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Abstract. We prove that the isolated invariant branches of a weak toric type
generalized curve defined over a projective toric ambient surfaces extend to
projective algebraic curves. To do it, we pass through the characterization of
the weak toric type foliations in terms of “Newton non-degeneracy” conditions,
in the classical sense of Kouchnirenko and Oka. Finally, under the strongest
hypothesis of being a toric type foliation, we find that there is a dichotomy:
Either it has rational first integral but does not have isolated invariant branches
or it has finitely many global invariant curves and all of them are extending
isolated invariant branches.

1. Introduction

The aim of this paper is to describe local-global features for the invariant curves
of weak toric type generalized curves on projective toric ambient surfaces. The
main result we present is stated as follows:

Theorem 5. The isolated invariant branches of a weak toric type
generalized curve on a projective toric surface extend to projective
algebraic curves.

A foliation is of toric type when it has a combinatorial desingularization. This
definition was introduced by M.I.T. Camacho and F.Cano in [2]. Analogously, a
foliation is of weak toric type when it has a combinatorial desingularization, but just
up to presimple points. We call generalized curve to the foliations without saddle-
nodes after reduction of singularities (they are also called “complex hyperbolic”
(see [5],[6])). An invariant branch is isolated if it always falls into a non-dicritical
component of the exceptional divisor after any reduction of singularities. This
concept was suggested in [3] by C. Camacho, A. Lins Neto and P. Sad.

We characterize weak toric type foliations in terms of Newton polygons and “ini-
tial forms”. To do it, we introduce the concept of Newton non-degenerate foliation,
following the classical ideas of A.G. Kouchnirenko and M. Oka for varieties, that
can be found in [10, 11]. We prove the equivalence result below:

Theorem 3: A generalized curve foliated surface is Newton non-
degenerate if and only if it is of weak toric type.
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A foliated surface is the data of a foliation F on a complex surfaceM and a normal
crossings divisor E ⊂M . Most of the definitions and properties we present in this
paper concern to the pair (F , E) and not only to the foliation F .

Let us recall that a nonsingular projective toric surface is naturally endowed
with a normal crossings divisor given by the union of the non-dense orbits of the
torus action. Moreover, these surfaces can be obtained by blowing-ups and blowing-
downs from the projective plane P2

C with the “standard” toric structure, that gives
the divisor X0X1X2 = 0. Most of the properties we are going to consider are stable
under equivariant (combinatorial) blowing-ups and blowing-downs. This allow us
to prove many of the results by looking just to the projective plane.

In order to describe Newton non-degenerate foliations on the projective plane,
we use in an essential way the following property: “The number of roots of a
Laurent polynomial system in general position is the mixed volume of the associated
polyhedra”. This result was proved by D.N. Bernstein, A.G. Khovanskii and A.G.
Kouchnirenko in [1, 9]. Applying it, we show that the homogeneous polygon ∆h(F)
of a Newton non-degenerate foliation F is a single vertex or a segment. In this way,
we describe a set of projective algebraic curves such that any isolated invariant
branch at a given point is the germ of one of these curves at the point. More
precisely, we have the following three cases for the homogeneous polygon ∆h(F):

Case a): It is a single point: there are no isolated invariant branches.
Case b): It is the segment joining the points (0, d, 0) and (0, 0, d):

the isolated invariant branches are in a finite family of lines
`λ = (X2 − λX1 = 0).

Case c): It is the segment joining the points (d, 0, 0) and (0, a, d−
a): the isolated invariant branches are in a finite family of
curves Cλ = (X d̃−ã

1 X ã
2 − λX d̃

0 = 0).

In this way, we obtain the proof of Theorem 5.
Concerning the existence of isolated invariant branches in the weak toric type

case, we see in Lemma 12 that we effectively find at least one for each λ in the
above families. In case b), we just blow-up the common point of all the lines `λ.
Each of the transformed lines cuts the new divisor at two points pλ and qλ and
we prove that the “eigenvalues ratios” of the singularities of the foliation at these
points are opposite each to the other, hence one of them is a simple point and we
find an isolated invariant branch through it. In case c), we find a similar property
after reduction of singularities of the cuspidal family Cλ = (X d̃−ã

1 X ã
2 − λX d̃

0 = 0).
When we have the strongest property that the foliation is of toric type, we obtain

the following result:

Theorem 6: We have the next dichotomy for a toric type foliation
on a projective toric surface:
I) There is rational first integral and there are no isolated invari-

ant branches.
II) There is no rational first integral and every proper invariant

branch extending to a projective algebraic curve is an isolated
invariant branch.

An invariant branch is proper when it is based at a point of the divisor but is not
contained in it.
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From the results of this paper, we know that there is always global invariant
curve for a toric type foliation on a projective toric surface. This does not hold for
general generalized curves on the projective plane. Indeed, Jouanolou’s classical
example (see [8]) given by the differential form

(X2
0X1 −X3

2 )dX0 + (X2
1X2 −X3

0 )dX1 + (X2
2X0 −X3

1 )dX2

has no algebraic invariant curves, but it has seven singularities and two isolated
invariant branches at each.

Jouanolou’s example is classically used to construct germs of codimension one
foliations in dimension three without invariant surface. In [6] we apply these results
to prove the existence of invariant surface for germs of toric type codimension one
foliations in dimension three.

2. Generalities on Foliated Surfaces

We introduce basic definitions and results concerning the theory of holomorphic
singular foliations in dimension two. All these contents can be essentially found at
[4].

2.1. Foliated surfaces. A nonsingular complex analytic surface M , is a C-ringed
space M = (|M |,OM ) in local C-algebras of functions, covered by open subsets
isomorphic to open subsets of (C2,OC2). Denote by Ω1

M the sheaf of germs of
holomorphic one-forms on M . A codimension one holomorphic singular foliation
F on M (for short, a foliation on M) is an invertible subsheaf F ⊂ Ω1

M , locally
generated at each point p ∈M by a holomorphic one-form ω ∈ Ω1

M,p, that we write
in local coordinates as

ω = f1dx1 + f2dx2,

where f1, f2 ∈ OM,p have no common factors. The singular locus Sing(F) is the
closed analytic subset of M locally defined by f1 = f2 = 0. It is a set of isolated
points.

A normal crossings divisor E of M is the union of a finite family {Ei}i∈I of
connected closed nonsingular holomorphic curves such that, for each point p ∈ M
we have E ⊂ (x1x2 = 0), where (x1, x2) is a local coordinate system. Note that
the Ei are the irreducible components of E. We denote by ep(E) the number of
irreducible components of E through p ∈ M , we have that ep(E) ∈ {0, 1, 2}. We
say that E is a strong normal crossings divisor if either Ei ∩Ej is empty or it is a
single point, for every i, j.

Given a point p ∈ M , a curve branch (Γ, p) is defined by an equation f = 0,
where f ∈ OM,p is irreducible. We say that (Γ, p) is an invariant branch of F if
ω ∧ df = fα, where α is a germ of holomorphic 2-form and ω is a generator of
F at p. We know that there is an only invariant branch (Γ, p) through p, when
p 6∈ Sing(F).

Consider an irreducible curve Y of M and a point p ∈ Y . If (Γ, p) ⊂ (Y, p) is
an invariant branch, then every branch (Υ, q) ⊂ (Y, q) is also invariant, for each
q ∈ Y . In this case, we say that Y is an invariant curve of F . The non-invariant
irreducible components of E are also called dicritical components. We write the
index set as I = Iinv∪ Idic, where Iinv corresponds to the invariant components and
Idic corresponds to the dicritical ones. We also denote

Einv = ∪i∈IinvEi; Edic = ∪i∈IdicEi.
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We say that F and E have normal crossings at p /∈ Sing(F) if E ∪ Γ is a local
normal crossings divisor, where (Γ, p) is the only invariant branch of F through p.
The adapted singular locus Sing(F , E) is defined by
Sing(F , E) = Sing(F) ∪ {p /∈ Sing(F); F and E have no normal crossings at p}.
We have that Sing(F , E) is a set of isolated points and Sing(F , E) ⊃ Sing(F).

Remark 1. If M is a compact set or a germ around a compact set, then Sing(F , E)
is finite.

We say that a coordinate system (x1, x2) at p ∈M is adapted to E if ep(E) = 0,
E = (x1 = 0) or E = (x1x2 = 0). Let Ω1

M (logE) be the sheaf of germs of
logarithmic one-forms along E. A codimension one singular E-foliation L on M
(for short, an E-foliation on M) is an invertible subsheaf L ⊂ Ω1

M (logE), locally
generated at each point p ∈M by a logarithmic one-form η ∈ Ω1

M,p(logE), that we
write in adapted local coordinates as

η =
e∑
i=1

ai
dxi
xi

+
2∑

i=e+1
aidxi; e = ep(E),

where the coefficients ai have no common factors. We define the adapted multiplicity
νp(F , E) to be the minimum νp(a1, a2) of the orders νp(a1) and νp(a2) at p of the
coefficients.

Denote by Fol(M,E) the set of E-foliations on M and by Fol(M) the set of
foliations. Observe that Fol(M, ∅) = Fol(M). There is a bijection between Fol(M)
and Fol(M,E) given by F 7→ LF , determined by the relation ω = xε1

1 · · ·xεe
e η,

where the exponents εi are defined by

εi =
{

1 if xi = 0 is invariant.
0 if xi = 0 is dicritical.

A local generator η of LF is also called a local generator of F adapted to E.

Definition 1. An ambient surface is a pairM = (M,E), whereM is a nonsingular
complex analytic surface M and E is a strong normal crossings divisor. A foliated
surface (M,F) is the data of an ambient surface and a foliation F on M .

Given an open subset U ⊂M such that E ∩U has only finitely many irreducible
components, the restriction M|U is a well-defined ambient surface. In this case,
the restriction (M,F)|U is also a foliated surface. Given a point p ∈M , we define
the germ (M,F)p of (M,F) at p in the natural way.

