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Software-defined networking (SDN) provides an efficient framework for managing passive optical networks
(PONs) with equipment from different manufacturers, technologies, and standards. Thus, we recently proposed a
robust and flexible SDN-OpenFlow agent to configure and manage 10 gigabit symmetric passive optical networks
(XGS-PONs) to support Internet (data) services. That SDN agent communicates with the SDN controller via the
OpenFlow protocol and with the optical line terminal (OLT) of the PON via the manufacturer’s chipset-specific
API (application programming interface). In this paper, we significantly extend that SDN agent by incorporating
the capability to support two essential services for network operators and Internet service providers, specifically
voice over IP (VoIP) and video services. The required extensions and configuration procedures on the different
layers that compose the SDN agent are described, and an experimental validation of the extended SDN agent in
an XGS-PON is conducted, demonstrating its effectiveness in the integration of those two services. The source
code of the SDN agent has been made open and available on GitHub. © 2024 Optica Publishing Group under the

terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

Recent market studies show the constant penetration rate
growth of fiber to the home/building (FTTH/B) technolo-
gies. By the end of 2023, the Europe region could have 230
million homes passed by full-fiber infrastructure, and the
forecasts predict 310 million by 2028. At the same time the
number of subscribers will increase from 108 million in 2023
to 196 million in 2028. This way, the coverage rate is expected
to increase from 65% nowadays to 88% by 2028. In this con-
text, passive optical network (PON) technologies are gradually
gaining market share over point-to-point fiber technology.
Some reasons for this are the strong focus on sustainability and
power consumption reduction together with the continuous
improvements of PON technology [1]. These access tech-
nologies consist of an optical line terminal (OLT) located at
the central office and an optical network unit (ONU) at the
user end, typically in a tree-like architecture. They operate as
a point-to-multipoint network in the downstream link and
employ multiple access through time-division in the upstream
link.

In this way, the global PON market is nowadays dominated
by GPON technology (PONs based on the gigabit stand-
ard), which delivers 2.5G downstream and 1.25G upstream.
However, 10-GPON technology is currently engaged in a

process of equipment cost reduction. Moreover, this technol-
ogy is back compatible with GPON, making it possible to
make a smooth transition from one technology to the other. As
a consequence, although XGS-PON (10G PON) [2] only rep-
resents 15% of the overall PON market in the USA in 2021, it
is expected to reach 55% by 2026. This is also encouraged by
the opportunity of reducing costs in other services by incorpo-
rating XGS-PON, as for example, serving dense urban areas
with many small cell 5G antennas [3]. Therefore, a smooth,
gradual, and flexible transition from GPON to XGS-PON is
very likely to occur when QoS (quality of service) requirements
and bandwidth demands require it. One of the advantages
of PON is that operators can use the same optical fiber infra-
structure and a portion of the existing equipment, meaning
that the migration does not result in an increase in OPEX
expenses [3]. In fact, it is not necessary to upgrade both ends
of the network (OLT and user-side ONU) simultaneously. By
replacing OLT cards with “combo” PON cards at the central
office, operators can offer both XGS-PON and GPON services
simultaneously. This enables ONU devices to be upgraded to
XGS-GPON-compatible devices when required.

On the other hand, this convergence of various PON tech-
nologies and the growing demand for services with stringent
QoS standards have increased the complexity of configuring
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PON infrastructures. Furthermore, PONs are frequently over-
seen by proprietary and rigid network management systems.
The integration of software-defined networking (SDN) into
PONs can effectively tackle these issues, virtualizing control
and management PON functions to enable network optimiza-
tion, streamline operations, and foster the creation of new
services [4]. SDN separates the control plane from the data
plane, providing centralized and intelligent network man-
agement by using protocols like OpenFlow [5], NETCONF
[6], or RESTCONF [7]. This way, SDN empowers network
operators with centralized control over network manage-
ment operations and automation capabilities for intricate
and time-consuming tasks, minimizing the need for manual
interventions. In addition, SDN technology enables rapid net-
work configuration and supports PON devices from different
manufacturers and technologies, and the use of software-based
controllers to communicate with the underlying hardware
infrastructure means that network operators can monitor the
network independently of the underlying technology [8].

Given these benefits, in the literature we can find multi-
ple proposals exploring the integration of SDN into PON
architectures to achieve different objectives. In this way, a
high number of studies propose that bandwidth management
(DBAs, dynamic bandwidth algorithms) and service configu-
ration (QoS) policies are performed by an SDN controller
external to the PON, both in simulation scenarios [9–11] or
in experimental settings using testbeds [12,13]. Alternative
SDN implementations concentrate on overseeing residential
network management within PONs [14]. Concerning energy
protection in PONs, there are proposals integrating SDN,
such as [15–17]. Additionally, SDN has been employed in
virtual PONs (VPONs) to allocate bandwidth [18] or to coor-
dinate diverse services [19]. Furthermore, various proposals
recommend extending current OpenFlow protocols for direct
implementation within PON technologies, aligning with their
protocols [20,21]. On the other hand, some research focuses
on enabling PON devices (OLTs and ONUs) to be managed
through SDN [22–24]. Indeed, numerous proposals introduce
an abstraction layer to enable SDN-based control of PON
devices. These methods involve the deployment of a virtual
layer within PON devices that communicates with OLTs and
ONUs, which adds complexity to the network and deviates
from an integrated, inherent solution. As a result, alterna-
tive approaches opt to sidestep this complexity by designing
SDN agents capable of translating SDN commands into the
inherent PON configuration. Within this line of research, the
VOLTHA (Virtual OLT Hardware Abstraction) project [25],
which abstracts the PON to a programmable switch managed
by an SDN controller and interacts with the PON devices
through the manufacturer proprietary language, stands out.
VOLTHA is part of the SEBA (SDN Enabled Broadband
Access) project [26], an open-source initiative supported by the
ONF (Open Networking Foundation). SEBA uses a unified
API (application programming interface) to abstract OLT and
ONU devices and manage them through an SDN controller,
which is why some proposals use it [27,28]. OB-BAA (Open
Broadband-Broadband Access Abstraction), on the other hand,
is an initiative led by the Broadband Forum organization that
seeks to standardize and define open interfaces (specifications

and APIs) for the management of broadband access devices,
i.e., multi-vendor devices in a uniform way. Thus, OB-BBA
and VOLTHA differ in their approaches and main functionali-
ties [29]. Such approaches hold great promise due to the rapid
proliferation and coexistence of diverse PON technologies
(GPON, EPON, 10G PON) and numerous PON device
manufacturers. Indeed, this proliferation has also introduced
compatibility challenges when managing these devices collec-
tively. Although all PON devices adhere to the same standards,
there are no universally standardized PON devices. This is
because each manufacturer employs specific proprietary soft-
ware to manage PONs, resulting in substantial variations in
the way access methods and the configuration of PON device
chipsets (OLTs and ONUs) are implemented. Hence, SDN
provides an efficient solution to this issue [4,8]. It offers an effi-
cient way of transparently and concurrently managing PON
devices from various manufacturers, diverse technologies (e.g.,
GPON, 10GPON), and different standards (IEEE, ITU-T).

