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Abstract

We consider supply chain competition and vertical coordination in a linear-quadratic dif-
ferential game setting. In this setting, supply chains produce complementary goods and
each of them includes a single manufacturer and a single retailer who coordinate their de-
cisions through a revenue-sharing contract with a wholesale price and a fixed sales revenue
share. We study a multiple leader-follower Stackelberg game where the manufacturers are
the leaders and the retailers are the followers. Competition occurs at both levels of the
supply chains. Retailers play Nash and compete in price; manufacturers also play Nash but
they compete in choosing their production capacities by exploiting the equilibrium price
decisions made by the retailers. We show that open-loop Nash equilibria exist when the
manufacturers only receive a wholesale price (there are no longer exploiting the equilibrium
price decision made by the retailers, however). When the manufacturers receive both a
wholesale-price and a share of the retailers’ sales revenues, equilibria generally no longer
exist. The non-existence of an equilibrium stems from the fact that the manufacturers’
instant profits are discontinuous functions of their production capacities. This discontinu-
ity leads to a major technical difficulty in that one cannot apply standard optimal control
approaches to study the equilibria of the dynamic game. Our results illustrate the pos-
sibility that competition between supply chains might not be sustainable when they sell
complementary products and rely on a revenue-sharing agreement.
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1 Introduction

This paper studies supply chain competition and coordination in a linear-quadratic differ-

ential game setting. In this setting, two supply chains produce complementary goods (in

the sense of Cournot (1838), Chapter 9): that is, consumers need one unit of both prod-

ucts provided by the supply chains.2 Each supply chain is made up of a single supplier

or manufacturer and a single seller or retailer who coordinate their decisions through a

revenue-sharing contract including a wholesale price and a fixed sales revenue share. We

study a multiple leader-follower Stackelberg game where the manufacturers are the leaders

and the retailers are the followers. Competition between supply chains occurs at both levels

of the chains. Retailers play Nash and compete in price; manufacturers also play Nash but

they compete in choosing their production capacities. Moreover, as leaders of a Stackelberg

game in their respective supply chain, both manufacturers exploit the equilibrium price

decisions made by the retailers; that is, they choose their production capacity by taking

into account the dependence of the Nash equilibrium prices decided by the retailers upon

the production levels.

Production capacities for the manufacturers are determined by the manufacturers’ invest-

ment decisions and decay rate.3 Due to the cumulative nature of production capacities, a

dynamic game setup is in order. In this context, we focus on the existence of equilibria and

our research questions are as follows. How are prices of Cournot complements determined

given the production capacities? How are investments determined in a dynamic setting

where the manufacturers (leaders) exploit the equilibrium price decisions made by the re-

tailers (followers) and face quadratic adjustment costs? What are the implications of a

revenue-sharing agreement that includes a wholesale price and a fixed sales revenue share

on the chain members’ strategies?

To the best of our knowledge, De Giovanni (2021), which builds on El Ouardighi et al.

(2016), is the closest paper to ours that has considered dynamic competition between sup-

ply chains.4 Introducing competition between supply chains in a dynamic framework un-

doubtedly enriches the modeling, but at the cost of making it more difficult to characterize

on previous versions of this work. An initial version of the paper circulated under the title: Capacity games
in Cournot’s duopoly model of complements.

2Think of a computer which is made up of hardware and an operating system (software).
3Manufacturers’ investments are reversible.
4Dynamic competition between supply chains is also considered in El Ouardighi et al. (2021). But they

focus on pollution and do not consider a fixed sales revenue share.

2



equilibrium strategies. As in De Giovanni (2021), we focus on the case where manufactur-

ers rely on open-loop strategies, which means that investments in production capacities are

functions of time and the initial value of these capacities. Some papers studying competi-

tion within a supply chain also use open-loop strategies (see, e.g., El Ouardighi et al. (2010,

2013)).5

Yet, it is generally the case that open-loop Stackelberg equilibria are time-inconsistent, im-

plying that given the choice, the manufacturers (the leaders) would prefer to re-optimize at

an intermediate instant of time rather than commit to their announced investment strate-

gies. In our setting, however, the (open loop) generalized Stackelberg equilibrium would

actually be time-consistent, because the retailers’ (the followers) best responses at each

instant of time depend only on the production capacities at this time.6 Therefore, the fu-

ture actions of the leaders do not influence the followers’ decisions, implying that the (open

loop) generalized Stackelberg equilibrium is time-consistent. Bearing these considerations

in mind, we now briefly summarize our key results.

We first show that there are multiple Nash price equilibria for the game played by the

retailers. The multiplicity of price equilibria stems from the fact that the retailers sell

complementary products. Focusing on the symmetric price equilibrium is not compelling,

we believe, as it associates a symmetric outcome to a setting where the retailers can resort

to different production capacities. So which asymmetric equilibrium should one pick (beside

the case where capacities are equal)? We propose to single out the price equilibrium that

gives the highest price to the retailer connected with the manufacturer having the lowest

capacity (and whose production is therefore the rarest).

We also find that the Nash equilibria with open-loop strategies played by the manufacturers

generally do not exist in our setting, unless they only receive a price transfer, but in that

case there are de facto no longer Stackelberg leaders as their payoffs are disconnected from

the retailers’ sales revenues. Thus, there is generally no equilibrium for our multiple leader-

follower Stackelberg game. The main reason for the non-existence of Nash equilibrium for

the game played by the manufacturers is as follows. In the literature, firms accumulate

capital and play a Cournot quantity game. Here, firms accumulate capacities and make

price decisions (moreover, the goods are complements). But a key difference between the

5We discuss the relevance of open-loop strategies in Section 6.
6In the language of Xie (1997), the retailers’ decisions are not controllable by the decisions of the manu-

facturers regarding their future capacities. We thank a referee for drawing our attention to this reference.
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literature and our setting is that here the firms that make decisions on prices are different

from those that make decisions on production capacities (and production). The latter

are assumed to be the leaders (of their respective supply chain) and the former are the

followers. Furthermore, the leaders exploit the equilibrium prices decided by the followers

(the retailers). It turns out that for these equilibrium prices, the producers’ objectives

are not always continuous (these objectives are always continuous when the producers

only receive a wholesale price, however). Because of this discontinuity, it is almost always

profitable for the producers to deviate from any given investment path.7 A consequence

of our results is that the static Cournot Nash equilibrium (with capacity constraints) is no

longer equal to the steady-state open-loop equilibrium, as is often the case in the differential

games literature (see, e.g., Reynolds (1987) or Dockner (1992)). This is because the steady-

state open-loop equilibrium does not generally exist.

This paper also includes the following methodological contributions. Firstly, while the

existence of multiple equilibria in Operations Research is not uncommon and occurs in

very different settings,8 we are not aware of a contribution where there is hierarchical play

in a dynamic setting, and where the leaders face multiple equilibria (i.e., prices for the

complements) for the Nash game played by the followers.

Secondly, we also tackle a technical difficulty. Indeed, as was indicated above, the man-

ufacturers’ instant profits may be discontinuous functions of their production capacities.

This discontinuity implies that one cannot apply standard optimal control approaches to

study the equilibria of the dynamic game played by these manufacturers. We show how to

overcome the difficulty, and the arguments used to study the equilibria can be adapted to

different alternative settings. Besides, the discontinuity of the manufacturers’ profit func-

tions leads to the non-existence of equilibria for the game played by the manufacturers.

Proving this non-existence is far from trivial. Even when the manufacturers’ payoffs are

continuous, proving the existence of equilibria is not trivial either. This is due to the fact

that the manufacturers produce complements, and thus must pay attention to the minimum

value of their capacities. More precisely, we show that when equilibria exist they satisfy

the property that overcapacity disappears in finite time. But a key technical difficulty is to

7If we impose that the equilibrium prices are the same, then the manufacturers’ objectives are continuous.
But as we have argued above, this case is not compelling.

8See, e.g.,Caulkins et al. (2013), Chua et al. (2016), Egerer et al. (2022), Oliveira et al. (2013),
Löschenbrand (2020), Yang and Anderson (2014). Cachon and Netessine (2006) discuss the implications of
multiple Nash equilibria in game theory models of operations and supply chains.
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find the date at which overcapacity no longer exists. We also show how to overcome this

difficulty.

We now present some managerial insights that can be drawn from our results.

The aim of Operations Research is to help make better decisions. But sometimes decision-

makers must make simultaneous decisions, and studying this kind of decision-making is

the scope of game theory, which belongs to the Operations Research toolbox. Without

coordination, game theory predicts that the outcome of firms’ interactions is a Nash equi-

librium. In such an equilibrium, decisions are mutually best responses. Finding mutual

best responses, however, is not always possible. Therefore, decision-makers must look for

something else.9

In this respect, we stress the fact that for certain sectors selling complementary goods,

some form of cooperation between the leaders (the upstream firms) or the retailers (the

downstream firms) of the different supply chains may be necessary. For instance, it would be

better for a manufacturer to create its own distribution channel or integrate with the existing

retailer (or else coordinate its production with other manufacturers of complements).10

It is difficult, however, to check empirically that cooperation is necessary. But some features

of markets for complements suggest that cooperation is particularly fruitful. Consider for

instance the relationships between car and tire makers (e.g., Renault and Michelin), who

can be thought of as the manufacturers, as well as car dealerships and tire stores, who can be

seen as the retailers. To the best of our knowledge, new cars are equipped with tires. Thus,

tire makers sell directly to car makers. But they also sell to tire stores as well as to some car

dealerships. Moreover, some franchised dealerships are linked to specific car makers. While

the actual relationships between those manufacturers and retailers do not satisfy all of our

assumptions11, what we observe is not a Nash equilibrium for the game akin to the one that

we have studied. Cooperation and integration seem prevalent. A similar conclusion can be

9The non-existence of equilibrium is admittedly rare in Operations Research, but does occur from time
to time. See, e.g., Yang and Anderson, (2014). They study a two-period game where firms make capacity
choices in the first period and production choices in the second period. They show that this game may have
no (pure-strategy) Nash equilibrium for certain initial values of their production capacities.

10This assessment is somewhat similar to that obtained in Grim et al. (2019). In this paper, the authors
study a competitive gaz market game with non convexities. While the equilibrium may exist, it may not have
desirable outcomes from a welfare perspective. The authors “propose a design where the market solution
corresponds to a welfare maximum and vice versa.” To put it another way, production must be reorganized.

11That is because, in our framework we disregard competition between car makers or tire makers, assuming
some form of monopolistic competition.
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obtained for toothbrush and toothpaste makers (or razor and blade makers) because both

products often seem to be sold by each retailer (e.g., supermarkets).

Also consider the interaction between logistic supply chains. Suppose, for instance, that the

two retailers are actually freight forwarders12 and the two manufacturers are two carriers.

Both carriers send chips along lanes that are complementary for some clients (one lane

could be Asia-US and the other US-Europe). According to our model, stable mutually best

responses are unlikely. What we observe is more or less in line with our conclusion. First

of all, there has been a wave of mergers/acquisitions among global carriers and a rise in the

number of alliances. In these alliances, carriers share vessels in order to decrease their unit

cost and get broader service coverage.13 Alliances especially make sense in complementary

regions (Mitsuhashi and Greve, 2009 and Ghorbani et al., 2022). Furthermore, carriers also

cooperate with other parts of the maritime transport chain, including ports but also freight

forwarders.14 By increasing their market power, carriers obtain better contracts with the

freight forwarders. Finally, some carriers have started to operate as freight forwarders (Merk

et al., 2018, p. 68). The fact that carriers merge, or make alliances, and try to integrate or

to compete with freight forwarders indicate that competition (as described in our model)

can be flawed and that firms adapt to this issue by cooperating (or coordinating in the case

of integration).15

Finally, consider the case where the retailers are airlines and the manufacturers are airports

Assume there is an interline market where the airlines serve the same hub but only from

one airport (in this setting, a supply-chain includes one airport and one airline). That is,

in order to make an interline trip, a passenger starting her travel from one airport must use

the airline that serves the line between this airport and the hub, and then uses the other line

that connects the hub to the second airport (think about a trip from Madrid to Montréal

12A freight forwarder is a a company who, for a fee, organizes shipments for the shipper by liaising with
carriers.

13Notice that competition in line shipping has been limited at least since 1875, particularly with con-
ferences, which are legal agreements between carriers for setting common freight and regulating capacity.
Conferences are now illegal in the US and in the European Union, however. Interestingly, vessel sharing
consortia are not illegal.

14In this connection, Yin and Kim (2012) view the relationship between freight forwarders and carriers
as a game, in which carriers are rule makers whilst freight forwarders are followers. See also Wang et al.
(2020).

15Our setting can be used to study other aspects of supply chains. For instance, one retailer could be a
freightforwarder and the second one a steamship agent, and one maker could be a carrier and the second
one a terminal operating company. Notice that the largest carriers are now major terminal operators (see,
https://unctad.org/publication/review-maritime-transport-2022, chapter 6, page 3).
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with Paris as a hub).16 Each airport levies an airport charge paid by the airline to which

it is associated. In turn, airlines set fares paid by the consumers. Like in the preceding

example, what we observe does not seem to be consistent with a Nash equilibrium. First of

all, airports charges have to comply with rules set by authorities. In particular, they must

comply with article 15 of the 1944 Chicago Convention according to which there shall be

no discrimination between users, particularly from different countries. Moreover, airlines

often cooperate. Cooperation allows them to reduce the fares in the interline markets. In

doing this, they take into account the fact that their price affects negatively the number of

passengers of the other airline because both airlines provide complementary services. Co-

operation is often achieved through alliances (instead of mergers, which can be prohibited).

Nowadays, there are three major global alliance groups, Star Alliance, One World and Sky

Team.

The remainder of the paper unfolds as follows. In the next section, we briefly summarize

the relevant literatures. Our model is presented in Section 3. Section 4 studies the existence

of open-loop equilibrium when the manufacturers only receive a transfer or wholesale price.

Section 5 addresses the existence issue when the manufacturers receive a transfer price and

a share of the sales revenues. Section 6 discusses some limitations of our study and Section

7 offers some concluding remarks. Almost all the proofs are relegated to the Supplementary

Material.

2 Literature Review

This paper is at the crossroad of two strands of literature. Firstly, this work contributes to

the Cournot model of complements literature. Secondly, it contributes to the literature on

differential games in dynamic marketing channels and supply chain management. In what

follows, we briefly review these two strands of literature in turn.

