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Abstract

This paper characterizes an efficiency-inducing policy for a polluting oligopoly when

pollution abatement is technologically feasible, and when environmental damage depends

on the pollution stock. Using a dynamic policy game between the regulator and the

oligopolists, we show that a tax-subsidy scheme can implement the efficient outcome

as a regulated market equilibrium. The scheme consists of a tax on production and a

subsidy that can either be on abatement efforts or on abatement costs. Both schemes

prescribe a different tax rule, but both implement the efficient outcome. If firms act

strategically, taking into account the evolution of the pollution stock when they decide

on abatement and production, the subsidy reflects the divergence between the social

and private valuation of the pollution stock associated with the abatement decision.

Consequently, the tax has to correct the two market failures associated with production:

the market power of the firms and the negative externality caused by pollution. Using

an LQ (differential) policy game, we show that the tax increases with the pollution stock

for both schemes, and that the application of a subsidy on abatement costs leads to a

laxer tax rule. Interestingly, it also yields a lower fiscal deficit at the steady state. Thus,

from a fiscal perspective, the policy recommendation is the application of a subsidy on

abatement costs.

Keywords: oligopoly, homogeneous good, Cournot competition, abatement, produc-

tion tax, abatement subsidies, stock pollutant, differential games

JEL Classification System: H23, L12, L51, Q52, Q55

1 Introduction

A very influential and seminal paper by Benchekroun and Long (1998) shows that there

is a time-independent tax rule for polluting oligopolists that implements the efficient

allocation as a regulated market equilibrium. The optimal tax increases with the pollution

stock, but the authors found that it may be negative when the pollution stock is low, i.e.
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the optimal policy could consist of subsidizing production for an initial time interval.1

This result is not so surprising if we consider that a polluting oligopoly is inefficient

because two market failures are operating at the same time but with a different bias.

On one hand, firms have market power which causes a reduction of production below

the efficient level. On the other hand, pollution is an example of a negative externality

that tends to increase production above the efficient level. In the first case, the optimal

policy consists of a subsidy on production to close the gap between the price and the

marginal revenue of the firms. In the second case, the optimal policy is to apply a tax

on emissions to drive firms to internalize the negative externality. If the first market

distortion dominates the second one, the optimal policy for polluting oligopolists would

be a subsidy on production. Nevertheless, Mart́ın-Herrán and Rubio (2021) have shown

that if environmental damages are high enough, the optimal policy consists of taxing

production for any level of the pollution stock.

The aim of this paper is to characterize the efficiency inducing policy for polluting

oligopolists if pollution abatement is technologically feasible. In this case, we have to

distinguish between gross emissions linked to production and net emissions that depend

on abatement efforts developed by the firms. In this framework, a tax on net emis-

sions cannot implement the efficient solution because it penalizes production and rewards

abatement at the same rate, and we would need to do it at different rates to adjust the

two control variables of the model: abatement and production. Recently, Mart́ın-Herrán

and Rubio (2018a) addressed this issue for the case of a polluting monopoly. Following

the argument we have previously presented, they showed that the regulated market equi-

librium is efficient for a policy mix that combines a tax on emissions with a subsidy on

production. But still in this case the tax could be negative for low values of the pollution

stock.2 Although a subsidy on production in this framework is a policy to recover the

1In their model a unit of production generates one unit of emissions and there is no abatement. Thus,

the tax on emissions operates as a tax on production.
2Borrero (2022) shows that this is a particular result that only happens for the monopoly. He proves

that when the number of firms is higher than or equal to two, the first-best emission tax is always positive

for any level of the pollution stock. Thus in this case, the tax would correct the externality and the

subsidy would correct the market power of the firms.
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efficiency of the market, it could be seen by the regulatory agencies as a policy against

competition and it could be questioned and difficult to apply. To avoid this criticism,

in this paper we propose, following Pal and Saha (2013), a policy that consists of penal-

izing production and rewarding abatement but a different rate i.e. using two different

instruments.3 In fact, we propose two tax-subsidy schemes that can implement the effi-

cient allocation - one policy mix that combines a tax on production with a subsidy on

abatement effort, and a second policy mix for which the subsidy is on abatement costs.4

Our model can be read as either an extension of Mart́ın-Herrán and Rubio (2018a) for

the case of a polluting oligopoly, or an extension of Benchekroun and Long (1998) to

incorporate an abatement technology.

For a general version of the model, we find that the subsidy will depend solely on

the divergence between the social and private valuation of the pollution stock. When

the subsidy is applied to abatement efforts, the subsidy is proportional to the difference

between the social and private shadow price of the pollution stock. If the subsidy is on

abatement costs, it is equal to the ratio between the private and social shadow prices. In

both cases, the subsidy will be positive. On the other hand, the tax, as in Benchekroun

and Long (1998), has to correct the two market failures associated with production. Thus,

we find that the optimal tax is equal to the difference between the marginal revenue and

the price, which is negative, plus the difference between the social and private shadow

prices, which is positive. The net effect could be negative. In any case, it is clear that the

production tax rate will be lower than the abatement subsidy rate when this is applied

3Pal and Saha (2013) show in a static model of a mixed duopoly with pollution that the government

can implement the socially optimal outcome by applying a tax on production and a subsidy on the

abatement effort and keeping the public firm fully public.
4A classic paper on environmental regulation that incorporates a subsidy on costs is Katsoulacos and

Xepapadeas (1996). In this paper, the authors analyze in a static setting the efficiency-inducing policy for

a duopoly with spillovers consisting of a tax on emissions and a subsidy on R&D investment costs, where

R&D investment reduces the emissions to output ratio. More recently, Saltari and Travaglini (2011) and

Menezes and Pereira (2017) study environmental regulation with subsidies in a dynamic setting. Saltari

and Travaglini (2011) analyze a policy mix consisting of a tax on a polluting input and a subsidy on

abatement investment, whereas Menezes and Pereira (2017) focus on a tax-subsidy scheme based on a

tax on emissions and a subsidy on investment costs.
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to the abatement effort.

To advance in the analysis of the optimal policy rules, we solve, in the second part of

the paper, an LQ (differential) policy game between the regulator and the oligopolists.

The results confirm that, regardless of whether a subsidy is applied to abatement effort

or to abatement costs, the tax could be negative for low levels of the pollution stock.

Nevertheless, the tax increases with the pollution stock. A numerical exercise allows us

to evaluate how the different parameters of the model influence the optimal tax rule and

its steady-state value. We find that with high environmental damages, high efficiency

of the resources devote to abatement, and more competition in the market, we should

expect a tax that is always positive. On the other hand, the subsidies are always positive

and increase with the pollution stock. Interestingly, we find that although the differential

game is linear-quadratic the subsidy rule when the subsidy is for abatement costs is not

linear. Moreover, we would like to highlight that the model predicts that competition is

good for the environment. We show analytically that with more firms in the industry, the

steady-state pollution stock decreases, and the numerical exercise shows that although

each firm’s abatement and production decreases, the total production and abatement of

the industry increases. Thus, total abatement monotonically increases with competition,

and this increase is enough to yield decreasing total emissions compatible with an in-

creasing total output. Finally, we compare the optimal tax rules that are obtained when

the two different subsidies are applied. From this comparison, we find that the optimal

tax rule is laxer when a subsidy on abatement costs is applied. In this case, both the

intersection point with the vertical axis and the slope of the tax rule are lower and conse-

quently the steady-state tax will be lower. Notice that both policy mixes implement the

same efficient solution. Thus, if the tax rule is less strict, the tax at the steady state will

be lower. This means that lower tax revenues will be collected by the government if the

subsidy is on abatement costs. However, from a fiscal point of view, what is important is

the fiscal balance of the policy mix. Unfortunately, the complexity of the fiscal balance

expression prevents finding any analytical conclusion for the comparison of the fiscal bal-

ances. Nevertheless, we can indicate that the numerical exercise shows that both policies

present a fiscal deficit, but that the fiscal deficit is lower when the government subsidizes
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the abatement costs. Therefore, we can conclude that when this type of subsidy is used

both the fiscal revenues and subsidy expenses are lower and that the net effect is a lower

fiscal balance. We should take this conclusion with caution, since this result is based on

numerical simulations. If the criterion for selecting the type of subsidy to accompany

the tax is to select the one that leads to the most favorable fiscal balance, the policy

recommendation would be to opt for a subsidy on abatement costs.

1.1 Literature Review5

A list of papers addressing the regulation of firms with market power in the context of

stock dynamics includes Bergstrom et al. (1981), Karp and Livernois (1992), and Karp

(1992) for the case of a non-renewable resource and Benchekroun and Long (1998, 2002),

Stimming (1999), Feenstra et al. (2001), and Yanase (2009) for the case of polluting

firms.6 Bergstrom et al. (1981) show that there exists a continuum of tax/subsidy sched-

ules on output that lead to a monopoly to extract efficiently a non-renewable resource.

However, as these taxes/subsidies are time-dependent, they are not in general subgame

perfect. Karp and Livernois (1992) design a subgame-perfect tax rule that implements

the efficient outcome for a monopoly. Karp (1992) extends this result to the case of an

oligopoly that extracts a common property non-renewable resource, and Benchekroun

and Long extends this to the case of a polluting oligopoly.7 The two papers by Stimming

(1999) and Feenstra et al. (2001) studying the case of a duopoly assume that environ-

mental damages depend on current emissions and focus on investment in an abatement

5Some of the references that appear in this review have already been commented on Mart́ın-Herrán

and Rubio (2018a, 2018b).
6Xepapadeas (1992) and Kort (1996) could be included in this list, but in their papers the market

power of the polluting firms is not clearly recognized.
7Benchekroun and Long (2002) focussed on the case of a polluting monopoly. For this case, they show

that tax rules are not unique. Im (2002) shows that for a monopoly extracting a non-renewable resource,

a constant ad valorem subsidy induces the monopoly to behave efficiently if the demand is isoelastic and

the marginal costs of extraction are constant. Daubanes (2011) clarifies that this is one case of a family

of paths of ad valorem taxes/subsidies that induce efficiency in the resource’s extraction, and shows that

some of the paths may be strict taxes.
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technology. The environmental policy in these papers is given and the analysis assesses

the effects of a stricter environmental policy comparing taxes vs. emission standards.

