Gamification-Based

E-Learning Strategies for

Computer Programming

Education

Ricardo Alexandre Peixoto de Queirds
Polytechnic Institute of Porto, Portugal

Mario Teixeira Pinto
Polytechnic Institute of Porto, Portugal

A volume in the Advances in Game-Based
Learning (AGBL) Book Series

1GIS§

DISSEMINATOR oF KNOWLEDGE

www.igi-global.com

Published in the United States of America by
IGI Global
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2017 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Names: Queiros, Ricardo Alexandre Peixoto de, 1975- | Pinto, Mario Teixeira,
1967- author.

Title: Gamification-based e-learning strategies for computer programming
education / Ricardo Alexandre Peixoto de Queiros and Mario Teixeira Pinto,
editors.

Description: Hershey PA : Information Science Reference (an imprint of 1GI
Global), 2016. | Series: Advances in game-based learning | Includes
bibliographical references and index.

Identifiers: LCCN 20160329411 ISBN 9781522510345 (hardcover) | ISBN
9781522510352 (ebook)

Subjects: LCSH: Simulation games in education. | Computer programming--Study
and teaching. | Computer games.

Classification: LCC LB1029.S53 Q45 20116 | DDC 371.39/7--dc23 LC record available at https://lccn.loc.gov/2016032941

This book is published in the IGI Global book series Advances in Game-Based Learning (AGBL) (ISSN: 2327-1825;
eISSN: 2327-1833)

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the

authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources @igi-global.com.

106

Chapter 6
Applying Gamification in a
Parallel Programming Course

Javier Fresno Alejandro Ortega-Arranz
Universidad de Valladolid, Spain Universidad de Valladolid, Spain
Hector Ortega-Arranz Arturo Gonzalez-Escribano
Universidad de Valladolid, Spain Universidad de Valladolid, Spain

Diego R. Llanos
Universidad de Valladolid, Spain

ABSTRACT

Pursuing a college degree is a task that requires a great amount of time and effort. Universities are
facing a big challenge to attract students and keep them motivated. The gamification of education is a
practice that expects to increase the students’ engagement, which in turn increases learning outcomes.
Nevertheless, obtaining beneficial results from gamification requires educators to mold the teaching to
include this new practice, usually involving a lot of effort. In this chapter, the authors present a new
software tool developed to encourage gamification dynamics, and they describe their experience using
this tool in a Parallel Programming course. The chapter describes the structure of the course, the dif-
ferent proposed activities, the organization of hardware resources, the design of the developed software
tool, and an evaluation of the gamified course. The results show that the use of gamification techniques
has been a great success. The authors have had a very positive response from their students, and there
has been also a big percentage of passing students.

INTRODUCTION

The use of game design elements in non-game contexts is commonly known as gamification (Deterding,
Dixon, Khaled, & Nacke, 2011). Education is a non-game context where gamification can affect the
students’ learning outcomes (Arnab, et al., 2014), behavior (Hakulinen, Auvinen, & Korhonen, 2013),
motivation, and engagement (Muntean, 2011). The students are more likely to increase their willingness

DOI: 10.4018/978-1-5225-1034-5.ch006

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Applying Gamification in a Parallel Programming Course

and desire to be successful when they are engaged in an active learning context (Dicheva, Irwin, Dichev,
& Talasila, 2014). Teachers can take advantage of these potential benefits by including game design
elements and common features of videogames into the learning contexts.

This chapter describes the required processes to carry out the gamification of a Parallel Program-
ming course, together with some interesting results and situations. The main purpose of this work is to
publish not only the positive results obtained, but also describe the tool used, the experience process,
the feedback received, and our conclusions regarding the gamification usefulness.

Parallel programming consists in using two or more devices at the same time for carrying out the
computations required to solve a problem. Usually the aim of applying parallel programming is to reduce
the high temporal costs needed when using only a single device (Grama, Gupta, Karypis, & Kumar, 2003).
Its use has been proven to be key to research high performance solutions (Navarro, Hitschfeld-Kahler,
& Mateu, 2014). Due to this fact, the evolution of computing not only has focused on developing faster
processors, but also on the creation of new computer architectures involving more processing units. Due
to the evolution towards more complex architectures, it is a difficult task for the programmers to create
optimal parallel solutions. Programming for these modern systems requires to solve some new practical
issues, such as the data partitioning, data sharing, data transfers, the coordination and synchronization,
or the migration to new computing paradigms.

The purpose of the Parallel Programming course, taught as part of the Computer Science degree at
the Universidad de Valladolid, is to teach the students how to take advantage of the principles of paral-
lel programming, focusing on three key examples of highly different programming models: OpenMP
(OpenMP Architecture Board, 2013), MPI (Message Passing Forum, 2015), and CUDA (Sanders &
Kandrot, 2010). The practical part involves a teaching methodology based on small projects development
using the same sequential base program provided to the students. They have to create correct parallel
solutions as they learn the foundation and techniques of each programming model. Due to the particular
difficulties of learning new computing paradigms involving concurrency and data distribution, we have
applied a gamification process to our course with the aim to attract the students’ interest and to raise
their motivation and engagement.

In order to introduce the gamification in the course, we have developed a software tool, called Tablén.
It eases the submission procedure for the developed code to be executed on real chosen parallel machines.
Moreover, it displays at real time the best performance codes submitted and tested so far. With this tool
it is possible to implement some particular gamification dynamics, such as leaderboards.

The structure of the chapter is as follows. Section “Background” exposes the background related to
the gamification process, the definition of the game design elements used, and some related examples
found in the literature. Section “Gamifying a Parallel Programming Course” presents the designed course
structure and the chosen gamification elements that have been introduced in our Parallel Programming
course. Section “Hardware and Software Environment” describes the technologies and computing plat-
forms needed to support the dynamics we want to encourage. The development of the software to ease
the deployment of the codes into these computing platforms is presented in Section “Description of the
Developed Software”. Section “Experimental Validation” shows the results and experimental measures
we have obtained during the enactment of the course. Section “Future Research Directions” describes the
possible extensions and future work. Finally, Section “Conclusions” sums up the chapter contributions.

