows us to express JHM(𝜌) in
terms of the injected current along a straight
strip (J0) with the same cross section, where
the current is homogeneous, as follows

JHM(𝜌) = J0w

𝜌 log
(

1 + w
ri

) (88)

The local value of JHM(𝜌) decreases as 1/𝜌
from 𝜌= ri to 𝜌= ro (see Figure 15c). For
a given w, the difference JHM(ri)− JHM(ro)
decreases as ri increases, and it tends to 0
as ri →∞, which corresponds to the straight
strip. On the contrary, JHM(ri)− JHM(ro)
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Figure 15 (a,b) Geometry of a curved HM/FM strip with the definition of the geometrical parameters. The
convention for clockwise (CW, JHM < 0) and counterclockwise (CCW, JHM > 0) directions for the current is also
showed. (c) JHM(𝜌)

J0
vs. 𝜌 for three different cases with w = 96 nm and ri =w, ri = 2w, and ri = 3w. (d) Shows the

definition of the coordinates adopted for the 1DM along curves.
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→
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Figure 16 Micromagnetic snapshots showing the temporal evolution of different DW configuration along a
curved FM layer with inverted “U” shape for different directions of the injected current along the HM. All
parameters are given in the text.

increases with the curvature, that is as ri → 0.
As it can be easily understood, due to the
nonhomogeneous character of JHM(𝜌) in the
HM, the resulting SOT in the FM will be also
nonhomogeneous, and therefore, it will play
a role for the DW dynamics in curved strips.
In the figures we use the notation JHM ≡ J for
simplicity.

The temporal micromagnetic snapshots of
the evolution of different DW configurations
and directions of the injected current are
presented in Figures 16 and 17 for curved
strips. In both cases, w= 96 nm, ri = 2w,
and t = 0.6 nm. The same material parame-
ters are considered: A= 16 pJ m−1, Ms = 0.8
× 106A m−1, D= 1 mJ m−2, Ku = 0.8× 106

J m−3, 𝛼 = 0.5, P = 0, and 𝜃SH = 0.1. The local
current density is given by Eq. (88) with
J0 = 3 TA m−2. Here we adopt the following
convention: the polarization of the spin cur-
rent is fixed to 𝜎 = +u𝜌 for positive spin Hall
angles 𝜃SH > 0, and therefore the CCW (CW)
current is J > 0 (J < 0).

When dealing with straight strips, we
assumed the naming up–down or down–up
as going from left to right along the x-axis.
For curved strips we consider that we will
cross through the DW always in the CCW
direction, and therefore Q= + 1 (Q= − 1)
indicates a transition from up to down (from
down to up) across the DW. These snap-
shots of Figure 16 (inverted “U” shape) and
Figure 17 (“U shape”) clearly show that DW
dynamics depends on the DW configuration
and on the direction of the current. For
example, the total DW displacement is the
same for the cases shown in Figures 16a,b
and 17c,d. In short, in all cases included
in Q= + 1, the DWs move faster than for
Q= − 1 cases. Note, that this convention is
independent of the direction of the current.
A general feature of the presented results in
Figures 16 and 17 is that DWs with smaller
tilting (or smaller rotation of its normal nDW)
are the fastest, whereas the DW velocity
is reduced as the tilting increases. This is
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Figure 17 Micromagnetic snapshots showing the temporal evolution of different DW configuration along a
curved FM layer with “U” shape for different directions of the injected current along the HM.

also shown in Figure 18 where two DWs are
forced to propagate along an S-shape FM
strip with straight and curved parts.

In Figure 19, we present the micromag-
netic results for the dependence of the DW
velocity as a function of the current for three
different cases with w= 96 nm: (a) ri =w,
ri = 2w, and ri = 3w. The results for curved
HM/FM stacks (Q= ± 1) are compared to
the straight case with the same cross section
(w× t). In all cases, and for sufficient high
current, the DWs with Q= + 1 move faster
than in a straight sample, whereas the ones
with Q= − 1 move with smaller velocity
than along the straight counterpart. The
difference increases with the curvature, that
is |vcurved − vstraigth| increases as ri decreases
for a given w. To elucidate which is the role
of the inhomogeneous current distribution
in curved HM/FM stacks (Q= ± 1), we also
present the micromagnetic results obtained
by assuming that the current is homoge-
neous over the HM cross section. Although
the nonhomogeneous current distribution

is also due to the curved geometry, the
deviation from the homogeneous results
with respect to the inhomogeneous cur-
rent distribution indicates that the different
velocities for Q= + 1 and Q= − 1 cases is
also ascribed to the curved geometry and
the corresponding different DW tilting. In
short, the smaller the DW tilting, the larger
the DW velocity (the tilting is larger for the
Q= − 1 cases). And, the larger the curvature
(or the smaller the internal radius ri), the
larger the deviation of the DW velocity with
respect to the straight case. Moreover, as the
DW tilting increases with the strip width (w)
[66, 67], the difference in the velocity for the
Q= + 1 and Q= − 1 cases will increase for
wider FM strips in these curved stacks.

To describe these micromagnetic results,
we can also develop a 1DM for curved strips.
Strips are considered to have cross-sectional
dimensions w× t. Strip width w= ro − ri is
calculated as the difference between outer
and inner radii ro and ri, respectively. Based
on the micromagnetic results, the DW profile
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Circulating along the CCW direction

across the DW defines Q in curved parts

J0 = 1 TA m−2

Q = –1

Q = +1

Slower DW

Q = –1 Slower DW

Faster DW

Q = +1

d′ > d

Faster DW

JHM

ri = w = 256 nm

w

rit (ns) 0 6 14

20 28 34

d

d

my

mx

Figure 18 Micromagnetic snapshots showing the temporal evolution of two DWs along an S-shape FM strip
with straight and curved parts. In the straight parts, we assumed the naming up–down or down–up as going
from left to right along the x-axis. For the curved strips, we consider that we will cross through the DW always
in the CCW direction, and therefore Q= + 1 (Q= − 1) indicates a transition from up to down (from down to up)
across the DW. This convention is defined at the bottom. All parameters are given in the text. The spatial
distribution of (JHM = JHM(r)) in the HM is taken into account (not shown).

is proposed as given by the ansatz:

𝜃(𝜌, 𝜙, t) = 2 arctan exp
{

Q R
Δ

[
(𝜙 − 𝜙0)

× cos𝜒 − ln 𝜌

R
sin𝜒

]}
(89)

𝜑(𝜙, t) = 𝜓(t) (90)

where R =
√

riro is the geometrical mean
radius. Curvature is defined through the
dimensionless parameter 𝜅 =

√
ro

ri
, ranging

from 1 for straight strips to infinity for the
most extreme curvatures. See Figure 15d for
the definitions of the coordinates adopted for
the 1DM along curves. To adequately com-
pare results for straight strips with those for
curved ones, the instantaneous DW position
must be defined as q = ri+ro

2
𝜙0 = 1+𝜅2

2𝜅
R𝜙0,

while R and w are linked by the relationship
R = w 𝜅

𝜅2−1
. Finally, the same criterion of

Q= ± 1 up–down/down–up is considered
when crossing the DW following the coun-
terclockwise direction as previously stated in
the micromagnetic part.