After the papers by Benchekroun and Long (1998, 2002), Yanase (2009) is the first pa-

per where the environmental policy is endogenously determined. The author examines a

non-cooperative (differential) policy game between national governments in a model of

international pollution control of a stock pollutant in which duopolists compete myopi-

cally in quantities in a third country with product differentiation and expense resources

in abatement activities. The comparison of the Markov perfect Nash equilibrium of the

game for different policy instruments establishes that an emission tax produces more

pollution and lower welfare than those generated by a standard. This author assumes an

end-of-the-pipe abatement technology like the one used in this paper.8

Other papers addressing environmental regulation of polluting firms with market

power in a dynamic context include Benchekroun and Chaudhuri (2011), Mart́ın-Herrán

and Rubio (2018a), and Dragone et al. (2022). Benchekroun and Chaudhuri (2011) show

that the imposition of a tax on emissions that depends on the pollution stock can induce

stable cartelization in a polluting oligopoly, making the regulation of the market unde-

sirable. Mart́ın-Herrán and Rubio (2018a) show that a tax-subsidy scheme, consisting

of taxing emissions and subsidizing production, implements the efficient outcome as a

regulated market equilibrium for a polluting monopoly with an abatement technology

of the type proposed by Yanese (2009). They also show that taxes and standards are

equivalent in a second-best setting. In this paper, we extend this model to the case of an

oligopoly, but focusing on different tax-subsidy schemes. Dragone et al. (2022) study the

case of a polluting oligopoly with spillovers on the abatement effort where the damages

depended on the pollution stock and the total output of the industry. However, the au-

thors considered a tax on firms’ accumulated emissions and focused mainly on the effect

of competition on the aggregate abatement.

8Recently, Yanase and Kamei (2022) study a two-country differential game model of transboundary

pollution with international polluting oligopolies. The authors assume that governments use permits to

regulate pollution. They compare autarky and bilateral free trade and conclude that free trade is better

for the environment than autarky.
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Another set of papers analyzes investment in pollution abatement capital in different

settings includes Saltari and Travaglini (2011), Karp and Zhang (2012), Menezes and

Pereira (2017), and Mart́ın-Herrán and Rubio (2018b). Saltari and Travaglini (2011)

assume that uncertainty over the dynamics of pollution stock affects firm investment

decisions and study, for the case of a competitive firm, how a tax-subsidy scheme based

on a tax on the polluting input and a subsidy on investment influences the firm’s decisions

on investment. However, in their model, there is no connection between the use of the

polluting input and the evolution of the pollution stock. Karp and Zhang (2012) compare

emission taxes and standards when a regulator and a representative firm have asymmetric

information about abatement costs, and all agents use Markov perfect decision rules.

The firm can reduce future abatement costs through investment. For a linear-quadratic

specification of the model and using numerical methods, they find that a tax has some

advantage over a standard. Menezes and Pereira (2017) study the dynamic competition of

a duopoly in supply schedules that can invest in an abatement technology. In their model,

damages are linear in the pollution stock and there are also technological spillovers. The

focus is on the characterization of the optimal policy mix consisting of a tax on emissions

and a subsidy on investment costs, assuming that the regulator can commit for the entire

temporal horizon and that firms’ production, investment, and abatement capital are given

by their steady-state values when the regulator decides the optimal policy. Our paper

differs from this work mainly in three aspects. Firstly, we do not assume that the regulator

can commit for the entire temporal horizon, instead we look for the feedback Stackelberg

equilibrium of the differential game played by the regulator and the oligopolists, i.e. the

regulator maximizes net social welfare subject to best responses of the firms to the policy

adopted by the regulator. Secondly, we assume quadratic environmental damages while

Menezes and Pereira (2017) assume a linear damage function. Thirdly, we consider two

tax-subsidy schemes that are based on a tax on production instead of a tax on emissions,

and we also consider a subsidy on the abatement effort. Finally, Mart́ın-Herrán and

Rubio (2018b) analyzed the second-best emission tax for a polluting monopoly with

abatement investments investigating the consequences for investment of two different

damage structures - one linear and one quadratic in the pollution stock.
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Recently, Bisceglia (2020) characterized the efficiency-inducing tax rule imposed on

output for an oligopoly that exploits a common productive resource, and Benchekroun

at al. (2022) proposed for an oligopoly that extracts a common non-renewable resource,

a novel tax scheme to implement the efficient outcome where the tax bill paid by a firm

depends only on the current resource stock. Finally, Feichtinger et al. (2022) presented

a model of a polluting common renewable resource exploited by an oligopoly in which

firms can invest in an abatement technology. The authors show that if the demand is

linear, the extraction costs are linear, and the access is regulated to induce the industry

to harvest at the maximum sustainable yield, then there exists a tax on accumulated

emissions of the firm at which aggregate emissions drop to zero. Taxation induces firms

to invest in the abatement technology and eliminate emissions.9

The remainder of the paper is organized as follows. Section 2 presents the model

and derives the efficient conditions. Section 3 characterizes the first-best policy mix,

distinguishing between the two tax-subsidy schemes studied in this paper. In Section 4

an LQ policy game is solved. Section 5 offers some concluding remarks and points out

lines for future research.

2 The Model and the Efficient Conditions

We consider a Cournot oligopoly that faces a market demand represented by the de-

creasing inverse demand function P (Q(t)) where Q(t) =
∑n

i=1 qi(t) is the output of the

industry at time t and n ≥ 2 is the number of firms. Firms produce a homogeneous good

using the same productive technology, described by the cost function PC = cqi(t). The

production process generates pollution emissions, but after an appropriate choice of mea-

surement units we can say that each unit of output generates one unit of pollution. How-

ever, emissions can be reduced without declining output if the firms employ an abatement

technology. The abatement technology is assumed to be the end-of-the-pipe type. For

this type of abatement technology, the emission function is: ei(t) = qi(t) − wi(t), where

9In their model, if access to the common resource is limited to attain the maximum sustainable yield,

the emission tax has no impact on the environmental damages.
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wi(t) is the abatement effort of firm i.10 The abatement cost function is represented by

AC(wi(t)) with both (AC)′(wi) and (AC)′′(wi) being positive. The focus of the paper is

on a stock pollutant that evolves according to the following differential equation:

ẋ(t) =
n∑

i=1

(qi(t)− wi(t))− δx(t), x(0) = x0 ≥ 0, (1)

where x(t) stands for the pollution stock and δ > 0 for the decay rate of pollution. The

environmental damages are given by the function D(x(t)) and is assumed to be strictly

convex. Thus, the policy game we analyze in this paper is a differential game between a

welfare maximizing regulator and profit maximizing oligopolists. Before analyzing it, we

first derive the first-order conditions that characterize the efficient outcome.

The efficient conditions are obtained from the maximization of the discounted present

value of net social welfare defined as the difference between gross consumer surplus minus

costs and environmental damages.11

max
q1,...,qn,w1,...,wn

∫ ∞

0

e−rt

{∫ Q

0

P (Q′)dQ′ − cQ−
n∑

i=1

AC(wi)−D(x)

}
dt

s.t. ẋ =
n∑

i=1

(qi − wi)− δx, x(0) = x0 ≥ 0,

where r is the time discount rate.

Solving by dynamic programming, the solution to this dynamic optimization problem

must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation:

rW (x) = max
q1,...,qn,w1,...,wn

{∫ Q

0

P (Q′)dQ′ − cQ−
n∑

i=1

AC(wi)−D(x)

+W ′(x)

(
n∑

i=1

(qi − wi)− δx

)}
, (2)

10This approach has been adopted in a dynamic setting by other authors such as Yanase (2009),

Mart́ın-Herrán and Rubio (2018a), and Dragone et al. (2022). The model we propose can be seen in a

certain way, as already mentioned in the introduction, as an extension of the model studied in Mart́ın-

Herrán and Rubio (2018a) for an oligopolistic market, instead of a monopoly. As such, both models

share certain important ingredients and features that are repeated here for completeness and readability.
11The time argument will be eliminated when no confusion arises.
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where W (x) represents the maximum discounted present value of net social welfare for

the current value, x, of the pollution stock.

The maximization of the right-hand side (RHS) of the HJB equation yields the fol-

lowing first-order conditions (FOCs):

P = c−W ′(x), i = 1, ...n, (3)

(AC)′(wi) = −W ′(x), i = 1, ..., n. (4)

The first FOC establishes that the price must be equal to the marginal costs which include

the marginal cost of production plus the social valuation (shadow price) of the pollution

stock. The latter is given by the reduction in the present value of the net social welfare

because of an increase in the pollution stock caused by an increase in production. On

the other hand, the second FOC requires that the marginal cost of abatement is equal to

the marginal benefit defined by the increase in the present value of the net social welfare.

This increase is caused by a reduction in the stock because of an increase in abatement.

Notice that W ′(x) is a marginal cost when we are considering an increase in production,

and it stands for a marginal benefit when we are evaluating an increase in abatement.