2.1 Cournot model of complements

In the Cournot model of complements, consumers have a downward-sloping demand for a

final product which is made out of n different components, each of which is being produced

by a monopoly supplier. These n components are perfect complements in the sense that

16This setting includes some modelling ideas presented in Benoot et al. (2013) and Brueckner et al. (2020).
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one unit of the final good requires one unit of each of the complementary goods. Therefore,

when consumers demand one unit of the final good, they actually demand one unit of each

of the complementary goods and, as a consequence, the price of this final good is the sum

of the prices of the complement goods. Amir and Gama (2019) present a general approach

of the Cournot model of complements. They tackle the existence and uniqueness of an

equilibrium and the effects of an increase in the number of complements.17

Price competition between the monopoly suppliers differs from a Bertrand competition

between producers of similar products. First of all, in contrast to Bertrand competition,

when a monopoly supplier reduces its price, the demand for the products of the other

firms does not decrease. To wit, since the products are complementary, if the demand for

the product whose price is reduced increases, then the demand for all the products must

increase as well. Therefore, whereas in a Bertrand competition setting firms are prone to

reduce their prices, in a Cournot complement setting, firms find reducing their prices less

worthwhile. To put it another way, each firm welcomes (as opposed to fears) the decrease

in the prices of the other ones as it is always more profitable to let other firms reduce their

prices than to reduce one’s price.

Another difference between price competition between the monopoly suppliers and Bertrand

competition is that integrating the n monopoly suppliers into a super-monopoly would be

Pareto-improving (prices would be lower, and profits higher). This property is a direct

consequence of what was stated above. When they cooperate, the monopoly suppliers are

better off by decreasing the prices of all their products. By doing so, they stimulate the

demand for the final good and therefore the demand for all the complementary goods (which

brings about a rise in their profits). This is in contrast with what occurs when products are

not complements. In that case, cooperating firms increase their profits by reducing their

production, which leads to an increase in their prices. These increases in prices prevent

consumers from substituting one product for another.

To save space, and since this paper is only concerned with chain-to-chain competition and

dynamics we shall not review the literature studying complementary goods from a static

viewpoint.

17The existence of the equilibrium is also addressed in Babaioff et al. (2017) who focused on a discretized
version of the model in which demand changes only finitely many times. Linnemer (2022) provides both a
historical and an analytical analysis of the use of Cournot duopoly model of complements.
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The dynamic analysis of the Cournot model of complements probably begins with Dobson

(1992) who used a two-stage game in which firms first choose capacities and then prices. He

obtains the result that “there will be multiple perfect equilibria, since it is optimal to match

capacity choices up to (and including) the level that corresponds to output from the firms

setting Cournot prices.” We extend his setting to the continuous-time case. We also show

that at the price decision stage, when capacities are given, there are multiple price equilibria

(and for some of those there would be no equilibrium in the quantity setting stage).

Yalcin et al. (2013) also provides a two-stage analysis of what they called value-capture

and value-creation problems. In their model, the demands of complementary goods depend

on their prices and their qualities. Quality choices are made before the price decisions.

Improving the quality of one complement enhances the demand for the others. But quality

improvement is costly and there is a risk of quality underprovision for all products (this is

the value-creation problem). They show that relying on a royalty fee (for rewarding the

quality choice made by the first firm) does not solve the problem (allowing more competition

is more efficient).

Avenali et al. (2013) considers systems of complementary products to discuss how a

bundling firm uses mixed bundling (that is, the individual components that make up the

bundle are also available for purchase individually) to affect its competitors’ product qual-

ity.18 They found that bundling results in low quality products and may be socially harmful

if there is competition in the complementary market.19

Casadesus-Masanell and Yoffie (2007) provide a continuous-time analysis of the dynamics

of competition between two complementary firms, the complementors, dubbed as Intel

and Microsoft, which both make a final product, the PC. The value of the final product

depends on how well the components work together. This, in turn, depends on the firms’

investment in complementary R&D. A priori, both firms would want to cooperate and make

the final product as valuable as possible. They show that when the two firms have different

decision horizons, natural conflicts occur over pricing and the size of initial investments in

complementary R&D. This is because, one firm pays attention to the installed base while

the other is only concerned with new customers.

18They use a two-stage game. In the first stage, one firm chooses whether to sell its products independently
or in a bundle. In the second stage, the other firm chooses whether or not to invest in product quality.

19Mantovani and Ruiz-Aliseda (2015) tackle partial cooperation (firms coordinate their investment deci-
sions first, and then compete on prices).
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Another contribution to the dynamic analysis of the Cournot model of complements that

differs from ours is Laussel and Van Long (2012). They analyze a model where a monopo-

listic downstream firm (an assembler) looks for the best way to separate from its upstream

subsidiaries across time.

This paper proposes a differential game analysis of competition between supply chains that

sell Cournot complements and where firms face capacity constraints and adjustment costs

in choosing their production capacities.20

2.2 Differential Games in the dynamic supply chain management litera-

ture

Differential game models have been used to study different problems arising in dynamic

supply chain management literature (see, for example, Jørgensen and Zaccour (2004) and

He et al. (2007) for early surveys).

Most of the dynamic analyses of supply chains suppose that the supply chain is made up

of a single supplier or manufacturer and a single seller or retailer. An important issue is to

determine how coordination between the supply chain’s members can improve their payoffs.

For instance, coordination can be useful to alleviate the double marginalization problem

faced by these members - that is, the fact that the successive markups of the members raise

the price paid by consumers of the final product, which results in a reduction in all firms’

demands and profits (see Cachon (2003) for a comprehensive overview of the coordination

mechanisms available for supply chain management). In this regard, the supply chain’s

members often have asymmetric roles which affects the way their decisions are coordinated.

Much of the literature considers the supplier to be the leader of a Stackelberg game, and

the seller to be the follower.

This paper contributes to the literature studying revenue-sharing contracts as a way to

partially or completely coordinate decisions within a supply chain.21 The main kinds of

revenue-sharing contracts comprise the wholesale-price contract with an added revenue-

sharing mechanism and the consignment contract with revenue sharing. Revenue-sharing

20Casadesus-Masanell and Yoffie (2007) focused on dynamic price competition. Investment is realized at
the initial date.

21Cachon and Lariviere (2005) is a seminal paper on revenue-sharing contracts. See Bart et al. (2019) for
recent studies of the literature on revenue-sharing contracts in a supply chain.
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agreements generally eliminate the double marginalization problem (because each stake-

holder maximizes a portion of the same payoff). The consequences for firms in supply

chains with asymmetric players using consignment contracts with a revenue-sharing agree-

ment are analyzed in Buratto et al. (2019), De Giovanni et al. (2019), and Liu et al. (2016).

The case where players are symmetric has been notably analyzed by El Ouardighi et al.

(2008, 2016, 2021).

To further the study of coordination in a supply chain, it is also important to pay attention

to competition. Competition can occur at one level or at any level of the supply chain and/or

between supply chains. This paper specifically addresses chain-to-chain competition with

(possibly) asymmetric players who coordinate their decisions through a revenue-sharing

scheme including a wholesale-price and a fixed sales revenues share. It thus builds on El

Ouardighi et al. (2016) who considers a fixed-share setting with a wholesale price. It is

furthermore related to De Giovanni (2021), which also builds on El Ouardighi et al. (ibid).

In contrast to the latter paper and the present one, De Giovanni (ibid) considers either a

wholesale price or a fixed-share setting. But like our contribution and in contrast with El

Ouardighi et al. (ibid), he pays attention to competition between supply chains.22 Here,

however, we focus on Cournot complements and we pay attention to asymetric players

withing each supply chain. De Giovanni finds that when both supply chains coordinate

through a fixed-share contract, both are economically worse off with respect to the case in

which both use a wholesale-price contract. He concludes that supply chain coordination

stiffens competition but that competition destroys the advantages created by coordination

even when using an effective compensation scheme such as a revenue-sharing contract. Our

conclusion is in a sense more negative than De Giovanni’s because we argue that competition

may not be viable with such a contract.

3 Model

Our problem is a multiple leader-follower Stackelberg game (Sherali 1984, Julien, 2017)

also called a generalized Stackelberg competition model (Sinha et al. 2014). We consider

22El Ouardighi et al. (2021) investigate “the impact of both horizontal and vertical competition, on
the one hand, and strategy types (commitment-based versus contingent-based equilibrium strategies), on
the other hand, on the pollution accumulated by two supply chains over time.” They also investigate the
determination of optimal transfer prices. We do not pay attention to this issue (nor do we consider pollution),
but we consider a model with complements, an infinite horizon decision, and a revenue-sharing agreement
that includes a fixed share of sales revenues.
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a double supply chain. Each supply chain includes a retailer and a supplier. Each of

the two manufacturers acts as a traditional Stackelberg leader for the retailers (which are

the follower firms), but as a competitor firm with respect to the other manufacturer. A

generalized Stackelberg equilibrium for this game is: a pair of price decisions for the retailers

which is a Nash equilibrium given the investment choices made by the manufacturers; a

pair of investment decisions for the manufacturers which is a Nash equilibrium when the

manufacturers take into account the effect of their decisions on the price Nash equilibrium.

Thus, the model consists of two Nash games encompassed by a Stackelberg competition

model.

The products sold by the two retailers are complementary and there is horizontal competi-

tion between the supply chains. The two retailers compete in price while the manufacturers

compete in production capacity. In each supply chain, there is a hierarchical relationship

where the retailer is the follower and the manufacturer the leader. All decision-makers play

open-loop strategies (that is, strategies that only depend on the initial capacities and time).

Retailers make their decisions given the paths of production capacities resulting from the

investment choices made by the manufacturers. In turn, manufacturers make their invest-

ment choices by exploiting the equilibrium price decisions made by the retailers. We first

consider the retailers’ choices before paying attention to the manufacturers’ decisions.

3.1 The retailers’ choices

Let (Ki(t),Kj(t)) be a given path of production capacities for manufacturers i and j.

Assume that the production of each manufacturer is equal to its production capacity.23

Each retailer i solves the following problem:

max
pi(·)

∫ ∞
0

(
φipi(t)− wi

)(a− pi(t)− pj(t)
b

)
e−rt dt

0 ≤ a− pi(t)− pj(t)
b

≤ min{Ki(t),Kj(t)}, ∀t

wi ≤ φipi(t), ∀t.

In the problem above, pi(t) is the price of the product sold by retailer i at date t and

produced by manufacturer i. Moreover,
a−pi(t)−pj(t)

b is the demand for the good by the

consumers at date t. The parameters a and b are positive parameters. The parameter a

23We shall make this assumption more precise later on.
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denotes the choke price while b measures price sensitivity. To obtain one unit of this good,

consumers need to buy one unit of each complement. This is why the total quantity sold to

the consumers cannot be higher than the minimum production level (hence the inequality

constraint). Thus, pi(t)
(
a−pi(t)−pj(t)

b

)
is the gross sales revenue obtained by retailer i. We

let φi denote the share of this revenue that the retailer kept. The other part is received

by manufacturer i. The parameter wi is the wholesale price paid by the retailer to the

manufacturer. We assume that both φi and wi are fixed throughout the analysis.

The issue of the dynamic interactions of the retailers is given by an open-loop Nash equilib-

rium. A glance at this problem shows that since the retailers take the paths (Ki(·),Kj(·)) as

given, they essentially face a static problem.24 Therefore, all retailers’ choices are strongly

time-consistent.

Consider a given date t and assume without loss of generality that Ki(t) < Kj(t). Then the

production capacity of manufacturer i limits what can be sold to consumers; that is, there

is a coupled constraint that is taken into account by all the chains’ members and which

reads:

a−
(
pi(t) + pj(t)

)
b

≤ Ki(t). (1)

For the sake of notational simplicity, let us drop the time index t. A Nash equilibrium with

the coupled constraint (1) is a pair of non-negative prices (pi, pj) such that each retailer h

(h = i, j) solves:

max
ph

(
φhph − wh

)(a− (ph + p−h)

b

)
(2)

s.t.:
a− (ph + p−h)

b
≤ Ki, (3)

wh ≤ φhph (4)

where p−h is the price of retailer h’s rival.

Set p̂i = pi − wi
φi

and â = a− wi
φi
− wj

φj
, and suppose that â > 0.

Proposition 1

24As a referee noted, they can also be considered myopic players.

13



1. Assume that â
3b ≤ Ki. Then the only Nash equilibrium with coupled constraint is:

p̂i = p̂j =
â

3
. (5)

2. Assume that Ki <
â
3b . Then we have three kinds of equilibria:

(a) p̂i = bKi, p̂j = â− 2bKi.

(b) p̂i = â− 2bKi, p̂j = bKi.

(c) All couples (p̂i, p̂j) such that bKi < min{p̂i, p̂j}, p̂i + p̂j = â− bKi.

Proof. See Supplementary material.

This proposition shows that there are multiple (actually a continuum) of price equilibria

(provided that production capacities are not too high25: Ki <
â
3b). The reason for this

multiplicity is because production capacities are relatively low so that it is profitable to

produce at full capacity. Indeed, consider a pair of prices such that the final demand equals

the minimum capacity (and such that each price is not too low as in, e.g., case 2.c). In that

case, no retailer is better off by lowering its price. Indeed, either a retailer already sells all

the available production, or it cannot sell more, because its product is a complementary

good. Likewise, no retailer is better off by increasing its price. This is because, as prices are

relatively high (recall that the demand for the final good is not too high by assumption),

if a retailer raises its price, its sales revenue will decrease. To wrap up, each retailer would

like to sell at a higher price, provided that the other retailer decreases its price, so that the

final demand is unchanged.

Now, what would be a reasonable equilibrium price? It is reasonable to assume that if the

manufacturers have the same capacities (and thus produce the same quantities since capaci-

ties are fully used), then the retailers should choose the same prices, that is pi = pj = â−bKi
2 .

Yet, where capacities are different, there is no reason why the prices chosen by the retailers

should be equal. A symmetric price equilibrium is not compelling as it associates a symmet-

ric outcome to a setting where the retailers can resort to different production capacities. So

which asymmetric equilibrium should one pick ? Among the different equilibria, we propose

to single out the equilibrium price that gives the highest price to the retailer connected with

the manufacturer having the lowest capacity (and whose production is therefore the rarest).

25As was mentioned in the introduction, multiple equilibria are not uncommon in the studies of supply-
chains (see, e.g., Cachon and Netessine, 2006).
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This equilibrium corresponds to case 2.b.26 Our rationale to single out the equilibrium

above is as follows. Since manufacturer i has the lowest capacity, it actually controls the

production of the good (in the sense that the production of that good cannot be higher

than Ki). This gives manufacturer i a certain power (it is easier for this manufacturer to

choose a high price).