2.2. Presimple and simple points under blowing-ups. Let us consider a fo-
liated surface (M,F) and a point p ∈ M . A germ ξ of holomorphic vector field
is tangent to F if ω(ξ) = 0, where ω is a local generator of F (the sheaf of tan-
gent germs of vector fields also defines the foliation). Notice that ξ(p) = 0 when
p ∈ Sing(F) and, in this case, we have a well-defined linear part Lξ.

Definition 2. We say that p is a presimple point for (M,F) if p /∈ Sing(F , E)
or we have that p ∈ Sing(F), ep(E) ≥ 1, ep(Edic) = 0 and there is a germ ξ of
vector field tangent to F such that Lξ is non-nilpotent. We say that p is simple
if it is presimple and the eigenvalues of Lξ have not positive rational ratio, when
p ∈ Sing(F). A saddle-node is a simple singularity where the linear part of every
tangent germ of vector field has a zero eigenvalue.
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We distinguish two types of presimple points: trace and corner type points. More
precisely:

(1) If p /∈ Sing(F), we say that it is of trace type if ep(Einv) = 0 and that it is
of corner type if ep(Einv) = 1.

(2) If p ∈ Sing(F), we say that it is of trace type if ep(E) = 1 and that it is of
corner type if ep(E) = 2.

Remark 2. Given a presimple singularity, there are no dicritical components through
it. If p is a simple nonsingular point, we have that ep(Edic) ∈ {0, 1}. Hence, a point
p with ep(Edic) = 2 cannot be a presimple point.

Definition 3. A foliated surface (M,F) is desingularized if it has only simple
points. Respectively, a foliated surface (M,F) is pre-desingularized if it has only
presimple points.

Remark 3. If (M,F) is pre-desingularized, then Sing(F , E) = Sing(F).

Consider the blowing-up π : M ′ →M centered at a point p ∈M . We obtain a new
foliated surface (M′,F ′), whereM′ = (M ′, E′), with E′ = π−1(E ∪ {p}) and F ′ is
the transform of F by π. We write for short

π : (M′,F ′)→ (M,F).

We summarize now the main properties of the behaviour of simple and presimple
points under blowing-up (for more details, see [4].) Let us assume that the center p
of π is a presimple point for (M,F). We have that all q ∈ D are presimple points
for (M′,F ′), where D = π−1(p) is the exceptional divisor. More specifically:

(1) If p /∈ Sing(F), then the divisor D is invariant and there is only one point
p′ ∈ Sing(F ′) ∩ D. Moreover p′ is a simple singularity (it represents the
tangent at p of the only invariant branch of F at p).

(2) If p is a simple singularity for (M,F), then D is invariant and there are
exactly two points p′1, p′2 ∈ Sing(F ′) ∩ D. Moreover p′1 and p′2 are simple
singularities for (M′,F ′). We have also that p′1, p′2 are corners if p is a
corner and that there is a corner and a trace between {p′1, p′2} if p is a
trace.

(3) If p is a presimple but not simple singularity for (M,F), we take a germ
of vector field ξ with Lξ non-nilpotent. We have three possibilities:
(a) The linear part Lξ is the identity up to a factor. In this case D is

dicritical and Sing(F ′) ∩D = ∅.
(b) The linear part Lξ is not diagonalizable. The exceptional divisor D is

invariant and there is only one point p′ in Sing(F ′) ∩D. Moreover p′
is a saddle-node corner type singularity. This situation only holds if p
is of trace type.

(c) The linear part Lξ has two different eigenvalues λ, µ with λ/µ ∈ Q>1.
In this situation D is invariant and there are exactly two points p′, q′ ∈
Sing(F ′) ∩D. One of them is a simple singularity and the other one
is presimple with eigenvalues equal to λ − µ, µ. Moreover, if p is of
corner type, then p′, q′ are both corners; if p is of trace type, we obtain
a corner and a trace between {p′, q′}.
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2.3. Reduction of singularities. A morphism π : (M′,F ′) → (M,F) is called
a reduction (respectively, a pre-reduction) of singularities of (M,F) if π is a finite
composition π = π1 ◦ π2 ◦ · · · ◦ πN , where each

πi : (Mi,F i)→ (Mi−1,F i−1),

is a blowing-up centered at pi−1 ∈ Mi−1, for i = 1, 2, . . . , N and the foliated
surface (M′,F ′) = (MN ,FN ) is desingularized (respectively, pre-desingularized).
The reduction of singularities π is called minimal if, for any other reduction of
singularities π̄ : (M′′,F ′′) → (M,F), there is a unique factorization π̄ = π ◦ f ,
where

f : (M′′,F ′′)→ (M′,F ′)
is the composition of a finite sequence of blowing-ups (up to isomorphism). Note
that π is minimal if and only if all the centers pi are non-simple points. In the same
way, we define and characterize minimal pre-reduction of singularities.

Remark 4. Following the above definitions, there is no reduction of singularities for
foliated surfaces with infinitely many non-simple points.

The following result is consequence of Seidenberg’s Theorem [12] and the state-
ments in [4].

Theorem 1. Let (M,F) a foliated surface. We have that:
(1) There is a reduction of singularities of (M,F) if and only if the set of

non-simple points is finite. In this case, there is a minimal reduction of
singularities.

(2) There is a pre-reduction of singularities of (M,F) if and only if the set of
non-presimple points is finite. In this case, there is a minimal pre-reduction
of singularities.

Remark 5. Assume that (M,F) has reduction of singularities and let π and σ be,
respectively, the minimal reduction and pre-reduction of singularities. If

π : (M′,F ′)→ (M,F), σ : (M∗,F∗)→ (M,F),

then there is a unique factorization π = σ ◦ f , where f : (M′,F ′) → (M∗,F∗)
is the composition of a finite sequence of blowing-ups centered at presimple but
non-simple points.

We are interested in foliated surfaces without saddle-nodes after reduction of
singularities. In other contexts they correspond to the so-called “generalized curves”
(see [3]).

A foliated surface (M,F) is a generalized curve if there is a reduction of singular-
ities π : (M′,F ′)→ (M,F) without saddle-nodes in (M′,F ′). Note the following
properties:

(1) If (M,F) is a generalized curve, for any reduction of singularities π̄ :
(M′′,F ′′)→ (M,F) there are no saddle-nodes in (M′′,F ′′).

(2) Being a generalized curve depends just on the foliation F . That is, if
((M,E),F) is a generalized curve, then any other ((M,D),F) is also a
generalized curve. In particular, it makes sense to say that a point p ∈M is
a generalized curve for F when the germ Fp has the property, independently
of the chosen divisor.
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(3) A simple singularity is a generalized curve if and only if it is not a saddle-
node. The presimple but not simple singularities that are not a generalized
curve are those presented in 3b) of Subsection 2.2.

Lemma 1. A point p of a generalized curve foliated surface (M,F) is presimple
if and only if νp(F , E) = 0.
Proof. If e = ep(E) = 0, then p is presimple if and only if p is nonsingular, and we
are done. If e = 1, take a local generator η = a1dx1/x1 + a2dx2 of F adapted to
E. We distinguish two cases:

1a) Dicritical case, that is E = (x1 = 0) is dicritical. This is equivalent to say
that a1 = x1ã1, in particular, we have νp(a1) > 0. A local generator of F
is given by ω = ã1dx1 + a2dx2. In this case, the point p is presimple if and
only if it is nonsingular and F , E have normal crossings at p. That happens
if and only if νp(a2) = 0.

1b) Invariant case. A local generator of F is given by ω = a1dx1 + x1a2dx2.
The point p is nonsingular with normal crossings if and only if νp(a1) = 0.
The point p is a presimple singularity if and only if p is a saddle-node (not
allowed, because we are in the generalized curve situation) or νp(a2) = 0.

If e = 2, consider a local generator η = a1dx1/x1 + a2dx2/x2 of F adapted to E,
where E = (x1x2 = 0) locally at p. There are three possibilities:

2a) ep(Edic) = 2. We know that p is not presimple. On the other hand, we
have that xi divides ai for i = 1, 2, hence νp(a1, a2) > 0.

2b) ep(Edic) = 1. Suppose that (x1 = 0) is invariant and that (x2 = 0) is
dicritical. We have that a2 = x2ã2 and that ω = a1dx1 +x1ã2dx2 is a local
generator of F . The point p is presimple if and only if it is a nonsingular
point and F , E have normal crossings at p. This happens if and only if
νp(a1) = 0. We end by noting that νp(a1) = 0 if and only if νp(a1, a2) = 0,
since νp(a2) > 0.

2c) ep(Edic) = 0. We have that ω = x2a1dx1 + x1a2dx2 is a local generator
of F and hence p is a singular point. The linear part of a germ of vector
field tangent to F is diagonal with eigenvalues λi = ai(0), for i = 1, 2. As
a consequence, the point p is presimple if and only if νp(a1, a2) = 0. �

2.4. Combinatorial blowing-ups. The concept of toric type foliated surface has
been introduced in [2].

Let us consider a foliated surface (M,F) and let π : (M′,F ′) → (M,F) be a
blowing-up centered at a point p ∈M . We say that π is a combinatorial blowing-up
if ep(E) = 2. The composition of a finite sequence of blowing-ups is combinatorial
if each blowing-up is combinatorial.
Definition 4. A foliated surface (M,F) is of toric type if it admits a combinatorial
reduction of singularities. Analogously, we say that (M,F) is of weak toric type if
it has a combinatorial pre-reduction of singularities.

The foliated surface (M,F) is called of toric type at a point p ∈ M if the germ
(M,F)p is of toric type. Analogously, it is called of weak toric type at p if the germ
(M,F)p is of weak toric type.
Remark 6. Given a point p with ep(E) ≤ 1, we have that (M,F) is of toric type
(respectively of weak toric type) at p if and only if p is a simple (respectively
presimple) point for (M,F).
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Recall that the divisor E has finitely many irreducible components. Thus, there
are only finitely many points with ep(E) = 2. As a consequence, the foliated surface
(M,F) is of toric type if and only if the property holds at every point p ∈M . We
have the same comment for the weak toric type property.

Remark 7. If p is a corner type presimple singularity of (M,F), we have that
(M,F) is of toric type at p, in view of the behaviour of presimple singularities
described in Subsection 2.2. Even more, all the singularities appearing after the
minimal reduction of singularities of the germ (M,F)p are corner type simple
points.