To implement these conditions as a regulated market equilibrium, we propose two tax-

subsidy schemes. The first scheme combines a tax on gross emissions, which in our model

operates as a tax on production, with an abatement subsidy. The second scheme uses

a subsidy on abatement costs instead of an abatement subsidy. In the next section, we

calculate the stagewise feedback Stackelberg equilibrium (SFSE) of a (differential) policy

game where the regulator who selects the level of the policy instruments is the leader,

and the firms that choose the levels of production and abatement are the followers. We

show that using these schemes the regulated market equilibrium will be efficient.

3 The First-Best Policy

The SFSE is based on the assumption that the regulator moves first in each moment. To

find the regulator’s optimal policy, we apply backward induction, substituting the firms’

reaction functions in the regulator’s HJB equation, and computing the optimal strategy

11



by maximizing the right-hand side of this equation. The resulting outcome is a stagewise

feedback Stackelberg solution, which is a Markov-perfect equilibrium. For this kind of

equilibria, no commitment is required for the entire temporal horizon. For our model,

this equilibrium is time consistent and also satisfies subgame perfection.12

3.1 Tax-Subsidy Scheme I

The output and abatement selection occurs in the second stage. Firm i chooses its output

and abatement to maximize the discounted present value of net profits:

max
qi,wi

∞∫
0

e−rt {P (Q)qi − cqi − AC(wi)− τqi + vwi} dt,

subject to differential equation (1) where τ is the production tax and v stands for a

subsidy on abatement. Following the seminal article by Benchekroun & Long (1998)

and other papers in the theoretical literature on the topic, we assume that the firm acts

strategically at this stage taking into account the dynamic constraint given by (1).

The solution to this dynamic optimization problem must satisfy the following HJB

equation:

rV I(x) = max
qi,wi

{
P (Q)qi − cqi − AC(wi)− τqi + vwi + (V I)

′
(x)

(
n∑

i=1

(qi − wi)− δx

)}
,

where V I(x) stands for the maximum discounted present value of net profits for the

current value, x, of the pollution stock.13

From the FOCs for the maximization of the right-hand side of the HJB equation, we

get:

P ′qi + P = c+ τ − (V I)
′
(x), i = 1, ..., n, (5)

(AC)′(wi) = v − (V I)
′
(x), i = 1, ..., n. (6)

12Mart́ın-Herrán and Rubio (2021) showed that the SFSE coincides with the Global Stackelberg Equi-

librium used by Benchekroun and Long (1998) if the focus is on the design of the first-best policy that

implements the efficient outcome as a regulated market equilibrium.
13The superscript I stands for Tax-Subsidy Scheme I.
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The left-hand side (LHS) of the first FOC stands for the marginal revenue of the firm

and the RHS represents the marginal costs that include the marginal cost of production,

the tax, and the private valuation (shadow price) of the pollution stock. The latter is

given by the reduction in the present value of the firm’s net profits because of an increase

in the pollution stock caused by an increase in production. On the other hand, the

LHS of the second FOC represents the marginal cost of abatement while the marginal

benefits appear on the RHS. These marginal benefits include the subsidy, and the increase

in the present value of the firm’s profits because of the reduction in the pollution stock.

Notice that (V I)
′
(x) is a marginal cost when we are considering an increase in production,

and it stands for a marginal benefit when we are evaluating an increase in abatement.

The system of reaction functions (5) implicitly defines the firm’s strategy qi(τ, x) and

(6) directly yields wi(v, x). Notice that the optimal production does not depend on the

subsidy and the optimal abatement effort does not depend on the tax. This is because of

the assumption that firms use an end-of-the-pipe technology and that the regulator sets

up a tax on gross emissions/output instead of on net emissions.14

In the first stage, the regulator selects the emission tax rate and subsidy by unit of

abatement that maximizes net social welfare defined as the sum of consumer surplus and

oligopoly net profits plus tax revenues minus subsidies and environmental damages:

max
τ,v

∞∫
0

e−rt

{∫ Q

0

P (Q′)dQ′ − PQ+
n∑

i=1

πi + τQ− vΩ−D(x)

}
dt,

subject to differential equation (1), where πi stands for firm i’s net profits and Ω =∑n
i=1wi. Notice that consumer expenses and firms’ revenues on one hand, and firms’

tax expenses and subsidies and regulator tax revenues and subsidy expenses on the other

14If the regulator were to tax net emissions, the tax rate would affect both production and abatement.

However, since net emissions are given by the difference between gross emissions/output and the abate-

ment, this tax-subsidy scheme would imply a “double” subsidy on abatement since, on the one hand,

firms would receive an explicit subsidy on abatement and, on the other hand, they would obtain an

implicit subsidy equal to the tax rate on net emissions because abatement reduces taxes paid by firms

for a given level of output.
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hand, cancel out. Therefore, this optimization problem can be rewritten as:

max
τ,v

∞∫
0

e−rt

{∫ Q(τ,x)

0

P (Q′)dQ′ − cQ(τ, x)−
n∑

i=1

AC(wi(v, x))−D(x)

}
dt,

where Q(τ, x) =
∑n

i=1 qi(τ, x).

The solution to this dynamic optimization problem must satisfy the following HJB

equation:15

rW (x) = max
τ,v

{∫ Q(τ,x)

0

P (Q′)dQ′ − cQ(τ, x)−
n∑

i=1

AC(wi(v, x))−D(x)

+ W ′(x)

(
Q(τ, x)−

n∑
i=1

wi(v, x)− δx

)}
. (7)

From the FOCs for the maximization of the RHS of the HJB equation, we get:

(P − c+W ′(x))
∂Q

∂τ
= 0, (8)

−
n∑

i=1

((AC)′(wi) +W ′(x))
∂wi

∂v
= 0. (9)

Assuming that both output and abatement are affected by the tax and subsidy, these

conditions are immediately satisfied if the efficient conditions hold. Thus, using the

efficient conditions along with FOCs (5) and (6), we can characterize the first-best policy.

Conditions (3) and (5) allow us to define the optimal tax:

τ I
∗
(x) = P ′qi − (W ′(x)− (V I)

′
(x)), (10)

and conditions (4) and (6) the optimal subsidy:

vI
∗
(x) = −(W ′(x)− (V I)

′
(x)). (11)

15Although in Section 2, the discounted present value of net social welfare was maximized with respect

to production and abatement and now it is maximized with respect to the tax and the subsidy, as long as

the optimal values of these policy instruments implement the efficient solution characterized in Section

2, the dynamic optimization problem solved in this section yields the same discounted present value of

net social welfare as that obtained in Section 2. For this reason, we will use the same notation for the

regulator’s value function in both cases, W. The same argument applies in the analysis of the Tax-Subsidy

Scheme II. The first-best policy implements the efficient solution and consequently yields the same value

function for the regulator.
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Notice that in both cases the policy instrument reflects the difference between the social

and private valuations of a variation in the pollution stock. In the case of the tax, the

variation is due to an increase in the pollution stock caused by an increase in net emissions

provoked by an increase in output. In the case of the subsidy, the variation is due to

a decrease in the pollution stock explained by a decrease in net emissions as a result of

an increase in the abatement effort. In the case of the tax, we find an additional term

equal to the difference between the marginal revenue of the firms and the price that

appears because the firms have market power. With the tax, the regulator is correcting

two distortions in the market allocation: the market power of the firms and a negative

externality. For this reason, the tax has two components. The first, that is negative,

operates as a subsidy on production to correct the market power of the firms, closing

the gap between the price and the marginal revenue. The second, that is expected to be

positive, operates as a tax on emissions to correct the negative externality.16 Thus, we

can state that:

Remark 1 The production tax could be negative if the distortion cause by the market

power of the firms is bigger than the distortion caused by the negative externality.

Nevertheless, if the main problem in the market is pollution, we should expect the

opposite result and the optimal policy would be to tax gross emissions. Observe that even

with a subsidy on abatement, the tax still has to correct the two distortions associated

with production as occurs in Benchekroun and Long (1998).

On the other hand, if we compare the optimal levels of the two instruments, we obtain

the following expression

τ I
∗
(x)− vI

∗
(x) = P ′qi.

Then, we can conclude that:

Remark 2 The production tax rate is lower than the abatement subsidy rate.

16In the LQ policy game we study in the next section we confirm that |W ′(x)| >
∣∣∣(V I)

′
(x)
∣∣∣ so that

−(W ′(x)− (V I)
′
(x)) is positive. Notice that if this was not the case, the tax and the subsidy would be

negative for all x.
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The difference between the two rates is due to the firms’ market power. Obviously, if

the firms are price-takers, the two rates coincide.

Remark 2 suggests that we should not expect that the proposed tax-subsidy scheme to

be self-financing. In fact, the difference between the tax rate and the abatement subsidy

rate indicates that the government could run a fiscal deficit. Of course, whether the policy

yields a fiscal surplus or deficit also depends on the levels of production and abatement,

but for a given pair of total production and abatement efforts, it will more likely obtain a

fiscal deficit if the subsidy rate is larger than the tax rate. The numerical exercise solved

in Section 4 is consistent with this conjecture since for the baseline case the fiscal balance

is negative. Thus, the Tax-Subsidy Scheme I would implement the efficient outcome, but

it would create a fiscal deficit.