Notice that this equilibrium also arises if the retailer with the lowest production capacity

chooses its price first, and the other retailer chooses its own price after having observed

the choice of the former. This is actually the Edgeworth equilibrium for the Cournot

Complements oligopoly.27

Our choice of the price equilibrium corresponds to a certain form of a Stackelberg equilib-

rium arising in the study of optimistic or pessimistic Stackelberg equilibria (von Stengel

and Zamir, 2010). To the best of our knowledge, in this literature, there is only one leader

and one or more followers. The optimistic (respectively pessimistic) Stackelberg equilibrium

gives the highest equilibrium (respectively lowest) payoffs. However, in our setting, there

are two leaders. Our choice of the price equilibrium would correspond to an optimistic equi-

librium from the viewpoint of the manufacturer with the lowest capacity and a pessimistic

equilibrium from the viewpoint of the manufacturer with the highest capacity.

Now let us pay attention to manufacturer i’s payoff which reads

(
wi + (1− φi)pi

)(a− pi − pj
b

)
=

(
wi
φi

+ (1− φi)p̂i
)(

â− p̂i − p̂j
b

)
. (6)

The next Proposition gives the equilibrium values of this payoff.

Proposition 2 The equilibrium value of manufacturer i’s profit Ri(Ki,Kj) and the Nash

equilibria of the static price game are as follows:

1. If Ki <
â
3b , then Ki<Kj, R

i(Ki,Kj) = (1− φi)(â− 2bKi)Ki + wi
φi
Ki, p̂i = â− 2bKi,

p̂j = bKi.

2. If Kj <
â
3b , Kj<Ki then Ri(Ki,Kj) = (1− φi)bK2

j + wi
φi
Kj, p̂i = bKj, p̂j = â− 2bKj.

26Indeed, we have bKi ≤ â− 2bKi ⇐⇒ Ki ≤ â
3b
, which is true by assumption.

27See Linnemer (2022) for the comparison between Cournot and Edgeworth solutions. Linnemer explains
that for Edgeworth, the equilibrium is indeterminate as each firm would like to post its price first. Notice
that in Linnemer’s presentation, production capacities are considered unbounded.
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3. If Ki = Kj = K < â
3b , then Ri(K,K) = (1− φi) (â−bK)

2 K + wi
φi
K, p̂i = p̂j = â−bK

2 .

4. If â
3b ≤ min{Ki,Kj}, then Ri(Ki,Kj) = (1− φi) â

2

9b + wi
φi

â
3b , p̂i = p̂j = â

3 .

Observe that there is a discontinuity in the manufacturer’s payoff. This discontinuity will

be instrumental in the proof of the non-existence of a Nash equilibrium for the game played

by the manufacturers.

3.2 Manufacturers’ decisions

We now study the manufacturers’ decisions. Because each manufacturer is the leader of its

supply chain, we assume that it can take advantage of the dependence of the equilibrium

prices decided by the retailers on its production capacity. Therefore, upon contemplating

a change in their decisions, the manufacturers are aware that the retailers will adapt their

price decisions to the new value of the capacities.

For simplicity, we suppose that there is zero production cost.28 However, the manufacturers

face adjustment costs, à la Hanig (1986) and Reynolds (1987), when they modify their

capacity.29 The dynamic problem faced by manufacturer i is then as follows:

max
Ii(·)

∫ ∞
0

e−rt
[
Ri(Ki(t),Kj(t))− C(Ii(t))

]
dt

s.t.: K̇i(t) = Ii(t)− δKi(t), Ki(0) = Ki0, Ki0 ≤
â

3b
, i = 1, 2,

where

C(Ii) = αIi + β
I2
i

2
, α > 0, β > 0.

In this problem, manufacturer i maximizes the flow of discounted instant profits with respect

to investment Ii. Instant profits at any date t are the difference between the manufacturer’s

revenues Ri(Ki(t),Kj(t)) and instantaneous investment costs C(Ii(t)). These costs are

convex increasing in the investment rate and are identical for both manufacturers. The

production capacity depreciates at the instantaneous rate δ, δ > 0. The discount factor is

28As there is no production cost per se here, a cost-plus contract is not applicable.
29In contrast to, e.g., El Ouardighi and Erickson (2015), capacity constraints are binding. That is, firms

cannot satisfy all possible values of the final demand even by bearing extra-costs when producing above
their capacity level (for instance by hiring temporary workers).
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also the same for both manufacturers and is equal to r, with r strictly positive. Furthermore,

we shall assume that α < â
r+δ . This assumption guarantees that there is a positive steady-

state capacity if there is an equilibrium. This assumption means that the (net) choke price

(â) is large enough to finance small investment expenditures. Otherwise, of course, there is

no point in building long-term capacity.

As in Reynolds (1987), we assume that manufacturers can disinvest (capacities, however, are

always non-negative). Our problem bears some similarity with that considered by Reynolds,

with the major exception that the revenue function is not (always) continuous.

Now recall that a generalized Stackelberg equilibrium for the competition between the two

supply chains where the manufacturers are the leaders and the retailers are the followers of

their respective supply chain is:

- A pair of retailers’ price strategies that is a Nash equilibrium and which is given by

Proposition 1 (1 and 2c).

- A pair of open-loop strategies that is an open-loop equilibrium for the game played by the

manufacturers, when the manufacturers rely on the Nash equilibrium price decisions made

by the retailers.

As we have already studied the Nash price equilibrium, to study the existence of our gen-

eralized Stackelberg equilibrium, we now have to consider the open-loop Nash equilibrium

for the game played by the manufacturers.

4 Existence of Open-Loop Equilibrium with a Wholesale Price,

without a Sales Revenue Share

In this section, we study the open-loop Nash equilibrium for the game played by the man-

ufacturers under the assumption that there is no sales revenue sharing agreement (φh = 1,

h = i, j). This implies that manufacturers’ gross revenue is given by wh

(
a−pi−pj

b

)
and that

they can no longer benefit from influencing the retailers’s selling decisions. Stackelberg and

Nash equilibria will therefore coincide. Recalling that â = a − wi − wj , then relying on
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Proposition 2, we get that the gross revenue Ri(Ki,Kj) of manufacturer i reads

Ri(Ki,Kj) =


wiKi, ifKi ≤ min{ â3b ,Kj}

wiKj , ifKj < min{ â3b ,Ki}

wi
â
3b , if min{Ki,Kj} ≥ â

3b .

(7)

We denote by K∗h firm h’s capacity when both firms use equilibrium strategies (I∗i , I
∗
j ). To

find the open-loop Nash equilibria of the manufacturers’ game, we shall rely on the following

two lemmata.

Lemma 1 There is no Nash open-loop equilibrium where K∗i (t) < K∗j (t) for all t.

Proof. See Supplementary material.

Lemma 2 There is no open-loop Nash equilibrium in which K∗i (t) = K∗j (t), K∗i (t) = K∗j (t),

t < t, and K∗i (t) < K∗j (t) for all t in (t, t).

Proof. See Supplementary material.

The intuition of the first Lemma is as follows. Suppose that firm i’s capacity is always lower

than firm j’s. Then firm j’s gross revenue would only depend on that of firm i (since goods

are complements, one can only sell a quantity equal to the lowest capacity). But then firm

j’s would find it profitable to get rid of its overcapacity (by selling a part of its capacity).

It is clear, however, that sooner or later, firm j’s capacity will meet firm i’s.

As for the second Lemma, it is not optimal for firm j to maintain temporary overcapacity

because it brings about no additional gross revenues, and because it is not profitable to

build capacity today only to get rid of it in the future.

It turns out that the open-loop Nash equilibrium differs depending on whether firm i is

more profitable than firm j, that is whether wi > wj , or wi ≤ wj . We consider each case in

turn.

4.1 Case where wi < wj

Because Ki0 < Kj0, we conjecture that K∗i (t) ≤ K∗j (t) for all t. Relying on this idea, we

also conjecture that if there is an open-loop equilibrium, then firm i’s investment policy is
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a solution to the following problem.

max
Ii(·)

∫ ∞
0

e−rt [wiKi(t)− C(Ii(t))] dt (8)

s.t.: K̇i(t) = Ii(t)− δKi(t),Ki(0) = Ki0. (9)

Lemma 3 The solution to the problem above is given by

I∗i (t) = δKi∞ (10)

K∗i (t) = Ki∞ + (Ki0 −Ki∞)e−δt (11)

Ki∞ =
wi − (r + δ)α

βδ(r + δ)
. (12)

Proof. See Supplementary material.

The above Lemma implies that there is a dominant investment strategy for firm i. The

optimal value of firm i’s investment is constant because its payoff is linear in its capacity

and the investment cost is convex.

Now, relying on Lemmata 1 and 2 we conjecture that firm j’s capacity will meet firm i’s in

finite time. The following lemma asserts that when the firms’ capacities met at a certain

date, the best policy for firm j is to mimic firm i’s decisions from that date on.

Lemma 4 Assume that there is a date t at which Kj(t) = K∗i (t) and consider the problem

max
Ij(·)

∫ ∞
t

e−rt [wjKj(t)− C(Ij(t))] dt (13)

s.t.: K̇j(t) = Ij(t)− δKj(t), (14)

Kj(t) ≤ K∗i (t) for all t. (15)

Then the solution to this problem is Ij(t) = I∗i (t) for all t ≥ t.

Proof. See Supplementary material.

To grasp the intuition of the above result, recall that firm j benefits from a higher wholesale-

price. As it is more profitable than firm i, it would like to increase its capacity. But this

is not possible as long as what can be sold is bounded by firm i’s capacity, which must be

lower than firm j’s since this firm is less profitable than firm j.
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To find an equilibrium strategy for firm j, we must look for the “optimal” date at which its

capacity meets firm i’s. Then taking into account the assumption that Ki(0) < Kj(0), the

fact that as long as K∗i (t) < Kj(t) firm j’s gross income only depends on firm i’s capacity,

as well as Lemma 4, to find the date at which manufacturer’s capacities meet we must solve

the following problem.

sup
t,Ij(t)

{∫ t

0
e−rt

(
−αIj(t)−

β

2
(Ij(t))

2

)
dt+

∫ ∞
t

e−rt
(
−αI∗i (t)− β

2
(I∗i (t))2

)
dt

}
(16)

s.t.: K∗i (t) ≤ Kj(t), (17)

K̇j(t) = Ij(t)− δKj(t), Kj(0) = Kj0, (18)

Kj(t) = K∗i (t), (19)

where K∗i (t) = (Ki0 −Ki∞)e−δt +Ki∞.

We shall solve this problem is three steps. In the first step, we consider that t is fixed and

we shall look for the optimal path of firm j’s investment under the assumption that at date

t firms’ capacities become equal. To obtain the optimal date at which capacities meet we

intuitively rely on the idea that at such date firms’ investments must also be equal. To wit,

if one differentiate firm j’s payoff with respect to t, we get

e−rt
(
−αIj(t)−

β

2
(Ij(t))

2 + αI∗i (t) +
β

2
(I∗i (t))2

)
.

Thus, as long as investments are not equal, it is worthwhile to change the date at which

firms’ capacities meet.30 We will show that there is a date at which firms’ investments and

capacities are equal, and this date will turn out to be optimal.

To proceed, let us first assume that t is given. The following Lemma gives the optimal

investment and capacity of firm j.

Lemma 5 Let t be given and let Îj(t, t) and K̂j(t, t) solve problem (16)-(19) when t is

given. Furthermore suppose that K∗i (t) < K̂j(t, t), for all t < t where K∗i (t) is as in Lemma

30Of course, since firm j’s objective is not concave in t the condition that investments be equal is only
necessary, but is not sufficient. But one can show that firm j’s objective is non-decreasing in t. Hence, the
condition that investment be equal is also sufficient.
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3. Then we have for all t < t

Îj(t, t) =
D1e

(r+δ)t − α
β

, (20)

K̂j(t, t) = D2e
−δt +

D1

β(r + 2δ)
e(r+δ)t − α

βδ
, (21)

where

D1 = β(r + 2δ)

(
Kj0 + α

βδ

)
e−δt − α

βδ −K
∗
i (t)

e−δt − e(r+δ)t
, (22)

D2 =
K∗i (t) + α

βδ −
(
Kj0 + α

βδ

)
e(r+δ)t

e−δt − e(r+δ)t
, (23)

and

Îj(t, t) = I∗i (t), (24)

K̂j(t, t) = K∗i (t), (25)

for all t ≥ t.

Proof. See Supplementary material.

The next Lemma ensures that there exists a date t at which firms’ optimal values of in-

vestment and capacity are equal (and firm j’s capacity is higher than firm i’s before that

date).

Lemma 6 There exists a date τ > 0 such that the solution to problem (16)-(19) with t

fixed and where t = τ , satisfies the following conditions

Îj(τ, τ) = I∗i (τ) (26)

K∗i (t) < K̂j(t, τ), t < τ. (27)

We can rely on the preceding results to show that there exists an open-loop Nash equilibrium

for the game played by the manufacturers.

Theorem 1 There exists a date t such that the following manufacturers’ strategies are an

open-loop Nash equilibrium for the game played by the manufacturers:
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• Firm i

For all t,

I∗i (t) = δKi∞, (28)

K∗i (t) = Ki∞ + (Ki0 −Ki∞)e−δt, (29)

Ki∞ =
wi − (r + δ)α

βδ(r + δ)
. (30)

• Firm j

For all t ≤ t,

Î∗j (t) =
D1e

(r+δ)t − α
β

, (31)

K̂∗j (t) = D2e
−δt +

D1

β(r + 2δ)
e(r+δ)t − α

βδ
, (32)

where

D1 = β(r + 2δ)

(
Kj0 + α

βδ

)
e−δt − α

βδ −K
∗
i (t)

e−δt − e(r+δ)t
, (33)

D2 =
K∗i (t) + α

βδ −
(
Kj0 + α

βδ

)
e(r+δ)t

e−δt − e(r+δ)t
, (34)

For all t ≥ t,

I∗j (t) = I∗i (t), (35)

K∗j (t) = K∗i (t). (36)

Moreover, these strategies together with those of the retailers displayed in Proposition 1 are

an open-loop Nash equilibrium for the game played by the retailers and the manufacturers.