2.5. Isolated invariant branches. The concept of isolated invariant branch is
useful for choosing finitely many representative invariant branches, in case dicritical
components arise after reduction of singularities. We give the precise definition
below.

Definition 5. Consider an invariant branch (Γ, p) of a foliated surface (M,F).
We say that (Γ, p) is isolated for (M,F) if the following properties hold:

• (Γ, p) 6⊂ (E, p).
• For every composition π : (M′,F ′) → (M,F) of a finite sequence of

blowing-ups, we have that p′ ∈ Sing(F ′, E′), where (Γ′, p′) is the strict
transform of (Γ, p) by π.

Remark 8. Note that p ∈ Sing(F , E), just by taking π the identity. Besides, it is
enough to consider blowing-ups centered at the infinitely near points of (Γ, p).

The property of being isolated is stable under blowing-ups. In the following
statement we show that it is also stable by combinatorial blowing-downs.

Proposition 1. Let π : (M′,F ′) → (M,F) be a combinatorial blowing-up be-
tween foliated surfaces. If (Γ′, p′) is an isolated invariant branch for (M′,F ′), we
have that (Γ, p) is an isolated invariant branch for (M,F), where (Γ, p) is the image
of (Γ′, p′) by π.

Proof. Suppose that p is the center of the blowing-up, otherwise we are done. If
(Γ′, p′) is isolated, in particular (Γ′, p′) 6⊂ (E′, p′) and then also (Γ, p) 6⊂ (E, p). If
p ∈ Sing(F , E), we are done. Assume that p /∈ Sing(F , E). Since p is a regular
point, we get that (Γ, p) is the only invariant branch through p. Moreover, we have
that ep(E) = 2 and that F , E have normal crossings at p. Then (Γ, p) is contained
in E and this is a contradiction. �

The following assertions give a description of the isolated invariant branches at
presimple points.

Lemma 2. Consider a foliated surface (M,F) and π : (M′,F ′) → (M,F) a
reduction of singularities. Let (Γ, p) be an isolated branch of (M,F) and let (Γ′, p′)
be the strict transform of (Γ, p) by π. We have that p′ is a trace type simple
singularity.

Proof. By definition, we know that p′ ∈ Sing(F ′, E′) and (Γ′, p′) 6⊂ (E′, p′). More-
over, we have Sing(F ′, E′) = Sing(F ′), because (M′,F ′) is desingularized. If p′ is
of corner type, the only invariant branches through it are contained in E′. Then p′
is a trace type simple singularity. �
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Lemma 3. Let p ∈ Sing(F) be a presimple singularity of a foliated surface (M,F).
If p is of corner type, there are no isolated invariant branches through it. If p is of
trace type, there is at most one isolated invariant branch through it; when it exists,
it is nonsingular, transversal to the divisor and any other nonsingular invariant
branch is tangent to the divisor.

Proof. Assume first that p is of corner type and let us find a contradiction with the
existence of an isolated invariant branch (Γ, p). By Remark 7, we know that the
minimal reduction of singularities of the germ (M,F)p produces only singularities
that are of corner type. In view of Lemma 2, the strict transform of (Γ, p) passes
through a trace type simple singularity and this is not possible.

Assume now that p is a trace type presimple singularity. Recall that
ep(E) = ep(Einv) = 1.

Suppose that there is an isolated branch (Γ, p) of (M,F) and let us consider the
blowing-up π : (M′,F ′)→ (M,F) centered at p. Let (Γ′, p′) be the strict transform
of (Γ, p). We know that p′ ∈ Sing(F ′, E′) = Sing(F ′). Since (Γ′, p′) is an isolated
invariant branch, we obtain that p′ is not a corner type point, hence it is a trace
type presimple singularity of (M′,F ′). In particular, we have that

ep′(E′) = ep′(E′inv) = 1.
Note also that E′ = π−1(p), locally at p′. The above arguments show that (Γ, p) is
nonsingular and transversal to E. Indeed, this is a direct consequence of the fact
that the infinitely near points of (Γ, p) are never over the strict transform of the
precedent exceptional divisor.

Let us prove that any other nonsingular invariant branch is tangent to E. Equiv-
alently, if (Γ1, p) is a nonsingular invariant branch transversal to E, let us show that
(Γ1, p) = (Γ, p). Denote by (Γ′1, p′1) to the strict transform of (Γ1, p) by π. It is
enough to prove that p′1 = p′; in this case, the situation repeats at p′, we conclude
that (Γ1, p) and (Γ, p) have the same infinitely near points and thus they coincide.
Since (Γ1, p) is transversal to E, we have that p′1 does not belong to the strict
transform of E. Moreover, p′1 ∈ Sing(F ′), because both (Γ′1, p′1) and π−1(p) define
invariant branches of F ′ at p′1. Then, the only trace type singularity of (M′,F ′)
in π−1(p) is p′1; this means that p′1 = p′.

It remains to show that (Γ, p) is the only isolated invariant branch. We know
that any isolated invariant branch must be nonsingular and transversal to E, then
it is necessarily (Γ, p). �

Corollary 1. Let (Γ, p) be a smooth invariant branch transversal to E through a
trace type presimple singularity. If there is an isolated branch for (M,F) through
p, it is necessarily (Γ, p).

Remark 9. If p is a trace type non saddle-node simple singularity, there is exactly
one isolated invariant branch through p. When it is a saddle-node, it is possible to
have a formal non-convergent invariant branch, that is also isolated (in the formal
sense).

Remark 10. Consider a foliated surface (M,F) and a point p ∈ Sing(F , E). If
there are only finitely many invariant branches through p (equivalently, there are
no dicritical components created after reduction of singularities over p), then each
invariant branch (Γ, p) 6⊂ (E, p) is isolated.
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3. Pairs of Laurent Polynomials in General Position

Here we recall a result about the number of solution of a Laurent polynomials
system looking at the mixed area of the convex polytopes associated to it (see
[1, 10]). In Section 5, we apply this result to our study of Newton non-degenerate
foliations in projective toric ambient surfaces.

A convex polytope ∆ ⊂ R2 is the convex hull of a finite set of points of R2. We
denote the area of ∆ by Ar(∆) ∈ R≥0. The mixed area MA(∆1,∆2) of two convex
polytopes ∆1,∆2 ⊂ R2 is given by MA(∆1,∆2) = Ar(∆1 +∆2)−Ar(∆1)−Ar(∆2),
where ∆1 + ∆2 denotes the Minkowski sum.

Remark 11. The mixed area of two convex polytopes is zero if and only if either
one of them is a single point or they are parallel segments.

The ring of Laurent polynomials C[u1, u2, u
−1
1 , u−1

2 ] gives the regular functions
of the complex torus (C∗)2 = (C \ {0})2. The convex polytope ∆(f) of a Laurent
polynomial f =

∑
(i,j) fiju

i
1u
j
2 is defined by

∆(f) = convex hull(Supp(f)), Supp(f) = {(i, j) ∈ Z2; fij 6= 0}

The support-restriction fC of f to a subset C ⊂ Z2 is fC =
∑

(i,j)∈C fiju
i
1u
j
2.

We call weight vectors to the elements of the set

W = {(p, q) ∈ Z× Z>0; pZ + qZ = Z} ∪ {(1, 0)}.

Note that, there is a bijection W → Q ∪ {∞}, given by (p, q) 7→ −p/q (assuming
−1/0 = ∞). We say that a Laurent polynomial F 6= 0 is quasi-homogeneous with
weight vector (p, q) if there is an r ∈ Z such that F (tpu1, t

qu2) = trF (u1, u2).
The integer r is called the quasi-homogeneous degree of F . In this case, there is a
decomposition

F = cuτ1
1 u

τ2
2

∏N

j=1
(up2 − αju

q
1); (τ1, τ2) ∈ Z2, c, αj ∈ C∗, j = 1, 2, . . . N.

Conversely, such a decomposition provides a quasi-homogeneous Laurent polyno-
mial. Moreover, we can see that F is quasi-homogeneous with weight vector (p, q)
and degree r if and only if ∆(F ) is a segment contained in the line of equation
pi+ qj = r. In particular, a single monomial is quasi-homogeneous for any weight
vector.

The following definitions can be found in [1, 10].

Definition 6. A pair (F1, F2) of quasi-homogeneous Laurent polynomials with
weight vector (p, q) is non-degenerate if α1j 6= α2k for every j, k, where

Fi = ciu
τi1
1 uτi2

2

∏Ni

j=1
(up2 − αiju

q
1), i = 1, 2.

Otherwise, we say that (F1, F2) is degenerate.

Definition 7. A pair of arbitrary Laurent polynomials (f1, f2) is in general po-
sition, if the pairs (f1L, f2L) are non-degenerate for every side L of ∆(f1, f2) =
convex hull(∆(f1) ∪∆(f2)).

Remark 12. Consider two Laurent polynomials F (u1, u2), G(u1, u2) and monomials
ua = ua1

1 ua2
2 , ub = ub1

1 u
b2
2 , uc = uc1

1 u
c2
2 , where a, b, c ∈ Z2 and a1b2−a2b1 ∈ {−1, 1}.

We have the following properties:
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(1) The Laurent polynomial F is quasi-homogeneous if and only if ucF is quasi-
homogeneous. Moreover, both have the same weight vector.

(2) The Laurent polynomial F (u1, u2) is quasi-homogeneous with weight vector
(p, q) if and only F (ua, ub) is quasi-homogeneous with weight vector (up to
sign) (pb2 − qa2, qa1 − pb1).

(3) The pair (F (u1, u2), G(u1, u2)) is non-degenerate if and only if the pair
(ucF (ua, ub), ucG(ua, ub)) is non-degenerate.

Remark 13. If the pair (F1, F2) is non-degenerate and both F1, F2 have the same
quasi-homogeneous degree, then (F1 + F2, F2) is also non-degenerate.

Remark 14. Note that (f1L, f2L) is degenerate if f1L = 0 or f2L = 0.

Theorem 2. (See [1, 10]) Let (f1, f1) be a pair of Laurent polynomials in general
position. The number of solutions in (C∗)2 of the system f1 = f2 = 0 is equal to
the mixed area MA(∆(f1),∆(f2)).