3.2 Tax-Subsidy Scheme II

With a subsidy on abatement costs, firm i chooses its output and abatement to maximize

the discounted present value of net profits given in this case by:

max
qi,wi

∞∫
0

e−rt {P (Q)qi − cqi − (1− v)AC(wi)− τqi} dt,

subject to differential equation (1) where τ again is the production tax and v ∈ (0, 1)

stands for a subsidy on abatement cost. v represents the percentage of the abatement

costs that are covered by the subsidy. With this scheme, FOC (5) does not change, but

FOC (6) will read:17

(1− v)(AC)′(wi) = −(V II)
′
(x). (12)

Then, using (4), we find that the optimal subsidy is given by the following expression:

1− vII
∗
(x) =

(V II)
′
(x)

W ′(x)
. (13)

In this case, the subsidy is also given by the different valuation that firms give to the

pollution stock, but not as a difference between the social and private shadow prices of

the pollution stock, as occurs when the subsidy is on abatement effort, but as a ratio, as

17The superscript II stands for Tax-Subsidy Scheme II.
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a percentage of the private shadow price over the social shadow price. Notice that the

subsidy will be positive only if
∣∣∣(V II)

′
(x)
∣∣∣ < |W ′(x)|. This point is confirmed in the LQ

policy game we analyze in the next section.

Thus, the efficient solution could be implemented as a regulated market equilibrium

using these two tax-subsidy schemes. Consequently, we cannot rank them looking at

the net social welfare that is achieved using the two tax-subsidy schemes because both

implement the efficient solution, i.e. with both schemes the maximum net social welfare

is achieved. An alternative would be to assess them from a fiscal perspective. The scheme

to recommend would be the one that yields a higher/lower fiscal surplus/deficit. In the

next section, we introduce an LQ policy game that allows us to advance in the analysis

of these two tax-subsidy schemes.

4 The LQ Policy Game

The LQ differential game we analyze in this section considers a polluting oligopoly that

faces a linear (inverse) demand function given by P = a−Q, where P is the price and Q

the total output of the industry with a > c. On the other hand, we assume a quadratic

abatement cost function given by AC(w) = γw2/2. The abatement technology has de-

creasing returns to scale, with the parameter γ measuring the extent of such decreasing

returns. The disutility from environmental deterioration is given by the damage function

D(x) = dx2/2, d > 0. Next, we characterize the efficient solution.

4.1 The Efficient Solution

If we focus on the symmetric solution, the optimal strategies for production and abate-

ment from (3) and (4) are:

q∗(x) =
1

n
(a− c+W ′(x)), (14)

w∗(x) = −1

γ
W ′(x). (15)
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Then, optimal emissions can be obtained as the difference between optimal production

(gross emissions) and abatement:

e∗(x) = q∗(x)− w∗(x) =
a− c

n
+

γ + n

nγ
W ′(x). (16)

Now, substituting production and abatement by the efficient strategies (14) and (15)

in the regulator’s HJB equation (5) for the LQ policy game and rearranging terms, we

obtain the following nonlinear differential equation:

rW (x) =
1

2
(s2 − dx2) + (s− δx)W ′(x) +

γ + n

2γ
(W ′(x))2, (17)

where s = a− c > 0.

In order to find the solution for this equation, we guess a quadratic representation for

the value function W :

W (x) =
Ar

2
x2 +Brx+ Cr,

which implies that W ′(x) = Arx + Br and where Ar, Br, and Cr are unknowns to be

determined.18

The substitution of W (x) and W ′(x) into (17) gives a system of Riccati equations

that must be satisfied for every x. Selecting the stable solution of this system, which

requires that dẋ/dx < 0, we obtain the following values for the first two coefficients of

the regulator’s value function:

Ar =
γ(r + 2δ)− (γ2(r + 2δ)2 + 4dγ(γ + n))1/2

2(γ + n)
< 0, (18)

Br =
sγAr

γ(r + δ)− (γ + n)Ar

< 0. (19)

Then, the optimal strategies for production, abatement, and emissions read:

q∗(x) =
s(γ(δ + r)− nAr)

n(γ(δ + r)− (γ + n)Ar)
+

Ar

n
x, (20)

w∗(x) =
sAr

(γ + n)Ar − γ(δ + r)
− Ar

γ
x, (21)

e∗(x) =
γs(r + δ)

n(γ(δ + r)− (γ + n)Ar)
+

(γ + n)Ar

nγ
x. (22)

18The subscript r refers to the regulator and stands for the efficient solution.
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From the optimal strategy for emissions and the differential equation (1), and taking

into account the first Riccati equation for Ar, the steady-state pollution stock is obtained:

xSS =
sγ(r + δ)

(γ + n)d+ γδ(r + δ)
.

From the expression above, it can be easily shown that the steady-state pollution stock

increases with s, r and γ, and decreases with n and d. The different parameters influence

the steady-state pollution stock in different ways. On the one hand, the market size, s,

is like a scale parameter in these kinds of models so that the higher s, the higher gross

and net emissions. Therefore, we should expect that the pollution stock increases with

the market size as the previous expression confirms. The rate of discount, as it is well

known, gives more or less weight to the future in current decisions. Thus, a higher rate

of discount will reduce the importance of the future environmental damages in today’s

decisions on production and emissions, resulting in a larger accumulation of emissions.

Finally, we also expect that a larger γ yields a larger steady-state pollution stock because

when the marginal costs of abatement are higher, firms will reduce the abatement efforts

producing more net emissions that will lead to a higher pollution stock. On the other

hand, an increase in the marginal damage function caused by an increase in parameter

d will cause a reduction in the pollution stock through an increase in its shadow price.

Notice that an increase in the shadow price will reduce the production and increase the

abatement effort resulting in lower net emissions. Finally, we find that more competition

not only reduces the market power of the firms, but also reduces the long-run equilibrium

pollution stock. In our model, competition is good for the environment.

According to the optimal strategies, production and emissions decrease with the pol-

lution stock, whereas abatement increases with the pollution stock. Thus, there exists a

level for the pollution stock for which emissions are zero. From equation e∗(x) = 0 this

value reads:

xe = − sγ2(r + δ)

Ar(γ + n) (γ(δ + r)− (γ + n)Ar)
. (23)

This threshold can be easily compared with the steady-state value of the pollution stock,

as follows:

xe − xSS = − sγ3δ(r+δ)

Ar(γ + n) (γδ − (γ + n)Ar) (γ(δ+r)− (γ + n)Ar)
.
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The difference above is positive because Ar is negative.

Proposition 1 The efficient solutions for the total output, the abatement, and the emis-

sions are non-negative in the interval [0, xe] with the steady-state pollution stock xSS

belonging to this interval. In this interval, total output and emissions decrease and abate-

ment increases with the pollution stock.

Finally, we characterize the dynamics of the pollution stock. Substituting emissions

given by (22) in the dynamics of the pollution stock defined by (1), we obtain the following

differential equation for the pollution stock:

ẋ =
sγ(r + δ)

γ(r + δ)− (γ + n)Ar

+

(
(γ + n)Ar

γ
− δ

)
x,

whose solution is:

x∗(t) = (x0 − xSS)eαt + xSS, with α =
(γ + n)Ar

γ
− δ < 0, (24)

for x0 in the interval [0, xe]. Then, the dynamics of the model can be summarized as

follows

Remark 3 If x0 is lower than xSS, abatement increases asymptotically to its steady-

state value, whereas production and emissions decrease. However, if x0 ∈ (xSS, xe],

the dynamics are the opposite and abatement decreases asymptotically to its steady-state

value, whereas production and emissions increase.

Observe that the optimal strategy for emissions (22) only gives non-negative emissions

in the interval of the pollution stock [0, xe] which includes the steady-state pollution stock.

If the initial pollution stock is larger than xe, then the non-negative constraint applies

and the efficient level of emissions is zero. In this case, the pollution would decrease

according to the differential equation ẋ = −δx until xe were reached in a finite time.

From this level, the dynamics of the pollution stock is given by (24) and the pollution

stock converges asymptotically to its steady-state value.
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4.2 Tax-Subsidy Scheme I

Once the efficient solution has been obtained we calculate the optimal policy rules that

implement the efficient outcome as a regulated market equilibrium. According to (10)

the optimal tax for a linear demand function is τ I
∗
(x) = −q∗(x) − (W ′(x) − (V I)

′
(x)),

when using (14) yields:

τ I
∗
(x) = (V I)

′
(x)− s+ (n+ 1)W ′(x)

n
. (25)

Thus, in order to completely characterize the optimal tax and the optimal subsidy, we

need to solve the firm’s HJB equation. With this aim, we substitute the tax and the

subsidy given by (25) and (11), and substitute the production and abatement defined by

(14) and (15), in the firm’s HJB equation:

rV I(x) = (a− nq)q − cq − τq + vw − γ

2
w2 + (V I)

′
(x)(n(q − w)− δx),

and we obtain the following differential equation

rV I(x) =
1

n2
(s+W ′(x))2 +

1

2γ
W ′(x)2 + (n− 1)

γ + n

γn
(V I)

′
(x)W ′(x) +

+
(n− 1)s− δnx

n
(V I)

′
(x). (26)

In order to solve this equation, we also guess a quadratic representation:

V I(x) =
AI

f

2
x2 +BI

fx+ CI
f ,

which yields (V I)
′
(x) = AI

fx + BI
f .

19 The substitution of V I(x) and (V I)
′
(x) along with

W ′(x) into (26) gives a system of Riccati equations whose solution for coefficients AI
f and

BI
f is:

AI
f =

(2γ + n2)A2
r

n(nγ(r + 2δ)− 2(n− 1)(γ + n)Ar)
> 0, (27)

BI
f =

nγ(r + 2δ)(2sγ + (2γ + n2)Br)Ar

n(nγ(r + δ)− (n− 1)(γ + n)Ar)(nγ(r + 2δ)− 2(n− 1)(γ + n)Ar)

+
(n− 1)(sγ(n(n− 4)− 2γ)− (γ + n)(2γ + n2)Br)A

2
r

n(nγ(r + δ)− (n− 1)(γ + n)Ar)(nγ(r + 2δ)− 2(n− 1)(γ + n)Ar)
, (28)

19The subscript f is used to represent the coefficients of the firm’s value function and the superscript

I denotes that the Tax-Subsidy Scheme I is applied.
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where Ar < 0 is given by (18) 20. Then, eliminating (V I)
′
(x) and W ′(x) in (25) using the

coefficients of the value functions, the optimal tax is obtained.