As a result, close to the latter approaches (more specifically
VOLTHA), we have recently developed and experimentally
validated a robust SDN OpenFlow agent that communicates
directly with the APIs of OLT chipsets, namely, in XGS-PON
infrastructures [30]. Our approach is scalable, thanks to its
modular design composed of differentiated blocks. This modu-
lar structure facilitates the seamless integration of new SDN
functionality within a single block, requiring minimal adjust-
ments to other blocks. This contrasts with approaches such as
VOLTHA, where the addition of new functionalities requires
modifications in multiple blocks. In addition, the agent shows
great flexibility, as although it can be managed by tools such
as SADIS (Subscriber and Device Information Service) or
ONOS (Open Network Operating System), it also offers a
user-friendly menu-driven interface. This design ensures that
the learning curve for managing the OpenFlow-based SDN
agent is relatively low. It is also easy to install, requiring only a
few Docker containers to deploy, unlike other methods, such
as VOLTHA, which require a larger number of containers,
increasing complexity. In summary, the main advantage of
this proposal compared to VOLTHA is its simplicity. As a
result, our approach offers a fast SDN solution for configuring
and testing new functionalities with minimal programming
changes required at specific layers of the developed SDN
agent. This approach significantly reduces the time and effort
required to make network adjustments, making it ideal for
small and medium-sized operators who may have limited
resources and technical staff. By minimizing programming
changes, our solution lowers the barrier to entry for smaller
operators, allowing them to implement advanced network
functionalities without requiring extensive technical expertise.
In addition, the modular design allows for targeted upgrades
and rapid rollbacks if required, giving small and medium-
sized operators greater control and flexibility in managing
their network infrastructure without substantial investment.
Furthermore, the open-source code of this SDN solution
allows network designers and researchers to easily manage
XGS-PON infrastructures, and test new SDN functionalities
and its integration with other infrastructures. However, the
SDN agent that we previously presented in [30] only supports
Internet (data) services. Nowadays, there is a trend towards
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OTT (over-the-top) services, such as streaming TV services
(Netflix, YouTube, Prime Video, or HBO), and thus, the pro-
posal in [30] is a valid management solution for those OTT
services via Internet data. Nevertheless, OTT services have
many limitations compared to traditional video and voice
services. For instance, compared to IPTV (Internet Protocol
television) services, OTT services lack dedicated bandwidth,
which can affect reception quality, while IPTV offers consis-
tent quality thanks to its reserved bandwidth. Additionally,
IPTV set-top boxes often feature extra functions like program
recording and rewind. Security is another advantage of IPTV,
with dedicated infrastructures and networks provided by
operators, in contrast to the operator independence in OTT
services. Consequently, many large and important operators
currently offer IPTV services or even provide both types (IPTV
and OTT). Similarly, when it comes to voice services (VoIP),
having a dedicated bandwidth guarantees a high quality of
service, unlike OTT-based solutions, which require bandwidth
sharing between all services. Therefore, any pragmatic proposal
on network management should be able to efficiently manage
both types of services, OTT and traditional ones, and not just
one of them, as many operators still offer those traditional
services. As a consequence, in this paper we significantly extend
the SDN agent by incorporating the capability to support
these essential services for network operators or Internet service
providers (ISPs). Therefore, the solution proposed in this paper
fully supports various services for residential subscribers on
XGS-PON architectures, not only data services, but also IPTV
(multicast/video) and VoIP (voice), which are in fact services
defined in the ITU-T G.9807 standard (XGS-PON) [2] and
must be operational for use by network operators. Then, our
proposal is fully aligned with the services and requirements set
out in the XGS-PON standard itself. Furthermore, extending
the agent to support and configure these services is not trivial,
as it involves an in-depth analysis of the XGS-PON standard,
in order to determine which ONU management and control
interface (OMCI) entities of the ITU-T G.988 standard [31]
are necessary to configure the ONUs, as well as to determine
the order in which these entities must be created and their
subsequent programming in the SDN agent. In addition, on
the OLT side, chipset API functions must also be integrated
to support and configure these services, which is a more com-
plex procedure than for Internet data services. In summary,
this paper presents a significant extension of the base model
presented in [30] allowing the integration of VoIP and video
services, which are key services for network operators and ISPs.
In addition, we have conducted an experimental validation
of the extended SDN agent within an XGS-PON, proving its
effectiveness in the integration of those two services. Moreover,
we have made the source code of the SDN agent open and
available on GitHub, so that it can be easily used by network
designers and researchers.

This paper is structured as follows. First, Section 2 reviews
the fundamentals of the OpenFlow-based SDN agent for XGS-
PONs presented in [30]. Then, Section 3 proposes the set of
extensions to be added so that the SDN agent supports voice
and video services, and Section 4 validates the effectiveness of
those extensions by reporting the results of an experimental

study conducted in an XGS-PON testbed. Finally, Section 5
summarizes the main conclusions.

2. REVIEW OF THE OPENFLOW-BASED SDN
AGENT FOR XGS-PONS

The SDN proposal presented in [30] and summarized in this
section allows for the configuration of XGS-PON using an
SDN controller (ONOS [32]) and an OpenFlow-based SDN
agent. This section summarizes the layers and functionalities of
the agent and how it interacts with ONOS and the XGS-PON
OLT’s API to configure services.