4. Weak Toric Type Foliated Surfaces

In this section we give an algebraic characterization in terms of “weighted initial
forms” of the weak toric type generalized curve foliated surfaces. More precisely,
we introduce the concept of Newton non-degenerate foliated surface, following the
classical ideas for curves and functions (see [11]) and we proof that they are exactly
the weak toric type foliated surfaces in the generalized curve context.

4.1. Newton non-degenerate foliated surfaces. We define the Newton polygon
N(f ;x1, x2) of a formal power series f =

∑
fijx

i
1x
j
2 ∈ C[[x1, x2]] by

N(f ;x1, x2) = convex hull(Supp(f) + R2
≥0).

The topological boundary of N(f ;x1, x2) is a union of two non-compact sides and
finitely many compact sides (consisting of more than one point) with negative
rational slopes. The endpoints of the sides are called vertices.

Let us consider an ambient surface M = (M,E) and a point p ∈ M with
ep(E) = 2. Take a logarithmic one-form η ∈ Ω1

M,p(logE), that we write in local
coordinates (x1, x2) adapted to E as

η = a1dx1/x1 + a2dx2/x2; a1, a2 ∈ OM,p = C{x1, x2} ⊂ C[[x1, x2]].
The Newton polygon Np(η;x1, x2) is the convex hull of N(a1;x1, x2)∪N(a2;x1, x2).

Remark 15. In order to get uniqueness in the definition of the Newton polygon of a
foliated surface, we consider total orderings ≺ in the set of irreducible components
of the divisor.

Now, we consider a foliated surface (M,F), a total ordering ≺ in the set of
irreducible components of E and a point p ∈M with ep(E) = 2.

Lemma 4. Take local coordinate systems (x1, x2), (x′1, x′2) adapted to E, such
that (x2 = 0) ≺ (x1 = 0) and (x′2 = 0) ≺ (x′1 = 0). We have that

N = Np(η;x1, x2) = Np(η′;x′1, x′2),
where η = a1dx1/x1 + a2dx2/x2, η′ = a′1dx

′
1/x
′
1 + a′2dx

′
2/x
′
2 are local generators of

F adapted to E. Moreover, given a compact side L of N , it holds that (a1L, a2L)
is non-degenerate if and only if (a′1L, a′2L) is non-degenerate.
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Proof. Just note that there are units u, u1, u2 ∈ OM,p, such that η′ = uη and
x′i = uixi, for i = 1, 2. �

In view of Lemma 4 we define the Newton polygon N≺p (M,F) by

N≺p (M,F) = Np(η;x1, x2).

Remark 16. The point p is presimple if and only if N≺p (M,F) = R2
≥0.

The foliated surface (M,F) is non-degenerate at p with respect to the order ≺
and a compact side L of N≺p (M,F) if the pair (a1L, a2L) is non-degenerate. For
short, we say that (F , L) is non-degenerate.

Remark 17. Consider two different orderings ≺, ≺′ in the set of irreducible compo-
nents of E. Denote by E1 and E2 the irreducible components of E through p, such
that E2 ≺ E1. We have two possibilities at p depending on the order ≺′ between
E1 and E2:

• E2 ≺′ E1. We have N≺′p (M,F) = N≺p (M,F).
• E1 ≺′ E2. We have N≺′p (M,F) = σ(N≺p (M,F)), where σ is the symmetry

(u, v) 7→ (v, u). Moreover, given a compact side L of N≺p (M,F), we have
that (F , L) is non-degenerate, with respect to ≺, if and only if (F , σ(L)) is
non-degenerate, with respect to ≺′.

Definition 8. A foliated surface (M,F) is Newton non-degenerate at p ∈M if the
point p is presimple, or ep(E) = 2 and (F , L) is non-degenerate for each compact
side L of N≺p (M,F) (this definition does not depend on the chosen ordering ≺, in
view of Remark 17). We say that (M,F) is Newton non-degenerate if the property
holds at each point.

4.2. Non-degenerate foliations and combinatorial blowing-ups. We present
here several results about the stability of being Newton non-degenerate under com-
binatorial blowing-ups and blowing-downs.

Let us consider a generalized curve foliated surface (M,F), a total ordering ≺ in
the set of irreducible components of E and a point p ∈M with ep(E) = 2. Denote
by E1, E2 the irreducible components of E through p, such that E2 ≺ E1.

Let (x1, x2) be a local coordinate system such that Ei = (xi = 0), for i = 1, 2.
Consider a local generator η = a1dx1/x1+a2dx2/x2 of F adapted to E at p. Denote
by d ≥ 0 the adapted order, that is d = νp(F , E) = νp(a1, a2). We write

ai = Ai + ãi ∈ C{x1, x2}, νp(ãi) > d, i = 1, 2,
where the Ai are homogeneous polynomials of degree d. Note that (A1, A2) 6= (0, 0).

Let us perform the blowing-up π : (M′,F ′) → (M,F) centered at p. Note
that π is a combinatorial blowing-up, since ep(E) = 2. We consider the ordering
≺′ in the set of irreducible components of E′ obtained by adding the exceptional
divisor D = π−1(p) with the property E′2 ≺′ D ≺′ E′1, where E′i denote the strict
transforms of Ei, for i = 1, 2. Denote

{q0} = D ∩ E′2, {q∞} = D ∩ E′1 and T = D \ {q0, q∞}.

Remark 18. We can consider affine coordinates (x′1, x′2) on the chart of the blowing-
up with origin in q0, given by x1 = x′1, x2 = x′1x

′
2. In this chart E′2 = (x′2 = 0)

and D = (x′1 = 0). Analogously, we can consider affine coordinates (x′′1 , x′′2) on
the chart of the blowing-up with origin in q∞, given by x1 = x′′1x

′′
2 , x2 = x′′2 . Here
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D = (x′′2 = 0) and E′1 = (x′′1 = 0). These choices of coordinates are compatible
with the ordering ≺′ in the set of irreducible components of E′.

Remark 19. The following properties are well known (see [4]):
(1) Assume that the blowing-up π is dicritical. That is, the exceptional divisor

D is dicritical, what happens if and only if A1 + A2 = 0. In this case
T ∩ Sing(F ′, E′) is given by A1 = 0 and all the points in this set are
non-presimple points.

(2) Suppose that the blowing-up π is non-dicritical. In this case
Sing(F ′, E′) ∩D = Sing(F ′) ∩D

and T ∩ Sing(F ′) is given by the tangent cone A1 +A2 = 0.

Lemma 5. If holds that T ∩ Sing(F ′, E′) 6= ∅ if and only if N≺p (M,F) has a
compact side of slope −1.

Proof. It follows by Remark 19, looking separately the dicritical and non-dicritical
cases. �

Lemma 6. If π is non-dicritical, then the non-presimple points q ∈ T are given by
A1 +A2 = A2 = 0.

Proof. Consider coordinates (x′1, x′2) like in Remark 18. A generator of F ′ adapted
to E′ is given by(

(A1 +A2)(1, x′2)+x′1
(ã1 + ã2)(x′1, x′1x′2)

(x′1)d+1

)dx′1
x′1

+
(
A2(1, x′2)+x′1

ã2(x′1, x′1x′2)
(x′1)d+1

)dx′2
x′2

.

The non-presimple points q ∈ T are the ones given by x′1 = 0, x′2 = λ ∈ C∗, with
(A1 +A2)(1, λ) = A2(1, λ) = 0, in view of Lemma 1. �

Corollary 2. The pair (A1, A2) is non-degenerate if and only if each point q ∈ T
is presimple.

Proof. Suppose that N≺p (M,F) does not have a compact side with slope −1. This
is equivalent to say that A1 and A2 are the same monomial up to constant and
hence (A1, A2) is a non-degenerate pair. On the other hand, in view of Lemma 5,
all the points q ∈ T are presimple.

Suppose now that N≺p (M,F) has a compact side with slope −1. Assume first
that all the points q ∈ T are presimple. The blowing-up π is non-dicritical by
Remark 19, then Lemma 6 implies that (A1 + A2, A2) is non-degenerate and by
Remark 13, this is equivalent to say that (A1, A2) is non-degenerate. Conversely,
if (A1, A2) is non-degenerate, then A1 6= −A2 and the blowing-up is non-dicritical.
Moreover (A1 + A2, A2) is non-degenerate, as a consequence, all the points q ∈ T
are presimple. �

We introduce the notation
N = N≺p (M,F), N0 = N≺

′

q0
(M′,F ′), N∞ = N≺

′

q∞(M′,F ′).

Let S+
p be the set of compact sides of N with slope greater than −1 and let Sq0

be the set of compact sides of N0. There is a bijection between S+
p and Sq0 given

by L ∈ S+
p 7→ L′ ∈ Sq0 , where L′ is the side of slope m′ = m/(1 + m) < 0, being

m ∈ Q>−1 the slope of L. In the same way, denote by S−p the set of compact sides
of N with slope lower than −1 and by Sq∞ the set of compact sides of N∞. There
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is a bijection L ∈ S−p 7→ L′ ∈ Sq∞ where L′ has slope m′ = m + 1 < 0, being
m ∈ Q<−1 the slope of L. Given a compact side L of N with slope different than
−1, that is L ∈ S+

p ∪ S−p , we say that L′ is the transform of L.

Lemma 7. Consider a compact side L ∈ S+
p ∪ S−p and let L′ be transform of L.

It holds that (F , L) is non-degenerate if and only if (F ′, L′) is non-degenerate.

Proof. Suppose that L ∈ S+
p , the proof is analogous when L ∈ S−p . Consider

coordinates (x′1, x′2) like in Remark 18. A local generator η′ of F ′ adapted to E′ at
q0 is given by η′ = a′1dx

′
1/x
′
1 + a′2dx

′
2/x
′
2, where a′1 = (a1 + a2)(x′1, x′1x′2)/(x′1)d and

a′2 = a2(x′1, x′1x′2)/(x′1)d. We also have that

a′1L′ = (a1L + a2L)(x′1, x′1x′2)/(x′1)d, a′2L′ = a2L(x′1, x′1x′2)/(x′1)d.
Then (a′1L′ , a′2L′) is non-degenerate if and only if (a1L+a2L, a2L) is non-degenerate,
in view of Remark 12. This is equivalent to have (a1L, a2L) non-degenerate, by
Remark 13. �

Corollary 3. The following properties hold:
• (F , L) is non-degenerate for every L ∈ S+

p if and only if (M′,F ′) is Newton
non-degenerate at q0.