In the absence of STTs (P = 0) and in-plane
fields (Hx =Hy = 0), the LLG equation in
spherical coordinates can again be derived
from the following Lagrangian (, in [J m−3])
and Rayleigh dissipative ( , in [Jm−3s])
functions:

 =  + 𝜀 (91)

 = 𝛼𝜇0Ms
2𝛾0

{
dm
dt

− 𝛾0
𝛼

HSLm × 𝜎
}2

(92)
where 𝜀 is again the energy density of the sys-
tem and  the kinetic energy density, which
is given by

 = 𝜇0Ms
𝛾0

𝜙 sin 𝜃𝜃̇ (93)

By using the ansatz (89) and (90) and inte-
grating along the x-axis, we can obtain the
Lagrangian (L = ∫ dx) and the dissipation
function (F = ∫ dx) in terms of the
DW coordinates {q,𝜓 ,𝜒}. The result-
ing Lagrangian (L = 1

wt
∫ dv) and the
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Figure 19 Micromagnetic results for the current-driven DW dynamics along curved strips for three different
cases with fixed width w = 96 nm: (a) ri =w, ri = 2w, and ri = 3w. The results for curved HM/FM stacks (Q= ± 1)
are compared to the straight case with the same cross section (w × t).

dissipation function (F = 1
wt
∫ dv) are

expressed in terms of the DW coordinates
{q,𝜓 ,𝜒} as follows:

L = −2Q𝜇0Ms
𝛾0

[
q̇ + 1

2
𝜅2 + 1
𝜅2 − 1

(
𝜅4 + 1
𝜅4 − 1

ln 𝜅

−1
2

)
w 𝜒̇

cos2χ

]
𝜓 + 2A

Δcosχ
2𝜅 ln 𝜅
𝜅2 − 1

+ 2KuΔ
cos χ

𝜅2 + 1
2𝜅

+ 𝜇0M2
sΔ

cos χ
𝜅2 + 1

2𝜅
×
[
(N𝜌 − N𝜙)sin2(𝜓 − 𝜒) − (Nz − N𝜙)

]
+Q cos(𝜓 − 𝜒)

cos χ
𝜋D − 2Q𝜇0MsHz

×
[

q+ 1
2
𝜅2 +1
𝜅2 −1

(
𝜅4 +1
𝜅4 −1

ln 𝜅− 1
2

)
w tan χ

]
+𝜇0Ms

𝜋Δ
cos χ

H0
FL
𝜅2 − 1
2𝜅 ln 𝜅

sin𝜓 (94)

F = 1
wt ∫

𝛼𝜇0Ms
2𝛾0

(
dm
dt

− 𝛾0
𝛼

H0
SLm × 𝜎

)2

dv

= 𝛼𝜇0MsΔ
𝛾0 cos𝜒

{
2𝜅

𝜅2 + 1
q̇2

Δ2 cos2𝜒

+2 q̇
Δ

cos𝜒 𝜒̇

cos𝜒
w
Δ

𝜅
(
𝜅4+1
𝜅4−1

ln 𝜅 − 1
2

)
𝜅2 − 1

+ 𝜅
2 + 1
2𝜅

𝜒̇2

cos2𝜒

𝜋2

12

[
sin2𝜒 + w2

𝜋2Δ2

×
12𝜅2

(
ln2𝜅 − 𝜅4+1

𝜅4−1
ln 𝜅 + 1

2

)
(𝜅2 − 1)2

⎤⎥⎥⎦
+ 𝜅2 + 1

2𝜅
𝜓̇2

}
+ Q𝜇0Ms𝜋Δ

cos𝜒
H0

SL
𝜅2 − 1
2𝜅 ln 𝜅

× cos𝜙
[

2𝜅
𝜅2 + 1

q̇
Δ

cos𝜒 + w
Δ

𝜒̇

cos𝜒

×
𝜅
(
𝜅2+1
𝜅2−1

ln 𝜅 − 1
)

𝜅2 − 1

⎤⎥⎥⎦ + · · · (95)

In previous equations, it must be noted
that the demagnetizing terms N𝜙 and N𝜌

play the role equivalent to those played by
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Nx and Ny, respectively, in straight strips.
The derivation of the dynamical equations
requires the following intermediate results:
𝜕𝜃

𝜕𝜙
= Q sin 𝜃 R

Δ
cos𝜒 , 𝜕𝜃

𝜕𝜌
= −Q sin 𝜃 R

Δ
sin𝜒
𝜌

,
𝜕𝜃

𝜕𝜒
= −Q sin 𝜃 R

Δ
[(𝜙 − 𝜙0) sin𝜒 + ln 𝜌

R
cos𝜒],

𝜃̇ = − R
Δ

Q sin 𝜃 cos𝜒𝜙̇0 − Q sin 𝜃 R
Δ
[(𝜙 −

𝜙0) sin𝜒 + ln 𝜌

R
cos𝜒]𝜒̇ , ∫ 𝜙=+∞

𝜙=−∞ d𝜃 = Q𝜋,
∫ 𝜙=+∞
𝜙=−∞ sin 𝜃 d𝜙 = 𝜋

cos𝜒
Δ
R

, ∫ 𝜙=+∞
𝜙=−∞ sin2𝜃 d𝜙 =

2
cos𝜒

Δ
R

, ∫ 𝜙=+∞
𝜙=−∞ cos 𝜃 d𝜙 = −2Q( q

R
2𝜅
𝜅2+1

− tan𝜒
ln 𝜌

R
), ∫ 𝜙=+∞

𝜙=−∞ sin 𝜃 cos 𝜃 d𝜙 = 0 and ∫ 𝜙=+∞
𝜙=−∞

𝜃̇ sin 𝜃 d𝜙 = −2Q( q̇
R

2𝜅
𝜅2+1

− 1
cos2𝜒

ln 𝜌

R
𝜒̇). In

Eqs. (94) and (95), we have used the nota-
tion H0

SL = ℏ𝜃SHJHM∕(2|e|𝜇0Mst) and H0
FL,

which both correspond to the definitions
for straight strips (see Eq. (58)). Note that
the nonhomogeneous character of JHM(𝜌) in
the HM (Eq. (88)) is taken into account in
this derivation. Minimization of the energy
density 𝜀 with respect to the DW width Δ
results in a dependence of such parameter
with curvature, in the form:

Δ = 2𝜅
√

ln 𝜅
𝜅4 − 1

Δ0 (96)

with Δ0 being the DW width for straight
strips as obtained in (65). Δ decreases as 𝜅 is
increased, that is for higher curvatures. Note
also that here 𝝈 =uJ ×uz =u𝜌, for uJ =u𝜑
(counterclockwise current is considered as
positive).

The 1DM equations for curved strips
can be deduced from the Euler–Lagrange–
Rayleigh equations (81), where X = {𝜃,𝜓 ,𝜒}.
The final equations are

𝛼
2𝜅

𝜅2 + 1
q̇
Δ

cos𝜒 + Q𝜓̇

+ 𝛼w
Δ

𝜅
(
𝜅4+1
𝜅4−1

ln 𝜅 − 1
2

)
𝜅2 − 1

𝜒̇

cos𝜒

= Q𝛾0

(
Hz −

𝜋

2
HSL cos𝜑

)
(97)

− Q 2𝜅
𝜅2 + 1

q̇
Δ

cos𝜒 + 𝛼𝜓̇

− Q w
Δ

𝜅
(
𝜅4+1
𝜅4−1

ln 𝜅 − 1
2

)
𝜅2 − 1

𝜒̇

cos𝜒

= −𝛾0
1
2

Hk sin 2(𝜓 − 𝜒) + Q𝛾0
𝜋

2
HD

sin(𝜓 − 𝜒) − 𝛾0
𝜋

2
HFL cos𝜓 (98)

(
𝛼

2𝜅
𝜅2 + 1

q̇
Δ

cos𝜒 + Q𝜓̇
) w

Δ
cos𝜒

𝜅
(
𝜅4+1
𝜅4−1

ln 𝜅− 1
2

)
𝜅2 − 1

+𝛼𝜒̇ 𝜋
2

12

[
tan2𝜒 +

w2

𝜋2Δ2

cos2𝜒

×
12𝜅2

(
ln2𝜅 − 𝜅4+1

𝜅4−1
ln 𝜅 + 1

2

)
(𝜅2 − 1)2

⎤⎥⎥⎦
= −𝛾0

𝜎0 sin𝜒
2𝜇0MsΔ

2𝜅
𝜅2+1

+𝛾0
1
2

Hk sin 2(𝜓−𝜒)