Proof. Set t = τ , where τ is given by Lemma 6. Assume that firms choose Ii = I∗i

as in Lemma 3 and Ij as in Lemma 5 for t ≤ τ , and I∗j = I∗i for τ ≤ t. Then these

decisions are an open-loop Nash equilibrium (see the Supplementary material for more

details). Moreover, we can check that these decisions together with those of the retailers
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displayed in Proposition 1 are an open-loop Nash equilibrium for the game played by the

retailers and the manufacturers.

Notice that the open-loop Nash equilibrium played by the retailers and the manufacturers

coincides with a (degenerate) generalized Stackelberg equilibrium since the manufacturers

cannot exploit the pricing decisions of the retailers.

4.2 Case where wj < wi

We now study the case where the firm with the lowest initial capacity is also the firm which

receives the highest transfer price. We shall look again for an equilibrium in which firms’

capacities meet in finite time. Contrary to the case where firm j receives the highest transfer

price, however, no firm has a dominant strategy from date 0 on. This implies that both

firms must determine simultaneously the date at which their capacities meet. Once these

capacities meet, as firm j’s payoff is lower than firm i’s, we conjecture that firm i will align

its investment decisions on firm j’s. Indeed, because firm i receives a higher transfer price

than firm j, it will seek to build a higher capacity than firm j. But as firms i and j produce

complements, firm i must follow firm j’s decisions.

Specifically, to find an open-loop Nash equilibrium we shall look for decisions (I∗i (.), t∗i , I
∗
j (.), t∗j )

such that (I∗i (·), t∗i ) solves the following problem31

max
Ii,ti

∫ ti

0

(
wiKi − C(Ii)

)
e−rtdt+

∫ ∞
ti

(
wiK

∗
j − C(Ii)

)
e−rtdt (37)

subject to

K̇i = Ii − δKi, Ki(0) = Ki0, (38)

Ki(t) ≤ K∗j (t) for t < ti, (39)

Ki(ti) = K∗j (ti), (40)

and (I∗j , t
∗
j ) solves the following problem

max
Ij ,tj

∫ tj

0

(
wjK

∗
i − C(Ij)

)
e−rtdt+

∫ ∞
tj

(
wjKj − C(Ij)

)
e−rtdt (41)

31Notice that the choice of t does not appear in the definition of our open-loop equilibrium. However,
we know that from date ti on, firm i’s payoff will depend on firm j’s capacity j, so what really matters is
knowing the value of this date in equilibrium.
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subject to

K̇j = Ij − δKj , Kj(0) = Kj0, (42)

K∗i (t) ≤ Kj(t), t < tj (43)

K∗i (tj) = Kj(tj) (44)

and t∗i = t∗j .

When capacities meet, we conjecture that firm j’s decisions will be similar to firm i’s

decisions given in Lemma 3, that is

Ij(t) = δKj∞, (45)

Kj(t) = Kj∞ + (Kj(tj)−Kj∞)e−δ(t−tj), (46)

Kj∞ =
wj − (r + δ)α

βδ(r + δ)
. (47)

Moreover, for tj given, we can rely on Lemma 5 to find the decisions made by firm j that

solve the following problem

max
Ij(·)

∫ tj

0

(
wjK

∗
i (t)− C(Ij(t))

)
e−rtdt (48)

s.t.: K̇j = Ij(t)− δKj(t), Kj(0) = Kj0, (49)

Kj(tj) = K∗i (tj), (50)

K∗i (t) < Kj(t). (51)

As for firm i, we can show that its decisions before the date at which capacities meet are

as follows

Ki(t) = Ki∞ +D1ie
−δt +D2ie

(r+δ)t,
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where

Ki∞ =
wi − α(r + δ)

βδ(δ + r)
, (52)

D1i =
(Ki0 −Ki∞)e(r+δ)ti − (K∗j (ti)−Ki∞)

e(r+δ)ti − e−δti
, (53)

D2i =
K∗j (ti)−Ki∞ − (Ki0 −Ki∞)e−δti

e(r+δ)ti − e−δti
. (54)

In equilibrium ti = tj = t, and we can also rely on Lemma 4 to conjecture that

I∗i (t) = I∗j (t) = δKj∞, (55)

K∗i (t) = K∗j (t), ∀t ≥ t. (56)

To find the date at which capacities meet we rely on the two above equations as well as

the further conjecture that both I∗i and I∗j are continuous at t.32 We can show that these

conditions are satisfied for firm i only if K∗j (t) takes a specific value. The same conclusion

is obtained for firm j. The optimal date is found by equating K∗i (t) and K∗j (t). We have

the following result.33

Theorem 2 There exists a date t such that the following manufacturers’ strategies are an

open-loop Nash equilibrium for the game played by the manufacturers:

• Firm i

For all t ≤ t

I∗i (t) = δKi∞ + (r + 2δ)e(r+δ)t, (57)

K∗i (t) = Ki∞ +D1ie
−δt +D2ie

(r+δ)t, (58)

32Otherwise, as we have observed in the previous subsection, the date at which capacities meet is not
optimal.

33To save space we have not followed the detailed approach used in the previous subsection. The Supple-
mentary material, however, contains a complete proof of the result.

25



where

Ki∞ =
wi − α(r + δ)

βδ(r + δ)
, (59)

D1i =
(Ki0 −Ki∞)e(r+δ)t − (K∗j (t)−Ki∞)

e(r+δ)t − e−δt
, (60)

D2i =
K∗j (t)−Ki∞ − (Ki0 −Ki∞)e−δt

e(r+δ)t − e−δt
. (61)

For all t ≥ t,

I∗i (t) = δKj∞ (62)

K∗i (t) = K∗j (t). (63)

• Firm j

For all t ≤ t,

I∗j (t) =
D1je

(r+δ)t − α
β

, (64)

K∗j (t) =
D1j

β(r + 2δ)
e(r+δ)t +D2je

−δt − α

βδ
, (65)

where

D1j = β(r + 2δ)
(Kj0 + α

βδ )e−δt − α
βδ −K

∗
j (t)

e−δt − e(r+δ)t
, (66)

D2j =

α
βδ +K∗j (t)− (Kj0 + α

βδ )e(r+δ)t

e−δt − e(r+δ)t
, (67)

K∗j (t) =

[
δ(Kj∞ −Ki∞)

(r + δ)
e−(r+δ)t

](
e(r+δ)t − e−δt

)
+Ki∞ + (Ki0 −Ki∞)e−δt. (68)

For all t ≥ t

I∗j (t) = δKj∞, (69)

K∗j (t) = Kj∞ + (Kj(t)−Kj∞)e−δ(t−t), (70)

Kj∞ =
wj − α(r + δ)

βδ(r + δ)
. (71)

Moreover, these strategies together with those of the retailers displayed in Proposition 1 are

an open-loop Nash equilibrium for the game played by the retailers and the manufacturers.
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Proof. See Supplementary material.

Notice that for the same reasons stated in the comments of Theorem 1, that open-loop Nash

equilibrium coincides with a (degenerate) generalized Stackelberg equilibrium.

5 Non-existence of Open-Loop Equilibrium with a Wholesale

Price and a Sales Revenue Share

We now address the existence of an open-loop generalized Stackelberg equilibrium when

each supply chain resorts to a revenue-sharing agreement including a wholesale price and a

sales revenue share. Our major result is as follows.

Theorem 3 Suppose that there is a firm h such that Kh0 6= â
3b , or else that there is a firm

h for which

(1− φh)
â

3b
>
wh
φh

(72)

Then there is no open-loop Nash equilibrium for the game played by the manufacturers and

thus, there is no generalized Stackelberg equilibrium.

Notice that the inequality above ensures that there is no equilibrium where firms both start

with and maintain a capacity equal to â/3b. To put it differently, if we do not make that

assumption, we cannot rule out that there is this kind of equilibrium. Such an equilibrium,

however, is very peculiar.

The non-existence of an open-loop Nash equilibrium is in contrast with previous results in

the literature of capital accumulation games. In one of the first versions of these games,

Spence (1979) studied open-loop Nash equilibria, assuming that there is no discounting,

linear investment cost and that firms sell the same product. Fershtman and Muller (1984)

showed the existence of an open-loop Nash equilibrium when investment takes nonnegative

values and capital depreciates at a positive (firm specific) rate. While their model is more

general than ours in some respects, they assume that instantaneous profits are continuous

in their capital stocks (i.e., production capacities), a property that does not hold in general

in our setting. The discontinuity of the instantaneous profits in the production capacities

plays a relevant role in the non-existence of equilibria. Theorem 3 also is in contrast with
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Hanig (1986) and Reynolds (1987) where both open-loop and feedback Nash equilibria exist

(although under some mild conditions).34 Furthermore, several researchers, e.g., Reynolds

(1987) or Dockner (1992), have shown that the static Cournot Nash equilibrium coincides

with the steady state of the open-loop equilibrium (see also Lambertini (2018)). This is

no longer true in our setting: while there is an equilibrium in the static Cournot model

of complements (with capacity constraints), there is generally no steady-state open-loop

equilibrium.

The non-existence of an open-loop Nash equilibrium will be deduced from other results

which are of independent interest. The two first of these results (Propositions 3 and 4) assert

that the manufacturers’ capacities cannot be equal in equilibrium. The other Propositions

(Propositions 5 and 6) deal with the cases where the manufacturers’ capacities are always

ordered in the same way, and where the capacity paths double-cross at least once.

Proposition 3 Assume that the initial production capacities of the two manufacturers are

identical and such that Ki0 = Kj0 < â
3b . Then there is no symmetric open-loop Nash

equilibrium such that Kh(t) > 0 on an interval [t, t̄], with t < t̄, and Kh(t) < â
3b , h = i, j.

Proof. See Supplementary material.

The intuition of the result is as follows. By slightly decreasing investment expenditures over

a non-negligible time interval, a manufacturer obviously decreases its production capacity.

Since this policy departs from a candidate symmetric equilibrium and the production ca-

pacity depreciates at a rate δ, this means that this manufacturer’s capacity will always

be lower than its rival’s. Manufacturer i’s profit will be enhanced by a higher price but

will also be negatively affected by a lower volume of production. However, because of the

discontinuity in the revenue function, it turns out that for a small decrease in investment

(that also increases instant profits), the positive effect more than compensates the negative

one and thus brings about a profitable deviation.

The next Proposition addresses the case where manufacturers’ capacities are always equal

to â/(3b).

34Non-existence of equilibrium occurs in Operations Research. See, e.g., Yang and Anderson (2014).
Yet, they rely on a static setting, and equilibria exist in several non-trivial cases. Here, we use a dynamic
setting and generally there is no equilibrium. Specifically, an open-loop Nash equilibrium may exist when
the capacity of both firms is initially equal to â/3b and is maintained at this value along the infinite time
horizon of the game.
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Proposition 4 Suppose that there is a firm h such that

(1− φh)
â

3b
>
wh
φh
. (73)

There is no open-loop Nash equilibrium such that the manufacturers’ capacities satisfy

Kh(t) = â
3b , for all t, and h = i, j.

Proof. See Supplementary material.

The intuition of the result is as follows. Choosing to always maintain the same relatively

large capacity does not pay in equilibrium since a manufacturer can increase instant profits

by diminishing its production capacity. This increase in instant profits stems from an

increase in the manufacturer’s revenues (the increase in the sale price compensates for the

decrease in the quantity sold), and from a decrease in investment expenditures.

Proposition 5 Assume that the manufacturers’ initial capacities are such that Ki0 < Kj0,

Kj0 ≤ a
3b . Then there is no open-loop Nash equilibrium such that K∗i (t) < K∗j (t) for all t.

Proof. See Supplementary material.

The gist of the Proposition is that because manufacturer j’s objective does not depend

upon its capacity, the best decision is to downsize this capacity as much as possible. Selling

its capacity is indeed the only way for manufacturer j to increase its instant profit. But

by so doing, manufacturer j’s capacity is soon lower than manufacturer i’s, and this is

inconsistent with the assumption that manufacturer j’s capacity is always the largest.

Proposition 6 There is no open-loop Nash equilibrium such that the manufacturers’ ca-

pacities satisfy K∗i (t) = K∗j (t), K∗i (t̄) = K∗j (t̄), and K∗j (t) < K∗i (t) on ]t, t̄[.

Proof. See Supplementary material.

The intuition behind Proposition 6 is that if the manufacturers’ capacities are equal at two

different dates, and ordered in the same manner between these dates, the manufacturer

having the largest capacity can always decrease it and therefore saves on investment expen-

ditures. To put it another way, it does not pay for a manufacturer to have a larger capacity

than the other manufacturer because the extra capacity is costly to build and maintain and

because it does not yield higher revenues.
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We are now in position to prove Theorem 3.

Proof of Theorem 3. From Propositions 3, 4 and 5, manufacturers’ capacities cannot

always be the same, nor always be ordered in the same manner. Therefore, if there is an

open-loop Nash equilibrium for the game played by the manufacturers, there must be at

least two crossings similar to those considered in Proposition 6. But this very Proposition

rules out such a case, and thus there is no generalized Stackelberg equilibrium.

6 Discussion

In this section, we will consider in turn three limitations of our results with regard to the

use of open-loop strategies and the assumptions of investment reversibility, homogenous

adjustment cost functions, zero price-adjustment costs, and flexible choices respectively.

• Open-loop strategies

We have restricted ourselves to considering open-loop strategies. The use of open-loop

strategies by manufacturers, however, implies a commitment for these decision-makers be-

cause, in the event that production capacities are not equal to their expected values, firms

should not notice. From our point of view, this is not too strong an assumption in a setting

with no uncertainty.35 Furthermore, open-loop strategies also pertain to cases where there

is no information across time on production capacities except at the initial date. In this

regard, it is unclear why firms would be aware of their production capacities every time.36

Moreover, in our setup the manufacturers’ instant profits are discontinuous functions of

their production capacities, and to the best of our knowledge, there is no general theory

that allows us to study feedback Nash equilibria when the players’ payoff functions are

discontinuous functions of the state variables.37 For all these reasons, we believe that open-

35Surely, assuming away uncertainty is a clear limitation of our approach.
36This remark appears, e.g., in El Ouardighi and Erickson (2015), page 1282. For instance, the manu-

facturers may know the initial sizes of their plants, but not the continuous increments in their production
capacities.