• (F , L) is non-degenerate for every L ∈ S−p if and only if (M′,F ′) is Newton
non-degenerate at q∞.

Proof. Direct consequence of Lemma 7. �

Proposition 2. Let us consider a generalized curve foliated surface (M,F) and let
π : (M′,F ′) → (M,F) be a combinatorial blowing-up centered at a point p ∈ M .
We have that (M,F) is Newton non-degenerate at p if and only if (M′,F ′) is
Newton non-degenerate at each point q ∈ π−1(p).

Proof. Write N = N≺p (M,F). If N has no compact side with slope −1, we are
done by Corollary 3 and Lemma 5. Assume now that N has a compact side L0
with slope −1. By Corollary 3, it is enough to prove that (F , L0) is non-degenerate
if and only if (M′,F ′) is Newton non-degenerate at every q ∈ T , equivalently if
and only if each q ∈ T is a presimple point. Let η′ be as in the proof of Lemma 6.
Noting that (F , L0) is non-degenerate if and only if (A1, A2) is non-degenerate, we
are done in view of Corollary 2. �

Corollary 4. Let us consider a generalized curve foliated surface (M,F) and let
π : (M′,F ′) → (M,F) be a finite composition of combinatorial blowing-ups. We
have that (M,F) is Newton non-degenerate at a given point p ∈ M if and only if
(M′,F ′) is Newton non-degenerate at each point q ∈ π−1(p).

4.3. Equivalence statement. This subsection is devoted to prove the following
result:

Theorem 3. A generalized curve foliated surface is Newton non-degenerate if and
only if it is of weak toric type.

Let (M,F) be a foliated surface. Let us do the proof at each point p ∈M .
If ep(E) ≤ 1. We have, by definition, that (M,F) is Newton non-degenerate at

p if and only if p is a presimple point. That happens if and only if (M,F) is of
weak toric type at p, by Remark 6.
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Let us suppose now ep(E) = 2. Assume that (M,F) is of weak toric type
at p. This means that there is a finite composition of combinatorial blowing-ups
π : (M′,F ′) → (M,F) such that each q ∈ π−1(p) is a presimple point. We
have that (M′,F ′) is Newton non-degenerate for each q ∈ π−1(p), by definition.
By Corollary 4, we obtain that (M,F) is Newton non-degenerate at p. In the
opposite way, assume that (M,F) is Newton non-degenerate at p. Let us perform
the combinatorial blowing-up π : (M′,F ′) → (M,F) with center at p. We have
that (M′,F ′) is a Newton non-degenerate foliated surface for each q ∈ π−1(p),
by the stability property stated in Proposition 2. As a consequence, the only
non-presimple points q ∈ π−1(p) satisfy eq(E′) = 2. The situation repeats, since
(M′,F ′) is again Newton non-degenerate at these points. This allow us to conclude
that the minimal pre-reduction of singularities of (M,F)p is combinatorial and thus
(M,F) is of weak toric type at p.

5. Non-degenerate Foliations on Projective Toric Surfaces

In this section we recall the definition of projective toric surfaces and some results
about their birational geometry. We consider particularly Newton non-degenerate
generalized curve foliated surfaces defined on the complex projective plane P2

C and
we prove that the area of their homogeneous polygons is zero.

5.1. Birational geometry of toric ambient surfaces. The contents on this
subsection can be essentially found at [7].

A toric surface is an irreducible complex surface S containing a two-dimensional
complex torus T ' (C∗)2 as a Zariski open subset, such that the action of T on
itself extends to an algebraic action on S. The natural blowing-ups in the category
of toric surfaces are the ones compatible with the torus action (equivariant). This
happens if and only if the center of the blowing-up is an orbit.

The union of the non-dense orbits of the torus action in a nonsingular toric
surface S is a strong normal crossings divisor ES . We say that the pair (S,ES) is
a toric ambient surface. The points p ∈ S with ep(ES) = 2 are exactly the closed
orbits of the torus action. As a consequence, in the category of toric surfaces, the
equivariant blowing-ups are exactly the combinatorial ones.

Remark 20. In view of the fact that a nonsingular toric surface S gives in a natural
way a toric ambient surface (S,ES), we use the expression foliation F on S to make
reference also to the foliated surface ((S,ES),F).

Example 1. The first example of nonsingular projective toric surface is the projec-
tive plane P2

C. The torus action is given in homogeneous coordinates [X0, X1, X2]
by

((t1, t2), [x0, x1, x2]) 7→ [x0, t1x1, t2x2].
The associated divisor is given by the three coordinate lines X0X1X2 = 0. The
standard affine example of nonsingular toric surface is C2. The torus action is given
in coordinates (x1, x2) by

((t1, t2), (α1, α2)) 7→ (t1α1, t2α2).
The associated divisor is given by the coordinate lines x1x2 = 0. When we refer to
P2
C or C2 as toric surfaces, we implicitly assume the above actions and coordinates.

The following result concerns the birational geometry of projective toric surfaces.
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Theorem 4 (See [7]). Given two nonsingular projective toric surfaces S and S′,
there is a nonsingular projective toric surface S′′ and two finite sequences of equi-
variant blowing-ups π : S′′ → S, π′ : S′′ → S′.

Corollary 5. A given nonsingular projective toric surface S is obtained from the
toric surface P2

C by a finite sequence P2
C → S of combinatorial blowing-ups and

blowing-downs.

Proof. Take S′ = P2
C in Theorem 4. �

5.2. Newton non-degenerate foliations on P2
C. The aim of this subsection is

to prove the following statement:

Proposition 3. The homogeneous polygon ∆h(F) of a Newton non-degenerate
generalized curve F on P2

C is a segment or a single point.

5.2.1. Foliations on the projective plane. Before doing the proof of the result, we
recall basic definitions of foliations on the projective plane (see [4]) and we introduce
the notion of homogeneous polygon ∆h(F) of a foliation F on the toric surface P2

C.
A foliation F on P2

C is given by a logarithmic homogeneous differential form
W = A0dX0/X0 +A1dX1/X1 +A2dX2/X2, Ai ∈ C[X0, X1, X2], i = 0, 1, 2,

where the coefficients Ai are homogeneous polynomials of the same degree dF ,
without common factor and such that A0 + A1 + A2 = 0. We say that W is a
homogeneous generator of F . If W ′ is another homogeneous generator of F , then
W ′ = kW with k ∈ C∗ and conversely.

Remark 21. The number dF does not coincide with the so-called degree of the
foliation. For instance, if the divisor X0X1X2 = 0 has no dicritical components,
the foliation is given by the holomorphic form

X0X1X2W = X1X2A0dX0 +X0X2A1dX1 +X0X1A2dX2,

without common factors in the coefficients. Hence, the foliation degree is equal to
dF + 1. In a general way, the foliation degree is equal to dF + 1− ε, where ε is the
number of dicritical components of X0X1X2 = 0.

Definition 9. The homogeneous polygon ∆h(F) of a foliation F on PC2 is
∆h(F) = convex hull (∆(A0) ∪∆(A1) ∪∆(A2)) ⊂ R3,

where W = A0dX0/X0 + A1dX1/X1 + A2dX2/X2 is a homogeneous generator of
the foliation F .

Remark 22. Although ∆h(F) is contained in R3, the name “homogeneous polygon”
is due to the fact that ∆h(F) ⊂ dFΣ0

3, where
Σ0

3 = {(σ0, σ1, σ2) ∈ R3
≥0; σ0 + σ1 + σ2 = 1}.

Note also that ∆h(F) ∩ (σi = 0) 6= ∅ for every i = 0, 1, 2, since the coefficients
A0, A1, A2 have no common factors.

We are interested in describing a foliation F of P2
C in terms of affine charts.

We read the complex projective plane P2
C in affine charts Ai = (Xi 6= 0) ⊂ P2

C,
for i = 0, 1, 2. We identify each Ai with the affine toric variety C2 through the
coordinates (xij , xik) given by xij = Xj/Xi, x

i
k = Xk/Xi, for j, k 6= i. We denote by

Oi to the origin of Ai. Note that O0 = [1, 0, 0], O1 = [0, 1, 0] and O2 = [0, 0, 1]. We
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also denote by Di the divisor EAi
= (xijxik = 0). We call affine i-chart Fi of F to

the restriction Fi = F|Ai
. A generator of Fi adapted to the divisor Di is given by

the logarithmic differential form ηi = aijdx
i
j/x

i
j + aikdx

i
k/x

i
k, for {i, j, k} = {0, 1, 2},

where ai` = A`(X0/Xi, X1/Xi, X2/Xi) ∈ C[xij , xik], for ` ∈ {j, k}.

Definition 10. An algebraic foliation G on the affine toric surface C2 is in general
position if the pair (a1, a2) is in general position, where η = a1dx1/x1 + a2dx2/x2,
with a1, a2 ∈ C[x1, x2] is a generator of G adapted to the divisor EC2 = (x1x2 = 0).
The affine polygon ∆(G) of G is defined by ∆(G) = ∆(a1, a2).

In particular, we have the affine polygons ∆(Fi) associated to the affine i-charts
of F . The relationship between ∆h(F) and ∆(Fi) is given by ∆(Fi) = Φdi (∆h(F)),
where d = dF and Φdi is the projection

Φdi : dΣ0
3 → dΣ2 = {(σ1, σ2) ∈ R2

≥0; σ1 + σ2 ≤ d}

defined by σ = (σ0, σ1, σ2) 7→ (σj , σk), with j, k 6= i. We call to ∆(Fi) the i-chart
of ∆h(F). Given a side L of ∆h(F), the side Li = Φdi (L) of ∆(Fi) is called the
i-chart of L.