107

Applying Gamification in a Parallel Programming Course

BACKGROUND

Games are interactive activities able to rise up player’s feelings (e.g. excitement, fun, etc.) through chal-
lenges, competitions, and many other factors. Over the last years, videogames are considered as the main
genre of human entertainment (Dominguez, Saenz-de-Navarrete, De-Marcos, Fernindez-Sanz, Pagés, &
Martinez-Herréiz, 2013). One of the reasons behind the popularity of videogames is that people are more
likely to spend their time and effort in activities that produce such mentioned feelings (Fitz-Walter, 2015).

Some innovative teachers started to study the potential benefits of using games in learning environ-
ments. One approach that tries to use game features to enhance motivation and engagement is the so-
called gamification. Gamification is considered as the use of game design elements in non-game contexts
(Deterding, Dixon, Khaled, & Nacke, 2011). The aim of gamification is to identify the game elements
and features that make videogames enjoyable and fun to play (i.e. game design elements), and adapt
them to be included in non-game contexts (Simdes, Redondo, & Vilas, 2013). Education is a non-game
context where the use of game design elements can provide potential benefits to students while learning.

Game Design Elements

Game design elements are the elements and features that frequently appear in games and make them
enjoyable and fun to play (Simdes, Redondo, & Vilas, 2013). The most used and deployed game design
elements in educational contexts are rewards (e.g. points and badges), and competition elements (e.g.
leaderboards) (Dicheva, Dichev, Agre, & Angelova, 2015):

e Badges (also denominated as achievements, trophies, or ribbons): Optional rewards and goals
whose fulfillment is outside the scope of the core activities (Dominguez, Saenz-de-Navarrete, De-
Marcos, Ferndndez-Sanz, Pagés, & Martinez-Herréiz, 2013) (Hamari, Koivisto, & Sarsa, 2014).
Badges are usually represented with graphical icons. Badges represent virtual rewards with no
practical value in the physical world. However, students aim to obtain them in order to prove,
to themselves and to the other students, that they have reached an important achievement. The
description of the tasks which must be fulfilled to get these rewards is frequently public. Thus,
badges can indirectly guide students to particular desired behaviors. Moreover, they can offer ad-
ditional challenges without raising the requirements for the highest course grade as demonstrated
by Hakulinen ef al. (2013). Finally, some badges can be also designed as hidden and awarded by
surprise when students meet some special conditions. The expectation to discover new rewards by
extensive exploration of the solution space can increase the students’ engagement and interest in
the gamified activities.

e Leaderboards: Rankings sorted by one or more quantitative values (e.g. points, levels, or time
to accomplish activities). Their main purpose is to make simple comparisons among the students
(Zichermann & Cunningham, 2011). They can be also used to track and display desired actions,
using competition to drive valuable behavior (Bunchball Inc., 2010).

108

Applying Gamification in a Parallel Programming Course

Related Work

Many researches are gamifying their activities aiming to analyze the effects and potential benefits of
gamification in ICT (Information and Communications Technology) learning contexts. The following
paragraphs describe some of the proposals; Table 1 shows a comparison of their features.

Hakulinen et al. (2013) gamified an online environment for learning data structures and algorithms
with public badges which did not alter the students’ final grade. The results show a positive impact on
students’ behavior such as early tasks submission, avoid trial and error submissions, and better course
grade even though badges have no impact of the final grade. However, not all the proposed badges seem
to induce this effect.

Dominguez et al. (2013) developed a gamification plug-in for a virtual learning environment (VLE).
They performed an experimental evaluation on the course “Qualification for users of ICT”, which
provides knowledge about how to effectively use common ICT tools. The gamification was carried out
with medals and trophies (badges) and a public leaderboard. Experimental results showed higher initial
motivation and better scores in both practical assignments and in overall score. However, they also re-
ported that students performed poorly on written assignments and participated less on class activities.

Ibafiez et al. (2014) gamified a platform used for a C-programming learning course taken by under-
graduate engineering students. To carry it out, they used rewards such as badges and a leaderboard. The
results show an increment on the students’ cognitive engagement with the gamified activities. Once they
finished the compulsory tasks, they kept on doing the tasks because some students wanted all the badges,
wanted to reach better positions on the leaderboard, or wanted to increase their knowledge. Moreover,
students showed a moderate improvement in learning outcomes.

Azizetal. (2015) describe the design process of a system to be used in a Parallel Programming course,
to provide fast feedback and auto-grading to students through a leaderboard. However, this system has
not already been implemented.

Previous works shows the current interest in the community for gamifying IT learning situations,
including Parallel Programming courses. Thus, the aim of this chapter is to contribute with a system
able to gamify parallel programming practices and providing first experimental results when gamifying
such courses.

Table 1. Comparison of features between the related work and our proposal

Work Area / Course Badges Leaderboard Student Response
Hakulinen et al. Data structures and algorithms Yes Positive
Dominguez et al. Qualification for users of ICT Yes Yes Mixed
Ibanez et al. C Programming Yes Positive
Aziz et al. Parallel programming Not implemented
Tabl6n Parallel programming Yes Yes Positive

Applying Gamification in a Parallel Programming Course

GAMIFYING A PARALLEL PROGRAMMING COURSE

This section describes the general elements and features of the Parallel Programming course, together
with our approach to improve the students’ motivation using gamification mechanisms: Badges and
leaderboards.