−Q𝛾0
𝜋

2
HD sin(𝜓 − 𝜒)

+Q𝛾0Hz

w
Δ

cos𝜒

𝜅
(
𝜅4+1
𝜅4−1

ln 𝜅 − 1
2

)
𝜅2 − 1

−Q𝛾0
𝜋

2
HSL cos𝜓

w
Δ

cos𝜒

𝜅
(
𝜅2+1
𝜅2−1

ln 𝜅−1
)

𝜅2−1
−𝛾0

𝜋

2
HFL cos𝜓 tan𝜒

(99)
where

𝜎0 =
2A

Δcosχ
2𝜅 ln 𝜅
𝜅2 − 1

+
2Δ

[
Ku −

1
2
(Nz − N𝜑)𝜇0M2

s

]
cos χ

𝜅2 + 1
2𝜅

+𝜇0M2
sΔ

cos χ
(N𝜌 − N𝜑)

𝜅2 + 1
2𝜅

sin2(𝜓 − 𝜒)

+Q cos(𝜓 − 𝜒)
cos χ

𝜋D (100)

and Hk = (N𝜌 −N𝜑)Ms, HD = 2𝜅
𝜅2+1

H0
D, HFL

= H0
FL

1
ln 𝜅

𝜅2−1
𝜅2+1

, and HSL = H0
SL

1
ln 𝜅

𝜅2−1
𝜅2+1

. Again
in these definitions, H0

D, H0
FL, and H0

SL cor-
respond to the definitions of HD, HFL, and
HSL for straight strips as given in Eqs.
(56)–(58), respectively. Note that previ-
ous Eqs. (97)–(100) converge to those of
straight strips when 𝜅→ 1, with N𝜌→Ny
and N𝜑→Nx. Eqs. (97)–(100) were derived
by us. An alternative collective coordinate
model was obtained by Garg et al. [68].

The 1DM results for curved strips are
shown in Figure 20a–c for the same material
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Figure 20 1DM results for the current-driven DW dynamics along curved strips for three different cases with
fixed width w = 96 nm: (a) ri =w, ri = 2w, and ri = 3w. The results for curved HM/FM stacks (Q= ± 1) are
compared to the straight case with the same cross section (w × t). Same material parameters as for the
micromagnetic results of Figure 19 are considered.

parameters and the same geometries as
previously considered in the full micromag-
netic simulations of Figure 19. Although
the 1DM results do not show a marked
difference between the velocities for curved
and straight strips, the general trends of the
micromagnetic results are reproduced by
our 1DM model. Indeed, the discrepancy
was expected, as the DW profile observed
in the micromagnetic simulations could
deviate from the assumed DW ansatz (84)
and (85). Note that this 1DM ansatz assumes
that the DW tilting 𝜒 is homogeneous for
all points within the DW. However, the DW
tilting in the micromagnetic simulations
is not homogeneous and the DW adopts
a S-shape configuration (see snapshots in
Figures 16–18), which is not described by
the 1DM. Therefore, although the 1DM for
curved strips is in qualitative agreement
with full micromagnetic results, the study of

DW motion should be done by means of full
micromagnetic simulations, which nowadays
are accessible with reasonable computational
effort using GPU-based solvers for reduced
strip widths (w, as w approaches w∼ 1 μm,
the computational effort of full micromag-
netic simulation becomes time prohibitive
for systematic analysis). See Refs [68, 69] for
others experimental and numerical studies
of the current-driven DW dynamics along
curved stacks.

Taking into account these issues, the
1DM still provides very relevant informa-
tion to understand the DW dynamics in
curved HM/FM stacks. In particular, the
1DM indeed indicates that higher velocity
is achieved in cases, where the absolute
value of the DW tilting (|𝜒|) is smaller (see
Figures 20–22).

In Figure 21a, we plot the dependence of
the internal DW angle 𝜓 as a function of JHM
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Figure 21 1DM results for the current-driven DW dynamics along straight and curved strips with w = 96 nm
and ri =w. (a) DW angle 𝜓 as a function of JHM. (b) Tilting angle 𝜒 as a function of JHM. The results for curved
HM/FM stacks (Q= ± 1, blue and red symbols) are compared to the straight case (black filled symbols: Q= + 1;
and open symbols Q= − 1) with the same cross section (w × t). Same material parameters as for the
micromagnetic results of Figure 19 are considered.
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Figure 22 1DM results for the current-driven DW dynamics along curved strips with ri =w and three different
values of the strip width: (a) w = 96 nm, (b) w = 200 nm, and (c) w = 500 nm. Same material parameters as for
the micromagnetic results of Figure 19 are considered. The strip thickness is also the same t = 0.6 nm.

for straight and curved strips with the same
cross section. It indicates that the internal
DW angle is identical for straight and curved
strips. However, the remarkable difference
is related to the tilting angle (𝜒). For a given

current, the same |𝜒| is obtained for both
Q= + 1 and Q= − 1 DW configuration in
straight strips. However, the situation is
different for curved strips: for a given current
|𝜒| is larger for Q= − 1 than for Q= + 1,
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which explains the larger velocity of the
Q= + 1 configuration as the DW velocity
scales with 1/cos𝜒 .

The difference in the DW velocity between
the Q= + 1 and Q= − 1 cases for curved
strips also increases with the strip width w.
This is exemplified in Figure 22 for three
different cases where now the inner radius is
fixed to ri =w, but the strip width is varied
from w= 96 nm to w= 500 nm.

3.8 Current-Driven DW Motion in
Synthetic Antiferromagnets and
Ferrimagnetic Systems

Previous analyses were carried out in a single
FM layer or in a single FM layer sandwiched
between a HM and an oxide (not shown), or
between two dissimilar HMs. In what follows
we are going to evaluate the current-driven
DW dynamics in other systems which are
of relevance for fundamental and techno-
logical reasons. In particular, we have seen
that in HM/FM systems the DWs in the
FM layer are efficiently driven along the
strip axis by injection of electrical current
through the HM (JHM). The main driving
force is due to the SHE, which generates a
spin current on the FM and drives series of
homochiral DWs along the FM layers. We
have shown that such spin current generates
an out-of-plane effective field and also exerts
a torque on the internal DW magnetization.

In a straight FM stack (HM/FM), the DW
velocity scales linearly with JHM for low
currents. As JHM increases, the DW velocity
tends to saturate due to the rotation of the
internal DW moment along the transverse
y-axis, which is the direction of the spin
current polarization (Sections 3.5 and 3.6;
Figure 12; and Eqs. (74) and (75)). Besides, in
curved HM/FM stacks, consecutive DWs are
driven with different velocities as due to the
different DW tilting (Section 3.7). Therefore,
these two issues constitute limiting factors
for the performance of DW-based devices,
where series of DWs should be driven along
straight and curved parts of a track. Recent
experimental and theoretical studies have
pointed out that these limiting factors for the
current-driven DW motion can be overcome
in synthetic antiferromagnets stacks (SAF)
[68–70] and in ferrimagnetic layers [71–74]
or bilayers [75]. The field-driven DW motion
in the vicinity of the angular momentum
compensation temperature of ferrimagnets
has been also recently addressed [76]. The
current-driven DW motion in these stacks is
described hereafter.