Let us describe now the relationship between the homogeneous polygon ∆h(G)
and the Newton polygons Ni = N≺i

Oi
((Ai, Di),Fi), where the ordering ≺i is given

by the natural order of the indices, that is (xij = 0) ≺ (xik = 0) if and only if j > k.
Note that Ni = convex hull(∆(Fi) + R2

≥0), then the compact sides of the Newton
polygon Ni are some of the sides of the affine polygon ∆(Fi). Let L be a side of
∆h(F). We have that L ⊂ {σ ∈ dFΣ0

3; σi = 0} if and only if L` is contained in a
non-compact side of N` for ` = j, k. Otherwise, we have the following statement:

Lemma 8. Given a side L of ∆h(F) such that L 6⊂ {σ ∈ dFΣ0
3; σ` = 0} for any

` = 0, 1, 2, there is a unique affine chart Ai such that Li is a compact side of Ni.

Proof. Consider the triangle given by
Γ0
L = {α(d, 0, 0) + (1− α)σ; 0 ≤ α ≤ 1, σ ∈ L}.

In the same way, define Γ1
L and Γ2

L. We have that ΓiL∩∆h(F) = L and Ar(ΓiL) 6= 0
if and only if Li is a compact side of Ni. On the other hand, there is a unique
` ∈ {0, 1, 2} such that Γ`L ∩∆h(F) = L and Ar(Γ`L) 6= 0, because of the convexity
of ∆h(F). �

5.2.2. Proof of Proposition 3. Let F be a foliation of the projective plane P2
C and

let W = A0dX0/X0 +A1dX1/X1 +A2dX2/X2 be a homogeneous generator of F .
Denote d = dF .

Let us consider a side L of the homogeneous polygon ∆h(F). We give a descrip-
tion of the support-restrictions AjL of Aj to L as follows.

(1) When L ⊂ {σ ∈ dFΣ0
3; σi = k} for some i ∈ {0, 1, 2} and k ∈ Z≥0. We

detail the case i = 0, the other ones are done in a similar way. The AjL
are homogeneous polynomials of degree d of the form AjL = Xk

0 ÃjL, with
ÃjL ∈ C[X1, X2], for j = 0, 1, 2. That is

ÃjL = X
σj

1
1 X

σj
2

2

∏dj

`=1
(X2 − α`jX1), σj1 + σj2 + dj = d− k.

(2) Otherwise, up to reordering of the variables, there is a monomial Xσ such
that for each j = 0, 1, 2, we have AjL = XσÃjL, where the ÃjL ∈ C[U, V ]
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are homogeneous polynomials of degree n with U = X d̃
0 , V = X d̃−ã

1 X ã
2 ,

d̃n = d− |σ| and 0 < ã < d̃. That is,

ÃjL = (X d̃
0 )uj (X d̃−ã

1 X ã
2 )vj

∏nj

`=1
(X d̃−ã

1 X ã
2 − α`jX d̃

0 ),

where uj + vj + nj = n

Remark 23. Both cases above can be considered in a unified way just by writing
U = X1, V = X2 when we are in the first one.

Lemma 9. Let L be a side of ∆h(F) and let Li be the i-chart of L. The following
assertions are equivalent:

(1) There is an index i ∈ {0, 1, 2} such that (F i, Li) is non-degenerate.
(2) For any index i ∈ {0, 1, 2}, we have that (F i, Li) is non-degenerate.

Proof. Take notations as in Remark 23. Consider {i, j, k} = {0, 1, 2} and suppose
that (aijLi

, aikLi
) is degenerate, that is, they have a non-monomial common factor.

Since
ai`Lj

= A`L(X0/Xi, X1/Xi, X2/Xi), ` = j, k,

the factor comes from a common factor V − αU of AjL, AkL. As a consequence
V − αU also divides AiL, since A0L + A1L + A2L = 0. Then (ajiLj

, ajkLj
) and

(akiLk
, akjLk

) are also degenerate. �

We say that (F , L) is non-degenerate when the equivalent conditions of Lemma
9 hold.

Lemma 10. If F is a Newton non-degenerate generalized curve on P2
C, then each

affine i-chart Fi is in general position, for i = 0, 1, 2.

Proof. In view of Lemma 9, it is enough to prove that given a side L of ∆h(F),
there is an index i ∈ {0, 1, 2} such that (Fi, Li) is non-degenerate. Let us do it.

If L ⊂ {σ ∈ dΣ0
3; σ1 = 0}, then L0 ⊂ {(τ1, τ2) ∈ Σ2; τ1 = 0} and a0

1L0
, a0

2L0
are

polynomials in the single variable x0
2. Moreover, we can write

a0
1 = a0

1L0
+ x0

1ã
0
1, a

0
2 = a0

2L0
+ x0

1ã
0
2.

If (a0
1L0

, a0
2L0

) is degenerate, then there is λ ∈ C∗ with a0
1L0

(λ) = a0
2L0

(λ) = 0.
This implies that the point [1, 0, λ] ∈ A0 is non-presimple for F . This is impossible,
since F is of weak toric type, by Theorem 3. Then (F0, L0) is non-degenerate. We
reason in a similar way when L ⊂ {σ ∈ dΣ0

3; σ` = 0}, for ` = 0, 2.
Otherwise, by Lemma 8, there is a unique i ∈ {0, 1, 2} such that that Li is a

compact side of N≺i

Oi
((Ai, EAi),Fi). Then, by definition, we have that (Fi, Li) is

non-degenerate. �

Proof of Proposition 3. Let us work in the 0-chart F0. In view of Lemma
10, we have that F0 is in general position. As a consequence, given a side L0 of
∆(F0) = ∆(a0

1, a
0
2), we have that (F0, L0) is non-degenerate and ∆(a0

1) ∩ L0 6= ∅,
∆(a0

2) ∩ L0 6= ∅, by Remark 14. The fact of being F Newton non-degenerate
also implies that (a0

1 = a0
2 = 0)∩ (C∗)2 = ∅. Applying Theorem 2 we conclude that

MA(∆(a0
1),∆(a0

2)) = 0. Now, by Remark 11, we have two options, up to reordering,
for ∆(a0

1) and ∆(a0
2):

(1) The affine polygon ∆(a0
1) is a single point σ. In this case σ belongs to each

side of ∆(F0). This implies that ∆(F0) is a single point or a segment.



NEWTON NON-DEGENERATE FOLIATIONS ON PROJECTIVE TORIC SURFACES 19

(2) The affine polygons ∆(a0
1) and ∆(a0

2) are parallel segments L1 = ∆(a0
1),

L2 = ∆(a0
2). Recall that ∆(F0) is the convex hull of L1∪L2. If L1∩L2 6= ∅,

then ∆(F0) is a segment. If L1 ∩ L2 = ∅, then ∆(F0) has four sides where
L1 and L2 are two of them. This contradicts the fact that L1 = ∆(a0

1)
intersects L2.

Thus, we have that ∆(F0) is a segment or a single point and the same happens
with ∆h(F). �

6. Isolated Invariant Curves

The main goal of this section is to prove that the isolated invariant branches
of Newton non-degenerate foliations on projective toric ambient surfaces have a
global nature. We also give local and global results about the existence of isolated
invariant branches in the weak toric type and in the toric type contexts.

6.1. Global nature of isolated invariant branches. The objective of this sub-
section is to prove the following result:

Theorem 5. The isolated invariant branches of Newton non-degenerate generalized
curve on a projective toric surface extend to projective algebraic curves.

Since being Newton non-degenerate is equivalent to being of weak toric type in
the generalized curve frame, the previous result can be stated as follows:

“The isolated invariant branches of a weak toric type generalized
curve on a projective toric surface extend to projective algebraic
curves”.

Let F be a Newton non-degenerate generalized curve on a projective toric surface
S. In view of Theorem 4, there is a finite sequence of combinatorial blowing-ups
and blowing-downs P2

C → S. The transform F ′ of the foliation F by this sequence
is a Newton non-degenerate foliation on P2

C, by the stability property stated in
Proposition 2. If we prove that all the isolated invariant branches of F ′ extend
to projective algebraic curves, we have proved also that the property holds for
F , because of the stability property of the isolated invariant branches stated in
Proposition 1.

As a result, it is enough to prove the theorem when F is defined on P2
C. Recall

that we have, up to reordering, three cases for the homogeneous polygon ∆h(F):
a) It is a single point.
b) It is the segment joining the points (0, d, 0) and (0, 0, d), with d > 0.
c) It is the segment joining the points (d, 0, 0) and (0, a, d−a), with 0 < a < d.

Case a). There are no isolated invariant branches. Let us see it. A homogeneous
generator W is given by

W = λ0dX0/X0 + λ1dX1/X1 + λ2dX2/X2

where λ0 + λ1 + λ2 = 0 and the λi ∈ C.
If λ0 = 0, we have Sing(F , E) = Sing(F) = {O0} and O0 is a corner presimple

singularity without isolated invariant branches through it.
If λ0λ1λ2 6= 0, we have Sing(F , E) = Sing(F) = {O0, O1, O2}. All the singu-

larities are presimple corners, so there are no isolated invariant branches through
them.
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Case b). The only isolated invariant branches are contained in a finite family of
lines through O0. Let us prove it. A homogeneous generator W of F is given by

W = A0(X1, X2)dX0/X0 +A1(X1, X2)dX1/X1 +A2(X1, X2)dX2/X2,

where A0 +A1 +A2 = 0 and the Ai are homogeneous polynomials of degree d. Let
us consider the set PΛF = {[0, 1, λ] ∈ P2

C; λ ∈ ΛF}, where

ΛF = {λ ∈ C∗; A0(1, λ) = 0}.

Note that:
(1) X0 = 0 is invariant.
(2) PΛF ∪ {O0} ⊂ Sing(F , E) ⊂ PΛF ∪ {O0, O1, O2}.
(3) Sing(F , E) \ Sing(F) ⊂ {O0}.
The point Oi ∈ Sing(F) if and only if Xj = 0 is invariant, for {i, j} = {1, 2}.

In this case, it is a corner type presimple point and there are no isolated invariant
branches through it.