Course Description

The purpose of the Parallel Programming course is to teach the students how to develop applications
that can take advantage of the new generation of parallel machines. After a theoretical introduction to
parallelism and parallel computing, the course is composed of three different modules with theoretical
and practical lessons. On each part, the students learn the fundamentals of parallel programming using a
different parallel programming model: OpenMP (OpenMP Architecture Board, 2013) for shared-memory
systems, MPI (Message Passing Forum, 2015) for distributed memory systems, and CUDA (Sanders
& Kandrot, 2010) to program Graphics Processing Units (GPUs). For each technology, the students are
required to develop the parallel version of a given sequential program to gain hands-on knowledge of
the parallel programming task. We used the same sequential base program to focus on the similarities
and differences between the chosen technologies. The exercises are done in two-people groups and they
represent the 65% of the course grade. The other 35% is individually graded by using partial test exams
about the theoretical concepts of each technology.

Notwithstanding the efforts done by the coordinators of the course to ease the learning of parallel
programming models, their complex concepts are usually difficult to understand without the willing and
motivation of the students. Thus, we have applied a gamification process to our course with the aim to
attract their interest and to raise their motivation and engagement.

Leaderboard

One of the main goals of applying parallel programming mechanisms is to speed up its computing time.
Depending on the proper usage of the resources, and correct tuning of the execution parameters, some
of the proposed implementations would have lower execution times.

In the practical section of the course, each student group develops its own parallel solution to the
problem, leading to different implementations. Then, the quality of the student implementations can be
ranked according to the execution times. In order to carry out a fair comparison, the solutions are tested
against several input sets chosen by the teachers which are not shown to the students, in a reference
parallel machine. The features of this reference machine are public to the students.

Since we teach three different parallel programming models, we decided to create three leaderboards.
We expected that publishing the students’ results into a public leaderboard would be positive for their
learning due to:

o The Active Feedback: The students would see when others have started to develop their work,
and also which is the mean quality of the solutions of the rest of the class. Moreover, a small per-
centage (10-20%) of the total grade of the practical exercises is obtained based on the position of
the leaderboard.

110

Applying Gamification in a Parallel Programming Course

e The Competitive Environment: The students could be motivated to learn more parallel tech-
niques, or tune and improve their solutions, in order to climb up in the ranking.

Proposed Badges

The gamification goal consists on rewarding not only the good quality of the parallel solutions but
also other particular behaviors related to the time invested, the effort done, or the engagement with the
course, among others. In order to do so, we have created three different kind of badges in function of the
difficulty to achieve them: Bronze, silver, and gold (see Figure 1). Badges are granted using a Moodle
platform (Moodle Learning Management System webpage).

e Bronze Badges: They are created with the aim to motivate the students for getting involved in
the course, by for example uploading a photo to their profiles, or being in the top position of the
leaderboard (without caring about the quality of the obtained execution times). With this pioneer
medal, we also want to encourage the students to start working in the exercise early. In this cat-
egory, we have also included the so-called hidden medals, which are rewards for casual and curi-
ous events related to the use of the leaderboard. In this way, the use of this platform is not only a
simply way to deploy their programs but also a possible source of fun.

e Silver Badges: They are created for specific situations that require more effort or that are more
difficult. For example, keeping the first position for at least 3 days (“dominator”), obtaining a bet-
ter time than a dominator (“assassin’), or getting one of the first positions in the first try of the
leaderboard (“sniperwolf””). Additionally, we also want to encourage the students to get the top 5
by rewarding them with some funny medals related to famous groups of five people. See Figure
1 for more examples.

e Gold Badges: They are created to encourage and reward the most notorious students that com-
plete the maximum goals proposed by the course. These badges are granted to the students that
are in the first positions of the leaderboard or to the ones that obtain the maximum mark in the
partial exams of theory.

HARDWARE AND SOFTWARE ENVIRONMENT

Due to the different programming models that are taught in our course, it is needed a wide variety of
resources in order to properly carry out the laboratory exercises. Thus, several computing machines have
been prepared to execute the programs of the students. The following sections describe these machines,
the desired configuration to create the leaderboard element for each programming model, and the software
responsible of coordination of programs submission, execution and bookkeeping. Table 2 summarizes
some characteristics and details of these machines.

Target Platform Description

The practical exercises for the OpenMP programming model require handing different cores in a shared
memory system. We use geopar, a 16 core machine with a clock speed of 1.68Ghz, and a total memory

111

Applying Gamification in a Parallel Programming Course

Figure 1. List of bronze, silver and gold badges, and the conditions to achieve them, as shown by the
Moodle system. Badges marked as [H] are hidden.

Badge Name Criteria

Dooominating!!! Dominate the Leaderboard in first position during 3
consecutive days

@ The Legend Assassin Dethrone a dominator (dethrone a group that is
maintaining the first position during 3 consecutive days)
SniperWolf Pass 90% of groups already in the Leaderboard in the 1st

o execution

@ EcoHero Lower computation quota consumed inside the first

quartile of Leaderboard solutions

@ The JacksOMP Five Rank in the top 5 positions of the OpenMP Leaderboard

@, MPI Rangers Rank in the top 5 positions of the MPI Leaderboard

Rank in the top 5 positions of the CUDA Leaderboard

RAM of 32 Gb, to be platform for this purpose. The students will learn that a proper parallelization of
the algorithm, by coordinating these slow cores, can beat the sequential version, even if this sequential
version is executed in a faster CPU.

As MPl is also able to handle different cores inside a shared-memory system, geopar is also a useful
platform where to deploy the MPI programs. However, the most interesting part of the MPI programming
model is to coordinate cores from different heterogeneous machines connected through a network. Thus,
four different computers with different power capabilities have been configured: thunderbird, titan0l,
titan02, and titan03. All machines have 4 cores, representing a total of 16 cores in the complete cluster.