A. Global Description of the OpenFlow Agent

Figure 1 illustrates a network scenario featuring the proposed
OpenFlow-based SDN agent, enabling ONOS to interact
simultaneously with multiple XGS-PONs through the same
SDN agent. In essence, this agent translates commands origi-
nating from the SDN controller via OpenFlow into commands
that can be interpreted by the API of the OLT chipset. These
commands are transmitted to the OLT through a management
interface port, isolated from the PON traffic, so as not to be
affected by network congestion. The OpenFlow agent has
been developed using the Python-OpenFlow Library [33],
and is fully compatible with versions 1.3/1.0 of the OpenFlow
standard, requiring no additional extensions to the OpenFlow
standard itself. More specifically, the OpenFlow-based SDN
agent intercepts messages sent by ONOS, which contain
OpenFlow commands. These commands are then used to
configure the OLT and ONUs connected to the XGS-PON,
as well as to manage end-user services and profiles through the
OLT. Consequently, the agent comprises three distinct layers,
as illustrated in Fig. 1:

Fig. 1. Global design of the OpenFlow agent to manage XGS-
PONs (Reprinted with permission from [30] c© Optica Publishing
Group).
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• ONOS adapter layer: It interfaces with ONOS, capturing
messages from the controller and responding to them as if the
SDN agent were an OpenFlow virtual switch [34].

• Translation layer: It is a bridge between the other two
layers, responsible for translating ONOS instructions into
XGS-PON configurations.

• OLT adapter layer: It manages and configures XGS-PON
OLTs in their native language, specifically using the API pro-
vided by the OLT chipset vendor. The approach employs RPC
(remote procedure call) [35] connections to facilitate interac-
tion between the OpenFlow agent and the OLT chipset’s API.
Subsequently, the OLT then configures the devices and services
(e.g., Internet) subscribed to the users.

Furthermore, a menu-driven user interface has been devel-
oped, which simplifies the creation of ONOS API instances
for configuring PON parameters. Thus, the key features of the
whole system include the following:

• Scalability and flexibility: The system is structured into
well-defined layers, allowing for the easy integration of new
SDN functionalities into one specific layer without affect-
ing the others. This can be achieved by defining the flow or
schema in the ONOS adapter and generating the service in
the translation layer. Consequently, new functionalities can
be integrated with little change to the OLT adapter layer. In
addition, all SDN configurations on the OLT are done through
a port that is physically separated from network traffic, so the
functionality of the SDN proposal and its scalability is not
affected by network congestion, as this separation ensures that
OLT network configurations will reach the OLT through a
physically separated port.

• Interoperability: The solution acts as an intermediary
element between an SDN controller and the XGS-PON
equipment. This design enables a single SDN controller to
manage PON equipment from various manufacturers using
the same SDN agent. By leveraging the SDN agent code, RPC,
and ONOS-interacting menu-driven interface, the proposal
streamlines the management of any XGS-PON through a uni-
fied codebase. The adaptation layer within the OLT (illustrated
in Fig. 1), responsible for direct interaction with the API of
the OLT chipset vendor, is the only component that requires
modification, as different OLTs may use distinct chipsets.

The OpenFlow-SDN agent defined in [30] only supports
the configuration of Internet (data) services. This can be done
with either single or double tags, as traffic on PONs must be
tagged via VLANs (virtual local area networks) to differentiate
services (voice, data, video). The tag used to identify each of
these services in single tagging is called C-Tag (customer tag).
When traffic comes from the transport network, it may also
have a double tag (QinQ), which can be used to differentiate
several operators arriving at the same PON. This second tag is
called S-Tag (service tag).

B. Description of the OpenFlow Agent Layers

This section provides an overview of the main functionalities of
the SDN layers of the OpenFlow agent. A more detailed analy-
sis of the SDN agent can be found in [30].

1. ONOS Adapter Layer: Communication between
the SDN Controller and the OpenFlow Agent

The SDN agent emulates an OpenFlow switch [34], creating
real OpenFlow messages to be exchanged with the ONOS
controller. When an OpenFlow switch connects to an SDN
controller, a set of OpenFlow messages is exchanged via a
socket, namely, the following:

• Connection Establishment: When an OpenFlow
connection is first established, each side of the connection
immediately sends OFPT_HELLO messages.

• Initial Communication: ONOS periodically
requests information from the OpenFlow agent. First,
it requires information regarding the basic capabil-
ities by means of OFPT_FEATURES_REQUEST and
OFPT_FEATURES_REPLY messages. Then, information
about the registered OpenFlow ports, the NNI (network-
to-network interface) port of the OLT, and the UNI (user
network interface) ports of the ONUs is required using
OFPT_MULTIPART_REQUEST, OFMP_PORT_DESC,
OFPT_MULTIPART_REPLY, and OFPT_PORT_STATUS
messages.

• Service Configuration: Flows and meters are used to
configure services. A flow is an element used to match and
process packets, so it mainly contains match fields for matching
packets, a priority for matching, and a set of instructions to
apply [36]. In addition, meters permit QoS operations, such as
rate-limiting, to be implemented, so they measure and control
the rate of packets in flows. Thus, the messages exchanged
between ONOS and the OpenFlow agent for configuring,
updating, or deleting services are as follows:

• OFPT_FLOW_MOD: The flows are used to config-
ure a service for a specific user, UNI port of an ONU. Since
services are filtered by VLANs, the criteria and instructions
of the flows are based on this parameter.

• OFPT_METER_MOD: The meters are used to
associate a maximum bandwidth to a service. This maxi-
mum bandwidth is a guaranteed bandwidth plus excess
bandwidth, only offered when the network has bandwidth
available. Hence, meters measure the packet rate of a flow,
so that when this rate is higher than a maximum bandwidth,
packets are dropped.

2. Translation Layer: Translation of OpenFlow Commands
to XGS-PON Commands

In the translation layer, the OpenFlow-SDN agent trans-
lates the commands received from ONOS into commands
interpretable by the OLT. In this way, this layer checks the
received ONOS flows to assign them to an OpenFlow table
[36] according to the rules described in [30]. First, the agent
checks the matching fields and looks for the identifier of an
incoming port, a UNI port of an ONU (traffic comes from the
ONU, upstream traffic) or the NNI port of the OLT (traffic
comes from outside the XGS-PON, downstream traffic). The
SDN agent then looks for matching flows to configure the
service.