A point Pλ ∈ PΛF is a trace type presimple singularity. The germ of the line
`λ = (X2 − λX1 = 0) at Pλ is an invariant branch. By Lemma 3, there are no
isolated branches through Pλ different from (`λ, Pλ).

The point O0 is non-presimple and it belongs to the lines `λ. Let us prove that
the isolated invariant branches at O0 are among the germs (`λ, O0), with λ ∈ ΛF .
Let us work in the affine 0-chart. A generator η0 of F0 is given by

η0 = A1(x0
1, x

0
2)dx0

1/x
0
1 +A2(x0

1, x
0
2)dx0

2/x
0
2.

The blowing-up at O0 is determined, in the first chart, by the equations x0
1 = u,

x0
2 = uv. Denote by p0 the point u = v = 0. A local generator at p0 of the

transform F ′ of F is

(A1 +A2)(1, v)du/u+A2(1, v)dv/v.

Note that {λ ∈ C∗; (A1 +A2)(1, λ) = 0} = ΛF , since A1 +A2 = −A0. The points
p′λ = (u = 0, v = λ), with λ ∈ ΛF are trace type presimple singularities, since F is
of weak toric type. The strict transform of the branches (`λ, O0) with λ ∈ Λ are the
invariant branches (`′λ, p′λ), where `′λ = (y2 − λ = 0). On the other hand, we have
that p0 is a corner type presimple point, because of Remark 16. Analogously, the
origin of the second chart p∞ is also a corner type presimple point. Hence, after
blowing-up, the isolated invariant branches are among (`′λ, p′λ) with λ ∈ ΛF . By
the stability property established in Proposition 1, there are no isolated invariant
branches at O0 different from (`λ, O0) with λ ∈ ΛF .
Case c). Let us prove that the only isolated invariant branches are contained in a
finite family of curves of the type X d̃−ã

1 X ã
2 − λX d̃

0 = 0. Note that, they are locally
cusps at the points O1 and O2. A homogeneous generator of F is given by

W = A0dX0/X0 +A1dX1/X1 +A2dX2/X2,

where A0 +A1 +A2 = 0 and the Ai belong to C[U, V ], with U = X d̃
0 , V = X d̃−ã

1 X ã
2 ,

d = d̃n, a = ãn and n = gcd(d, a). Note that:
(1) X1 = 0, X2 = 0 are not dicritical simultaneously.
(2) {O1, O2} ⊂ Sing(F , E) ⊂ {O0, O1, O2}.
(3) Sing(F , E) \ Sing(F) ⊂ {O1, O2}.
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The point O0 ∈ Sing(F) if and only if X1 = 0, X2 = 0 are both invariant. In this
case, it is a corner type presimple singularity and there are no isolated invariant
branches through it.

Let us consider the subset of C∗ given by ΛF = {λ ∈ C∗; (ãA0 + d̃A2)(1, λ) = 0}
and the closed curves

Cλ = (X d̃−ã
1 X ã

2 − λX d̃
0 = 0),

with λ ∈ ΛF . Note that O1, O2 belong to Cλ and (Cλ, O1), (Cλ, O2) are invariant
branches. Let us prove that the isolated invariant branches for F are among these
ones. We do the proof at O1 and a similar argument works at O2. To do it, let us
work in the affine 1-chart. The point O1 is a non-presimple point and a generator
of F1 adapted to D1 is given by

η1 = A0(x1
0, 1, x1

2)dx1
0/x

1
0 +A2(x1

0, 1, x1
2)dx1

2/x
1
2.

Observe that A0(x1
0, 1, x1

2) and A2(x1
0, 1, x1

2) are quasi-homogeneous polynomials
with weight vector (ã, d̃). Equivalently, the Newton polygon N≺1

O1
((A1, D1),F1)

has exactly one compact side, whose slope is −ã/d̃. In order to prove the result,
we consider the composition

((Ã1, D̃1), F̃1) π→ ((A′1, D′1),F ′1) σ→ ((A1, D1),F1)

of the finite sequence of combinatorial blowing-ups that provides the minimal re-
duction of singularities of the cusp (x1

2)ã−(x1
0)d̃ = 0, where π is the last blowing-up.

Note that eq(E′) = 2, where q is the center of π. The morphism σ is given in affine
coordinates (u, v) centered at q by x1

0 = uαvβ ; x1
2 = uγvδ, where α, β, γ, δ is the

only solution of the diophantine system

α+ β = ã; γ + δ = d̃, αδ − βγ = 1, α, β, γ, δ ∈ Z≥0.

A local generator η′1 of F ′1 adapted to D′1 at q is given by

uγavβdη′1 = A0(uαvβ , 1, uγvδ)(αdu/u+βdv/v)+A2(uαvβ , 1, uγvδ)(γdu/u+δdv/v).

We make the following remarks:
(1) The Newton polygonN≺′q ((A′1, D′1),F ′1) has exactly one compact side, which

has slope −1.
(2) For each s ∈ Sing(F ′1, D′1) we have es(D′1) = 2. This follows from Remark

19 and the behaviour by blowing-up of the compact sides of the Newton
polygon explained in Subsection 4.2.

(3) Each s ∈ Sing(F ′1, D′1) \ {q} is a corner type presimple singularity, in view
of Remark 16.

(4) The strict transform of the algebraic curve Cλ is the line `λ = (v−λu = 0).
By Lemma 3, the strict transform of all the isolated invariant branches through

O1 passes through q. Then, the problem is reduced to show that there are no
isolated invariant branches at q different from (`λ, q) with λ ∈ ΛF . This is done by
similar computations to the ones in case b).

Remark 24. The set ΛF is not empty. In fact, when ∆h(F) is in case b) it has d
elements and when ∆h(F) is in case c) it has n elements. Let us prove the result
for case b), the other case is done in a similar way, working after pre-reduction of
singularities. We need to prove that A0 has not multiple factors and also that X1,
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X2 do not divide A0. Let X2 − λX1 be a multiple factor of A0. A local generator
of F adapted to EP2

C
at Pλ is given by

y2Ā0(1, y + λ)dx1
0/x

1
0 +A2(1, y + λ)dy,

with A2(1, λ) 6= 0 and A0 = (X2 − λX1)2Ā0. This means that Pλ is a saddle-node,
what is impossible because F is a generalized curve.

Suppose now that A0 = X1Ā0. A local generator of F adapted to EP2
C
at O1 is

given by
x1

2Ā0(1, x1
2)dx1

0/x
1
0 +A2(1, x1

2)dx1
2/x

1
2, A2(1, 0) 6= 0.

We conclude that O1 is a saddle-node, that can not hold. Analogously X2 does not
divide A0.

6.2. Existence of isolated invariant branches. We present a local result of
existence of isolated invariant branches for toric type foliated surfaces. To do it, we
use the following result of stability:

Lemma 11. Let us consider a generalized curve foliated surface (M,F), a point
p ∈ Sing(F , E) and a combinatorial blowing-up π : (M′,F ′) → (M,F). We have
that p is a presimple corner type point if and only if each p′ ∈ π−1(p)∩Sing(F ′, E′)
is a presimple corner type point.

Proof. It is enough to do the proof when p is the center of blowing-up.
In Subsection 2.2, we have proved that each point

p′ ∈ π−1(p) ∩ Sing(F ′, E′) = π−1(p) ∩ Sing(F ′)

is a presimple singularity of corner type, when p is a corner type presimple point.
Now, we have to prove that p is a corner type presimple point assuming that each
p′ ∈ π−1(p) ∩ Sing(F ′, E′) is a presimple of corner type. We distinguish two cases:

The blowing-up is non-dicritical. Given p′ ∈ π−1(p), we have that

νp′(F ′) = µp′(F ′) =
{

0 if ep′(E′inv) = 1
1 if ep′(E′inv) = 2 (recall that F ′ is a generalized curve),

where νp′(F ′) denotes the algebraic multiplicity of F ′ at p′ and µp′(F ′) denotes the
Milnor number of F ′ at p′ (see [4]). Consider the Noether type formula (see [3])

µp(F)− νp(F)2 = Sp − (νp(F) + 1) ≥ 0, Sp =
∑

p′∈π−1(p)
µp′(F ′).

Thus, we have 1 ≤ Sp ≤ 2. If Sp = 1, then νp(F) = 0 and ep(Einv) = 1; this
means that p is a regular point and F , E have normal crossings at p. If Sp = 2,
then νp(F) ∈ {0, 1} and ep(Einv) = 2; thus, necessarily νp(F) = 1. Observe that
we have νp(F , E) = νp(F) + 1 − ep(Einv) = 1 + 1 − 2 = 0, then p is a corner type
presimple singularity for (M,F).

The blowing-up is dicritical. We necessarily have Sing(F ′, E′) = ∅, this means
that p is singular, ep(Einv) = 2 and there is a germ of vector field tangent to F
whose linear part is the identity up to a factor (radial case). Then, p is a presimple
corner type singularity. �

Proposition 4. Assume that (M,F) is of toric type at a point p ∈ Sing(F , E).
If p is not a presimple point of corner type, there is an isolated invariant branch
(Γ, p) through it.
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Proof. If ep(E) = 1, then p is necessarily a trace type simple singularity and then,
there is an only isolated invariant branch through p, in view of Remark 9. When
ep(E) = 2, we consider the composition π : (M′,F ′)→ (M,F) of a finite sequence
of combinatorial blowing-ups inducing a reduction of singularities over p. As a
result of Lemma 11, there is a trace type simple singularity p′ ∈ π−1(p) and an
isolated invariant branch (Γ′, p′) through p′. Then (Γ, p) is an isolated invariant
branch for (M,F), where (Γ, p) is the image of (Γ′, p′). �

This proposition does not hold when (M,F) is just of weak toric type at p: for
instance, when ep(E) = 1 and the foliation is locally defined by the radial vector
field. Nevertheless, when we work in a global way with weak toric type foliations on
toric projective surfaces, we give a result of existence of isolated invariant branches,
that we state in Proposition 5.

Let F be a weak toric type generalized curve on P2
C. We take notations as in

Subsection 6.1, recalling, in particular the existence of the cases a), b) and c) for
the homogeneous polygon ∆h(F).