112

Applying Gamification in a Parallel Programming Course

Table 2. Description of the machines used in the academic heterogeneous cluster. The TB abbreviation

stands for Titan Black.

Machine Name Used for #Cores #Cores Clock Speed Memory GPU Dev.
geopar OMP - MPI 4x Intel Xeon 16 1.68 Ghz 32 Gb -
thunderbird MPI - CUDA Intel i5 4 3.00 Ghz 8 Gb Tesla K40
titanO1 MPI - CUDA QuadCore 4 2.33 Ghz 6 Gb GTX TB
titan02 MPI - CUDA QuadCore 4 2.33 Ghz 6 Gb GTX TB
titan03 MPI - CUDA QuadCore 4 2.50 Ghz 3Gb GTX TB
titanlb CUDA QuadCore 4 2.33 Ghz 3Gb GTX TB
portal front-end Core2Duo 2 1.86 Ghz 3Gb -

This is done with the aim of allowing the comparison between this distributed-memory environment
and the shared-memory system of geopar. The students will learn that a proper distribution of the data,
together with a good communication design, can lead to better performance, although the communica-
tions between the machines imply a penalty in the execution times. Additionally, as the machines have
different running frequencies, they can apply a load-balancing policy, distributing more work to the more
powerful cores. The first machine, thunderbird, is an Intel i5 with a clock speed of 3 Ghz, whereas the
others, titan01-03 are QuadCores with clock speeds of 2.33 Ghz, 2.4 Ghz, and 2.5 Ghz, respectively.
The CUDA programming language takes advantage of the powerful capabilities of the modern Nvidia’s
Graphic Processor Units (GPUs). This company has provided several GPUs for teaching purposes in the
context of the GPU Teaching Center programming a nomination awarded to University of Valladolid
since 2014. Programming with this kind of hardware accelerators usually implies to re-design the strategy
of parallelization in order to exploit the GPU architecture. Then, the students will learn that a proper
handling of the GPU resources, together with a specific parallelization of the algorithm focused on these
devices, can reach significant speedups compared with the sequential version. Furthermore, in some
cases, the GPU solution can beat other parallel versions obtained using the previous programming models.

Configuration of the Leaderboards

All the machines described in the previous section can be used for trial executions to test the programs.
Programs submitted to be considered in a leaderboard are executed in particular competitive configura-
tions, and they have priority over the trial executions. The machines involved in the different leaderboards
are the following:

e Leaderboard for OpenMP: geopar
. Leaderboard for MPI: thunderbird, titanO1, titan02, and titan03
. Leaderboard for CUDA: titanlb

The OpenMP leaderboard is executed using the 16 cores of the geopar machine; the MPI leaderboard
uses the four cores of the four machines (16 cores); and the CUDA leaderboard uses only one machine
with a GPU NVIDIA GTX Titan Black. We have selected this GPU for the leaderboard because the
majority of non-leaderboard machines have the same kind of device. Therefore, the trial executions, out

113

Applying Gamification in a Parallel Programming Course

of the leaderboard, that the students perform to profile their programs, will have a similar behavior when
competing in the leaderboard. Finally, the Tesla board is left out for those curious students that want to
test their programs in a GPU with some different characteristics.

Coordination of the Computing Cluster

The performance of the programs created by the students is the key to rank them in the leaderboards.
In order to obtain a clean measurement of the running time, the executions of their codes must not be
perturbed with any other events, such as connections of other users, compilations, etc. Therefore, the
machine or machines where a program is deployed should be exclusively reserved during the execution.
To achieve this kind of isolation we have prepared another machine, named portal, which plays the role
of the front-end of the cluster. The students should connect to this machine, and compile their programs
there, instead of using straightly the cluster machines. We have installed a queue system in order to
manage and coordinate the executions on the cluster resources from our portal front-end. We have used
SLURM (Yoo, Jette, Grondona, & Springer, 2003), that is an open-source resource manager designed
for Linux clusters. It provides three different functionalities:

1. It allocates exclusive and/or non-exclusive access to resources (computer nodes, or cores) to users
for time slots so they can perform their executions;

2. itprovides a framework for starting, executing, and monitoring the executions on a set of allocated
nodes; and finally,

3. it arbitrates contention for resources by managing a queue of pending jobs.

1. Allocation of Resource Accesses: The resources are gathered in partitions that are designed
for the different roles they have to play depending on the current programming model. The
following list shows the name of the created partitions, the machines that compounds each of
them, and their description:

. omp - geopar: A partition for the OpenMP and MPI executions inside a shared-mem-
ory system

. Ibomp - geopar: A partition with higher priority than its analogous partition, omp, with
exclusive access for the OpenMP leaderboard.

. mpi - thunderbird, titan01, titan02, titan03: A partition for the MPI executions in-
side a distributed-memory environment.

. Ibmpi - thunderbird, titan01, titan02, titan03: A partition with higher priority than
its analogous partition, mpi, with exclusive access for the MPI leaderboard.

. cuda - titan01, titan02, titan03: A partition for the CUDA executions on the GTX
TitanBlack boards.

= tesla - thunderbird: a partition for the CUDA executions on the Tesla K40c board.

. Ibcuda - titanlb: a partition with exclusive access for the CUDA leaderboard.

2. Management Directives: The SLURM queue system has several commands to monitor the
partitions and their corresponding resources. A description of the available directives can be
found in (Yoo, Jette, Grondona, & Springer, 2003).

3. Resource Contention: SLURM automatically keeps the executions that are waiting for re-
sources in a priority queue. Each partition is associated with a priority value. Thus, the order
of assigning resources to the pending executions straightly depends on the partition to which

114

Applying Gamification in a Parallel Programming Course

the job has been submitted. With this resource contention system, we avoid that different ex-
ecutions interfere in the running times of each other, and we have an automatically dispatcher
of resources for the requests that favors the leaderboard executions.