3.8.1 Synthetic Antiferromagnets (SAF)
A schematic representation of a SAF stack is
depicted in Figure 23. It consist of two FM
layers (LFM: lower FM layer; UFM: upper FM
layer) separated by a spacer (S), which gen-
erates an antiferromagnetic (AF) exchange

z

z

tUFM

tLFM

tsx

UHM: upper HM

LFM: lower FM

LHM: lower HM

Spacer

UFM: upper FM

y

y

w

𝓁

Figure 23 Schematic representation of two FM layers (lower and upper FM layers: LFM and UFM, respectively)
separated by a spacer (S) in a SAF stack. In the general case, the bottom layer is a heavy metal (lower HM: LHM)
and also the UFM is covered by another heavy metal (upper HM: UHM). Both can generate an interfacial DMI in
the corresponding FM layer and also serve to inject an electrical current which generate a spin current in the
adjacent FM layer.
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coupling between the magnetization of the
LFM and UFM layers [77–81]. In the general
case, the LFM is on top of a HM (LHM:
lower HM) and the UFM layer is under
another different HM (UHM: upper HM).
These HMs introduce an interfacial DMI
at the LHM/LFM and at the UFM/UHM
interfaces, and also generate a spin current
in the adjacent FM layer that drives DWs in
the FM layers. The length (𝓁) and the width
(w) of the stack, and also the thickness (t) of
each layer are defined in Figure 23a,b.

In the framework of the mM, the magne-
tization dynamics of a single FM strip was
described by the Landau–Lifshitz–Gilbert
equation (27). This equation can be general-
ized to study the magnetization dynamics in
the SAF [69]. The general LLG equation for
each FM layer is

dmi
dt

= −𝛾imi × Heff ,i + 𝛼imi ×
dmi
dt

+𝝉STT,i + 𝝉SOT,i (101)

where the subindex i stands for i: L (lower),
U (upper) FM layers, respectively. 𝛾 i = gi𝜇B/ℏ
and 𝛼i are the gyromagnetic ratios and the
Gilbert damping constants, respectively.
gi is the Landé factor of each layer, and
mi(r, t)=Mi/Ms,i is the normalized local
magnetization to its saturation value (Ms,i),
defined differently for each FM layer: Ms,i
(i : L, U). Heff,i is the effective field, which
includes not only the intralayer exchange
and the uniaxial anisotropy but also the
interlayer exchange and the magnetostatic
interactions adequately weighed to account
for the different saturation magnetizations.
Also, the DMI is included in the effective
field. The material parameters of these
interactions are denoted as: Ai (intralayer
exchange parameter), Ku,i (PMA constant),
and Di (DMI parameter), where, again,i : L,
U for the LFM and the UFM layers. The
interlayer exchange contribution HAF,i to
the effective field Heff,i, acting on each FM
layer is computed from the corresponding
energy density, 𝜔AF,i = −Bijmi ⋅mj, where
Bij (in [J m−3]) is a parameter describing the
interlayer exchange coupling between the

lower and the upper FM layers (here, we used
the notation i : L and j : U). For the SAF case,
the interlayer exchange coupling parameter
is defined as Bij = Jex/tS, where Jex represents
the magnitude of the interlayer exchange
coupling (in [J m−2]) and tS is the thickness
of the spacer separating the FM layers [69,
70]. The resulting interlayer exchange con-
tribution HAF,i to the effective field reads
as

HAF,i = − 1
𝜇0Ms,i

𝛿𝜔AF,i

𝛿mi
= Jex

𝜇0Ms,itS
mj

(102)

where i : L, U for the LFM and the UFM
layers. FM and AF coupling cases are evalu-
ated by a positive Jex, and by a negative Jex,
respectively. Here we study the most relevant
case of AF coupling. In Eq. (101), 𝝉STT,i and
𝝉SOT,i are the STTs and the SOTs acting on
each FM layer, respectively. In the general
case, 𝝉STT,i is due to the electrical current
along the layer i (JFM,i), whereas 𝝉SOT,i are
related to the electrical current along the
HMs (JHM,i). The 𝝉STT,i is parameterized by
the polarization factor (Pi) and the nonadi-
abatic parameter (𝛽 i) of each layer. Besides,
the SOTs (𝝉SOT,i) are proportional to the spin
Hall angles 𝜃SH,i: 𝜃SH, L, and 𝜃SH, U represents
the spin Hall angles of the lower and the
upper HMs, respectively. The expressions of
these torques are similar to the ones for the
single-FM stack expressions (see Eqs. (28)
and (31)) with the corresponding parameters
for each FM layer.

To illustrate the current-driven DW
dynamics in the SAF, typical values of
the parameters above have been cho-
sen in our simulations. Except where
the contrary is indicated, some com-
mon material parameters for the UFM
and the LFM layers have been adopted:
Ms,i = 0.6× 106 A m−1, Ku,i = 0.8× 106 J m−3,
Aex = 16 pJ m−1, 𝛼i = 0.1, and 𝛾 i = 𝛾0 (gi ≈ 2)
for both lower and upper FM layers (i : L,
U). To illustrate the key ingredients for the
current-driven DW along a SAF, we assume
that STT is negligible (Pi = 0) in the evalu-
ated samples. The spin Hall angle and the
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DMI parameter are only different from zero
in the LFM: 𝜃SH, L = 0.1 and DL = 1 mJ m−2.
The interlayer exchange coupling is fixed to
Jex = − 0.5 mJ m−2. Here, the thickness of the
FM layers (LFM and UFM) and the spacer
(S) is tLFM = tS = tUFM = 0.6 nm. See Ref. [69]
for a detailed analysis of other combinations
of material parameters and thicknesses.

We can present the main advantages of
the SAF in a single micromagnetic simula-
tion of a S-shape in-plane geometry, where
two DWs are driven along each of the two
FM layers of the SAF by a current density
along the lower HM with a magnitude of
JLHM = J0 = 1 TA m−2 in the straight parts,
where it is uniform. Note that this current is
nonuniform along the curved parts, as it was
already described in Figure 15. The spatial
distribution of the current was computed
as described in Ref. [69] by using a com-
mercial software and taken into account for
the micromagnetic calculations. The consid-
ered SAF and the micromagnetic snapshots
showing the temporal evolution of the DWs
in the LFM and the UFM layers are shown
in Figure 24b. The corresponding single FM
case is shown in Figure 24a for compari-
son. When the interlayer exchange coupling
(|Jex|) is sufficiently strong, the DWs in the
LFM and in the UFM move coupled to each
other, and they are mirror to each other:
an up–down in the LFM corresponds to a
down–up in the UFM and vice versa. Note
that the SHE is only considered in the LHM,
and that the DMI is only different from zero
at the LHM/LFM interface. However, due to
the strong AF coupling, all DWs in the system
are left-handed (DL > 0), as it can be seen by
examining their internal moments. More-
over, DWs are driven along the SAF without
tilting (Figure 24b), whereas the tilting is
evident for the single FM case (Figure 24a).
It is also verified that the internal magnetic
moment of each DW points along the nor-
mal to the DW plane for the SAF, which is
also linked to the lack of tilting. Therefore,
the AF coupling between the FM layers
mitigates the rotation of the internal DW
moments toward the direction of the spin

polarization, and consequently, higher veloc-
ities (and larger driving currents) than in the
single-FM stack are achieved (Refs [68–70]).
Indeed, as discussed in Section 3.5 for the
single-FM stack, the terminal DW veloc-
ity scales linearly with the current, since
vDW ∝HSL cos𝜓 s (Eq. (74)), and the terminal
DW angle (𝜓 s) remains equal to its value
at rest for sufficiently high interfacial DMI,
that is if 𝜓 s ≈ 0, 𝜋 for down–up and up–down
DW configurations. As it was deduced in Ref.
[69] (see also following 1DM discussion, and
Eq. (117) below), the analytical expression for
the DW velocity in a SAF also indicates the
DW velocity increases as the sum of the sat-
uration magnetization of the two FM layers
(Ms, L +Ms, U) decreases. On the other hand,
it is also observed in Figure 24b that adjacent
DWs move with the same velocity along the
curved parts of the SAF: the relative distance
between these DWs remains the same after
passing the first and the second turns of
the S-shape. This is also different from the
single FM case, where the distance between
adjacent DWs is different after crossing the
first turn (see the corresponding snapshot
in Figure 24a). For these reasons, these SAF
systems are promising to develop efficient
DW-based devices in-planar geometries:
DWs do not depict tilting and the distance
between adjacent does not change after pass-
ing through curved parts. The velocity as a
function of the current is discussed below,
after presenting an extended 1DM for SAF
systems.