37Most of the time, feedback Nash equilibria in differential games are studied in a linear-state or a linear-
quadratic setting. The class of linear-state or linear-quadratic differential allows the analytical characteriza-
tion of feedback Nash equilibria. When the formulation of the dynamic games leads to nonlinear-quadratic
differential games, numerical algorithms and methods are needed to find the feedback Nash equilibria. Yet,
in this numerical approach, see e.g., De Frutos and Mart́ın-Herrán (2015, 2018, 2019), Jaakkola and Ploeg
(2019), El Ouardighi et al. (2020), the functions defining the players’ payoff are continuous functions of
the state and control variables. Studying feedback Nash equilibria when the players’ payoff functions are
discontinuous functions of the state variables would imply some technical and methodological developments
outside the scope of this paper.
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loop strategies, are not unreasonable in our setting.

• Reversible investment

We have assumed that manufacturers can disinvest and decrease their production capac-

ities. Disinvesting is not always possible, however, especially if manufacturers’ capacity

includes non-material assets, that is, intangible capital accumulating from R&D or adver-

tising. Where investment is irreversible, open-loop Nash equilibrium may exist even with a

wholesale price and a sales revenue share, albeit in the particular case where initial capaci-

ties are equal. Indeed, when the manufacturers have the same initial capacities and produce

complements, increasing capacity is not profitable because this will not result in increased

sales, only in a rise in costs. Given the discontinuity of the instant profit function, the

manufacturers would actually be better off by slightly decreasing their capacities in order

to raise their revenues (see the argument used in the proof of Proposition 3). Yet, this

is impossible as investment is irreversible. Thus, the best decision for each manufacturer

is to let its capacity depreciate. Therefore, in this equilibrium, manufacturers’ capacities

are equal at each date and their common value goes to zero. This equilibrium outcome is

peculiar because manufacturers obtain negligible profits in the long run.

• Homogenous adjustment cost functions

To simplifiy the analysis we have assumed that the manufacturers face homogenous cost

functions. Assuming instead different cost functions would only make more cumbersome

the determination of the date at which capacities meet when there is an equilibrium (from

that date on, investments would no be the same from one firm to another). But it also

make harder to prove that an equilibrium does not exist as the proof of Proposition 6 would

have to be adapted.

• Zero price-adjustment costs

In our approach, retailers face zero price-adjustment costs. As we have seen above, this

property is key for our non-existence result. Indeed, manufacturers can exploit the dis-

continuity in their profit function only if their capacity choices can affect the prices set by

the retailers. Where price-adjustment costs are non nil (as in, e.g., Cellini and Lambertini

(2007)), and include a fixed part, it may no longer be in the interest of retailers to adjust
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their prices in relation to the changes in the manufacturers’ capacities. As a consequence,

the argument used in the proof of Proposition 3 no longer applies.38

• Flexible Choices

We have assumed that retailers and manufacturers’ choices are flexible. But decision-makers

often face lumpy choices. For instance, retailers may actually use a finite set of prices, or

manufacturers face lumpy capacity and lumpy investment/disinvestment decisions (see, e.g.

Besanko et al. (2010) or Oliveira and Costa (2018)).39 As a result, the arguments used in

the proof of Proposition 3 are no longer relevant. Thus, where choices are lumpy, open-loop

equilibria may exist. Of course, when choices are lumpy, the strategy sets are different from

those considered in this paper and a thorough new analysis is in order.

7 Conclusion

The main result of this paper is that competition between supply chains may not be sustain-

able when they sell complementary products and when a revenue-sharing contract including

a wholesale price and a fixed sales revenue share is used by asymmetric firms.

We have substantiated the claim above by showing that there generally is no open-loop

equilibrium for the game played by the manufacturers and no generalized Stackelberg equi-

librium either. These results ensue because the manufacturers’ revenues are discontinuous

functions of their production capacities, and this discontinuity in turn stems from the fact

that manufacturers produce complementary goods. Our results may be considered as an

additional instance where some manufacturers need to cooperate in order to prevent chaotic

outcomes that competition is likely to produce in some specific markets (see, e.g., Telser

(1994), (1987), (2017) and McWilliams (1990)).

There are at least three other avenues for future research. Firstly, it would be interesting

to study the existence of a generalized Stackelberg equilibrium when the retailers are the

leaders, and the manufacturer the followers. Secondly, it would be worthwhile to investigate

other dynamic settings - for example, ones where manufacturers face production or price

38We thank Utsave Sadana for this remark.
39Notice that the lumpiness of investment decisions may be unrelated to the existence of fixed costs and

only results from technical constraints. For example, we can only use an integer number of machine-tools.
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adjustment costs, or where capacity adjustment costs depend both on capacity and capacity

investment. Thirdly, it would also be interesting to study cooperative solutions (either

between the retailers and/or between the manufacturers), since this is a likely outcome

when equilibrium does not exist.

Funding information : Third author: Agencia Estatal de Investigación (PID-2020-

112509GB-I00 and TED2021-130390B-I00).
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1. Proofs

Proof of Proposition 1. Consider the Lagrangean associated with problem (2)-(3), that

is:

L(p̂h, p̂−h, λh) = p̂h

(
â− (p̂h + p̂−h)

b

)
+ λh

(
Ki −

â− (p̂h + p̂−h)

b

)
. (74)

Necessary and sufficient conditions for an optimal solution are as follows.

∂L

∂ph
=

1

b
(â− 2p̂h − p̂−h + λh) = 0, (75)

λh

(
Ki −

â− (p̂h + p̂−h)

b

)
= 0, (76)

λh ≥ 0. (77)

We consider four cases in turn.

1. λi = λj = 0. Therefore, in that case

â− (p̂i + p̂j)

b
≤ Ki. (78)

Moreover, from

â− 2p̂i − p̂j = 0, (79)

â− 2p̂j − p̂i = 0, (80)

we get

p̂i = p̂j =
â

3
. (81)

1



Such an outcome is possible only if

â

3b
≤ Ki. (82)

2. λi = 0, λj > 0.

It follows that

â− (p̂i + p̂j)

b
= Ki. (83)

We thus get:

p̂i = bKi, (84)

p̂j = â− 2bKi. (85)

This case only arises when Ki <
â
3b .

3. λi > 0, λj = 0. By symmetry with the preceding case, we get:

â− (p̂i + p̂j)

b
= Ki. (86)

We thus get:

p̂i = â− 2bKi, (87)

p̂j = bKi. (88)

This case only arises when Ki <
â
3b .

4. λi > 0, λj > 0.

We still have:

â− (p̂i + p̂j)

b
= Ki. (89)
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From the first-order conditions, we get:

bKi < p̂i, (90)

bKi < p̂j , (91)

Ki <
â

3b
. (92)

Notice that there is a symmetric equilibrium where:

p̂i = p̂j =
â− bKi

2
. (93)

Existence

Proof of Lemma 1

Proof. Consider manufacturer j’s problem. Under our assumption that K∗i (t) < K∗j (t) for

all t, it follows from (7) that manufacturer j’s equilibrium payoff reads:∫ ∞
0

e−rt
[
wjKi(t)− C(I∗j (t))

]
dt.

This is because the sale proceeds only depend on manufacturer i’s production capacity.

Therefore, the equilibrium investment decision I∗j (·) solves the following problem:

max
Ij(·)

∫ ∞
0

e−rt
[
wjK

∗
i (t)− C(Ij(t))

]
dt

s.t.: K̇j(t) = Ij(t)− δKj(t), Kj(0) = Kj0,

K∗i (t) < Kj(t), ∀t.

Neglecting the sale proceeds, we can write the Hamiltonian associated with the problem

above as follows

−e−rt
(
αIj(t) +

β

2
(Ij(t))

2)

)
+ λ(t) (Ij(t)− δKj(t)),

where λ denotes the costate variable associated with the state variable Kj . The first-order
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conditions are given by:

λ(t) = (α+ βIj(t))e
−rt, (94)

λ̇(t) = δλ(t),

K̇j(t) = Ij(t)− δKj(t), Kj(0) = Kj0.

Because manufacturer j’s objective is strictly concave, the solution Ij(t) is unique and

differentiable.40 Thus, upon differentiating Equation (94) and using the two other first-

order conditions we obtain:

λ̇(t) = −re−rt
(
α+ β

(
K̇j(t) + δKj(t)

))
+ βe−rt

(
K̈j(t) + δK̇j(t)

)
= δλ(t) = δ

(
α+ β

(
K̇j(t) + δKj(t)

))
e−rt.

Rearranging, we arrive at the following differential equation:

K̈j(t)− rK̇j(t)−Kj(t)δ(r + δ) = α
(r + δ)

β
.

The general solution of the equation above is given by:

Kj(t) =

(
Kj0 +

α

βδ

)
e−δt − α

βδ
, (95)

where −δ is the negative root of the following characteristic equation:

s2 − rs− (r + δ)δ = 0.

That is:

r −
√
r2 + 4(r + δ)δ

2
= −δ.

It is clear, however, that Kj(t) goes to a negative value, which contradicts the assumption

that K∗j (t) > K∗i (t) for all t and the Proposition follows.

Proof of Lemma 2

Proof. The proof is by way of a contradiction. Assume that I∗j is such that K∗i (t) =

40See, e.g., Corollary 6.1, page 77 in Fleming and Rishel (1975).
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K∗j (t), K∗i (t) = K∗j (t), t < t, and K∗i (t) < K∗j (t) for all t in (t, t). From the definition of

Rh(Kh,K−h), firm j’s revenues is equal to wjK
∗
i (t) for all t in [t, t]. Since firm j’s profit

depends on firm i’s capacity, but firm j’s capacity differs from firm i’s, it must be that the

discounted cost of investment of firm j is strictly lower than that of firm i. That is,

∫ t

t
e−rtC(I∗j (t))dt <

∫ t

t
e−rtC(I∗i (t))dt. (96)

Moreover, by assumption for all t in ]t, t[, we have

K∗i (t) < K∗j (t). (97)

This implies that for all t in ]t, t[ we have e−rtwiK
∗
i (t) < e−rtwiK

∗
j (t). But then using the

two inequalities above it holds that

∫ t

t
e−rtwiK

∗
i (t)dt−

∫ t

t
ertC(I∗i (t))dt <

∫ t

t
e−rtwiK

∗
j (t)dt−

∫ t

t
e−rtC(I∗j (t))dt (98)

which proves that I∗i (·) is not an optimal policy for firm i.

Case where wi < wj

Proof of Lemma 3

Proof. Let us introduce the following Hamiltonian

H(Ii,Ki, λ) = e−rt
(
wiKi(t)− αIi(t)−

β

2
Ii(t)

2

)
+ λ(t) [Ii(t)− δKi(t)] . (99)

The necessary (and sufficient) conditions are as follows

λ(t) = e−rt(α+ βIi(t)), (100)

λ̇(t) = −e−rtwi + δλ(t), (101)

K̇i(t) = Ii(t)− δKi(t), (102)

Ki(0) = Ki0. (103)

Differentiating the first condition we get

λ̇(t) = −re−rt
(
α+ βIi(t)

)
+ e−rtβ

(
K̈i(t) + δK̇i(t)

)
. (104)
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Using the first-order necessary condition in the equation above and rearranging we get

K̈i(t)− rK̇i(t)− (r + δ)δKi(t) +
wi − (r + δ)α

β
= 0. (105)

From there we can check that Lemma 3 holds.

Proof of Lemma 4

Proof. Consider the following version of the Hamiltonian

Lj
(
Ij(t),Kj(t), λj(t), µj(t)

)
= e−rt

(
wjKj(t)− αIj(t)−

β

2
Ij(t)

2

)
+

λj(t)
(
Ij(t)− δKj(t)

)
+ µj(t)

(
K∗i (t)−Kj(t)

)
.

Now given functions λj(t) and µj(t), consider the following conditions.

λj(t) = e−rt (α+ βIj(t)) , (106)

λ̇j(t) = −wje−rt + δλj(t) + µj(t), (107)

µj(t) ≥ 0, (108)

µj(t)(K
∗
i (t)−Kj(t)) = 0. (109)

Using the necessary condition satisfied by the optimal solution to firm i’s problem, set for

all t ≥ t

µj(t) = e−rt(wj − wi) > 0, (110)

λj(t) = λ(t), (111)

I∗j (t) = I∗i (t), (112)

K∗j (t) = K∗i (t). (113)

Observe that with these definitions (I∗j (·),K∗j (·)) solve the conditions (106)-(109) above.

Observe also that I∗j maximizes the Hamiltonian (because it is a concave function of Ij(t)).

Now we shall show that this policy is the solution to firm j’s problem above.
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For all T > t and Kj ≤ K∗i we have

∫ T

t
e−rt

(
wjK

∗
j (t)− C(I∗j (t))− wjKj(t) + C(Ij(t))

)
dt =

∫ T

t
e−rt

(
wjK

∗
j (t)− C(I∗j (t))± λj(t)

(
I∗j (t)− δK∗j (t)

)
−wjKj(t) + C(Ij(t))± λj(t)

(
Ij(t)− δKj(t)

))
dt

≥
∫ T

t

{
e−rt

(
wjK

∗
j (t)− C(I∗j (t))

)
+ λj(t)

(
I∗j (t)− δK∗j (t)

)
+ µj(t)

(
K∗i (t)−K∗j (t)

)
− e−rt (wjKj(t) + C(Ij(t)))− λj(t)

(
Ij(t)− δKj(t)

)
−µj(t)

(
K∗i (t)−Kj(t)

)}
dt

+

∫ T

t

(
λj(t)

(
Ij(t)− δKj(t)

)
− λj(t)

(
I∗j (t)− δK∗j (t)

))
dt.

Using the concavity of the Hamiltonian, we get:∫ T

t
e−rt

(
wjK

∗
j (t)− C(I∗j (t))− wjKj(t) + C(Ij(t))

)
dt ≥

∫ T

t

[(
e−rtwj − λj(t)δ − µj(t)

)
(K∗j (t)−Kj(t))+(

−e−rtC ′(I∗j (t)) + λj(t)
)
(I∗j (t)− Ij(t))

]
dt

+

∫ T

t

(
λj(t)

(
Ij(t)− δKj(t)

)
− λj(t)

(
I∗j (t)− δK∗j (t)

))
dt.

Using the definition of λ̇j(t) in equation (107) and the fact that I∗j (t) maximizes the Hamil-

tonian, the inequality above reduces to∫ T

t
e−rt

(
wjK

∗
j (t)− C(I∗j (t))− wjKj(t) + C(Ij(t))

)
dt ≥

∫ T

t

d

dt

(
λj(t)(Kj(t)−K∗j (t)

)
dt

= λj(T )Kj(T )− λj(T )K∗j (T ). (114)

Now

λj(T )K∗j (T ) = λ∗i (T )K∗i (T ) (115)

and we have

lim
T→∞

λ∗i (T )K∗i (T ) = lim
T→∞

e−rT (α+ βI∗i (T ))K∗i (T ) = 0 (116)
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since I∗i (t) is constant and K∗i (t) goes to Ki∞. Thus, we have

lim inf
T→∞

∫ T

t
e−rt

(
wjK

∗
j (t)− C(I∗j (t))− wjKj(t) + C(Ij(t))

)
dt ≥ lim inf

T→∞
λj(T )Kj(T ) ≥ 0.