The partitions have a timeout that we have configured to a fixed amount, in order to avoid infinite
running times of erroneous programs. The following code shows the configuration of the SLURM queue
following all the descriptions shown before.

Code 1. SLURM’s code configuration. All the partitions have
also the parameter values Default=NO, MaxTime=2, State=UP,
AllowGroups=tablon, that have been omitted in the figure for clarity.

Machine description

NodeName=portal
NodeName=geopar
NodeName=titanOl
NodeName=titan0Ol
NodeName=titan02
NodeName=titan03
NodeName=titanlb
Partition desc

PartitionName=omp

PartitionName=1lbomp

Sockets=1
Sockets=4
Sockets=1
Sockets=1
Sockets=1
Sockets=1
Sockets=1

ription

CoresPerSocket=2
CoresPerSocket=4
CoresPerSocket=4
CoresPerSocket=4
CoresPerSocket=4
CoresPerSocket=4

CoresPerSocket=4

Nodes=geopar

Nodes=geopar

Feature=intel
Feature=intel
Feature=intel
Feature=intel
Feature=intel
Feature=intel

Feature=intel

Priority=100
Priority=10

PartitionName=mpi Nodes=thunderbird, titan0l,titan02,titan03 Priority=100
Nodes=thunderbird, titan0l,titan02,titan03 Priority=10
Nodes=titan01l, titan02,titan03
Nodes=thunderbird

PartitionName=1lbcuda Nodes=titanlb

PartitionName=1lbmpi
PartitionName=cuda Priority=100
PartitionName=tesla Priority=100

Priority=10

DESCRIPTION OF THE DEVELOPED SOFTWARE

This section describes the system we have developed to control the execution of the students code. It
runs on top of the SLURM queues described in the previous section, and gives us additional features to
implement the gamification elements described in Section “Gamifying a Parallel Programming Course”
The system is called Tablén, the Spanish translation of leaderboard, which is its main feature.

Tablon is composed of a client script and a server. The client is used by the students to send the
code of their programs and to select the execution parameters (such as number of parallel threads or
processes, or command line arguments). The server checks the user credentials, receives the source code,
and validates the request. If the request is valid, the server compiles the source code and executes it in
the appropriate SLURM queue. Tablon server has also a web interface, where the students can obtain
the compilation or execution results of their program. It also keeps the accounting of the computing

115

Applying Gamification in a Parallel Programming Course

resources spent by each group. Moreover, it can be also used by the teacher to check the uploaded codes.
Figure 2 shows a diagram with Tablén architecture. The rest of the section describes with more detail
the different features of the system and discusses their design.

Queues and Leaderboards

The compilation, execution, and control of the programs in Tablon are managed by execution queues. The
Tabldn queues are associated to a SLURM queue and they extend their functionality to also take care of
the compilation and deployment. The current version has queues to support programs implemented in C
or C++. They can be sequential or parallel programs using OpenMP, MPI, and/or CUDA technologies.
Several queues of each type can be defined in Tablén. A queue has an associated Makefile script that
is used to define the compiler and its flags. The programs are compiled in the frontend machine and
then they are deployed in the appropriate execution machines of the cluster. Tablon queues can be used
to control the parameters of the SLURM queues. Thus, depending on the parallel technology, a queue
can limit the number of maximum resources the students can use, such as number of OpenMP threads,
MPI processes, or execution time.

In addition to the queues, Tablon allows us to define leaderboards queues. A leaderboard queue is
a special case of queue that is used to validate a student solution to a proposed problem. For each ex-
ercise, the students must use a particular format for the input parameters. The output of the program is
captured by Tablén from the standard output and therefore, it must also follow a specific format to be
properly processed.

Tablon allows the teachers to define different tests that the student program should pass to be included
in aleaderboard. Each test defines the execution parameters (such as the number of processes or threads),

Figure 2. Tablon architecture

Student Teacher

Send code Check results/statistics View source

6 O

client access web secure web
[-]
To SLURM — <
< D e’
L

Tablon Database

116

Applying Gamification in a Parallel Programming Course

the input arguments (used to define the different input sets), and the expected output so it can be vali-
dated. If the solution is correct, the program is ranked according to its execution time compared with the
other student solutions. The leaderboard list can be consulted by all the students using the web interface.

The Client Script

The client is a python script that is used by the students to send their codes. The client makes a previous
process of the code checking the maximum size of the program. For the CUDA programs, it combines all
the CUDA kernels in a single file. It authenticates the user and sends the codes using the Secure Remote
Password protocol (SRP). SRP is a cryptographically strong authentication protocol for password-based,
mutual authentication over an insecure network connection (Wu, 1998). With the client, it is possible to
select the queue, number threads and/or processes, and the program arguments (see Code 2).

Code 2. Example of use of the Tablon client

$./client -h

Usage: client [options] program.c/.cu [program args]

Options:

-u USER, --user=USER

—-gq QUEUE, --queue=QUEUE

-n NPROCS, --nprocs=NPROCS

-t THREADS, --threads=THREADS

-w TIMEWALL, --timewall=TIMEWALL

$./client --user grupo00 --queue openmp —--threads 5 program.c
Write your password:

Connecting ...

Connected to grupoOO@tablon.infor.uva.es
Successful authentication

Sending request

Request sent successfully

Request id 2772
http://tablon.infor.uva.es/request?rid=2772

Quota Policy, Limits, and Security

Tablén implements a quota policy to limit the number of executions that a student can send and the
frequency between requests. The objective behind this policy is to allow each user a fair amount of ex-
ecution time. There are different parameters that are configurable. There is a time limit between requests
in order to avoid continuous submissions from the same group. Moreover, there is a quota that limits the
total time of the combined executions of each group. When a group consumes the entire quota, they are
penalized with a bigger time limit between consecutive executions.