For each new service, the SDN agent gathers flow param-
eters and stores them in a service list, ready to be transmitted
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to the OLT through the OLT adapter layer. Each entry in the
service list comprises the following fields: port (UNI port of the
ONU), VLAN, and meter IDs. On the other hand, the trans-
lation layer also contains information about the XGS-PON
and its devices (OLT, ONUs), so that it relates the instances
and data coming from ONOS to the specific parameters of
the PON, such as ONU data, service parameters [bandwidth,
Alloc-ID, GEM (GPON encapsulation method) ports, . . . ],
and OMCI configuration [31]. In addition to defining these
service parameters, several QoS elements, including bandwidth
policies, priorities, and weights, are configured at this layer for
both traffic schedulers and queues. Consequently, all services
are initially configured with “Best Effort” bandwidth policies,
while priorities and weights are set to zero. Moreover, the
current design of the OpenFlow SDN agent allocates a single
GEM port for each service. Nevertheless, other configurations
of these QoS parameters can be managed in this layer.

3. OLT Adapter Layer: Communication between the
OpenFlow-SDN Agent and the XGS-PON

This layer connects the OpenFlow agent with the XGS-PON,
to deploy/delete services in the ONUs using commands under-
standable by the OLT chipset. This communication is carried
out through RPC connections, which requires an RPC server
in the OLT and an RPC client within the OLT adapter layer.
Since all OLTs will use the same RPC functions, an RPC server
has to be integrated and deployed within each OLT with the
same functions defined in the RPC client. These functions,
defined in depth in [30], allow the network operator to con-
figure the access network by acting directly on the OLT driver
API. Although the OLT adapter layer uses these RPC functions
to send the configurations to the OLT, the translation layer
orchestrates the entire configuration process, due to its knowl-
edge of the state of each PON device (OLT, ONUs). More
details about these procedures can be found in [30].

3. EXTENSIONS TO THE OPENFLOW-BASED
SDN AGENT TO SUPPORT VOICE AND
VIDEO SERVICES

Once we have described the base OpenFlow-SDN agent pre-
sented in [30], we now extend that work by presenting a set
of extensions to support VoIP and video (multicast) services,
which are key services to be offered by ISPs and network oper-
ators. Integrating the configuration of voice and video services
into the SDN agent has required a thorough analysis of the
XGS-PON standard to identify the required OMCI entities
to configure these services in the ONUs. This also involved
establishing the correct order of creation and scheduling of
these entities within the SDN agent. In addition, on the OLT
side, API functions (in the chipset) must be integrated to
complete the configuration of these services. Nevertheless, we
have attempted to simplify service configuration, abstracting
as much of the complexity as possible for the user through
the chosen configuration tool, whether it be SADIS, ONOS,
or the menu-driven user interface. Therefore, this section
explains the required changes and additions in each layer of
the OpenFlow-based SDN agent, and in the following section

we experimentally validate these extensions. It is worth not-
ing that the extended OpenFlow-SDN agent that we present
next, with support for VoIP, video, and data services, has been
made available on GitHub [37]. Specifically, the management
system provided there consists of a set of four different Docker
containers, one for ONOS, one for the SDN agent, another
one for a menu-driven user interface to facilitate the configu-
ration of the XGS-PON, and finally a VoIP server in another
container.

A. Extensions to Support the VoIP Service

This section explains the extensions implemented within the
OpenFlow agent to configure VoIP services.

1. ONOS Adapter Layer

This layer does not require any extensions or modifications,
as the configuration of VoIP services only requires the cre-
ation and configuration of OFPT_FLOW_MOD and
OFPT_METER_MOD messages with the same rules as
described in [30].

2. Translation Layer

This layer stores services and device status information (OLTs,
ONUs) to relate data coming from ONOS to specific OLT
parameters. This layer requires some extensions, although it
reuses some functionalities of the Internet (data) services. It
needs to detect that it is a VoIP service in order to make the
correct request to the OLT adapter layer. For this purpose,
the following additional matching parameters (in the ONOS
flows) have been defined in this layer:

• IP (Internet protocol): It matches the protocol ID for
UDP (user datagram protocol) traffic, used for SIP (session
initiation protocol) VoIP messages.

• UDP destination: This is the upstream destination UDP
port, set to 5060, the port for SIP connections to a VoIP server.

• UDP source: This is the downstream source UDP port,
which must be set to 5060.

However, there are other parameters that do not appear
in the ONOS flows, but must be defined to configure this
type of service, such as the VoIP extension, which is automati-
cally selected by the SDN agent based on a configuration file
(openFlow_agent.config) associated with the trans-
lation layer of the agent. In addition, the username will have
the same name as the VoIP extension value, and the password
will be a random set of four characters generated by the SDN
agent and stored in another file (subscribers.info),
also associated with the translation layer of the SDN agent.
This file stores all parameters in JSON (JavaScript Object
Notation) format, including the ONU ID, the PON port,
and the list of the configured POTS (plain old telephone
service) ports in the following format: “<ID_POTS>”:
[<username/extension>, “<password>”] .
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3. OLT Adapter Layer

First, with respect to the RPC server and the defined functions,
the integration of VoIP services does not require the definition
of new RPC functions. Moreover, the configuration of the
VoIP service inside the OLT is identical to the configuration of
an Internet service. Although this configuration is defined in
depth in [30], in general terms, the SDN agent calls a function
to configure bandwidth profiles. Thus, the most important
bandwidth parameters in the upstream are Alloc-ID, commit-
ted information rate (CIR) (guaranteed bandwidth), and peak
information rate (PIR) (maximum bandwidth), while in the
downstream they are the T-CONTs (transmission containers),
which correspond to priority queues in the ONUs.

However, the configuration of the VoIP service inside
the ONU, which is done through OMCI entities in accor-
dance with ITU-T G.988 [31], is considerably more complex
than for Internet services, as it involves many more entities.
Although the VoIP configuration is different from that of the
Internet service, it is also necessary to configure the Alloc-ID,
GEM ports, and VLAN tags, so the agent creates these same
OMCI entities as for the Internet service [30]. In addition, for
the specific configuration of the VoIP service, and following
the ITU-T G.988 standard [31], the ONU first needs an IP
address configured with an associated local UDP port. Then,
the next step is the VoIP configuration, generating both voice
and SIP configurations. Once this configuration is completed,
the SDN agent sets up the VLAN configuration. Therefore,
the agent has been extended by creating the following OMCI
entities (defined in ITU-T G.988 [31]) in the OLT adapter
layer:

IP address configuration

• IP VoIP Config Data: Used to select the desired signal-
ing protocol (SIP) and configuration method (OMCI).

• IP Host Config Data: The ONU generates as many of
these entities as VoIP services it could support. The SDN agent
configures this entity with an IP address.

• TCP (Transmission Control Protocol)/UDP Config
Data: It defines the local UDP port to be used for VoIP
connections.