This also implies that∫ ∞
t

e−rt
(
wjK

∗
j (t)− C(I∗j (t))

)
dt ≥ lim sup

T→∞

∫ T

t
e−rt (wjKj(t)− C(Ij(t))) dt.

Proof of Lemma 5

Proof. Since Îj(t, t) and K̂j(t, t) are a solution to the problem on [0,∞), its restriction to

[0, t) is a solution to the problem on [0, t). By assumption, K∗i (t) < K̂j(t) for all t ∈ [0, t).

Then the Hamiltonian associated with the problem restricted to [0, t) is given by

Hj = e−rt
(
−αIj −

β

2

(
Ij
)2)

+ λj(Ij − δKj). (117)

The first-order conditions are as follows:

λ̇j = λjδ,

e−rt(−α− βÎj) + λj = 0,

with K̂j(t) = K∗i (t). We have

λj(t) = D1e
δt, Îj(t) =

D1e
(r+δ)t − α
β

.

Solving the differential equation

˙̂
Kj(t) =

D1e
(r+δ)t − α
β

− δK̂j(t),

we have

K̂j(t, t) = D2e
−δt +

D1

β(r + 2δ)
e(r+δ)t − α

βδ
,
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where constants D1 and D2 satisfy the following boundary conditions:

Kj0 = D2 +
D1

β(r + 2δ)
− α

βδ
,

K̂j(t, t) = D2e
−δt +

D1

β(r + 2δ)
e(r+δ)t − α

βδ
= K∗i (t).

After a few algebra, we obtain

D1 = β(r + 2δ)

(
Kj0 + α

βδ

)
e−δt − α

βδ −K
∗
i (t)

e−δt − e(r+δ)t
,

D2 =
K∗i (t) + α

βδ −
(
Kj0 + α

βδ

)
e(r+δ)t

e−δt − e(r+δ)t
.

Finally, it is clear from Lemmata 1, 2 and 4 that Îj(t, t) = I∗i (t) and K̂j(t, t) = K∗i (t) for

t ≤ t.

Proof of Lemma 6

Proof. Set t = τ . Consider the pair I∗i and Îj(t, τ) obtained in the previous lemmata.

From Lemma 5, if K∗i (t) < K̂j(t, τ), t < τ , we know that the first-order conditions hold

Îj(t, τ) =
D1e

(r+δ)t − α
β

, (118)

K̂j(t, τ) = D2e
−δt +

D1

β(r + 2δ)
e(r+δ)t − α

βδ
, (119)

where D1 and D2 are such that

K̂j(0, τ) = Kj0,

K̂j(τ, τ) = K∗i (τ).

The equality K̂j(0, τ) = Kj0 implies that

Kj0 = D2 +
D1

β(r + 2δ)
− α

βδ
. (120)

Now the condition Îj(τ, τ) = I∗i (τ) implies in turn that

D1 = [α+ βI∗i (τ)]e−(r+δ)τ . (121)
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Further, the condition K̂j(τ, τ) = K∗i (τ) reads

D2e
−δτ +

D1

β(r + 2δ)
e(r+δ)τ − α

βδ
= K∗i (τ)

⇐⇒
[
Kj0 −

D1

β(r + 2δ)
+

α

βδ

]
e−δτ +

[α+ βI∗i (τ)]

β(r + 2δ)
e−(r+δ)τe(r+δ)τ = K∗i (τ) +

α

βδ

⇐⇒

[
Kj0 −

[α+ βI∗i (τ)]e−(r+δ)τ

β(r + 2δ)
+

α

βδ

]
e−δτ +

α+ βI∗i (τ)

β(r + 2δ)
= K∗i (τ) +

α

βδ

⇐⇒
(
Kj0 +

α

βδ

)
e−δτ +

α+ βI∗i (τ)

β(r + 2δ)
(1− e−(r+2δ)τ ) = K∗i (τ) +

α

βδ
. (122)

To see that there exists a real number τ that satisfies the equation above, observe that upon

setting τ = 0 in the two sides of the equation above we obtain

Kj0 > Ki0. (123)

On the other hand, let τ be large enough so that (Kj0 + α
βδ )e−δτ +

α+βI∗i (τ)
β(r+2δ) (1−e−(r+2δ)τ ) ∼

α+βδKi∞
β(r+2δ) . From equation (122) we then obtain

α+ βδKi∞
β(r + 2δ)

< Ki∞ +
α

βδ
. (124)

Since both sides of the equation (122) are continuous, there exists a smallest date τ such

that the equation is satisfied.

Now let us show that for this very value of τ we have: K∗i (t) < K̂j(t, τ) for all t ∈ [0, τ) so

that the process is admissible.

Assume by way of a contradiction that there exists t < τ such that K̂j(t, τ) ≤ K∗i (t). Since

Ki0 < Kj0, this implies that there is a date t′ ≤ t such that K̂j(t
′, τ) = K∗i (t′). We consider

two cases in turn.

• Ki∞ < Ki0

This implies that K̇i(t) < 0. In particular, we have K̇i(t) < 0. Thus, Ki∞ < Ki(t) <

Ki0 < Kj0. But Ij(t, t) = Ii(t) = δKi∞ > 0. As Ij(t, t) = (D1e
(r+δ)t − α)/β, this implies

that D1 > 0. Moreover, we must have D2 > 0. Otherwise, as Kj(t, t) = (D1/(β(r +

2δ)))e(r+δ)t + D2e
−δt, Kj would be increasing and it would be impossible to satisfy the

condition Ki(t) = Kj(t, t).
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Assume that there is a date t′ < t such that Ki(t
′) = Kj(t

′, t) (and consider the first

such date if there are more than one). Necessarily, K̇j(t
′, t) < K̇i(t

′), which implies that

Ij(t
′, t) < δKi∞. Since Ij is monotonic and Ij(t, t) = δKi∞, this implies that Ij(t, t) < δKi∞

for all t ∈ [t′, t[. But then we have

Ki(t) =

∫ t

t′
Iie
−δtdt+ e−(t−t′)δKi(t

′) > Kj(t, t) =

∫ t

t′
Ije
−δtdt+ e−(t−t′)δKi(t

′) (125)

which is impossible by assumption.

• Ki0 < Ki∞

In that case K̇i(t) > 0. Notice that we also have K̇i(t) > 0, which implies that K ′i(t) > 0.

We can show as above that D1 > 0.

Suppose that Kj0 > Ki∞. We must then have D2 > 0, otherwise, Kj would be increasing.

Moreover, it must be that K ′j(0, t) < 0 (this is because, Kj is convex, and would be always

increasing otherwise). Since K̇j(t, t) > 0, Kj has a local minimum between 0 and t. Suppose

that Kj(t
′, t) = Ki(t

′) for some date t′ ∈]0, t]. Then using the same argument as above we

can show that we run into a contradiction. So, we must have Ki(t) < Kj(t, t) for all t ∈ [0, t[.

Alternatively, suppose that Kj0 < Ki∞. The same argument as above applies (but it is

possible that K̇j(0, t) > 0).

Proof of Theorem 1

Proof. It is clear that by construction firm i’s decision maximizes its objective (it is actually

a dominant strategy). Consider firm j’s problem.

Set t = τ , where τ is obtained from Lemma 6. Assume that firms choose Ii = I∗i and Ij as

in Lemma 5 for t ≤ τ , and Ij = I∗i for τ ≤ t. Now, consider any alternative path satisfying

the following conditions

K̇j(t) = Ij(t)− δKj(t), Kj(0) = Kj0,

K∗i (t) ≤ Kj(t).

Moreover, set λ∗j (t) = λj(t) where λj is the value obtained in Lemma 5 for t < t = τ and

λ∗j (t) = λ∗i (t) for t ≥ τ .
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Now, for any T > τ , as K∗i (t) ≤ Kj(t) and because firm j can only sell a quantiy K∗i as the

goods are complementary, we have

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
I∗j (t)

))
dt−

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
Ij(t)

))
dt

=

∫ T

0

(
e−rtwjK

∗
i (t)− e−rtC

(
I∗j (t)

)
+ λ∗j (t)(I

∗
j (t)− δK∗j (t))

)
dt

−
∫ T

0

(
e−rtwjK

∗
i (t)− e−rtC

(
Ij(t)

)
+ λ∗j (t)(Ij(t)− δKj(t))

)
dt

+

∫ T

0
λ∗j (t)

(
K̇j(t)− K̇∗j (t)

)
dt

Observe that e−rt
(
wjK

∗
i (t)− C

(
Ij(t)

))
+ λ∗j (t)(Ij(t)− δKj(t)) is concave with respect to

(Ij(t),Kj(t)). Thus it holds that

e−rt
(
wjK

∗
i (t))−C

(
I∗j (t)

))
+λ∗j (t)

(
I∗j (t)−δK∗j (t)

)
−e−rt

(
wjK

∗
i (t)−C

(
Ij(t)

))
−λ∗j (t)

(
Ij(t)−δKj(t)

)
≥ δλ∗j (t)

(
Kj(t)−K∗j (t)

)
−
(
− e−rtC ′

(
I∗j (t)

)
+ λ∗j (t)

)
(Ij(t)− I∗j (t)).

It follows that

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
I∗j (t)

))
dt−

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
Ij(t)

))
dt ≥∫ T

0

(
δλ∗j (t)

(
Kj(t)−K∗j (t)

)
−
(
−e−rtC ′

(
I∗j (t)

)
+ λ∗j (t)

)(
Ij(t)− I∗j (t)

))
dt

+

∫ T

0
λ∗j (t)

(
K̇j(t)− K̇∗j (t)

)
dt.

By definition of I∗j and λ∗j

λ∗j (t) = e−rtC ′(Ij(t)), ∀t < τ

λ∗j (t) = λ∗i (t) = e−rtC ′(I∗j (t)) = e−rtC ′(I∗i (t)), ∀t, τ ≤ t

λ̇∗j (t) = λ̇j(t) = δλj(t), ∀t < τ

λ̇∗j (t) = λ̇∗i (t) = δλ∗j (t) ∀t, τ ≤ t.
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Then, the preceding inequality boils down to

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
I∗j (t)

))
dt−

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
Ij(t)

))
dt ≥∫ τ

0

(
λ̇∗j (t)

(
Kj(t)−K∗j (t)

)
+ λ∗j (t)

(
K̇j(t)− K̇∗j (t)

))
dt+

∫ T

τ

(
λ̇∗i (t)

(
Kj(t)−K∗i (t)

)
+ λ∗i (t)

(
K̇j(t)− K̇∗i (t)

))
dt

=

∫ τ

0

d

dt

(
λ∗j (t)(Kj(t)−K∗j (t)

)
dt+

∫ T

τ

d

dt

(
λ∗i (t)(Kj(t)−K∗i (t)

)
dt

= λ∗j (τ)
(
(Kj(τ)−K∗i (τ)

)
+ λ∗i (T )

(
Kj(T )−K∗i (T )

)
− λ∗i (τ)

(
Kj(τ)−K∗i (τ)

)
= λ∗i (T )Kj(T )− λ∗i (T )K∗i (T )

where we have used the fact that I∗j (τ) = I∗i (τ) and thus the equality

λ∗j (τ) = e−rtC ′
(
I∗j (τ)

)
= e−rtC ′

(
I∗i (τ)

)
λ∗i (τ). (126)

Since limT→+∞ λ
∗
i (T ) = 0, we get

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
I∗j (t)

))
dt−

∫ T

0
e−rt

(
wjK

∗
i (t)− C

(
Ij(t)

))
dt

≥ lim inf
T→∞

(
λ∗i (T )Kj(T )− λ∗i (T )K∗i (T )

)
= lim inf

T→∞
λ∗i (T )Kj(T ) ≥ 0.

This proves the Theorem.

Case where wj < wi

Proof of Theorem 2

Proof.

• First step

Firm i’s problem

We conjecture that once capacities meet, firm i’s decisions will be similar to that of firm j.

So what matters is the determination of firm i’s decisions before the date at which capacities

meet as well as this date itself.

To proceed, recall that firm i’s problem is

max
Ii,ti

∫ ti

0

(
wiKi − C(Ii)

)
e−rtdt+

∫ ∞
ti

(
wiK

∗
j − C(Ii)

)
e−rtdt (127)
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where

K̇i = Ii − δKi, Ki(0) = Ki0,

K∗j (t) ≤ Ki(t),

Ki(ti) = K∗j (ti).

Assume that ti is given and consider the optimal decisions for firm i over the interval [0, t].

To find these optimal decisions, let us introduce the following Hamiltonian

H(Ii,Ki, λi) = e−rt
(
wiKi − αIi −

βi
2
I2
i

)
+ λi

(
Ii − δKi

)
.

In our candidate equilibrium, the following first-order conditions must be satisfied

λi = e−rt(α+ βIi),

λ̇i = −e−rtwi + δλi.

We thus deduce that

Ii =
λie

rt − α
β

.

Using K̇i = Ii − δKi, we get

K̈i = İi − δK̇i =
ert

β

(
λ̇i + rλi

)
− δK̇i.

After a few algebra, we obtain

K̈i(t)− rK̇i(t)− δ(r + δ)Ki(t) +
wi − α(r + δ)

β
= 0.

The solution to the above equation is

Ki(t) = Ki∞ +D1ie
−δt +D2ie

(r+δ)t,
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where

Ki∞ =
wi − α(r + δ)

βδ(δ + r)
, (128)

D1i =
(Ki0 −Ki∞)e(r+δ)ti − (K∗j (ti)−Ki∞)

e(r+δ)ti − e−δti
, (129)

D2i =
K∗j (ti)−Ki∞ − (Ki0 −Ki∞)e−δti

e(r+δ)ti − e−δti
, (130)

where we have used the conditions Ki(0) = Ki0 and Ki(ti) = K∗j (ti).