There are other configurable limits, such as a timewall that is defined for each queue. There is also a
limit for the size of the standard output that the program can use. This outputis shown in the web interface.

117

Applying Gamification in a Parallel Programming Course

Finally, there are some security checks. Tablon analyzes the user program to detect unsafe code, such
as input/output or system function calls. If the user sends some code that Tablon flags as unsafe, it will
not be compiled nor executed. All the communications between Tablon and the program are done using
the standard input and output streams. Moreover, we provide a custom library with limited file access to
read the input sets of the proposed exercises, in order to prevent unauthorized accesses to the file system.

Web Interface

The Tablén web interface is used to allow the students to check the result of their executions. A screen-
shot can be seen in Figure 3. The main page has a list with a summary of the last executions. There is a
page with more information for each execution request. The students can check the state of the execution
(sent, compiling, queued, executing, or finished), the selected queue, the input parameters (program
arguments, number of threads/processes), the output of the program, and the possible error messages.

Figure 3. Screenshot of the web interface of Tabléon

O O

tablon. v C“ ‘Q Search ‘ Y8 ¥ @

TABLON w3 Ta b I é n

Home

Auto reload:

Request User Program Queue PxT Status Time Date

13727 grupo35 busquedaCa... cadenasCUDA 1x1 finished 3.45s May 22

13722 grupo01 busquedaCa... cadenasCUDA 1x1 finished 3.41s May 22

Client 13721 grupo01 busquedaCa.. cadenasCUDA 1x1 finished 342s May 22

13720 grupo01 busquedaCa... cadenasCUDA 1x1 finished 3.36s May 22

13719 grupo32 progMPl.c mpi 5x1 finished 20.43s May 22

13718 grupo25 busquedaCa... cadenasCUDA 1x1 finished 3.67s May 22

13717 grupo01 busquedaCa... cadenasCUDA 1x1 finished 4.21s May 22

13716 grupo25 busquedaCa... cadenasCUDA 1x1 finished 3.60s May 22

13715 grupo32 busquedaCa... cudaslurm 1x1 error 0.00s May22

13713 grupo09 practica.c openmp 1x8 finished 9.47s May 22

118

Applying Gamification in a Parallel Programming Course

All this information is stored for all the students’ executions and can be looked up at any moment by
using the link the client script provides when submitting a new program. There are other pages with the
leaderboard ranks, frequently asked questions, and some stats.

EXPERIMENTAL VALIDATION

This section describes the results of the studies introduced previously to test the different desired attributes
of the Tablén platform. The data has been obtained during the 2015 academic year course.

Experimental Studies

The Tablon platform stores all the data regarding not only the source code sent by the student groups, but
also all the data and statistics of the student activity and their behavior patterns. With this information
we are able to evaluate if the use of Tablon and the gamification techniques have been key to make the
course more useful, attractive, and enjoyable for the students.

The following list describes the studies we will carry out:

e Study I: The Usefulness of Tablon: In the first study we will analyze the impact the use of
Tabldn has for the students, in order to determine its usefulness. We will look through the different
measures this tool provides.

e Study II: The Engagement of Tablon: With this study we want to determine if the use of Tablén
generates engagement and if the students are more motivated when using this kind of mechanics.
We will study the students’ submissions and their relationship with the proposed activities.

e Study III: The Leaderboard Element for Competitiveness: Another study consists on the eval-
uation of the leaderboard as element for competitiveness. The assignments the students have to
complete are presented as a contest to obtain the best solution. Thus, using this tool they might
challenge each other and we expect this could improve their results.

. Study IV: Student’s Satisfaction: In order to test the students’ satisfaction with the course, we
have analyzed the results of the official student survey that is organized by the Academic and
Educational Innovation Committee of our university. The survey gathers the opinion of the stu-
dents on the quality of their courses, including the structure of the course, the used materials, the
proposed activities, etc.

e Study V: Student’s Marks: Finally, we will analyze the final marks obtained by the students of
the course.

Study Results I: Checking Tablén’s Usefulness

The use of Tablon has been a great success. In the considered academic year, the course had 37 student
groups and there have been more than 20000 program executions. The average of executions per group
was around 540. To do the proposed activities, the students were not required to use the Tablon platform,
except for the leaderboard use. They could also use their own systems, the ones provided during the
laboratory hours, or the general equipment of the university.

119

Applying Gamification in a Parallel Programming Course

Interestingly, 53% of the requests that Tablon platform has received have been sent from outside of
the university network. Without the developed system, the students would have had many difficulties to
deploy and test their solutions, and probably the interest for the course would have faded. Thus, these
results can be taken as an indicator that the use of the Tablon platform has been key for a successful
development of the course.

Study Results II: Evaluating Tablén’s Engagement

Figure 4 shows the number of program execution requests by day along the semester the course was
taught. There are three different periods of activity that match the three practical topics of the course
(OpenMP, MPI, and CUDA). The number of execution increases the days before the final exercises’
deadlines. There are also some peaks of activity during the practical session days. The inactivity period
after the first exercise deadline is due to Easter holidays, when Tablén machines were offline.

Figures 5 and 6 show the total number of requests by weekday and by hour respectively. The activity
peaks match with the practical sessions of the course (Mondays and Wednesdays from 10 to 12) and
with the deadlines of the exercises (Mondays and Fridays). The results show that in the afternoons the
students have been working although there are not course sessions in that hours. The students use these

Figure 4. Total number of request by day. The vertical lines mark the announcements and deadlines of
the exercises to be evaluated.