• Extended VLAN Tagging Oper Config Data:
Associated with the IP Host Config Data entity. It is created
but configured at the end of the OMCI process.

Voice and SIP configurations

• Voice Service Profile and RTP (Real Time Transport
Protocol) Profile Data: It organizes the data describing the
voice service functions and RTP functions.

• VoIP Media Profile: It joins up the voice service profile
and RTP profile data entities and sets the required voice codecs.

• TCP/UDP Config Data: It defines the local UDP port
to be used on VoIP connections.

• SIP Agent Config Data: It defines the VoIP SIP server
and points to the IP configuration to open new connections.

• SIP User Data: It performs the SIP configuration
of the user, i.e., the user’s extension and the credentials to
authenticate the user to the SIP VoIP server.

Fig. 2. Log status of the OLT with voice service OMCI
configuration.

• PPTP POTS UNI: It is the termination point of a POTS
port that identifies the physical port where the telephones will
be connected.

• VoIP Voice CTP: It associates the PPTP POTS UNI
with the VoIP configuration.

VLAN configuration

• VLAN Tagging Filter Data: To perform traffic filtering
tasks by VLAN identifier.

• Extended VLAN Tagging Oper Config Data: It is con-
figured with the VoIP service VLAN.

As an example, Fig. 2 shows the log of the SDN agent inside
the OLT with the successful configuration of the OMCI enti-
ties of the voice service.

B. Extensions to Support the Multicast (Video)
Service

This section explains the extensions implemented within the
OpenFlow agent to support multicast services (video).

1. ONOS Adapter Layer

The support of multicast flows (video services) requires the
configuration of a group element in addition to flows and
meters (OFPT_FLOW_MOD, OFPT_METER_MOD).
This group element must be associated with the flow and
allows grouping several subscribers for the same flow. In
this way, the messages exchanged between ONOS and the
OpenFlow agent to configure this group element are as follows:

• OFPT_GROUP_MOD: It is used to join different users
(UNI port of an ONU) on the same service (video service).
These groups are associated with downstream flows so that
the traffic of a flow will reach all users defined in the group
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(members), for broadcasting purposes. This configuration is
used for multicast services, as a single traffic flow is directed to
several destination users (ONUs in our case). Thus, only those
ONUs registered in a specific group will listen to the multicast
service.

It is important to note that no extensions to ONOS or
OpenFlow are proposed in the ONOS adapter layer, but rather
existing and standardized methods are used but adapted to
our use case, which gives potential to this SDN proposal as the
same OpenFlow configurations can be used with other SDN
controllers.

2. Translation Layer

In this layer the services and status information of the devices
(OLTs, ONUs) are stored, so the parameters that differentiate
the video service from the other integrated services must be
added. In addition, this service has a parameter that makes
it unique, as only multicast traffic uses groups in the con-
figuration. Then, this layer must store the groups and all the
members that compose it, as well as detect the flows that have
an associated group in the matching fields, storing these types
of services as multicast services.

3. OLT Adapter

As far as RPC functions are concerned, the integration of video
services requires the definition of the following new functions:

• PerformGroupOperation(): It creates a new multicast
group or modifies the members of one existing group.

• DeleteGroup(): It removes an existing multicast group.

Furthermore, at the OLT side, the configuration shown in
Fig. 3 must be accomplished. First, the SDN agent generates
the bandwidth profile (Downstream TrafficScheduler in Fig. 3)
with the configuration of the guaranteed bandwidth (CIR)
and the maximum bandwidth (PIR). Next, an empty Group is
created, to which the Action is added, which is responsible for
performing VLAN operations on the traffic. Finally, the SDN
agent creates a Flow (Downstream Flow in Fig. 3) that points
to the generated Group and defines the shape of the traffic
through the Classifier fields. Then, all the members (specific
ONUs) are added to the group, which will be composed of a
PON interface and a GEM port, so that the ONUs added to
the group can listen to the multicast service on that PON inter-
face and that GEM port. Consequently, only ONUs added to
the group will listen to the multicast service.

Fig. 3. Diagram of downstream multicast service configuration.

Fig. 4. Log status of the OLT with multicast service OMCI
configuration.

For the OMCI configuration, each ONU associated with
a multicast service must be configured with the GEM port
associated with the group. Thus, the SDN agent starts config-
uring the GEM port, which is the same for all the ONUs (UNI
ports) on the same PON interface. Since multicast services
only have the downstream direction, all the entities related
with the upstream channel are avoided. Thus, the entities to
be configured are those defined for Internet traffic plus the
following set of entities specific to the multicast service:

• Multicast Operations Profile: It defines the multicast
access control configuration and IGMP (Internet group man-
agement protocol) parameters, such as the IGMP version and
the upstream VLAN used for IGMP.

• Multicast Subscriber Config Info: It organizes data
associated with multicast management at subscriber ports,
relating Mac Bridge Port Configuration Data with the
multicast operations profile generated.

As an example, Fig. 4 shows the status of the OLT log and
the correct deployment of the previously explained OMCI
entities for the multicast service configuration.

4. VALIDATION ANALYSIS OF THE EXTENSIONS
ON AN XGS-PON TESTBED

In this section, we perform a set of experiments to validate the
extensions of the SDN agent to support VoIP and multicast
(video) services on a legacy XGS-PON.

A. Architecture of the XGS-PON Testbed

Figure 5 illustrates the experimental setup, consisting of an
XGS-PON architecture, where the OpenFlow-SDN agent has
been deployed in a Docker container, the ONOS controller
(version 2.5.9) in another container, a menu-based user inter-
face in a third container, and finally a VoIP server in another
container. For video services we have used the VideoLAN
Client (VLC) media player as the video server. On the other
hand, all containers are hosted on a server that connects to the
OLT through the management port using RPC. To facilitate
the deployment process, a Docker-compose file has been used
to enable the whole installation in a single action [37]. The
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Fig. 5. Block diagram of the SDN-OpenFlow agent deployed on
the XGS-PON testbed.

result is a complete and simultaneous deployment of the entire
platform, encompassing the SDN agent, ONOS controller,
user interface, and VoIP server.