The described features of the DW dynam-
ics along a SAF can be also discussed in terms
of an extended 1DM for a straight SAF. The
energy density per unit volume (𝜖) of the two
FM layers coupled by exchange interaction
between them can be expressed as

𝜖 = 𝜖1 + 𝜖2 + 𝜖12 (103)

where here 𝜖1 and 𝜖2 are the energy den-
sities per unit volume of each isolated FM
layer (1 : LFM; 2 : UFM), and the 𝜖12 repre-
sents exchange coupling interaction between
them. 𝜖i is the same as given in Eq. (47), with
the corresponding parameters of the layer i,
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Figure 24 Micromagnetic snapshots
showing the current-driven DW
dynamics along a single FM layer
stack (a), and along a SAF (b) with
curved and straight parts. Here, the
radius of the curved parts is ri =w,
and w = 256 nm. The thickness of the
FM layer in the single FM stack is
t = 0.6 nm, and the material
parameters are the same as in the
LFM of the SAF (given below). For the
SAF (b), the thickness of the FM layers
(LFM and UFM) and the spacer (S) is
tLFM = tS = tUFM = 0.6 nm. The rest of
material parameter is given in the

text. The magnitude
−→
J LHM in the

straight parts through the HM is
J0 = 1 TA m−2. As in Figure 18, the
nonuniform spatial distribution of
−→
J LHM is taken into account.
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that is

𝜖i = Ai
sin2𝜃i
Δ2 + Keff ,isin2𝜃i + Ksh,isin2𝜃isin2𝜙i

+QiDi cos𝜙i

(
sin 𝜃i
Δ

)
− 𝜇0Ms,i(Hx sin 𝜃i

× cos𝜑i + Hy sin 𝜃i sin𝜑i + Hz cos 𝜃i)
(104)

where we have assumed that the DW in
the two FM layers has the same DW
width (Δ1 =Δ2 =Δ). Qi indicates the

DW configuration within each FM layer.
For strong AF coupling, Q1 = + 1 (up–down)
corresponds to Q2 = − 1 (down–up) and vice
versa. The interaction between the layers can
be expressed in terms of the corresponding
polar angles (𝜃i, 𝜙i) as

𝜖12 = −B12m1 ⋅ m2

= −B12 sin 𝜃1 sin 𝜃2 cos(𝜑1 − 𝜑2)
+ cos 𝜃1 cos 𝜃2 (105)
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where B12 = Jex/tS with tS being the thickness
of the spacer. Also, for strong AF coupling,
the positions of the DWs along the longitu-
dinal x-axis are also assumed to be equal, i.e.
q1 = q2 = q. Under these circumstances, the
surface energy density is

𝜎 = 𝜎1 + 𝜎2 + 𝜎12 (106)

with

𝜎i =
2Ai
Δ

+ 2Δ(Keff ,i + Ksh,isin2𝜓)

+𝜋QiDi cos𝜓i − 𝜇0Ms,i𝜋Δ(Hx cos𝜓i

+Hy sin𝜓i) − 2Qi𝜇0Ms,iqHz (107)

and

𝜎12 = −B122Δcos(𝜓1 − 𝜓2) (108)

where we have used ∫ +∞−∞ sin 𝜃1 sin 𝜃2dx = 2Δ.
The rest of integrals are similar to the ones in
Section 3.1. By a similar procedure to that in
Section 3.1, the following 1DM equations are
obtained(
𝛼1

Ms,1

𝛾1
+ 𝛼2

Ms,2

𝛾2

)
q̇
Δ

+
Ms,1

𝛾1
Q1𝜓̇1

+
Ms,2

𝛾2
Q2𝜓̇2

= Q1Ms,1

[
Hz −

𝜋

2
HSL,1 cos𝜓1

]
+ Q2Ms,2

[
Hz −

𝜋

2
HSL,2 cos𝜓2

]
+

Ms,1

𝛾1
𝛽1

u1
Δ

+
Ms,2

𝛾2
𝛽2

u2
Δ

(109)

(
−Q1

q̇
Δ

+ 𝛼1𝜓̇1

)
= 𝛾1

[
−

Hk,1

2
sin(2𝜓1) +

𝜋

2
Q1HD,1

sin𝜓1 +
𝜋

2
(Hy cos𝜓1 − Hx sin𝜓1)

−𝜋
2

HFL,1 cos𝜓1 +
2B12
𝜇0Ms,i

sin(𝜓1 − 𝜓2)
]

− Q1
u1
Δ

(110)

(
−Q2

q̇
Δ

+ 𝛼2𝜓̇2

)
= 𝛾2

[
−

Hk,2

2
cos(2𝜓2) +

𝜋

2
Q2HD,2 sin𝜓2

+ 𝜋

2
(Hy cos𝜓2 − Hx sin𝜓2)

−𝜋
2

HFL,2 cos𝜓2 −
2B12
𝜇0Ms,i

sin(𝜓1 − 𝜓2)
]

− Q2
u2
Δ

(111)

where

HD,i =
Di

𝜇0Ms,iΔ
(112)

Hk,i =
2Ksh,i

𝜇0Ms
= Ms,i(Ny − Nx) (113)

HSL,i =
ℏ𝜃SH,iJHM,i

2|e|𝜇0Ms,1ti
(114)

HFL,i = kiHSL,i (115)

u = −
gi𝜇BPiJFM,i

2|e|Ms,i
(116)

These 1DM equations reduce to the
ones of a single-FM layer for B12 = 0 (see
Section 3.1). Therefore, they can be solved
for a single-FM layer case (B12 = 0) and for
FM coupling (Q1 =Q2, B12 = Jex/tS) or AF
coupling (Q2 = −Q1, B12 = Jex/tS) cases.

In Figure 25a, we compare the micro-
magnetic results (dots) and the 1DM (lines)
predictions for the DW velocity as a function
of the current for a single-FM layer stack and
for a SAF. The 1DM results were obtained by
numerically solving the Eqs. (109)–(111). The
stack is straight along the longitudinal x-axis.
The material parameter for the SAF stack
are the following: Ms,i = 0.6× 106 A m−1,
Ku,i = 0.8× 106 J m−3, Aex = 16 pJ m−1,
𝛼i = 0.1, Pi = 0, and 𝛾 i = 𝛾0 (gi ≈ 2) for both
lower and upper FM layers,i : L, U. The
spin Hall angle and the DMI parameter in
the LHM are only different from zero in
the LFM, 𝜃SH, L = 0.1 and DL = 1 mJ m−2.
The interlayer exchange coupling is fixed
to Jex = − 0.5 mJ m−2. The thicknesses of
the layers are tLFM = tS = tUFM = 0.6 nm.
The strips width is w= 256 nm. For the
single-FM stack, the material parameters
and the dimensions are the same as for the
LFM of the stack. While the DW velocity
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Figure 25 (a) Comparison of the DW velocity as a function of the current in the HM for a straight single-FM
stack and for the SAF stack. Dots are micromagnetic results, whereas lines are 1DM predictions. Material
parameters and dimensions are given in the main text.