Proposition 2 The optimal tax is given by the following rule:

τ I
∗
(x) = − 1

n
(s+(n+1)Br−nBI

f )+
n(2(n2 − 1) + (1 + 2γ)n)A2

r − (n+ 1)γ(r + 2δ)Ar

n2γ(r + 2δ)− 2(n− 1)n(n+ γ)Ar

x,

(29)

where Ar is negative. The tax increases with the pollution stock, but it could be negative

for low values of the pollution stock.

It is easy to find values of the parameters for which the intersection point with the

vertical axis of the tax rule (29) is negative.21 When this is the case, the optimal policy

consists of setting up a subsidy for low values of the pollution stock, as in Benchekroun

and Long (1998) and for exactly the same reasons. In our model, the subsidy only corrects

the divergence between the private and social valuation of a variation in the pollution

stock caused by a variation of the abatement effort. Then, the tax, as expression (10)

shows, must correct the market power of the firms and the negative externality caused

by production. The result is that the sign of the optimal policy given by expression (10)

remains undetermined. Nevertheless, Prop. 2 establishes that the sign of the policy given

by (29) also depends on the pollution stock, and that regardless of whether the tax is

negative or positive when x = 0, the tax increases with the pollution stock.

To obtain the optimal subsidy, we only need to eliminate (V I)
′
(x) and W ′(x) in (11)

using the coefficients of the value functions already computed.

20For the monopoly (n = 1) and the duopoly (n = 2) cases, BI
f can be proven to be negative. However,

for n ≥ 3 we have shown that BI
f can take either positive or negative values.

21For instance, for s = 1000, γ = 1.5, δ = 0.01, d = 0.01, n = 2, and r = 0.03, the intersection point

with the vertical axis of the tax rule is negative. For the same values, except γ = 1.25 and d = 0.025,

we have also a negative value for the intersection point with the vertical axis. However, with γ = 1.5

and d = 0.025, the optimal tax is positive for x = 0. This possibility does not exist in the case of a

monopoly. It is easy to show that for this case, the tax is always negative for low values of the pollution

stock. Thus, to have a positive tax for all values of the pollution stock, it is necessary, although not

sufficient, to have at least two firms in the market.

22



Proposition 3 The optimal subsidy is given by the following rule:

vI
∗
(x) = BI

f −Br +
(2γ + n2 + 2(n− 1)n(γ + n))A2

r − n2γ(r + 2δ)Ar

n(nγ(r + 2δ)− 2(n− 1)(γ + n)Ar)
x, (30)

where Ar is negative. The subsidy increases with the pollution stock and it is positive for

all x ∈ [0, xe].

Proof. See Appendix.

Unlike the tax, the subsidy cannot be negative. This result establishes, according to

expression (11), that the social shadow price of the pollution stock is larger than the

private shadow price for all x, i.e. |W ′(x)| >
∣∣∣(V I)

′
(x)
∣∣∣ . Then, we can confirm that

the second term on the LHS of expression (10) is positive. Thus, the tax presents two

components, one negative - equal to the difference between the marginal revenue and the

price-, and one positive - equal to the difference between the social shadow price of the

pollution stock and its private valuation.

4.2.1 Numerical example and sensitivity analysis

In Subsection 4.1 we analyzed the effects of the model parameters on the steady-state

pollution stock. However, it is difficult to do the same exercise for the other variables of

the model, because when a parameter changes not only is the pollution stock affected,

but also the optimal policy rules obtained in the previous subsection. Thus, to know the

effect of a change in one parameter on the variables of the model, we need to evaluate how

the steady-state pollution stock is affected, and how the change affects the slope and the

intersection point with the vertical axis of the optimal policy rules. The same occurs for

the optimal strategies for production, abatement and emissions. The complexity of the

expressions prevents obtaining analytical results. For this reason, we present a numerical

exercise to get an intuition.

Let consider the following values of the parameter as a baseline case:

a− c = 1000, δ = 0.01, r = 0.03, n = 2, γ = 3, d = 0.025. (31)

From this baseline case, we carry out a sensitivity analysis with respect to the following

parameters: environmental damage (d), abatement efficiency (γ), and degree of industry
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competition (n). For each parameter, we consider five different values. In each table

(Tables 1-3), we present the optimal policy rules and the steady-state pollution stock, as

well as the regulator’s policies and the firm’s control variables, output, q, and abatement,

w, as well as the net emissions, e, evaluated at the steady-state pollution stock.

First, we consider the environmental damage coefficient d: 0.01, 0.015, 0.025, 0.035,

and 0.05.

Table 1: Sensitivity analysis of the optimal policies and firm’s controls with respect to

changes in parameter d.

d = 0.01 d = 0.015 d = 0.025 d = 0.035 d = 0.05

τ I
∗
(x) 92.54 + 0.12x 139.70 + 0.15x 190.98 + 0.21x 219.97 + 0.25x 246.83 + 0.31x

vI
∗
(x) 374.46 + 0.09x 408.24 + 0.11x 445.37 + 0.15x 466.51 + 0.18x 486.21 + 0.23x

xSS 2343.75 1574.80 950.87 681.04 477.71

τ I
∗
(xSS) 368.14 377.73 385.94 389.67 392.57

vI
∗
(xSS) 575.18 582.45 588.79 591.71 594.01

qI
∗
(xSS) 207.03 204.72 202.85 202.04 201.43

wI∗(xSS) 195.31 196.85 198.09 198.64 199.05

eI
∗
(xSS) 11.72 7.87 4.75 3.41 2.39

An easy comparison of the emission tax and the abatement subsidy for the different

entries in Table 1 allows us to conclude that as the environmental damage parameter

increases, both the intersection point with the vertical axis and the slope of the tax and

the subsidy increase, and hence, the tax and the subsidy also increase for any level of

the pollution stock. The steady-state of the pollution stock decreases as parameter d

increases. However, this fall is more than compensated by the increase in the regulator’s

optimal tax and subsidy rules, implying that at the steady state both instruments aug-

ment with d. Concerning the firm’s instruments at the steady-state, any increase of the

environmental damage parameter reduces output and augments abatement, and conse-

quently net emissions are reduced. As expected, more damages imply higher taxes and

subsidies leading to less net and gross emissions and a lower steady-state pollution stock.

Next, we focus on the effect of the abatement efficiency parameter (γ). We consider
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the following five values of γ: 2.5, 2.75, 3, 3.25, and 3.5.

Table 2: Sensitivity analysis of the optimal policies and firm’s controls with respect to

changes in parameter γ.

γ = 2.5 γ = 2.75 γ = 3 γ = 3.25 γ = 3.5

τ I
∗
(x) 146.24 + 0.198x 169.87 + 0.202x 190.98 + 0.205x 209.94 + 0.207x 227.08 + 0.210x

vI
∗
(x) 417.07 + 0.146x 432.02 + 0.149x 445.37 + 0.151x 457.34 + 0.153x 468.15 + 0.154x

xSS 881.06 917.81 950.87 980.76 1007.92

τ I
∗
(xSS) 321.20 355.29 385.94 413.65 438.81

vI
∗
(xSS) 545.87 568.47 588.79 607.16 623.84

qI
∗
(xSS) 224.67 213.18 202.85 193.51 185.03

wI∗(xSS) 220.26 208.59 198.09 188.61 179.99

eI
∗
(xSS) 4.41 4.59 4.75 4.90 5.04

Table 2 states that as γ increases and firms operate with higher abatement costs,

the regulator’s optimal policies increase for any value of the pollution stock (both the

intersection point with the vertical axis and the slope of the policies increase with γ) as

occurs with an increase in d. But now that γ, has a larger value, the steady-state of the

pollution stock is higher. Consequently, both the long-run emission tax and subsidy on

abatement increase too. The stricter tax policy and laxer subsidy policy as γ becomes

higher reduce the output and the abatement level, with the later effect being stronger

than the former and hence, implying a rise in net emissions.

Next, we analyze the effect of industry competition measured by the number of firms

on the optimal regulatory rules and the firms’ decisions. We start from the base case of

a duopoly (n = 2) and increase the number of firms in the industry, n: 3, 5, 7, and 9.

Table 3 shows that as industry competition increases both the optimal tax on emissions

and the optimal subsidy on abatement decrease, because for both policy rules the ordinate

at the origin and the slope decrease as the number of firms in the industry increases.

However, there is a case for which this does not occur, when comparing a duopoly with

a triopoly. In this case, the intersection point with the vertical axis increases. However,
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Table 3: Sensitivity analysis of the optimal policies and firm’s controls with respect to

changes in parameter n.

n = 2 n = 3 n = 5 n = 7 n = 9

τ I
∗
(x) 190.98 + 0.205x 238.81 + 0.151x 208.50 + 0.113x 173.84 + 0.095x 147.59 + 0.084x

vI
∗
(x) 445.37 + 0.151x 433.25 + 0.118x 344.43 + 0.095x 279.47 + 0.084x 234.27 + 0.076x

xSS 950.87 793.65 596.42 477.71 398.41

τ I
∗
(xSS) 385.94 358.55 275.90 219.44 181.27

vI
∗
(xSS) 588.79 526.54 401.34 319.65 264.71

qI
∗
(xSS) 202.85 167.99 125.48 100.20 83.44

wI∗(xSS) 198.09 165.34 124.25 99.52 83.00

eI
∗
(xSS) 4.75 2.65 1.19 0.68 0.44

QI∗(xSS) 405.70 503.97 627.40 701.40 750.96

ΩI∗(xSS) 396.18 496.02 621.25 696.64 747

EI∗(xSS) 9.50 7.95 5.95 4.76 3.96

W (xSS) 6.48× 106 8.20× 106 1.03× 107 1.16× 107 1.25× 107

this increase is not enough as to yield a higher tax when the number of firms goes from 2

to 3 and the steady-state tax decreases when the number of firms augments. The decrease

in the tax and in the subsidy comes with a reduction in the steady-state pollution stock.