Assume that ∆h(F) is not a single point. Consider λ ∈ ΛF and denote
Y = `λ, P1 = Pλ and P2 = O0, if ∆h(F) is in case b).
Y = Cλ, P1 = O1 and P2 = O2, if ∆h(F) is in case c).

We have that Y ∩E = {P1, P2} and P1, P2 are not presimple corner type points of
Sing(F , E). Moreover, the germs (Y, P1) and (Y, P2) are irreducible branches: in
case b) they are lines and in case c) they are cusps of types (d̃, d̃ − ã) and (d̃, ã),
respectively. Let

π : ((M ′, E′),F ′)→ ((P2
C, EP2

C
),F)

be a combinatorial pre-reduction of singularities and denote by Y ′ the strict trans-
form of Y by π. We have that Y ′ ∩ E′ = {p′1, p′2}, where each p′i ∈ π−1(Pi) is a
trace type presimple singularity, for i = 1, 2. Let ξi be a germ of vector field at p′i
tangent to F ′ with non-nilpotent linear part Lξi

and denote by r(Lξi
) = {αi, 1/αi}

the ratio of its eigenvalues.

Lemma 12. We have r(Lξ1) = −r(Lξ2). In particular, there is a simple singularity
between p′1 and p′2.

Proof. For the case case b), the eigenvalues of Lξ1 are Ā0(1, λ) and −A2(1, λ),
where A0 = (x2 − λX1)Ā0. The eigenvalues of Lξ2 are −Ā0(1, λ) and −A2(1, λ),
since A1 +A2 = −A0.

In case c), we consider the sequence of combinatorial blowing-ups that provides
the minimal reduction of singularities of the cusp (Y, P1). It is given in affine
coordinates (u1, v1) centered at p′1 by x1

0 = uã1(v1 + λ)β and x1
2 = ud̃1(v1 + λ)δ. A

local generator of the strict transform of F adapted to (u1 = 0) is given by

(ãA0 + d̃A2)(1, v1 + λ)du1

u1
+ (βA0 + δA2)(1, v1 + λ)

v1 + λ
dv1,

and the eigenvalues of Lξ1 are

µ1 = − (βA0 + δA2)(1, λ)
λ

, ρ1 = ãA0 + d̃A2

X d̃−ã
1 X ã

2 − λX d̃
0

(1, λ).

The sequence of combinatorial blowing-ups obtained following the infinitely near
points of the cusp (Y, P2) is given in affine coordinates (u2, v2) centered at p′2 by
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x2
0 = ud̃−ã2 (v2 + 1/λ)δ−β , x2

1 = ud̃2(v2 + 1/λ)δ. A local generator of the strict
transform of F adapted to the divisor (u2 = 0) is given by

((d̃− ã)A0 + d̃A1)(v2 + 1/λ, 1)du2

u2
+ ((δ − β)A0 + δA1)(v2 + 1/λ, 1)

v2 + 1/λ dv2,

and the eigenvalues of Lξ2 are

µ2 = − ((δ − β)A0 + δA1)(1/λ, 1)
1
λ

ρ2 = (d̃− ã)A0 + d̃A1

− 1
λX

d̃−ã
1 X ã

2 +X d̃
0

(1/λ, 1).

We have the relations µ1 = −λn−2µ2 and ρ1 = λn−2ρ2, since A1 = −(A0 + A2).
Hence r(Lξ1) = −r(Lξ2) �

Remark 25. When F is of toric type, p′1 and p′2 are both trace type simple singu-
larities. Hence (Y, P1) and (Y, P2) are isolated invariant branches.

Proposition 5. Let F be a weak toric type foliation defined on a projective toric
surface S. Assume that there is a point p ∈ Sing(F , E) which is not presimple
of corner type. Then, there is an isolated invariant branch (Γ, q) passing through
some q ∈ Sing(F , ES).

Proof. It is enough to do the proof when S = P2
C, because of Lemma 11 and

the stability of the isolated invariant branches by combinatorial blowing-ups and
blowing-downs stated in Proposition 1. When the homogeneous polygon ∆h(F)
has a single vertex, all the points in Sing(F , EP2

C
) are presimple of corner type.

As a result ∆h(F) is not a single vertex and it belongs to case b) or case c). In
view of Lemma 12, there is a trace type simple singularity q′ after performing
a pre-reduction of singularities that we denote by π. The only invariant branch
(Y ′, q′) through q′ provides an isolated invariant branch (Y, q) through q = π(q′)
that belongs to Sing(F , EP2

C
). �

When we are in the toric type case, we can say even more:

Proposition 6. Let us consider a toric type foliation F on a projective toric surface
S and an isolated invariant branch (Γ, p). Let Y be a projective algebraic curve
extending (Γ, p). We have that any branch (Υ, q) ⊂ (Y, q) with q ∈ Y ∩ E is an
isolated invariant branch.

Proof. Follows essentially from Theorem 5 and Remark 25. �

7. Rational First Integrals and Global Invariant Curves

In this section we prove the following property for toric type foliations on projec-
tive toric surfaces: Either there are finitely many global invariant curves different
from the divisor, all of them extending isolated invariant branches, or there are
infinite many global invariant curves (there is rational first integral), but there is
no place for isolated invariant branches.

We say that an invariant branch (Γ, p) of a foliated surface (M,F) is proper for
(M,F) when p ∈ E and (Γ, p) 6⊂ (E, p). This property is stable by combinatorial
blowing-ups and blowing-downs. When (M,F) is of weak toric type, all the isolated
invariant branches are proper, since every singularity belongs to the divisor.

Theorem 6. We have the following dichotomy for a toric type foliation F on a
projective toric surface S:
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I) There is rational first integral and there are no isolated invariant branches.
II) There is no rational first integral and every proper invariant branch extend-

ing to a projective algebraic curve is an isolated invariant branch.

It is enough to prove the dichotomy for the case S = P2
C. Indeed, having rational

first integral, being a projective algebraic curve, being invariant, proper and isolated
are properties that have a good behaviour under blowing-ups and blowing-downs.

Remark 26. Every global invariant curve Y extends a proper branch. To see it,
just note that we have Y ∩ (Xi = 0) 6= ∅, when S = P2

C.

Remark 27. If F has rational first integral Φ, there are infinitely many invariant
curves for F . To see it, observe that λF − µG = 0 are isolated invariant curve for
each [λ, µ] ∈ P1

C, when S = P2
C and Φ = F/G.

Assume S = P2
C. We distinguish between the cases a), b) and c) for the homo-

geneous polygon ∆h(F) and we take notations as in Subsection 6.1.
Case a). There are no isolated invariant branches for F . We have two options:
• The points O0, O1, O2 are all simple corners. The components of the divisor

Xi = 0 are invariant, for i = 0, 1, 2. Assume that there is a global invariant curve
Y different from this ones. We have that Y cuts X0 = 0 at singular points. They
are necessarily O1 or O2, what contradicts the fact that O1 and O2 are simple
singularities. As a consequence, such a Y can not exist. In particular, there is no
rational first integral for F and we are in situation II).
• One of the Oi is presimple but non-simple, say O0. We have that

λ0 = m− n, λ1 = n, λ2 = −m, n,m ∈ Z>0.

Then d(Xm−n
0 Xn

1 X
−m
2 ) is a rational first integral and we are in situation I).

Case b). Let us see that situation II) holds. By Remark 25, we have that (`λ, O0),
(`λ, Pλ) are isolated invariant branches for every λ ∈ ΛF and they are the only ones.
Then, it just remains to prove that a global invariant curve is either a component
of the divisor or a line `λ with λ ∈ ΛF .

Let Y be a global irreducible invariant curve of degree r different from `λ0 for
some λ0 ∈ ΛF . The curve Y intersects `λ0 in r singular points (counted with
multiplicity). They are necessarily O0 or Pλ0 and in fact, just O0, since Pλ0 is a
simple singularity. If Y is a line, it cuts transversally `λ0 at O0 and it intersects
X0 = 0 in a single singularity. As a consequence it is X1 = 0, X2 = 0 or a line
`λ with λ ∈ ΛF \ {λ0}. Otherwise, if r > 1, we have that Y and `λ0 have the
same tangent at O0. When we perform the blowing-up, we obtain three invariant
branches passing through p′λ0

: the exceptional divisor, `′λ0
and the strict transform

Y ′ of Y . This contradicts the fact that p′λ0
is a simple singularity.

Case c). Let us prove that situation II) holds. Like in case b), the problem is
reduced to show that a global invariant curve is either a component of the divisor
or one of the curves CFλ = Cλ with λ ∈ ΛF .

We take the rational map ϕ : P2
C \ [0, 0, 1]→ P2

C given in coordinates by

Y0 = X d̃
0 , Y1 = X d̃−ã

1 X ã
2 , Y2 = X d̃

2 .

This map is compatible with the torus action. Recall that a homogeneous generator
W of F is given by

W = A0(Y0, Y1)dX0/X0 +A1(Y0, Y1)dX1/X1 +A2(Y0, Y1)dX2/X2,
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where A0 + A1 + A2 = 0 and the coefficients Ai are homogeneous polynomials of
degree n. We have that F is the pull-back by ϕ of a the toric type foliation G of
P2
C generated by

Ω = (d̃− ã)A0dY0/Y0 + d̃A1dY1/Y1 + (−ãA1 + (d̃− ã)A2)dY2/Y2.

The homogeneous polygon ∆h(G) is in case b). Moreover, we have
Λ = ΛG = {λ ∈ C∗; (−ãA1 + (d̃− ã)A2)(1, λ) = 0} =

= {λ ∈ C∗; (ãA0 + d̃A2)(1, λ) = 0} = ΛF .

As a consequence, there is a biunivocal relation between CFλ and `Gλ . More precisely
ϕ(CFλ ) = `Gλ , ϕ−1(`Gλ) = CFλ .

Let Y 6⊂ (X0X1X2 = 0) be a global curve invariant for F . We have that
ϕ(Y ) 6⊂ (Y0Y1Y2 = 0)

and it is a global curve invariant for G. By the study of case b), there is a λ ∈ Λ
such that ϕ(Y ) = `Gλ and hence Y = CFλ .
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