saturates as JHM increases for the single-FM
stack, the DW velocity increases linearly with
JLHM. Both models show good quantitative
agreement. Note that the DW velocity in the
single-FM is larger than the one in the SAF
for current below ∼1 TA m−2. Above this
value, the DW in the SAF increases linearly,
whereas the DW velocity in the single-FM
saturates. As it will be shown later, the DW
velocity in the low current regime scales with
the inverse of the total magnetization of the
system, that is Ms in the single FM layer and
(Ms, 1 +Ms, 2) for the SAF. In Figure 25b, we
represent the dependence of the terminal
values of the internal DW angles (𝜓 for the
single-FM stack, and 𝜓L and 𝜓U for the LFM
and UFM layers of the SAF, respectively)
as functions of the density current injected
along the LHM (SAF) or along the HM in the
single-FM stack. Again, a good agreement
is achieved. Both models indicate that the
internal DW angle in the LFM (the one
submitted to the action of the spin current in
the LHM) remains equal to its value at rest,
𝜓L ≈𝜋. The micromagnetic results show that
internal DW angle in the UFM remains also
close to its value at rest 𝜓U ≈ 0, but this angle
deviates from zero as the current increases.
Note, however, that the maximum deviation
is still well below than the one achieved in
the single-FM stack. The 1DM also predicts a
similar qualitative behavior, but the deviation
from 0 is smaller than the one given by the

full micromagnetic analysis. Based on these
considerations, we can conclude that the
1DM is still a good tool to describe the DW
dynamics in these systems. In particular,
we can deduce an analytical expression for
the DW velocity in the SAF as a function of
JLHM. Indeed, by imposing that 𝜓̇1 = 𝜓̇2 = 0
(𝜓̇L = 𝜓̇U = 0) and that these angles remain
equal to its initial state (𝜓L(0)=𝜋, 𝜓U(0)= 0)
in Eq. (100), the terminal DW velocity in a
SAF with strong AF coupling is

q̇st = −Δ𝛾0
𝛼

Q1
Ms,1

(Ms,1 + Ms,2)
𝜋

2
HSL,1 cos𝜓1

= Δ𝛾0
𝛼

𝜋

2
ℏ𝜃SH,LJLHM

(Ms,1 + Ms,2)2|e|𝜇0tL
(117)

which explains the linearly scaling of the
coupled DW velocity vDW with the current
in the LHM, and also points out that the
DW velocity is enhanced as the (Ms, 1 +Ms, 2)
decreases. Therefore, this 1DM not only
explains the micromagnetic results but also
suggests a manner to further optimize the
DW velocity in SAF stacks. Further details of
the current-driven DW dynamics in SAF can
be seen in Refs [69, 70].

3.8.2 Ferrimagnets (FiM)
In the SAF discussed in previous section, the
magnitude of the interlayer exchange cou-
pling depends on the thickness of the spacer
(tS) in a non-monotonous manner. Indeed,
recent experiments [68, 70] have shown that
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depending on such a thickness the coupling
between the FM layers in the SAF can be
either FM-like (Jex > 0, which promotes the
parallel alignment of the magnetization in
the FM layers) or AF-like (Jex < 0, which
promotes the antiparallel alignment of the
magnetization in the FM layers). Only the
AF coupling constitutes an advance over
the single FM layer stack in terms of the
current-driven DW motion efficiency [69,
70]. Additionally, the improvement in the
efficiency also depends on the saturation
magnetization of the two FM layers (see [69]
for further details).

A more recent and promising alternative
to the SAF is the use of ferrimagnetic films
(FiMs) [71–75]. These FiM films, as for
example a rare earth (RE) with transitional
metal (TM), are constituted by two sublat-
tices that are antiferromagnetically coupled.
Their magnetic properties, such as magneti-
zation and coercivity, are largely influenced
by the compensation temperature, which can
be tuned by varying the composition or the
temperature.

Here, we present a mM to describe the
magnetization dynamics of a FiM formed
by two components (S1 specimen 1 and
S2 is specimen 2), which in general we
name 1 and 2, and which are forming
two antiferromagnetically coupled sublat-
tices [77–82]. A schematic representation
of the FiM on top of a HM is shown in
Figure 26, where blue (1) and red (2) arrows
represent the local magnetization of each

sublattices or component of the FiM forming
a FM DW.

As for the SAF, the temporal evolution of
the magnetization of each sublattice evolves
under the LLG equation (82), which can be
written as
dmi
dt

= −𝛾imi × Heff ,i + 𝛼imi ×
dmi
dt

+𝝉STT,i + 𝝉SOT,i (118)

where here the subindex i stands for i: 1 and
2 sublattices, respectively. 𝛾 i = gi𝜇B/ℏ and
𝛼i are the gyromagnetic ratios and the
Gilbert damping constants, respectively.
gi is the Landé factor of each layer, and
mi(r, t)=Mi/Ms,i is the normalized local
magnetization to its saturation value (Ms,i),
defined differently for each sublattice: Ms,i
(i: 1, 2). In our mM, the FiM strip is formed by
computational elementary cells, and within
each cell we have two magnetic moments,
one for each component of the FiM [82].
The respective effective field (Heff,i) acts on
the local magnetization of each sublattice
(mi(r, t)). It is the sum of the external field,
the magnetostatic field, the anisotropy field
(PMA), the DMI field, and the exchange
field. The magnetostatic field on each local
sublattice moment is numerically computed
from the net magnetization of each elemen-
tary cell using similar numerical techniques
as for the single FM case (see Ref. [9]). For
the PMA field, the easy axis is always along
the out-of-plane direction (z-axis), but we
can in general consider different anisotropy
constants for each sublattice Ku,i (PMA

z

z

tFiM

x
FiM: Ferrimagnet

HM: Heavy metal

y

y

w

𝓁

1

2

Figure 26 Schematic representation of a HM/FiM stack, where the FiM, consisting of two FM sublattices (1 and
2), is on top of a heavy metal (HM). The magnetization of two sublattices is represented by blue (1) and red (2)
arrows, and a schematic representation of a DW in this FiM is shown. The dimensions of the system and the
definition of the thickness are depicted.
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constant). Our numerical solver also allows
different DMI parameters for each lattice
(Di, where again,i : 1, 2 for the S1 and the
S2 lattices). The exchange field of each sub-
lattice includes the interaction with itself
(intralattice exchange interaction, Hexch,i)
and with the other sublattice (interlattice
exchange interaction, Hexch, 12). The interlat-
tice exchange effective field is computed as
for a single FM sample, Hexch,i =

2Ai

𝜇0Ms,i
∇2mi

(see Eqs. (3) and ((26)), where Ai is the
intralattice exchange parameter. The inter-
lattice exchange contribution Hexch, 12 to the
effective field −→Heff ,i acting on each sublattice
is computed from the corresponding energy
density, 𝜔exch,i = −Bijmi ⋅mj, where Bij (in
[J m−3]) is a parameter describing the inter-
lattice exchange coupling between the S1 and
S2 sublattices (here, we used the notation i : 1
and j : 2). Finally, as for the SAF, in Eq. (118),
𝝉STT,i and 𝝉SOT,i are the STTs and the SOTs
acting on each sublattice. The STT, 𝝉STT,i is
due to the electrical current along the FiM
layer (JFM), whereas 𝝉SOT,i is related to the
electrical current along the HM (JHM). Due to
the different saturation magnetization (Ms,i)
and the different Landé factor (gi) of each
sublattice, 𝝉STT,i is also different for each
sublattice. Our micromagnetic code also
allows us to consider different polarization
factors (Pi) and nonadiabatic parameters (𝛽 i)
for each sublattice (i : 1, 2). Regarding the
SOTs (𝝉SOT,i), it is also possible to establish
different spin Hall angles for each sublattice
𝜃SH,i. The expressions of these torques are
similar to the ones for the single-FM stack
expressions (see Eqs. (28) and (31)), with the
corresponding parameters for each FM layer.