A laxer tax policy and less generous subsidy as competition increases lead to lower levels

of output, abatement, and net emissions in the long run for firms. Thus, as we already

pointed out in Subsection 4.1, competition is good for the environment since it reduces

net emissions and the pollution stock. Moreover, we should highlight that competition

also increases the total output and the total abatement of the industry, although the

individual production and abatement decrease. The total output for the duopoly is 450.7,

and when the industry is formed by 9 firms it is equal to 750.9. The total abatement is

396.2 for the duopoly, but it is equal to 747 when there are 9 firms in the industry. More

firms in the industry means more production and abatement. Thus, competition, on the

one hand, increases the consumer surplus and reduces the damages, and - on the other

hand, increases production and abatement costs. But the net effect is a larger welfare
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as the last row of the Table 3 shows. Then, we can conclude that competition not only

improves the efficiency of resource allocation, but is also good for the environment.

4.3 Tax-Subsidy Scheme II

The efficient outcome can also be implemented combining a tax on production with a

subsidy on abatement costs. However, the use of a different policy-mix implies that the

value function of the firm changes. Now, the HJB equation of the firm is:

rV II(x) = (a− nq)q − cq − τq − (1− v)
γ

2
w2 + (V II)

′
(x)(n(q − w)− δx),

so that if we substitute the subsidy and the tax by expressions (13) and (25) and the

production and the abatement by the efficient strategies given by (14) and (15), we obtain

the following differential equation:

rV II(x) =
1

n2
(s+W ′(x))2 +

(
n− 1

n
+

2n− 1

2γ

)
(V II)

′
(x)W ′(x)

+
(n− 1)s− δnx

n
(V II)

′
(x). (32)

For solving this equation, we propose a quadratic specification:

V II(x) =
AII

f

2
x2 +BII

f x+ CII
f ,

for which (V II)
′
(x) = AII

f x+BII
f .22 Substituting V II(x), (V II)

′
(x), and W ′(x) into (32)

gives a system of Riccati equations whose solution for the first two coefficients is:

AII
f =

2A2
r

n2(r + 2δ − 2ηAr)
> 0, (33)

BII
f =

2(n(s+Br)(r + 2δ) + ((n− 1)s− nη(2s+Br))Ar)Ar

n3(r + 2δ − 2ηAr)(r + δ − ηAr)
< 0, (34)

where

η =
n− 1

n
+

2n− 1

2γ
> 0, (35)

and Ar < 0 is given by (18).23 Then, substituting (V II)
′
(x) and W ′(x) in (25) using the

coefficients of the value functions, we can calculate the optimal tax.

22Again the subscript f is used to represent the coefficients of the firm’s value function, but now the

superscript II stands for the tax-subsidy scheme with a subsidy on abatement costs.
23We show that BII

f is negative in the Appendix.
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Proposition 4 The optimal tax is defined by the following rule:

τ II
∗
(x) = − 1

n
(s+(n+1)Br−nBI

f )+
2(n(n+ 1)η + 1)A2

r − n(n+ 1)(r + 2δ)Ar

n2(r + 2δ − 2ηAr)
x, (36)

where Ar is negative. The tax increases with the pollution stock, but it can be negative

for low values of the pollution stock.

As occurs when a subsidy is applied to the abatement effort and for the same reasons,

the optimal policy could consist of fixing a subsidy on production for low values of the

pollution stock. Finally, eliminating (V II)
′
(x) and W ′(x) in (13) using the coefficients of

the value functions, we obtain the optimal subsidy.

Proposition 5 The optimal subsidy is given by the following rule:

1− vII
∗
(x) =

2A2
rx+BII

f n2(r + 2δ − 2ηAr)

n2(r + 2δ − 2ηAr)(Arx+Br)
. (37)

For x ≤ xe < xv = −BII
f n2(r+2δ−2ηAr)/(2A

2
r), v

II∗(x) is an increasing strictly concave

function of the pollution stock in the interval [0, 1].

Proof. See the Appendix.

Observe that although the policy game we have proposed is an LQ differential game,

in this case the subsidy rule is not linear. The subsidy rule is an increasing and strictly

concave function of the pollution stock for all x ∈ [0, xe]. Thus, we find that the subsidy

on abatement costs increases with the pollution stock, but at a decreasing rate.

We have also carried out a sensitivity analysis for Tax-Subsidy Scheme II, but we

only report here the cases for which we have found qualitative differences with the results

obtained for Tax-Subsidy Scheme I. For the rest of cases we have found the same quali-

tative results. For the lowest value of d, the intersection point with the vertical axis of

the tax rule is negative. Thus, in this case, the optimal policy consists of subsidizing the

production for low values of the pollution stock, although the taxes at the steady state

are positive. This result suggests that we should expect that the lower the environmental

damage parameter, d, the higher the chances that the tax rule crosses the vertical axis

at a negative value. With low values of d, the market distortion caused by the market
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power of firms can be more serious than the one caused by the environmental externality,

and then we should expect that the tax becomes a subsidy. We also find differences in

the effects that the different parameters have on the subsidy. Whereas an increase in d

augments the subsidy when it is applied to the abatement effort, it reduces the subsidy

on the abatement costs. Finally, in the case of the number of firms, the opposite occurs.

More firms in the market reduce the subsidy on the abatement effort, but increase the

subsidy on abatement costs. Thus, not only can two different incentive structures imple-

ment the same outcome, but they respond in a different way to changes in the parameter

values of the model.

4.4 Comparison of the tax-subsidy schemes

Although, as we have just seen, the two schemes implement the efficient solution we

expect that they yield differences in fiscal terms. In this subsection we try to assess these

differences. The next proposition evaluates the effect on the tax rule of using a different

subsidy.

Proposition 6 The optimal taxes for the two tax-subsidy schemes compare as follows:

τ I
∗
(x) > τ II

∗
(x) for any x ≥ 0.

Proof. See the Appendix.

The proposition establishes that for any value of the pollution stock, the optimal tax

when the subsidy is for the abatement effort is greater than when it is for abatement

costs. In the proof of this result, we show that both the slope of the optimal rule and

the intersection with the vertical axis when a subsidy is applied to abatement costs is

lower than when a subsidy is directly applied to abatement. As both tax-subsidy schemes

implement the efficient solution, the steady-state pollution stock will be the same and

consequently the steady-state tax will be higher when a subsidy is applied to abatement

rather than to abatement costs. Therefore, as a direct consequence of the proposition we

can conclude that:
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Corollary 1 The tax revenues at the steady state are higher when the subsidy is applied

to the abatement effort rather than to abatement costs.

However, from a fiscal point of view, what is relevant is the fiscal balance, i.e. the

difference between the tax revenues and the subsidy expenses. For the example at hand,

we can compute the fiscal balance for the two schemes. For the baseline case, if a subsidy

on abatement is applied the fiscal balance is given by the following expression:

τ I
∗
(x)q∗(x)− vI

∗
(x)w∗(x) = −0.017x2 + 1.017x− 24343.0.

It can be easily shown that the expression above always takes negative values for any

value of the pollution stock, and therefore, there is always a fiscal deficit.

For the baseline case, if instead a subsidy on abatement costs is applied the fiscal

balance reads:

τ II
∗
(x)q∗(x)− vII

∗
(x)

γ

2
(w∗(x))2 = −0.0074x2 + 4.426x− 11798.7.

In this case, there is a fiscal deficit too.

Finally, if we compare the fiscal balances at the steady state, we see that the fiscal

deficit is lower when the subsidy is on abatement costs which means that subsidy expenses

are lower in this case, since we have already showed that the tax revenues are also lower.

Thus, when Tax-Subsidy Scheme II is used, the government will collect less taxes and

spend less money on subsidies for the firms, resulting in a negative fiscal balance that is

lower than the fiscal deficit the government will obtain applying Tax-Subsidy Scheme I.

Then, if the criterion for choosing the type of subsidy by the regulator is the one that

generates the most favorable fiscal balance, the regulator will choose to subsidize the

abatement costs.

5 Conclusions

This paper studies an efficiency-inducing policy for a polluting oligopoly when pollution

abatement is technologically feasible and environmental damages depend on the pollu-

tion stock. Using a dynamic policy game between the regulator and the oligopolists,
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we show that a tax-subsidy scheme can implement the efficient outcome as a regulated

market equilibrium. The scheme consists of a combination of a tax on production and

a subsidy. For the subsidy we consider two alternatives. A subsidy on the abatement

effort and a subsidy on abatement costs. Both schemes yield a different tax rule, but

both implement the efficient outcome. We have shown that the subsidy only reflects the

divergence between the social and private valuation of the pollution stock associated with

the decision on abatement, and consequently, the tax has to correct the two market fail-

ures associated with production: the market power of firms and the negative externality

caused by pollution. Thus, the tax could be negative if the first distortion dominates the

second. Nevertheless, if the main distortion in the market allocation is the one caused

by pollution, the efficiency-inducing policy will consist of a tax on production and a

subsidy either on the abatement effort or the abatement costs. Although both policies

implement the efficient outcome, they yield different fiscal balances. Using an LQ policy

game, we find that the application of a subsidy on abatement costs relaxes the tax rule.