The communication between these components is depicted
in Fig. 5. Thus, HTTP connections between the user inter-
face and the ONOS driver, OpenFlow connections between
ONOS and the SDN agent, and finally RPC connections
to the OLT are observed. In this context, the gRPC library
[38] has been employed to link the RPC client developed in
the OLT adapter with the RPC server in the OLT. Therefore,
when executing any instruction from the RPC client to the
RPC server, the adaptation layer will be instantiated within
the RPC server, allowing the execution of the OLT chipset
API methods. The SDN agent has been developed for the
Broadcom Maple BCM68628 System-on-a-Chip, which is
compatible with the BCM68620 series [39]. The BCM68620
series supports GPON, XGPON, XGS-PON, NGPON2,
EPON, and 10G-EPON protocols, incorporating this support
through a common API, enabling a unified software design.

Regarding the hardware, the XGS-PON testbed (Fig. 6)
consists of an Optical Line Terminal ASXvOLT16 Whitebox
of Edge core (16× 10G XGS-PON/NG PON2 ports)
[40]. To allow the connection of multiple ONUs to the
ASXvOLT16 OLT, a passive 1:8 optical splitter has been
deployed, so that the optical output of the OLT is connected
directly to the input of the optical splitter, as shown in Fig. 6.
In addition, a 15 dB attenuator has been incorporated at the
input of the optical splitter to account for the full attenuation
of the end-to-end distance in the XGS-PON, i.e., to emulate
all fiber and additional losses. At the user end, several ONUs
from different manufacturers have been installed, so each
output of the optical splitter has been connected to a different
ONU, as shown in Fig. 6. Finally, the models of deployed
ONUs are summarized as follows:

• One ONU of Azores (model WAG-8F2W6): Four
gigabit Ethernet ports, two POTS ports, one RF port,
4× 4802.11ax 5G, and 2× 2 802.11ax 2.4G Wi-Fi [41].

Fig. 6. Experimental deployment of the XGS-PON testbed.

• One Broadcom ONU: Four gigabit Ethernet ports, two
POTS ports, Wi-Fi 802.11ax 2× 2 at 2.4 GHz, and 802.11ax
4× 4 (prototype).

• One Bowie ONU (model WAG-D10T): One 10 gigabit
Ethernet port and/or one 2.5G Ethernet port (prototype).

B. Configuration of the SIP Server: Asterisk

In order to test VoIP services, a VoIP server is needed. For that
aim, Asterisk has been chosen [42]. Asterisk is a free and easy
to use program that can be easily installed on Linux, deploying
a SIP server on the network. The SIP server controls user reg-
istration and call setup, creating a point-to-point connection
when the call is established.

For the case of study, Asterisk has been deployed on a
Docker container, directly connected to the OLT NNI port;
therefore, all the users on the network have access to it. Thus,
all VoIP users of the network must authenticate against the
Asterisk SIP server. Moreover, the username and password
with which each user is configured must be registered as a new
user in the Asterisk configuration files. For example, Figs. 7
and 8 show the configuration of the extension “1111,” where
the first image (Fig. 7) represents the username and password
configuration, but also the type of extension configured as
follows:

• Type friend : It denotes that the user is allowed to make
and receive calls.

Fig. 7. Asterisk SIP user configuration.

Fig. 8. Asterisk SIP user dialplan configuration.
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• Host dynamic: Used to filter the user connecting from a
single IP address.

• Context: It provides the name of the network.

In addition, Fig. 8 shows the dialplan configuration for
extension “1111,” for which it has been configured in a simple
call procedure, allowing testing of VoIP services.

C. VoIP Service Configuration and Validation

To configure a VoIP service on a specific POTS port of an
ONU, the parameters to be configured in the user interface
are for both downstream and upstream (symmetric): guaran-
teed bandwidth of 256 kbps, excess bandwidth of 256 kbps
(a maximum of 512 kbps), and C-tag VLAN set to 60. Then,
this configuration is encapsulated in JSON format and sent
from this application to ONOS via an HTTP POST request.
For this service, two flows are created in ONOS, one for down-
stream and another one for upstream, and only one meter is

Fig. 9. JSON representation of the configured flow in the user
application for the VoIP service.

Fig. 10. JSON representation of the configured meter in the user
application for the VoIP service.

associated with both flows. Figure 9 shows the JSON configu-
ration of the downstream flow (the upstream is similar). This
JSON has an instructions block and a criteria block; this last
one defines the VoIP service. The SDN agent differentiates
VoIP services by the transport layer protocol used (UDP),
the port on the server side, which must match with the SIP
protocol port (5060), and, additionally, it requires an IP
configuration, both on the server and ONU sides, specifically:

• IP PROTO: The ID 17 indicates UDP protocol.
• UDP SRC : It defines the source UDP port and should be

equal to the SIP server protocol (5060).
• UDP DST : It defines the destination UDP port, the port

used by the ONU for VoIP connections, and the common
range is 1025-65535.

• IPv4 SRC : It defines the SIP VoIP server address that the
ONU should connect to for the SIP registration process, in this
case 192.168.6.1/32.

• IPv4 DST : It defines the IP address the ONU will use on
the VoIP connections (192.168.6.130/32).

For the upstream direction, the above parameters
are reversed because the source is the destination in
that case. The remaining parameters define the VLAN
(VLAN_ID= 60), the UNI POTS port to deploy the ser-
vice (IN_PORT= 2013463041), and finally the meter, which
defines the service bandwidth. This meter is associated with the
flow via the instructions field, as can be seen in Fig. 10, where
the meter identifier “meterId=2” is shown. In addition,
the meter is associated with two bands with a DROP parameter
(Fig. 10), one of 256 kbps (“unit”: “Kb_PER_SEC”) for
the guaranteed bandwidth and the other of 512 kbps for the
maximum permitted bandwidth.

Figure 11 shows a Wireshark [43] capture associated with
the communication between ONOS and the OpenFlow
SDN agent. Specifically, it shows the meter creation mes-
sage (OFPT_METER_MOD) by means of the command
OFPMC_ADD. This screenshot shows the two bands
(Meter band) of the meter with the corresponding rates
of 256 and 512 kbps, as well as the identifier of the previous
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Fig. 11. Capture of the OpenFlow message
OFPT_METER_MOD in Wireshark.

Fig. 12. Capture of the OpenFlow message
OFPT_FLOW_MOD message in Wireshark.

meter (Meter ID: 2). Additionally, Fig. 12 shows the flow
sent using the OFPT_FLOW_MOD message, which includes
the command OFPFC_ADD to create the corresponding flow.