3000 —""""':' """"" S cic - - SEEERESSSCREmESEEEE :"""""': """ E====
Number - -
Exercise announcement === ===
2500 | Exercise deadll-ne —a— e T
: I
@ 2000 | ---oeoee R Yy
t k :
S - I
o . -
o : :
% 1500 |--------- e L
o .
O .
£ -
= .
< 1000 --------- c-----g--Q--eeeeie
500 [---------- REEE | R
0 1 I 1
21/02 07/03 21/03 04/04 18/04 02/05 16/05 30/05

Day

120

Applying Gamification in a Parallel Programming Course

Figure 5. Total number of request by weekday

8OO0 [— = - = == -ttt lllllolliioioolooolooos

7000 f—-----moenoe-

6000 —-------------

5000 f=-------------

4000 f— - mnennes

Number of requests

3000 [-rmenne e

2000 f oo

P

Sunday Monday Tuesday WednesdayThursday Friday Saturday
Week day

time periods to finish the exercises (Figure 6 also shows that, contrary to common belief, computer sci-
ence students do sleep at night).

Table 3 shows some statistical measures of the number of executions of different programs before and
after the students obtained a valid execution in the leaderboard. Note that the table only shows the Tablén
executions. However the students could also use the laboratory computers and their own to develop the
exercise. The number of sends before having a valid result tells us about the complexity of the practical
exercises. Once a student group obtained a valid result in the leaderboard, it was no mandatory to send
more executions unless they wanted to improve the exercise mark (that derived in a 10-20% improvement
depending on the exercise). The executions after the valid result indicate how committed and interested
the students were with the course. This table shows a great variability. There are some students that
only needed a few tries to obtain a valid solution while others needed much more work. However, an
important fact is that the majority of student groups did not stop working after the first valid solution
but rather they tried to improve their position on the leaderboard.

Study Results lll: The Leaderboard Element for Competitiveness
Figures 7, 8, and 9 show the evolution of the leaderboard positions for the three different used program-

ming models and technologies (OpenMP, MPI, and CUDA). We can see that the lines are crossing almost

121

Applying Gamification in a Parallel Programming Course

Figure 6. Total number of request by hour

2500

2000

1500

1000

Number of requests

500

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

Table 3. Statistical measurements of the number of executions in Tablon before and after sending the

first valid program to the leaderboard

Leaderboard Accepted min max average std deviation
OpenMP before 6 179 40.89 36.83
after 0 205 34.17 50.94
MPI before 6 233 63.13 51.00
after 0 92 18.68 23.83
CUDA before 1 530 159.33 107.86
after 1 236 69.22 66.48

everyday, meaning that the students were constantly trying to improve their solutions, not only to get a
better ranking but also to “defend” their earned position.

The particular case of the CUDA leaderboard can show us how the competitiveness has turned out
to be an important element to keep the students motivated. The dates when the exercise was released
were the previous weeks before finishing the course. Although its deadline also coincided with the work/
practice deadlines of other courses, the students kept, and even raised, the work rhythm carried out in

122

Applying Gamification in a Parallel Programming Course

Figure 7. Leaderboard OpenMP

W groupOl
W group62 2
W group03
W group04 4
| group05
| group06 6
I group07
| groupos 8
I group09
M grouple 10
B groupll
W groupl2 19
@ groupl3
W groupl4 14
roupl5
M groupl6
W groupl?7 16
W groupl8
M groupl9 18
W group20
W group2l 29
W group22
W group23 22
W group24
W group25 24
W group26
W group27 LRl e e e e e e e e e e e s e e e £ e e e o S
W group28
W group29 50 |
W group30 28
W group3l
W group32 38 FistSESSRSISiSis s isis === S iSsisl = S mis s SislSlsisis i sis s S isi=e
M group33
M group34 32 psisiElsnsinis minicis = Sinisis Sisisi s eSS Sin Rt s Sinisis Sinisis =Sl s sisis i s s
W group35
W group37 K R R
L et

ranking 2075

the rest of our practices (see Figure 4). Some subjective comments we have obtained from particular
students were “we have so much work to do with the rest of courses, but we prefer to spend the time in
something that we were really interested”.

We want also to highlight the particular case of the students of group 15. They were the group that
ranked first position in the previous leaderboards (OpenMP and MPI). At the beginning they were also
the first in CUDA leaderboard, with a great execution time. Once they achieved the first position these
first days, they stopped improving and sending more versions. However, the day before the deadline, the
group 37 achieved an even lower time, dethroning group 15 from the first position. Both groups had better
times than the best reference provided by the teacher, and both also had close execution times between
them. Thus, they knew their marks related to the leaderboard position and quality of the practice have
already reached the maximum points. Nevertheless, group 15 started again to submit new solutions,
hoping that in less than 24 hours they could take again the lead. The only motivation of being the first
of the leaderboard supported them to program a more optimized version, which finally ranked them in
the first position, even knowing that their grade was going to be the same.

123

Applying Gamification in a Parallel Programming Course

Figure 8. Leaderboard MPI

group0l
group03
group04
group06
group07
group08
group09
groupl0®
groupll
groupl2
groupl3
groupl4

roupl5
groupl6
groupl?
groupl8
groupl9
group20
group21l
group22
group23
group24
group25
group26
group29
group30
group32
group33
group34
group35
group37

EEEEENEEEEERE

22

24

26

28

30

ranking 2015~04

Study Results IV: Student’s Satisfaction

The results of the official student survey done by our university were very satisfactory. For our Parallel
Programming course, 31 of the total 75 of students completed this optional survey in the 2014-15 year.
For all the questions available in the survey we analyze four of them which text is phrased as follows:

e The course was interesting
° I understood and learned the course material

124

Applying Gamification in a Parallel Programming Course

Figure 9. Leaderboard CUDA. The last four lines are the reference implementations developed by the
teacher with different levels of optimization together with the sequential version.