We conjecture that the optimal value of ti must be such that Ii(ti) = Ij(ti). But as

Ii(ti) = K̇i(ti) + δKi(ti), using the expressions of Ki(.) we get

Ii(ti) = (r + 2δ)e(r+δ)tiD2i + δKi∞, (131)

or

D2i =
Ij(ti)− δKi∞

r + 2δ
e−(r+δ)ti . (132)

Using equations (130) and (132), we obtain

K∗j (ti) =
Ij(ti)− δKi∞

r + 2δ
e−(r+δ)ti

(
e(r+δ)ti − e−δti

)
+Ki∞ + (Ki0 −Ki∞)e−δti . (133)

Firm j’s problem

First consider the decisions made by firm j from a date tj on, where the capacities meet.

The solution to firm j’s problem is similar to that given in Lemma 3, i.e., we obtain

Ij(t) = δKj∞, (134)

Kj(t) = Kj∞ + (Kj(tj)−Kj∞)e−δ(t−tj), (135)

Kj∞ =
wj − (r + δ)α

βδ(r + δ)
. (136)

Now, for tj given, consider the first part of firm j’s problem, i.e.,

max
Ij(·)

∫ tj

0

(
wjK

∗
i (t)− C(Ij(t))

)
e−rtdt (137)

15



s.t.: K̇j = Ij(t)− δKj(t), Kj(0) = Kj0, (138)

Kj(tj) = K∗i (tj) (139)

K∗i (t) < Kj(t). (140)

We can rely on Lemma 5 to solve that problem. Let Îj(t, tj) and K̂j(t, tj) be the solution

of the problem when tj is given. Then we have for all t < t

Îj(t, tj) =
D1je

(r+δ)t − α
β

, (141)

K̂j(t, tj) = D2je
−δt +

D1j

β(r + 2δ)
e(r+δ)t − α

βδ
, (142)

where

D1j = β(r + 2δ)

(
Kj0 + α

βδ

)
e−δtj − α

βδ −K
∗
i (tj)

e−δtj − e(r+δ)tj
, (143)

D2j =
K∗i (tj) + α

βδ −
(
Kj0 + α

βδ

)
e(r+δ)tj

e−δtj − e(r+δ)tj
. (144)

We conjecture again that in equilibrium the following condition must be satisfied (otherwise

the date tj would not be optimal)

Îj(tj , tj) = Ij(tj) = δKj∞. (145)

Thus using (141) we obtain

D1j = (βδKj∞ + α)e−(r+δ)tj . (146)

Using the definition of K̂j , we must also have

D2j = Kj0 −
D1j

β(r + 2δ)
+

α

βδ
. (147)

Thus

K̂j(t, tj) =

[
Kj0 −

(βδKj∞ + α)

β(r + 2δ)
e−(r+δ)tj +

α

βδ

]
e−rt +

(βδKj∞ + α)

β(r + 2δ)
e−(r+δ)tje(r+δ)t − α

βδ
.

(148)
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Notice, however, that using (143) and (146) we have

(βδKj∞ + α)e−(r+δ)tj = β(r + 2δ)

(
Kj0 + α

βδ

)
e−δtj − α

βδ −K
∗
i (tj)

e−δtj − e(r+δ)tj
. (149)

Therefore we deduce that

K∗i (tj) = − α

βδ
+ (Kj0 +

α

βδ
)e−δtj +

(
e(r+δ)tj − e−δtj

)(βδKj∞ + α)

β(r + 2δ)
e−(r+δ)tj . (150)

• Second step

We now look for an equilibrium, that is, decisions that are consistent. More precisely, we

look for a value t, such that

t = ti = tj . (151)

Moreover, in equilibrium we must check that K∗i (t) = K∗j (t). Thus, using (133) and (150),

t must solve the following equation

− α

βδ
+ (Kj0 +

α

βδ
)e−δtj +

(
e(r+δ)tj − e−δtj

)(βδKj∞ + α)

β(r + 2δ)
e−(r+δ)tj =

δKj∞ − δKi∞
r + 2δ

e−(r+δ)t
(
e(r+δ)t − e−δt

)
+Ki∞ + (Ki0 −Ki∞)e−δt. (152)

To show that there exists a value of t that solves the above equation, let us introduce the

function ϕ : R+ → R defined by

ϕ(t) = − α

βδ
+ (Kj0 +

α

βδ
)e−δtj +

(
e(r+δ)tj − e−δtj

)(βδKj∞ + α)

β(r + 2δ)
e−(r+δ)tj

−
(
δKj∞ − δKi∞

r + 2δ
e−(r+δ)t

(
e(r+δ)t − e−δt

)
+Ki∞ + (Ki0 −Ki∞)e−δt

)
. (153)

Observe that

lim
t→0+

ϕ(t) =
(
Kj0 +

α

βδ

)
− α

βδ
−Ki∞ − (Ki0 −Ki∞) = Kj0 −Ki0 > 0. (154)
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Moreover,

lim
t→∞

ϕ(t) = − α

βδ
+
δβKj∞ + α

β(r + 2δ)
− δKj∞ −Ki∞

r + 2δ
−Ki∞ (155)

= − α

βδ
+

α

β(r + 2δ)
+
δKi∞
r + 2δ

−Ki∞ (156)

=
α

β

(
1

r + 2δ
− 1

δ

)
+Ki∞

(
−1 +

δ

r + 2δ

)
(157)

= − r + δ

r + 2δ

(
α

βδ
+Ki∞

)
< 0. (158)

By continuity, there thus exists t such that ϕ(t) = 0.

• Third step

We must now check that the inequality K∗i (t) < K∗j (t) holds for all t in [0, t].

To show this, recall that for all t ≤ t we have found that

K∗i (t) = Ki∞ +D1ie
−δt +Di2e

(r+δ)t, (159)

K∗j (t) = − α

βδ
+

Dj1

β(r + 2δ)
e(r+δ)t +Dj2e

−δt. (160)

From (146) we can see that Dj1 > 0.

Moreover from (132), we have

Di2 =
Ij(t)− δKi∞

r + 2δ
e−(r+δ)t =

δKj∞ − δKi∞
r + 2δ

e−(r+δ)t < 0.

Notice that we cannot have both Di1 > 0 and Dj2 < 0. Otherwise, we would have that

Ki is always decreasing, whereas Kj is always increasing. Thus, it would be impossible to

satisfy the condition Ki(t) = Kj(t).

We next consider three cases in turn.

• Dj2 < 0

Then Di1 < 0 and Ki is concave and Kj is increasing. Since K ′j(0) > 0 ⇒ K ′j(t) > 0

(and then Kj∞ > Kj0 > Ki0). It is then impossible that K ′i(0) < 0 (Ki would be always

decreasing, whereas Kj would be always increasing). Thus K ′i(0) > 0 and Ki(·) is increasing.
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Assume that there is a date t′ at which Kj(t
′) = Ki(t

′). Then it must be that K ′i(t
′) >

K ′j(t
′), and thus that Ii(t

′) > Ij(t
′) since K̇h = Ih − δKh (h = i, j).

Moreover,

İi(t) = (r + 2δ)(r + δ)Di2e
(r+δ)t. (161)

We can see that I ′i < 0. This implies that Ii is decreasing and goes to δKj∞ while Ij is

increasing and goes to δKj∞. But then, we can see that it is impossible that Ki(t) = Kj(t)

(see the inequality (125)).

• Di1 > 0

Then Dj2 > 0. Moreover, Ki is decreasing and Kj is convex. It is impossible that K ′j(0) > 0

(otherwise, we would haveKi decreasing andKj increasing). It thus must be thatK ′j(0) < 0.

It is also impossible that K ′j(t) > 0 (since K ′j(t) = K ′i(t) < 0 as Ki is decreasing). So Kj is

also decreasing (Kj∞ < Ki0 < Kj0).

Suppose that there is a date t′ such that Ki(t
′) = Kj(t

′). Then we have Ii(t
′) > Ij(t

′)

(because it must be that K ′i(t
′) > K ′j(t

′)). Recall that

İi(t) = (r + 2δ)(r + δ)Di2e
(r+δ)t. (162)

As İi < 0 and relying on an argument used above, we conclude that Ki(t) > Kj(t) which is

impossible.

• Di1 < 0, Dj2 > 0

We can check that Ki is concave and Kj is convex.

Suppose that K ′j(t) > 0 (Kj∞ > Kj0 > Ki0). Then K ′i(t) > 0 which implies that K ′i(0) > 0.

Suppose also that K ′j(0) > 0. Then there is no date t′ in ]0, t[ such that Ki(t
′) = Kj(t

′)

because as Ki is concave increasing and Kj is convex increasing it would be impossible to

satisfy the condition Ki(t) = Kj(t).

So suppose that K ′j(0) < 0. Hence Kj has a global minimum at a date included in ]0, t[.

It is, however, impossible that Kj(t) = Ki(t) for a date t such that K ′j(t) > 0. Thus, if
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Kj(t) = Ki(t) it must be at a date t′ such that K ′j(t
′) < 0, and Ii(t

′) > Ij(t
′). Because

I ′i < 0, as Ij is increasing and both investment rates are equal at date t, we cannot have

Ki(t) = Kj(t).

• Fourth step

In the previous steps we have found candidate equilibrium decisions by solving necessary

conditions. We now check that these conditions are also sufficient.

Sufficient conditions for firm i

We distinguish two cases, depending on whether firm i’s alternative investment policy Ii is

such that its capacity meets firm j’s before or after t.

Remark 1 Notice that from Lemmata 2 and 4 we know that whenever firm i’s capacity

meets firm j’s it is optimal to choose firm j’s investment policy. It is therefore sufficient to

only consider alternative policies that satisfy this property.

— Firm i’s capacity meets firm j’s at date t′ < t.
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Let us compare firm i’s payoffs (and recall that Ki0 < Kj0). We have

∫ t′

0

{
e−rt

(
wiK

∗
i − C(I∗i )

)
+ λi

(
I∗i − δK∗i

)}
dt+

∫ t

t′

{
e−rt

(
wiK

∗
i − C(I∗i )

)
+ λi

(
I∗i − δK∗i

)}
dt

−
∫ t′

0

{
e−rt

(
wiKi − C(Ii)

)
+ λi

(
Ii − δKi

)}︸ ︷︷ ︸
as Ki(t)<K∗j (t),∀t<t

dt−
∫ t

t′

{
e−rt

(
wiK

∗
j − C(I∗j )

)
+ λi

(
I∗j − δK∗j

)}
dt︸ ︷︷ ︸

See remark 1

+

∫ t

0
λi
(
K̇i − K̇∗i

)
dt

≥︸︷︷︸
by concavity of the Hamiltonian

∫ t′

0

(e−rtwi − δλi)(K∗i −Ki) +
(
λi − e−rtC ′(I∗i )

)︸ ︷︷ ︸
=0

(I∗i − Ii)

 dt

+

∫ t

t′
(e−rtwi − δλi)(K∗i −K∗j )dt

+

∫ t

t′

(
λi − e−rtC ′(I∗i )

)︸ ︷︷ ︸
=0

(I∗i − Ii)dt+

∫ t

0
λi
(
K̇i − K̇∗i

)
dt

=︸︷︷︸
as λ̇i=−e−rtwi+δλi

∫ t

0
λ̇i
(
Ki −K∗i

)
dt+

∫ t

0
λi
(
K̇i − K̇∗i

)
dt

= λi(t)(Ki(t)−K∗i (t))− λi(t′)(Ki(t
′)−K∗i (t)) + λi(t

′)(Ki(t
′)−K∗i (t))− λi(0)(Ki0 −Ki0)

= 0 (163)

where the last line stems from the fact that Ki(t) = K∗j (t) = K∗i (t).
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— Firm i’s capacity meets firm j’s at date t′ > t.

∫ t

0

{
e−rt

(
wiK

∗
i − C(I∗i )

)
+ λi

(
I∗i − δK∗i

)}
dt+

∫ t′

t

{
e−rt

(
wiK

∗
j − C(I∗j )

)
+ λi

(
I∗j − δK∗j

)}
dt

−
∫ t′

0

{
e−rt

(
wiKi − C(Ii)

)
+ λi

(
Ii − δKi

)}︸ ︷︷ ︸
as Ki(t)<K∗j (t), ∀t<t

dt+

∫ t′

0
λi
(
K̇i(t)− K̇∗i (t)

)
dt

≥︸︷︷︸
by concavity of the Hamiltonian

∫ t′

0

(e−rtwi − δλi)(K∗i −Ki) +
(
λi − e−rtC ′(I∗i )

)︸ ︷︷ ︸
=0

(I∗i − Ii)

 dt

+

∫ t′

0
λi
(
K̇i − K̇∗i

)
dt

=

∫ t

0
λ̇i
(
Ki −K∗i

)
dt︸ ︷︷ ︸

as λ̇i=−e−rtwi+δλi

+

∫ t′

t

(
e−rt(wi − wj)− λ̇j

)(
K∗i −Ki

)
dt︸ ︷︷ ︸

as δλi=δλj=wje−rt+λ̇j

+

∫ t′

0
λi
(
K̇i − K̇∗i

)
dt

≥︸︷︷︸
as Ki<K∗i ∀t<t′

λi(t
′)(Ki(t

′)−K∗i (t′))−λi(t)(Ki(t)−K∗i (t))+λi(t)(Ki(t)−K∗i (t))−λi(0)(Ki0−Ki0)

= 0 (164)

where the last line stems from the fact that Ki(t
′) = K∗j (t′) = K∗i (t′).

Sufficient conditions for firm j

Remark 2 Observe that from Lemma 2, whenever firm j’s capacity meets firm i’s, it will

never choose an investment policy such that its capacity becomes higher than firm i’s in the

future.

Again, we consider two cases.