Once the service parameters are sent to ONOS, the sta-
tus of the log inside the OLT corroborates that the service
has been successfully installed. In this log (Fig. 13), XGS-
PON parameters related to the traffic profiles are observed,
including Alloc-IDs, GEM Ports, bandwidths, and VLANs,
rather than OpenFlow meters and flows. In fact, the initial
line displays the bandwidth profiles, featuring a guaranteed
bandwidth of 256 kbps (CIR) and a maximum bandwidth
of 512 kbps (PIR), along with the VLAN configuration in
line 5 (Received classifier with O_VID: 60).

Additionally, in the upstream direction, the log reveals the
AllocID and the GEM port identified as 1024.

Once the service is configured, the ONU exchanges the
registration SIP messages with the VoIP server. This process
is validated capturing the messages with Wireshark (Fig. 14).
The conversation is initiated by the ONU, sending a “SIP
REGISTER” message to the VoIP server with the authenti-
cation parameters, such as username:”1111.” When
the user is successfully authenticated, the VoIP server sends an
“OK” message to the user, which is acknowledged with another
“OK” message, but in Fig. 14 the VoIP server first sends the
“OPTIONS” message, announcing the allowed SIP options to
the user, e.g., “INVITE,” “CANCEL,” “BYE,” etc.

At this point, the user is ready to make or receive calls. A test
call was made to validate the VoIP service, where the two ends
are a physical phone connected to an ONU and a virtual phone
to the other end outside the network through a free application
called Zoiper [44]. The real-time streams of the call are shown
in Fig. 15, where the lower table shows the call data, namely,
the IP addresses of the users, the number of packets transmit-
ted, and the sampling rate. In addition, the figure shows the
real-time speech streams from both ends of the conversation,
showing the pauses when the interlocutor stops speaking and
the moments when the interlocutor speaks.

On the other hand, some QoS parameters, such as real-time
bandwidth, jitter, and delay difference between packets, have
been captured with Wireshark in both upstream and down-
stream directions, but only upstream data is shown to minimize
the number of figures. The voice service tests were performed
using the iperf tool, considering an iperf client transmitting at
1 Gbps connected to the UNI port of an ONU and an iperf
server connected to the other end of the XGS-PON, i.e., to
the OLT. Figure 16 shows the measured throughput (using
Wireshark) of the VoIP service for the upstream channel. As
shown in the figure, the throughput is 85 kbps, well below the
maximum allowed bandwidth, due to the fact that the voice
service consumes very little bandwidth. Furthermore, Fig. 17
represents the delta time of the conversation delay in the
upstream. The delta time in a conversation is the elapsed time
from the previous packet to the current packet in a conversa-
tion. It is observed that the delay between consecutive packets
is fairly constant, so it can be stated that the quality is good. As
for the delay difference (which is the difference between con-
secutive values of delta time), Fig. 18 shows that it is very small,
around zero milliseconds. Finally, the jitter has been plotted in
the upstream channel (Fig. 19), where it is observed that the
values are very small, close to zero milliseconds, showing good
quality of service.

Fig. 13. Status of the log inside the OLT for the VoIP service.
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Fig. 14. Registration SIP messages captured in Wireshark.

Fig. 15. Real-time voice transmissions from both ends of the conversation.

Fig. 16. Real-time throughput performance of the VoIP service
measured with Wireshark (upstream).

D. Multicast (Video) Service Configuration and
Validation

To configure a multicast service (video) on a specific UNI
port of an ONU, the parameters were set employing the user
interface. First, a multicast group was created to which all
the ONUs over which the video service was deployed were
added. Figure 20 shows the JSON sent to ONOS from the
user interface with a UNI port of one specific ONU configured
in the multicast group (“groupID”: “1”). In this case,
the multicast service has been associated with two different
ONUs, identified by the port variable in the JSON message,
namely, port numbers 1879245060 and 1879310596. In
addition, the meter configuration shown in Fig. 21 limits both
the guaranteed bandwidth and the maximum bandwidth of the

Fig. 17. Real-time evolution of the delta time measured with
Wireshark (upstream).

service using two bands, in this case 400 Mbps and 500 Mbps,
respectively, which means that the excess bandwidth is set at
100 Mbps.

Since multicast services only work downstream (from
OLTs to ONUs), only flows will be created in that channel.
Therefore, in a C-tag multicast service (single tag service),
only one flow is created, as shown in Fig. 22. The structure
of this flow is the same as that of the Internet services, except
for the unicast “OUTPUT” field, which is replaced here by



Research Article Vol. 16, No. 10 / October 2024 / Journal of Optical Communications and Networking 1045

Fig. 18. Real-time evolution of the delay difference (delta differ-
ence) measured with Wireshark (upstream).

Fig. 19. Real-time evolution of VoIP service jitter measured with
Wireshark (upstream).

Fig. 20. JSON that includes the group configuration for the
multicast service.

the “GROUP” field, which points to the multicast group
(“groupID”: “1”). In addition, it can be seen that the
meter corresponds to the previous meter, identified with
ID= 1 (“meterID”: “1”). Finally, it can be observed that
the VLAN is set to 806.

Once ONOS receives this configuration in JSON format
(group, meters, flows), it sends the same configuration to the
SDN agent via OpenFlow messages. In Figs. 23 and 24, the
communication between ONOS and the SDN agent is ana-
lyzed using the Wireshark tool. As an example, Figs. 23 and 24
show the creation of the group and the meter by means of the
messages OFPT_GROUP_MOD and OFT_METER_MOD,
respectively. Then, the downstream flow is sent through an
OFT_FLOW_MOD service, where both the previously sent

Fig. 21. JSON that includes the meter configuration for the
multicast service.

Fig. 22. JSON that includes the flow configuration for the
multicast service.

meter (ID= 1) and the group (ID= 1) are inserted. In addi-
tion, in the OFPT_GROUP_MOD, inside Actions, the ports
that identify the ONUs can be seen, which are the same as in
the JSON message in Fig. 20.

Once the SDN agent receives the OpenFlow con-
figuration with the service parameters, it deploys this
multicast service in the OLT and in the corresponding
ONU. To verify that the multicast service has been cor-
rectly deployed in the OLT, Fig. 25 shows the status of
the log inside the OLT. The OLT log corroborates the
successful configuration of the service, creating a group
(Group 1). Furthermore, within the log file, parameters
related to the XGS-PON standard configuration can be
observed, such as the GEM Port (4094), traffic schedulers
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Fig. 23. OpenFlow messages between ONOS and the SDN agent
to create a group.

Fig. 24. OpenFlow messages between ONOS and the SDN agent
to create a meter.