We have also developed a 1DM for
HM/FiM. The energy densities and the result-
ing 1DM equations are identical to the ones
deduced for the SAF (see Eqs. (109)–(116)),
where now the subindexes i : 1, 2 correspond
to the two sublattices of the FiM.

To illustrate the current-driven DW
dynamics along a HM/FiM stack, we have
assumed a FiM with w× tFiM = 256 nm× 6 nm
with the following common material

parameters for the two sublattices i : 1,
2: Ai = 70 pJ m−1, Ku,i = 1.4× 106 J m−3,
𝛼i = 0.02, Di = 0.12 J m−2, 𝜃SH = 0.155,
ki = 0, and Pi = 0. The AF coupling between
the two lattices is taken into account by
an interlattice exchange interaction of
Bij ≡B12 = − 0.9× 107 J m−3. The gyro-
magnetic ratios (𝛾 i = gi𝜇B/ℏ ) are different
due to the different Landé factor: g1 = 2.05
and g2 = 2.0. The saturation magnetization
of each sublattice Ms,i can be tuned with the
composition of the FiM and/or with the tem-
perature of the ambient (T). Here, we assume
the following temperature dependences for
each sublattice [74, 76]:

Ms,1(T) = Ms,1(0)
(

1 − T
TC

)a1

(119)

Ms,2(T) = Ms,2(0)
(

1 − T
TC

)a2

(120)

where TC = 450 K is the Curie tempera-
ture of the FiM, Ms, 1(0)= 1.4× 106A m−1

and Ms, 1(0)= 1.71× 106A m−1 are the
saturation magnetization at zero temper-
ature, and a1 = 0.5 and a2 = 0.76 are the
exponents describing the temperature
dependence of the saturation magneti-
zation of each sublattice. Ms, 1(T) and
Ms, 2(T) vs. T are shown in Figure 27,
where the vertical dashed lines indicate
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Figure 27 (a) Temperature dependence of the
saturation magnetization of the sublattices forming
the FiM. The dashed vertical lines indicate the
temperature at which the saturation magnetization
of the two sublattices vanish (T M = 241.5 K), and the
angular momentum compensation temperature
(T A = 260 K). Source: Martínez et al. [82]. Reproduced
with permission of Elsevier.
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Figure 28 (a) Micromagnetic (open dots) and 1DM (solid lines) results of the DW velocity as a function of the
density current along the HM (JHM ≡ J) for several temperatures including T = 240 K≈ T M and T A = 260 K. (b)
1DM results for the internal DW angles within each lattice as a function of JHM ≡ J for the same temperatures as
in (a). (c) DW velocity as a function of T for different values of JHM. All material parameters and dimensions are
given in the main text. Source: Martínez et al. [82]. Reproduced with permission of Elsevier.

the temperature at which the saturation
magnetization of the two sublattices vanish
(TM = 241.5 K, Ms, 1(T)=Ms, 2(T)), and the
angular momentum compensation temper-
ature (TA = 260 K), which corresponds to
Ms, 1(T)/g1 =Ms, 2(T)/g2.

The micromagnetic (open symbols, mM)
and the 1DM (solid lines) results of the DW
velocity as functions of the current JHM are
shown in Figure 28a for several representa-
tive temperatures, including T = 240 K≈TM
and T = 260 K≈TA. Both models are in
remarkable agreement. Note that our model
is more general than the effective 1DM used
in Refs [71–74, 83–85], which solve the
current-driven DW dynamics for an effective
FM layer with renormalization of the damp-
ing parameter (𝛼′ ) and the gyromagnetic ratio
(𝛾 ′ ). Moreover, our 1DM for FiMs also allows
accounting for the different DW angles in
the two sublattices (𝜓 i for i : 1, 2). For T <TA

or T >TA, the velocity of the DW in the
FiM saturates as the current increases. How-
ever, at T ≈TA, the DW velocity increases
linearly with JHM ≡ J . The 1DM results of
the internal DW angles within each sublat-
tice are shown in Figure 28b, which clearly
shows that the linear increase of the DW
velocity at T ≈TA is a direct consequence
of the antiparallel alignment of the internal
DW lattice moments along the longitudinal
x-axis: 𝜓1 =𝜋 and 𝜓2 = 0 independently on
the driving current. In order words, our 1DM
suggests that the linear increase of the DW
velocity at the angular compensation tem-
perature T ≈TA is due to the preservation
of the antiparallel Néel DW configuration in
the two sublattices. This configuration fully
optimizes the spin Hall driving force.

In fact, from Eq. (109), we can obtain an
analytical expression which explains the
current dependence of the DW velocity
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Figure 29 Micromagnetic snapshots
showing the current-driven DW
dynamics along a HM/FiM with curved
and straight parts at the temperature
of the angular momentum
compensation (T A = 260 K). Left (a)
and central (b) columns show the local
out-of-plane magnetization of each
sublattice, whereas the right column
shows the net out-of-plane
magnetization of the FiM. Here the
radius of the curved parts is ri =w and
w = 256 nm. The injected current in
the HM is JHM = 1.5 TA m−2 in the
straight parts, where it is uniform. The
nonuniform distribution of this current
in the curved part is taken into
account. The rest of material
parameters are the same as for
Figure 28. Source: Martínez et al. [82].
Reproduced with permission of
Elsevier.
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for different temperatures. Indeed, in the
steady-state regime (𝜓̇1 = 𝜓̇2 = 0), and in the
absence of either STTs (ui = 0) or external
fields (Hz = 0), the DW velocity is

q̇ = vst = −Δ
Q1Ms,1

[
𝜋

2
HSL,1 cos𝜓st,1

]
+ Q2Ms,2

[
𝜋

2
HSL,2 cos𝜓st,2

]
(
𝛼1

Ms,1

𝛾1
+ 𝛼2

Ms,2

𝛾2

)
(121)

For 𝛼1 = 𝛼2 = 𝛼 and 𝜃SH, 1 = 𝜃SH, 2 = 𝜃SH, and
taking into account that Q1 = + 1, Q2 = − 1,
and that for T ≈TA, Ms,1

𝛾1
= Ms,2

𝛾2
and 𝜓 st, 1 =𝜋
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and 𝜓 st, 2 = 0, we have

q̇ = vst

= 𝛾0
Δ
𝛼

𝜋

2
ℏ𝜃SHJHM

2|e|𝜇0tFiM

g1g2
(g2Ms,1 + g1Ms,2)

(122)

which scales linearly with JHM, and therefore,
explains the observed behavior at T ≈TA.

Figure 28c plots the DW velocity as a
function of the temperature T as computed
by the micromagnetic code and the 1DM.
Both models predict that the DW velocity
peaks at T ≈TA for sufficiently high current.
These results are in good agreement with
recent experimental observations in FiMs
[73, 74]. Our mM and the extended 1DM
provide a more accurate description of the
current-driven DW dynamics in these FiM
systems than effective 1DM models. In par-
ticular, they allow us to explain the results
and suggest research lines to optimize the
DW motion efficiency in future experimental
setups. Furthermore, Eq. (122) suggest that
at T ≈TA, the linear increase of the DW
velocity can be further enhanced in FiMs
with smaller (g2Ms, 1 + g1Ms, 2) and smaller
thicknesses (tFiM).