— Firm j’s capacity meets firm i’s at date t′ < t.
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Let us compare firm j’s payoffs (and recall that Ki0 < Kj0). Let T > t. We have

∫ t′

0

{
e−rt

(
wjK

∗
i − C(I∗j )

)
+ λj

(
I∗j − δK∗j

)}
dt+

∫ t

t′

{
e−rt

(
wjK

∗
i − C(I∗j )

)
+ λj

(
I∗j − δK∗j

)}
dt

+

∫ T

t

{
e−rt

(
wjK

∗
j − C(I∗j )

)
+ λj

(
I∗j − δK∗j

)}
dt

−
∫ t′

0

{
e−rt

(
wjK

∗
i − C(Ij)

)
+ λj

(
Ij − δKj

)}︸ ︷︷ ︸
as Kj(t)>K∗i (t), ∀t<t′

dt−
∫ T

t′

{
e−rt

(
wjKj − C(Ij)

)
+ λj

(
Ij − δKj

)}
dt︸ ︷︷ ︸

See remark 2 and Lemma 3

+

∫ T

0
λj
(
K̇j − K̇∗j

)
dt

≥︸︷︷︸
by concavity of the Hamiltonian

∫ t′

0

δλj(Kj −K∗j ) +
(
λj − e−rtC ′(I∗j )

)︸ ︷︷ ︸
=0

(I∗j − Ij)

 dt

+

∫ T

t′
(e−rtwj − δλj)(K∗j −Kj)dt

+

∫ T

t′

(
λj − e−rtC ′(I∗j )

)︸ ︷︷ ︸
=0

(I∗j − Ij)dt+

∫ T

0
λj
(
K̇j − K̇∗j

)
dt

≥︸︷︷︸
asK∗j≥Kj∀t>t′

∫ T

0
λ̇j
(
Kj −K∗j

)
dt︸ ︷︷ ︸

as λ̇j=δλj∀t<t and λ̇j=−e−rtwj+δλj∀t>t

+

∫ T

0
λj
(
K̇j − K̇∗j

)
dt

= λj(T )(Kj(T )−K∗j (T ))− λj(0)(Kj0 −Kj0) (165)

We obtain the sufficient condition by taking the limsup when T goes to ∞ (as K∗j is

bounded).

— Firm j’s capacity meets firm i’s at date t′ > t.

Observe that whenever firm j’s capacity meets firm i’s then, firm j’s best choice is to choose

firm i’s investment policy (which in turn is that of firm j in equilibrium). Based on this

remark, we get
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∫ t

0

{
e−rt

(
wjK

∗
i − C(I∗j )

)
+ λj

(
I∗j − δK∗j

)}
dt+

∫ t′

t

{
e−rt

(
wjK

∗
j − C(I∗j )

)
+ λj

(
I∗j − δK∗j

)}
dt

−
∫ t′

0

{
e−rt

(
wjKj − C(Ij)

)
+ λj

(
Ij − δKj

)}︸ ︷︷ ︸
as K∗i (t)<Kj(t),∀t<t

dt+

∫ t′

0
λj
(
K̇j − K̇∗j

)

≥︸︷︷︸
by concavity of the Hamiltonian

∫ t′

0

(e−rtwj − δλj)(K∗j −Kj) +
(
λj − e−rtC ′(I∗j )

)︸ ︷︷ ︸
=0

(I∗j − Ij)

 dt

+

∫ t′

0
λj
(
K̇j − K̇∗j

)
dt

=

∫ t′

0
λ̇j
(
Kj −K∗j

)
dt︸ ︷︷ ︸

as λ̇j=−e−rtwj+δλj

+

∫ t′

0
λj
(
K̇j − K̇∗j

)
dt

= λj(t
′)(Kj(t

′)−K∗j (t′))−λj(t)(Kj(t)−K∗j (t)) +λj(t)(Kj(t)−K∗j (t))−λj(0)(Kj0−Kj0)

= 0 (166)

where the last line stems from the fact that Kj(t
′) = K∗j (t′) = K∗i (t′).

Non-existence

Proof of Proposition 3.

By way of contradiction, suppose that there is an open-loop equilibrium as described in the

statement of the Proposition. Denote by I∗h the equilibrium decision of manufacturer h,

h = i, j, and by K∗h the corresponding equilibrium time path for the production capacity.

Without loss of generality, we can assume that t = 0.41 By assumption, the equilibrium

time path for manufacturer j’s capacity K∗j satisfies K∗j (t) > 0 for all t ∈ [0, t̄]. Consider

the following deviation strategy for manufacturer i. Let ε > 0 and tε > 0 with tε < t̄ such

that for all t in [0, tε], I
ε
i (t) = I∗i (t) − ε = I∗j (t) − ε (since by assumption I∗i = I∗j ), and

Iεi (t) = I∗j (t) elsewhere. Thus Kε
i (t) =

∫ t
0 e

δ(s−t)(I∗j (s) − ε)ds + e−δtKj0 > 0.42 Recall that

41That is because, in a symmetric equilibrium we would have K∗i (t) = K∗j (t) and we can focus on the
dynamics from date t on.

42The fact that K∗j (t) > 0 on [0, tε] allows us to choose such an ε.
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for t ≥ tε, K̇ε
i (t) = I∗j (t)− δKε

i (t). Then for t ≤ tε we have

Kε
i (t) =

∫ t

0
eδ(s−t)Iεi (s)ds+ e−δtKj0 =

∫ t

0
eδ(s−t)I∗j (s)ds−

∫ t

0
εeδ(s−t)ds+ e−δtKj0

= K∗j (t)− εe
−δt

δ
[eδt − 1].

And for t ≥ tε it holds that

Kε
i (t) =

∫ t

0
eδ(s−t)Iεi (s)ds+ e−δtKj0 =

∫ t

0
eδ(s−t)I∗j (s)ds−

∫ tε

0
εeδ(s−t)ds+ e−δtKj0

= K∗j (t)− εe
−δt

δ
[eδtε − 1].

Now, since Kε
i (t) < K∗j (t) for all t, it follows that manufacturer i’s revenue is written

(1 − φi)(â − 2bKε
i (t))K

ε
i (t) + wi

φi
Kε
i (t) instead of (1 − φi)

(â−bK∗j (t))

2 K∗j (t) + wi
φi
K∗i (t) when

I∗i (t) = I∗j (t) for all t. Let us now compare the profit obtained by manufacturer i when ε > 0

with its value when ε = 0 (in that last case, both manufacturers use the same strategy).

Deviating from manufacturer j’s strategy is profitable whenever

∫ ∞
0

{
(1− φi)

(
(â−2bKε

i (t))K
ε
i (t)−

â−bK∗j (t)

2
K∗j (t)

)
+
wi
φi

(Kε
i (t)−K∗i )

}
e−rtdt

−
∫ tε

0

(
αIεi (t)+

β

2
(Iεi (t))

2−αI∗i (t)−β
2

(I∗i (t))2

)
e−rtdt > 0

for some ε > 0.

Let us then compute âKε
i (t)− 2b(Kε

i (t))
2. For t ≤ tε, we have:

âKε
i (t)− 2b(Kε

i (t))
2 = âK∗j (t)− âεe

−δt

δ
[eδt − 1]

− 2b

[
(K∗j (t))2 − 2εK∗j (t)

e−δt

δ
[eδt − 1] + ε2

e−2δt

δ2
[eδt − 1]2

]
and for t ≥ tε we get

âKε
i (t)− 2b(Kε

i (t))
2 = âK∗j (t)− âεe

−δt

δ
[eδtε − 1]

− 2b

[
(K∗j (t))2 − 2εK∗j (t)

e−δt

δ
[etε − 1] + ε2

e−2δt

δ2
[eδtε − 1]2

]
.
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In addition, for t ≤ tε we have

wi
φi

(
Kε
i (t)−K∗i (t)

)
=
wi
φi

(
−εe

−δt

δ
[eδt − 1].

)
and for t > tε we have

wi
φi

(
Kε
i (t)−K∗i (t)

)
=
wi
φi

(
−εe

−δt

δ
[eδtε − 1]

)
.

For t ≤ tε, we then get

(1− φi)
(
âKε

i (t)− 2b(Kε
i (t))

2 −
â− bK∗j (t)

2
K∗j (t))

)
+
wi
φi

(
Kε
i (t)−K∗i (t)

)
=

(1− φi)
(
â

2
K∗j (t)− 3b

2
(K∗j (t))2 − âεe

−δt

δ
[eδt − 1]

+4bεK∗j (t)
e−δt

δ
[eδt − 1]− 2bε2

e−2δt

δ2
[eδt − 1]2

)
+
wi
φi

(
−εe

−δt

δ
[eδt − 1]

)
,

whereas for t ≥ tε we have

(1− φi)
(
âKε

i (t)− 2b(Kε
i (t))

2 −
â− bK∗j (t)

2
K∗j (t))

)
+
wi
φi

(
Kε
i (t)−K∗i (t)

)
=

(1− φi)
(
â

2
K∗j (t)− 3b

2
(K∗j (t))2 − âεe

−δt

δ
[eδtε − 1]

+4bεK∗j (t)
e−δt

δ
[eδtε − 1]− 2bε2

e−2δt

δ2
[eδtε − 1]2

)
+
wi
φi

(
−εe

−δt

δ
[eδtε − 1]

)
.

Now, observe that for all t, t ≤ tε, it holds that

αIεi (t)+
β

2
(Iεi (t))

2−
(
αI∗j (t)+

β

2
(I∗j (t))2

)
= α(I∗j (t)−ε)+

β

2
(I∗j (t)−ε)2−

(
αI∗j (t)+

β

2
(I∗j (t))2

)
= −αε+

β

2

(
−2εI∗j (t) + ε2

)
.

Using the above results, we obtain

∫ ∞
0

{
(1− φi)

(
(â−2bKε

i (t))K
ε
i (t)−

â−bK∗j (t)

2
K∗j (t)

)
+
wi
φi

(Kε
i (t)−K∗i )

}
e−rtdt

−
∫ tε

0

(
αIεi (t)+

β

2
(Iεi (t))

2−αI∗i (t)−β
2

(I∗i (t))2

)
e−rtdt
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=

∫ ∞
0

e−rt(1− φi)
(
â

2
K∗j (t)− 3b

2
(K∗j (t))2

)
dt

−ε(1− φi)
∫ tε

0
e−rt

(
(â+

wi
(1− φi)φi

)
e−δt

δ
[eδt − 1]− 4bK∗j (t)

e−δt

δ
[eδt − 1] + 2bε

e−2δt

δ2
[eδt − 1]2]

)
dt

−ε(1− φi)
∫ ∞
tε

e−rt
(

(â+
wi

(1− φi)φi
)
e−δt

δ
[eδtε − 1]− 4bK∗j (t)

e−δt

δ
[eδtε − 1] + 2bε

e−2δt

δ2
[eδtε − 1]2]

)
dt

+ε

∫ tε

0
e−rt

(
α+ βI∗j (t)− β

2
ε

)
dt. (167)

Now since K∗j (t) < â/(3b) by assumption, we have

∫ ∞
0

(
â

2
K∗j (t)− 3b

2
(K∗j (t))2

)
e−rtdt > 0.

Moreover, we can always choose ε small enough so that the expression (167) is positive.

Therefore, we have found a profitable deviation. The result follows.

Proof of Proposition 4

Proof. Suppose by way of a contradiction that such an equilibrium exists. Assume that

the inequality in the statement of the Proposition is satisfied for firm i. From Proposition

2, we see that along the candidate equilibrium path, manufacturer i’s revenues are equal to

(1− φi) â
2

9b + wi
φi

â
3b .

For any K < â
3b , the payoff of manufacturer i is given (up to the investment expenditures)

by the function ζ(K) : (1− φi)(â− 2bK)K + wi
φi
K. Notice that ζ ′( â4b) = wi

φi
> 0 and under

assumption (73) ζ ′( â3b) = −(1− φi) â3b + wi
φi
< 0. Since ζ ′ is continuous there exists a value

K̃ ∈] â4b ,
â
3b [, such that ζ ′(K̃) = 0. Since ζ is concave, it attains its maximum value at K̃.

Consider the following deviation strategy for manufacturer i. Set Ii(t) = 0, as long as Ki(t)

is not equal to K̃, and Ii(t) = δK̃ afterwards. Let t′ be such that Ki(t
′) = Ki0e

−δt′ =

â
3be
−δt′ = K̃. So for t ∈ [0, t′], Ki(t) = â

3be
−δt and for t > t′, Ki(t) = K̃. Under our

assumption it holds that for all t, manufacturer i’s revenues is higher to the candidate

equilibrium income (since ζ ′(K) < 0 if K > K̃).

Moreover, the investment expenditures of manufacturer i are also always lower than the

equilibrium ones since they are nil until the date at which Ki(t) = K̃ and equal to δK̃

afterwards, which is lower than δ â3b . The Proposition follows.

Proof of Proposition 5

Proof. The proof is essentially that of Lemma 1. The instantaneous profit of firm j is no
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longer wjK
∗
i (t)−C(Ij) but (1−φj)b(K∗i (t))2 +

wj
φj
K∗i (t)−C(Ij(t)), however. Yet the proof

does not depend on this difference.

Proof of Proposition 6

Proof.

Assume by way of a contradiction that the manufacturers’ capacities satisfy K∗i (t) = K∗j (t),

K∗i (t̄) = K∗j (t̄), and K∗j (t) < K∗i (t) on ]t, t̄[. Then from Proposition 2, Firm i’s income can

be written (1− φi)b
(
K∗j (t)

)2
+ wi

φi
K∗j (t)− C(I∗i (t)). Since firm i’s income only depends on

firm j’s capacity, and firm i’s capacity is different from firm j’s, this implies that

∫ t̄

t
e−rtC(I∗i (t))dt ≤

∫ t̄

t
e−rtC(I∗j (t))dt. (168)

But it must be that
∫ t̄
t e
−rtC(I∗i (t))dt <

∫ t̄
t e
−rtC(I∗j (t))dt. Otherwise, choose λ ∈]0, 1[ and

set Iλi (t) ≡ λI∗i (t) + (1 − λ)I∗j (t). Since the cost function C(·) is strictly convex, it holds

that∫ t̄

t
e−rtC

(
Iλi (t)

)
dt < λ

∫ t̄

t
e−rtC(I∗i (t))dt+ (1− λ)

∫ t̄

t
e−rtC(I∗j (t))dt =

∫ t̄

t
e−rtC(I∗i (t))dt.

(169)

But then, firm i would be better off by choosing investment decision Iλi because it is less

costly than I∗i and its income would be unchanged asKλ
i = λK∗i (t)+(1−λ)K∗j (t) > K∗j (t) for

all t in ]t, t̄[ (according to Proposition 2, firm i income with Iλj would only depend on K∗j ).

Therefore I∗i cannot be an equilibrium decision. So it must be that
∫ t̄
t e
−rtC(I∗i (t))dt <∫ t̄

t e
−rtC(I∗j (t))dt. Now, since K∗j (t) < K∗i (t) for all t ∈]t, t̄[, if firm j makes the same

investment decision I∗i as firm i, it can always only use a share Zj = K∗j (t) < K∗i (t) of

capacity K∗i (t), and thus obtain the income associated with K∗j . However, since inequality

(168) is actually a strict inequality, firm j would be better off by choosing firm i’s investment

policy I∗i (such policy would yield the same revenues while reducing the investment costs).

Thus I∗i cannot be an equilibrium decision and we obtain a contradiction.
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