(sched_id = 0), traffic queues (tm_queue = 0), the
VLAN (806), and guaranteed and maximum bandwidth levels
(CIR, PIR).

The actual network bandwidth measurement tests are then
carried out. First, multicast traffic is added to the network by
configuring the multicast IP to 239.168.1.210, using the iperf
tool. Then, capturing the traffic with Wireshark, the user starts

listening to the multicast traffic by sending the correspond-
ing IGMP join message with the selected multicast address
(239.168.1.210), as shown in Fig. 26. This screenshot also
shows the IGMP leave message, which appears when the user
leaves the multicast group, i.e., when the user stops listening on
the channel, in this case 30 s after starting to listen.

Furthermore, Figs. 27(a) and 27(b) show the real-time evo-
lution of the bandwidth measured with Wireshark to analyze
the performance of the multicast service in the downstream
channel (the upstream channel is similar). The tests were car-
ried out using the iperf tool, so an iperf client transmitting
at 1 Gbps is connected to the UNI port of this ONU and an
iperf server is connected to the OLT. In order to validate the
functionality of the multicast service, the bandwidth perform-
ance of the two ONUs with which the video service has been
associated has been analyzed. As can be seen in Figs. 27(a) and
27(b), the maximum bandwidth in both ONUs corresponds
to the values configured, set to a maximum of 500 Mbps. In
addition, a real video streaming test was also performed using
the VLC media player. A laptop has been used to perform these
tests (connected to the ONU), so that we can visualize the
video content transmitted. Figure 28 shows a schematic depict-
ing the test scenario. As can be observed in this schematic,
the test is performed between a server connected to the OLT
and a laptop connected to one ONU. Within this server,
we deploy a VLC Media Player server (multicast server) and
run an instance to transmit the video from the VLC Media
Player server (with CLI commands) to the laptop connected
to the ONU (with a VLC media player client). Furthermore,
a picture of the real test scenario is shown in Fig. 29. In this
picture it can be seen that the OLT is connected to the input
of the 1:8 optical splitter and the different outputs are con-
nected to the deployed ONUs. Thus, it can be observed that
one ONU has the laptop connected to it through one of its
Ethernet ports. The file to test the bandwidth of this service
with the Wireshark tool (Fig. 30) is a free online video of
900 MB in MKV (MatrosKa Video) format with an approxi-
mate duration of 20 s. A server connected on the OLT side
has been used to transmit the video. The VLC command
used for the transmission is vlc -vvv jellyfish-250-
mbps-4k-uhd-h264.mkv-sout ‘#udpdst=239.
168.1.210,port=1234’, so that the multicast traffic is
transmitted through the IP address 239.168.1.210 and UDP
port 1234. These parameters (IP address and port) are the ones
we have to configure in the VLC client to be able to receive the
video signal. Besides, the real-time evolution of the bandwidth
measured with Wireshark (Fig. 30) shows that the bandwidth

Fig. 25. Status of the log inside the OLT when configuring a multicast service.
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Fig. 26. Real-time bandwidth evolution for multicast service measured with Wireshark (downstream).

Fig. 27. Real-time bandwidth evolution for multicast service
measured with Wireshark (downstream) in both ONUs associated
with the multicast video: (a) ONU 1, (b) ONU 2.

Fig. 28. Schematic depicting the test scenario.

during the 20 s duration is below the maximum (500 Mbps).
In fact, the bandwidth corresponds to the transmission rate of
this video, which is 250 Mbps.

Finally, to show the practicality of our SDN approach, we
have evaluated the speed of configuration and deployment of a
multicast service using our SDN agent. The test involves initi-
ating a multicast service with an initial bandwidth (500 Mbps)
and then modifying the bandwidth restriction approximately
every 10 s, starting with 500 Mbps and moving to 600 Mbps,
200 Mbps, and ending with 500 Mbps, i.e., four bandwidth
transitions. This assessment aims to ascertain whether our

Fig. 29. Image of the real test scenario with the VLC media player.

Fig. 30. Real-time bandwidth evolution of a real video stream
with VLC measured with Wireshark.

proposal can promptly and effectively meet these dynamic
requirements. Figure 31 depicts the real-time performance of
the dynamic video service, as measured by Wireshark. Notably,
the duration between initiating the video service through the
user interface (every 10 s) and its deployment is remarkably
brief, approximately 1 s. This underlines the viability of our
SDN agent in terms of speed and service deployment even
under conditions of highly dynamic QoS requirements. It is
important to note that these values are affordable for network
operators since they deploy services only when users subscribe
or contract new services. Therefore, these types of changes in
a real network context are not very frequent and are not very
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Fig. 31. Real-time bandwidth evolution for multicast service
measured with Wireshark in a high dynamic network scenario.

dynamic, so the delay is not such a critical parameter, although
our proposal proves to have very low values.

5. CONCLUSION

In this paper, we have extended an OpenFlow-based SDN
agent for managing and configuring Internet services in XGS-
PONs, by incorporating the capability to support VoIP and
multicast (video) services. The agent communicates, on the
one hand, with an ONOS controller via OpenFlow messages
and, on the other hand, interacts directly with the OLT via
the chipset manufacturer-specific APIs. Extending the agent
to support VoIP and video services has required a detailed
examination of the XGS-PON and ITU-T G.988 standards
to determine the necessary OMCI entities to configure the
ONUs, including the specific order of their creation and their
scheduling in the SDN agent. Additionally, on the OLT side,
the integration of chipset API functions has been essential to
configure these services. In this way, the extensions required
to support the VoIP service and the multicast service at the
three layers of the SDN agent (ONOS adapter layer, trans-
lation layer, and OLT adapter layer) have been described.
Furthermore, these extensions have been validated on an
XGS-PON testbed, where VoIP and video services have been
configured and demonstrated by means of iperf transmis-
sions, a phone call, and a video transmission. The successful
configuration of the network has been verified, and different
performance metrics have been analyzed with the help of the
Wireshark tool and log files. The experimental results confirm
that the extended SDN agent allows for real-time configu-
ration of voice and video services efficiently, meeting quality
of service requirements. Moreover, these extensions have also
demonstrated the adaptability of the base agent model pre-
sented in [30], thanks to its structure of clearly differentiated
and independent layers.

In the future, we plan to employ the SDN-enabled XGS-
PON testbed as the supporting wired infrastructure for use
cases related to connected vehicles, edge computing, and
computation offloading.
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