Interestingly, it also yields a lower fiscal deficit at the steady state. A numerical exercise

shows that both tax-subsidy schemes present a negative balance at the steady state for

all parameter values we have studied, but when a subsidy on abatement costs is applied,

the fiscal deficit is always lower. Thus, our policy recommendation is that, from a fiscal

perspective, a subsidy on abatement costs should be adopted instead of a subsidy on

abatement.

A limitation of our approach is that it is assumed an emission function that is ad-

ditively separable in production (gross emissions) and abatement. To overcome this

limitation, a possibility would be to consider an abatement technology that could reduce

the emissions to output ratio.24 We could also consider that the abatement capital could

24Two recent papers addressing this issue in a static setting are Langinier and Chaudhuri (2020) and

Masoudi (2022). In both papers, the R&D investment reduces the coefficient emissions/production.

Langinier and Chaudhuri (2020) investigate the impact of patent policies and emission taxes on green

innovation, and on the emission level in the presence of green consumers. Masoudi (2022) characterizes

an efficiency-inducing policy consisting of a tax on emissions and a subsidy on R&D investment for

competitive firms.
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be adjusted through investment.25 In this case, we could analyze the dynamic interde-

pendence between the accumulation of emissions and the investment. A further step in

this line of research would be to characterize the optimal environmental policy when the

pollution stock or the abatement capital are subject to a stochastic evolution.26 Finally,

another interesting issue to address would be to investigate which would be the optimal

environmental policy with free entry in the market. All these questions are part of our

research agenda.

Appendix

Proof of Proposition 3

As the subsidy increases with the pollution stock, we can conclude that the subsidy is

guaranteed to be positive for all x ≥ 0 if the intersection with the vertical axis, BI
f −Br,

is positive too. According to (28) this difference is given by the following expression

BI
f −Br

=
nγ(r+2δ)(2sγ+(2γ+n2)Br)Ar+(n−1)(sγ(n(n−4)−2γ)−(n+γ)(2γ+n2)Br)A

2
r

n(nγ(r+δ)−(n−1)(n+γ)Ar)(nγ(r+2δ)−2(n−1)(n+γ)Ar)

− Br.

Next, we develop this difference

BI
f −Br (38)

=
nγ(r + 2δ)(2sγ + (2γ + n2)Br)Ar

n(nγ(r + δ)− (n− 1)(n+ γ)Ar)(nγ(r + 2δ)− 2(n− 1)(n+ γ)Ar)

+
(n− 1)(sγ(n(n− 4)− 2γ)− (n+ γ)(2γ + n2)Br)A

2
r

n(nγ(r + δ)− (n− 1)(n+ γ)Ar)(nγ(r + 2δ)− 2(n− 1)(n+ γ)Ar)

− Brn(nγ(r + δ)− (n− 1)(n+ γ)Ar)(nγ(r + 2δ)− 2(n− 1)(n+ γ)Ar)

n(nγ(r + δ)− (n− 1)(n+ γ)Ar)(nγ(r + 2δ)− 2(n− 1)(n+ γ)Ar)
.

As the denominator in the expressions above is positive because Ar is negative, we focus

on the sign of the numerator. Substituting Br by (19) and developing the numerator

25See the paper by Mart́ın-Herrán and Rubio (2018b) for the case of a polluting monopoly that invests

in an abatement technology.
26Borrero (2022) addresses this issue for the case of a polluting oligopoly when firms can use an

abatement technology and there exists uncertainty in the evolution of the pollution stock.
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yields
sγAr(f0A

2
r + f1Ar + f2)

(n+ γ)Ar − (r + δ)γ
> 0,

since

f0 = (n− 1)n(2
(
n2 − 2

)
n+ 2

(
2n2 − n− 2

)
γ + 2 (n− 1) γ2) > 0,

f1 = −γ(n3(n− 2)(r + 2δ) + n (n− 1)
(
2n2 + n− 4

)
(r + δ)

+ n2(n− 1)(r + 2δ)γ + 2 (n+ 1) (n− 1)2 (r + δ)γ) < 0,

f2 = n(r + 2δ)(r + δ)γ2
(
n2 − 2

)
> 0,

for n ≥ 2. Thus, the numerator of (39) is positive and hence the difference BI
f − Br is

positive too and we can conclude that the subsidy on abatement effort is positive for all

x ≥ 0.

Sign of coefficient BII
f

The sign of coefficient BII
f according to (34) depends on the sign of the following

expression (one of the factors in the numerator) since the denominator is positive because

Ar is negative

n(s+Br)(r + 2δ) + ((n− 1)s− nη(2s+Br))Ar. (39)

Substituting Br by (19), expression (39) reads:

s

γ(δ + r)− (γ + n)Ar

(
nγ(δ + r)(r + 2δ)− n2(r + 2δ)Ar (40)

+γ(n− 1− 2nη)(δ + r)Ar + (nη(γ + 2n)− (n− 1)(γ + n))A2
r

)
.

Now, we use (35) to eliminate η resulting in

n− 1− 2nη = −
(
(n− 1) +

n(2n− 1)

γ

)
< 0,

and

nη(γ + 2n)− (n− 1)(γ + n) = (n− 1)n+
n(2n− 1)

2γ
(γ + 2n) > 0.

Then, expression (41) is positive because Ar is negative. Consequently (39) is positive,

hence, multiplied by Ar gives a negative value for the numerator of (34) and then we can

conclude that BII
f is negative.
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Proof of Proposition 5

For the subsidy rule defined by (37) the denominator is negative since Ar and Br

are negative. On the other hand, the numerator is an increasing linear function that

takes a negative value for x = 0, because BII
f is negative. Then, we can conclude that

1 − vII
∗
(x) is positive for all x < xv = −BII

f n2(r + 2δ − 2ηAr)/(2A
2
r), where xv is the

pollution stock for which the numerator is null. We have to ensure that vII
∗
(x) is in the

interval (0, 1). To show this point, first we check that vII
∗
(0) belongs to this interval. As

1 − vII
∗
(0) = BII

f /Br > 0, vII
∗
(0) must be lower than 1 and it will be higher than 0 if

Br < BII
f . The difference between these two coefficients according to (34) is given by

Br −BII
f = Br −

2(n(s+Br)(r + 2δ) + ((n− 1)s− nη(2s+Br))Ar)Ar

n3(r + 2δ − 2ηAr)(r + δ − ηAr)
(41)

=
n3(r + 2δ − 2ηAr)(r + δ − ηAr)Br

n3(r + 2δ − 2ηAr)(r + δ − ηAr)

− 2(n(s+Br)(r + 2δ) + ((n− 1)s− nη(2s+Br))Ar)Ar

n3(r + 2δ − 2ηAr)(r + δ − ηAr)
,

where the denominator is positive because Ar is negative. Substituting Br by (19) in the

numerator and developing it gives

−sAr(k0A
2
r + k1Ar + k2)

(n+ γ)Ar − (r + δ)γ
< 0,

since

k0 = (n(n− 1)− 1)γ +
n

2
(n(2n− 1)− 4) > 0,

k1 = −
(
n(2n− 1)− 4

2
+ γ(n− 1)

)
< 0,

k2 = n(n2 − 2)(r + 2δ))(r + δ)γ > 0,

for n ≥ 2. Thus, we can establish that (42) is negative that implies Br < BII
f . Then, we

can conclude that vII
∗
(0) ∈ (0, 1). Finally, we calculate the derivative of 1− vII

∗
(x) with

respect to the pollution stock

(1− vII
∗
)′(x) =

2A2
rn

2(r + 2δ − 2ηAr)(Arx+Br)

n4(r + 2δ − 2ηAr)2(Arx+Br)2

− (2A2
rx+Bfn

2(r + 2δ − 2ηAr))n
2(r + 2δ − 2ηAr)Ar

n4(r + 2δ − 2ηAr)2(Arx+Br)2
,
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that takes a negative value for x < xv. Then, we have that vII
∗
(x) must be increasing,

but as 1 − vII
∗
(x) is positive for all x < xv, v

II∗(x) cannot reach a value higher than 1

for x ∈ [0, xv). In order to find the sign of the second derivative of the subsidy, we will

use (13) instead of (37). The second derivative of this expression yields

(vII
∗
)
′′
(x) =

1

(W ′(x))3

{
W ′(x)

[
(V II)

′
(x)W ′′′(x)− (V II)

′′′
(x)W ′(x)

]
− 2W ′′(x)

[
(V II)

′
(x)W ′′(x)− (V II)

′′
(x)W ′(x)

]}
,

that for the LQDG simplifies resulting in

(vII
∗
)
′′
(x) = − 2W ′′(x)

(W ′(x))3

[
(V II)

′
(x)W ′′(x)− (V II)

′′
(x)W ′(x)

]
, (42)

where W ′(x) and W ′′(x) are negative and (V II)
′′
(x) is positive. On the other hand, we

have just concluded that 1−vII
∗
(x) is positive for all x < xv that according again to (13)

implies that (V II)
′
(x) must be negative for those values of the pollution stock. Then, for

the LQ formulation (vII
∗
)′(x) is negative and vII

∗
(x) is a strictly concave function in the

pollution stock.

Finally, to conclude the proof of the proposition we prove that xv > xe. First, we

rewrite the expression of xv = −BII
f n2(r+2δ− 2ηAr)/(2A

2
r), substituting the expression

of BII
f in (34). After some easy computations using the expressions of η in (35) xv reads:

xv = −s
n(γ(r + δ)− nAr)(r + 2δ − 2ηAr) + ((n− 1)(γ(r + δ)− (n+ γ)Ar) + nγηAr)

n(γ(r + δ)− Ar)(r + δ − ηAr)Ar

.