Finally, we have also micromagnetically
studied the current-driven DW along a
HM/FiM with straight and curved parts at
the angular compensation temperature TA.
The transient micromagnetic snapshots are
shown in Figure 29, where the same material
parameters and FiM cross section as for
Figure 28 were adopted. In the curved parts,
the internal radius (ri) is equal to the FiM
strip width (w), i.e. ri =w= 256 nm. In the
straight parts, the FiM DWs are very effi-
ciently driven by the current injected along
the HM without tilting. Contrary to the SAF
case, DWs tilt as they enter in the curved
parts, and the tilting is similar for both
up–down and down–up DWs of the two lat-
tices of the FiM. The tilting depicted by these
DWs is essentially due to the nonuniform
current distribution in the HM underneath.
It is also observed that the relative distance
between adjacent DWs is not preserved after
passing through the first curve. Therefore,
these observations indicate the DW motion

is sensitive to the curvature of the HM/FiM
stacks, and further investigations are needed
to correct this drawback for DW-based
devices in these systems.

4 Concluding Remarks and
Perspectives

In this article, we have presented a full the-
oretical description of the mM and the 1D
models needed to describe the DW dynamics
along FM strips, HM/FM, SAF, and HM/FiM
stacks with high PMA. All these methods
will be of great relevance for the further
development of DW-based devices and to
understand existing and future experimental
observations. Here, we conclude this article
by indicating some features which are present
in experimental setups, and the manner they
can be taken into account in the presented
models.

• We have assumed perfect samples without
imperfections or defects. It is known that
imperfections, which are inevitable during
the fabrication of the samples, introduce
pinning or act against the free DW motion.
In the micromagnetic formalism, it is pos-
sible to take into account the defects in
different manners. For example, the sam-
ple can be divided into grains where the
magnetic parameters can vary from grain
to grain. The characteristic grain size is
usually assumed to be random, with an
average grain size typically in the order of
∼10 nm. Regarding the material param-
eters, they are also assumed to change
from grain to grain in a random manner.
For instance, recent experimental results
have been properly described by just
considering that the easy axis direction
is mainly directed along the out-of-plane
direction but with a random non-null
in-plane component [86]. Other alterna-
tives also include varying the magnitude
of the anisotropy constant, the saturation
magnetization, and even the DMI param-
eter [87]. In the framework of the 1DM,
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the pining can be phenomenologically
included by adding a periodic pinning
field Hp(x)= −Hpin sin(2𝜋x/Lp) to the
external out-of-plane applied field in the
1DM equations, where Hpin represents the
magnitude of the experimentally observed
pinning field (defined as the minimum
field needed to overcome the pinning),
and Lp is related to the space periodicity
of the pinning profile along the strip axis.
See Refs [63, 64] for further details of the
inclusion of pinning in the 1DM.

• We have also considered that the driv-
ing force on the DW, either the applied
field and/or the current, is static once
they are applied. However, experimental
measurements of the current-driven DW
dynamics are usually done by injecting
current pulses with a finite duration.
Different behaviors have been experimen-
tally observed depending on the material
parameters. For example, the experiments
by Vogel et al. [88] indicated that a DW
starts to move as soon as the current pulse
is turned on in Pt/Co stacks, and it stops
once the current pulse is switched off. On
the other hand, under certain conditions
of low damping and moderate DMI [89],
the acceleration and deceleration times
can be different, a fact which results in a
dependent velocity on the duration of the
current pulse, and consequently, on an
inertial DW motion [89]. Of course, the
micromagnetic and the 1D models devel-
oped here can be also used to study the
DW dynamics under field and/or current
pulses.

• Thermal effects are also other ingredients
which need to be taken into account to
provide a more accurate description of
DW experiments. Although here we have
assumed deterministic conditions, our
methods can be extended to account for
these thermal effects. In particular, ther-
mal fluctuations can be directly included
in the formalisms by adding a stochastic
thermal field to the deterministic effective
in LLG equations. The magnetization
dynamics is therefore governed by the

corresponding stochastic Langevin–LLG
equation. Details of this stochastic for-
malism and the resulting stochastic DW
dynamics can be consulted in Refs [63, 90,
91]. See Ref. [92] and references therein
for an analysis of numerical aspects when
solving micromagnetic problems with
thermal noise. Additionally, when a cur-
rent is flowing along the HM and/or along
the conducting magnetic layers, Joule
heating effects could become relevant
to understand the current-driven DW
dynamics. If the temperature of the sys-
tem approaches Curie temperature, the
LLG equation must be replaced by the
Landau–Lifshitz–Bloch equation, which
permits to evaluate the magnetization
dynamics for high temperatures. We
have also developed a micromagnetic
formalism which solves the magne-
tization dynamics self-consistently as
coupled to the heat transport in the sys-
tem. Indeed, the formalism solves the
Landau–Lisfhitz–Bloch equation coupled
to the heat transport equation, which
describes the temporal evolution of the
temperature. Details of this extended
micromagnetic framework and the result-
ing current-driven DW dynamics can be
consulted elsewhere [93–95].

Together with the preceding aspects,
there exist other points which need to be
further designed and optimized to develop
DW-based devices. In particular, adjacent
DWs in a strip experience a magnetostatic
repulsion [96, 97] which influences their posi-
tion at rest once the driving force is turned
off. Besides, all DW-based devices require
the nucleation of DWs in the magnetic layer
as a preliminary step. To conclude, we briefly
comment our suggestions to address these
still open questions, based on the emergent
ideas from micromagnetic simulations:

• The energy landscape along a FM strip
experienced by DWs can be also spatially
modulated by ion irradiation with differ-
ent doses [98]. Specifically, it has been
experimentally shown that the PMA can
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be controlled by this irradiation, and this
can be used to generate a periodic pinning
profile along the strip axis where the DWs
stay at rest at the minima of the PMA land-
scape. It has been also shown that such
PMA modulation favors a unidirectional
ratchet-like propagation DW motion by
field pulses [98]. Micromagnetic and the
1DM can be also used to describe such
a unidirectional ratchet-like field-driven
DW motion [95, 99]. Both models have
been used to describe the experimental
observation and to propose also other
energy profiles designed to promote the
bidirectional DW movement of series of
DWs by current pulses.

• Apart from the efficient current DW
motion, DW-based devices are also
required to generate series of DWs in
an efficient and controlled manner. Nucle-
ation of a reversed domain in a strip
initially magnetized along the out-of-plane
direction is usually done by injecting a cur-
rent pulse along an orthogonal conducting
line to the FM strip axis. This current
pulse generates a magnetic field, which
can locally reverse the initial direction of
the magnetization in the FM strip under
the conductive line (see, for instance, Ref.
[22]). This process can be also described
by means of micromagnetic simulations
[100]. Moreover, micromagnetic simula-
tions have been used to show that it is
possible to nucleate and drive series of
DWs along a FM strip using two con-
ductive orthogonal strips which serve to
generate a local in-plane magnetic field
[100]. The nucleation of series of DWs,
and their shifting along the strip takes
place due to the Oersted field generated by
current pulses along the conducting strips

and the effective field due to the SHE in the
HM underneath [100]. If, in addition, the
FM strip presents a periodic modulation
of the PMA as discussed in the previous
paragraph, this method could be exploited
to develop novel, efficient, and controlled
DW-based devices.

In summary, these are just some ideas
among many others which could be sug-
gested to develop novel DW-based devices.
Therefore, the numerical and theoretical
methods presented in this article will be of
relevance, not only for theoreticians but also
for experimenters in the design and interpre-
tation of their experiments during the next
years. As mentioned at the beginning, the
aim of the present article goes in that direc-
tion. Besides of the study of DW motion, the
developed mMs that we have presented here
will be also useful to study the magnetization
dynamics of other systems. For instance, the
switching of the magnetization in a magnetic
element, the analysis of the excitation and
propagation of spin waves, and their interac-
tion with other magnetic patterns, and even
the dynamics of other magnetic patterns
such as skyrmions can be naturally studied
with the presented mMs.
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