Taking into account the expression of the threshold xe in (23) the difference xv−xe reads:

s
nγ2(r + δ)(r + δ − ηAr)

n(n+ γ)(γ(r + δ)− (γ + n)Ar)(r + δ − ηAr)Ar

− s
(n+γ) [n(γ(r+δ)−nAr)(r+2δ−2ηAr)+Ar ((n−1)(γ(r+δ)−(n+γ)Ar)+nγηAr)]

n(n+γ)(γ(r+δ)−(n+γ)Ar)(r+δ−ηAr)Ar

.

The denominator is negative because Ar < 0, hence the difference xv−xe is positive if

and only the numerator is negative too. The numerator can be rewritten as a second-order

polynomial in variable Ar as follows:

l0A
2
r + l1Ar + l2,
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with

l0 = −(γ + n) (γ + γ(η − 1)n+ n((2η − 1)n+ 1)) ,

l1 = (δ + r)
(
n3 + γ2((η − 1)n+ 1) + γn(2ηn+ 1)

)
+ δn2(γ + n),

l2 = −γn(δ + r) (γδ + n(2δ + r)) < 0.

We can conclude that l0A
2
r + l1Ar + l2 < 0, and consequently, xv − xe > 0, because

as shown below l0 < 0 and l1 > 0 for any n ≥ 2, once the expressions of η, in (35) is

substituted:

l0 = −(n+ γ)(2n(2n− 1) + γ(4n− 3)),

l1 = n

(
δn (γ + n) +

1

2
(δ + r) (2n(3n− 1) + 3γ(2n− 1))

)
.

Proof of Proposition 6

We begin with the comparison of the slope of the tax rules. From (29) and (36) we

know that the difference in the slopes is given by

n ((1 + 2γ)n+ 2(n2 − 1))A2
r − (n+ 1)γ(r + 2δ)Ar

n2γ(r + 2δ)− 2(n− 1)n(n+ γ)Ar

− 2(n(n+ 1)η + 1)A2
r − n(n+ 1)(r + 2δ)Ar

n2(r + 2δ − 2ηAr)
,

that yields

n2(n ((1 + 2γ)n+ 2(n2 − 1))A2
r − (n+ 1)γ(r + 2δ)Ar)(r + 2δ − 2ηAr)

n3(nγ(r + 2δ)− 2(n− 1)(n+ γ)Ar)(r + 2δ − 2ηAr)

−n(nγ(r + 2δ)− 2(n− 1)(n+ γ)Ar)(2(n(n+ 1)η + 1)A2
r − n(n+ 1)(r + 2δ)Ar)

n3(nγ(r + 2δ)− 2(n− 1)(n+ γ)Ar)(r + 2δ − 2ηAr)
,(43)

where the denominator is positive because Ar is negative. Developing the numerator and

simplifying terms we obtain the following expression

nA2
r(n

3(r + 2δ)− n

γ
(n2(2n− 1) + 2(n2 − n+ 1)γ)Ar) > 0. (44)

Therefore, (44) is positive and we can conclude that the slope of the optimal tax rule

when a subsidy is applied on abatement costs is lower than the slope of the optimal tax

rule when a subsidy is applied directly on abatement.
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On the other hand, the difference in the intersection point with the vertical axis is

given by the difference BI
f −BII

f . The intersection point with the vertical axis for scheme

I is greater than for scheme II if and only if BI
f > BII

f . From (28) and (34), one has

BI
f −BII

f =
Ar(∆1 −∆2)

n3
,

where

∆1 =
n2(Ar(n−1)(γs(n2−4n−2γ)−Br(n+γ)(2γ+n2))+γn(2δ+r)(Br(2γ+n2)+2γs))

(γn(δ+r)−Ar(n+γ)(n−1))(γn(2δ+r)−2Ar(n+ γ)(n− 1))
,

∆2 =
2(ArBrηn+ n(Br + s)(−2Arη + 2δ + r) + Ar(n− 1)s)

(−2Arη + 2δ + r)(−Arη + δ + r)
.

Because Ar < 0, the sign of the difference BI
f −BII

f is the opposite to the sign of the

difference ∆1 −∆2.

The difference ∆1 −∆2 can be rewritten as:

∆1 −∆2

=
Num(∆1−∆2)

(−2Arη+2δ+r)(−Arη+δ+r)(γn(δ+r)−Ar(n+ γ)(n−1))(γn(2δ+r)−2Ar(n+ γ)(n−1))
,

where

Num(∆1 −∆2) = (−2Arη + 2δ + r)(−Arη + δ + r)Num(∆1)

− (γn(δ+r)−Ar(n+γ)(n−1))(γn(2δ+r)−2Ar(n+γ)(n−1))Num(∆2),

with

Num(∆1) = n2(Ar(n− 1)(γs(n2 − 4n− 2γ)−Br(n+ γ)(2γ + n2))

+ γn(2δ + r)(Br(2γ + n2) + 2γs)),

Num(∆2) = 2(ArBrηn+ n(Br + s)(−2Arη + 2δ + r) + Ar(n− 1)s).

The denominator of ∆1−∆2 is positive because Ar is negative, and hence, the sign of the

difference ∆1−∆2 is the same as the sign of its numerator, Num(∆1−∆2). Substituting

the expression of Br given in (19), and after some simplifications Num(∆1 −∆2) can be

rewritten as

Num(∆1 −∆2) =
Ar(Λ1 + Λ2Ar + Λ3A

2
r + Λ4A

3
r)

Ar(n+ γ)− γ(δ + r)
, (45)
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where

Λ1 = −γ2n2s(δ + r)(2δ + r)[(2δ + r)((2γ + n2)n+ 2(n+ γ)(n+ 1))

+(δ + r)(2γ + (2γ + n2)(n− 1))− 2γn(δ(2η + 3) + (η + 2)r],

Λ2 = γns[2(n+ γ)(n− 1)((2γ + n2)n(δ + r)(2δ + r) + 2γδ2(2− 7n) + (3− 7n)γr2

+(7− 20n)γδr)− γηn((2γ + n2)(4δ + 3r)(δ(1− 3n) + (1− 2n)r)

+2γn(2η + 1)(δ + r)(2δ + r)) + 2(n+ γ)2(n− 1)(2δ + r)((3n− 2)r − 2δ(1− 2n))

−2γη(n+ γ)n2(2δ + r)2],

Λ3 = 2s[γη(n+ γ)n2(−(n− 1)(γ + n2)(4δ + 3r) + 2γη(2δ(2n− 1) + r(3n− 2)))

−γ2(2γ + n2)η2n2((n− 1)(δ + r) + n(2δ + r))− 2n(n+ γ)3(n− 1)2(2δ + r)

−γ(n+ γ)2(n− 1)2(2(δ + δ(2η − 5)n) + r((4η − 7)n+ 2))],

Λ4 = 4(n+ γ)(n− 1)s[γ(2γ + n2)η2n2 + (n+ γ)2(n− 1)((2η − 1)n+ 1)

−γηn(n+ γ)(n− 1 + 2ηn)].

Taking into account that Ar is negative, the sign of Num(∆1−∆2) in expression (45)

coincides with the sign of the third-order polynomial in variable Ar, Λ1+Λ2Ar +Λ3A
2
r +

Λ4A
3
r. From the expression of Λ1 it is clear that Λ1 is negative for any n ≥ 2, because

η is positive. However, to completely characterize the sign of coefficients Λ2,Λ3,Λ4, we

need to substitute the expressions of η given in (35). After the substitution coefficient

Λ4 reads

Λ4 =
1

γ
(n− 1)ns (γ + n)

[
2γn(n− 1)

(
4n2 − 2n− 1

)
+ n2(n(2n− 3)(2n+ 1) + 2)

+2γ2(n− 1)(2(n− 1)n+ 1)
]
.

Therefore, Λ4 is positive for any n ≥ 2.

Unfortunately, the expressions for coefficients Λ2 and Λ3 are much longer and more
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complicated:

Λ2 = γns
[
2(n− 1)(2δ + r) (γ + n)2 ((3n− 2)r − 2δ(n− 2))

+ 2(n− 1) (γ + n)
(
n(δ + r)(2δ + r)

(
γ + n2

)
− γ(4δ + 3r)(δ(3n− 1) + (2n− 1)r)

)
+

1

2
(n(2n− 1) + 2γ(n− 1))

(
−2n(2δ + r)2 (γ + n)

− 2(δ + r)(2δ + r) (n(2n− 1) + γ(3n− 2))

+ (4δ + 3r)
(
2 + n2

)
(δ(3n− 1) + (2n− 1)r)

)]
,

Λ3 = −1

2
s
(
2γ+n2

)
(n(2n−1)+2γ(n−1))2 ((n−1)(δ+r) + n(2δ+r))

+ s (γ+n) (n(2n−1) + 2γ(n−1))
(
(1−n)n(4δ + 3r)

(
γ+n2

)
− ((1−2n)n−2γ(n−1)) (2δ(2n−1) + (3n−2)r))

− 2(1−n)(n−1)s (γ+n)2 (2(δ+r) ((1−2n)n−2γ(n−1)) + γ(2δ(5n−1)+(7n−2)r))

− 4(n−1)2ns(2δ+r) (γ+n)3 .

Given the complexity of the above expressions for Λ2 and Λ3, we have resorted to studying

their sign with the help of the Reduce command of the mathematical software Mathe-

matica. This command reduces expressions by solving both equations and inequalities

by eliminating quantifiers. This command allows us to determine that Λ2 and Λ3 are

positive and negative, respectively, for any n ≥ 2. Therefore, we can conclude that the

third-order polynomial in variable Ar, Λ1 + Λ2Ar + Λ3A
2
r + Λ4A

3
r is always negative for

any Ar < 0, and consequently, BI
f −BII

f > 0.
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