W group6l
M group02
H group63
I group64
W group05
W group06
I group07
I group68
M group09 10
I grouplo
M groupll 12
B groupl2
M groupl3 14
B groupl4
roupls 16
B groupl6
W groupl? 18
W groupl8
W groupl9 20
W group20
W group2l 22
W group22
W group23 24
W group24
W group25 26
W group26
W group27 28
W group28
W group29 30
W group30 32
W group3l
W group32 34
W group33
W group34 36
W group35
H group37 38
.teacher-ref-l
dteacher-ref-2 40
Wteacher-ref-3
.sequential- ref

ranking

e The teaching materials were well prepared and they have been explained carefully
e The workload is appropriate compared to other similar courses

For each question the students have to answer to express their agreement with each question, using
the following scale:

Totally disagree
Somewhat disagree
Neither agree nor disagree
Somewhat agree

Totally agree

The survey allows us to compare the satisfaction of the students with our course compared to the
average satisfaction of the degree, and with the satisfaction of the whole university.

125

Applying Gamification in a Parallel Programming Course

Figure 10. Students’ survey results

Totally disagree or hat disagree ==
Neither agree nor disagree EXXXX3
Somewhat agree or totally agree i

The course was interesting

|
Course X
XXXX

Degree

University

0 10 20 30 40 50 60 70 80 90 100

Percentage of answers

I understood and learned the course material

Course

Degree

University

Percentage of answers

The teaching materials were well prepared and they have been explained carefully

Course
Degree
" " POOOOOOOOO
LOOOOOOO0O0)
University BOOOOOOOOO

| | | | |
0 20 40 60 80 100

Percentage of answers

The workload is appropriate compared to other similar courses

Course
Degree
. N DOOOOOOOOOOK
LOOOOOOO0OOO0)
University BOOOOOOOOOK

Percentage of answers

126

Applying Gamification in a Parallel Programming Course

The results of the survey questions can be found in Figure 10. These plots show that our course had
better results than the average of the degree and university. In particular, the students found the course
very interesting, they understood the learning material provided, and they though the materials where
well prepared and well explained. Moreover, the workload was appropriate for this kind of course com-
pared with others.

Study Results V: Student’s Marks
Figure 11 contains the distribution of the final marks obtained by the students. With the exception of
three of them who drop the course or did not take the final exam, all the students passed the course

getting good grades. The average mark is 7.6 points. It is worthy to know that, although the groups are
composed of two students, theoretical exams are carried out individually.

FUTURE RESEARCH DIRECTIONS

In this work we use different tools to support the gamification of the course: A Moodle system for the
badges and Tablon for the leaderboards. An interesting future work would be to integrate both gamification

Figure 11. Final marks obtained by the students

12 [- m e eeeeeeeeieaeeaeaaao.

0 [seesnssesnnusnennerrrrmnnssssrasnasnansssasssEseass

Frequency
(e)]
[

Grades

127

Applying Gamification in a Parallel Programming Course

techniques in Tabldn. In this way, it would be possible to grant the badges automatically or interactively
when the conditions are met.

Moreover, other possible extension of Tablon software is to add more information and statistics about
the program executions. This information should be private for each group so it needs to be implemented
using an account system.

Regarding the gamification techniques used, upcoming courses could be improved by adding other
practices, such as quizzes, rating mechanisms, or appointment dynamics. It is also possible to enrich the
current ones with more badges and different leaderboard behaviors.

CONCLUSION

In this chapter we have presented how we have gamified the Parallel Programming course we teach on
Computer Science degree at Universidad de Valladolid. The main mechanisms we have included are the
use of automatically-managed leaderboards together with several badges. The joint use of these gami-
fication elements has delivered good results in terms of the student motivation, engagement, learning,
and final grades.

The application of gamification mechanisms implies a higher effort done by the course instructors,
compared to classical master lessons. This is due to the need of configuring the hardware resources,
creating the corresponding software to handle them, and preparing exercises with enough elements that
allow competitiveness. However, in light of the results of the studies we have presented, we believe that
it is worthwhile to pay the cost of applying these techniques.

Our gamification framework for the Parallel Programming course provides more data and statistics
not only of the final results of the students but also related to their behavior patterns. The study of these
statistics gives also the possibility to monitor the activity of the students in real-time, to detect possible
drawbacks or errors, and to promote the best and more profitable elements and activities for the next year.

Tablén software can be freely downloaded from http://trasgo.infor.uva.es/

REFERENCES

Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., Freitas, S., & Louchart, S. et al.. (2014). Mapping
learning and game mechanics for serious games analysis. British Journal of Educational Technology,
46(2), 391-411. doi:10.1111/bjet. 12113

Aziz, M., Chi, H,, Tibrewal, A., Grossman, M., & Sarkar, V. (2015). Auto-grading for parallel programs.
Workshop on Education for High-Performance Computing (pp. 3:1-3:8). Austin, TX: ACM.

Bunchball Inc. (2010). Gamification 101: An Introduction to the Use of Game Dynamics to Influence
Behavior. White paper. Author.

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness:
defining gamification. I5th International Academic MindTrek Conference: Envisioning Future Media
Environments (pp. 9-15). ACM.

128

Applying Gamification in a Parallel Programming Course

Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in Education: A Systematic
Mapping Study. Journal of Educational Technology & Society, 18(3), 75-88.

Dicheva, D., Irwin, K., Dichev, C., & Talasila, S. (2014). A course gamification platform supporting
student motivation and engagement.International Conference on Web and Open Access to Learning
(ICWOAL) (pp. 1-4). IEEE. doi:10.1109/ICWOAL.2014.7009214

Dominguez, A., Saenz-de-Navarrete, J., De-Marcos, L., Fernandez-Sanz, L., Pagés, C., & Martinez-
Herréiz, J.-J. (2013). Gamifying learning experiences: Practical implications and outcomes. Computers
& Education, 63, 380-392. doi:10.1016/j.compedu.2012.12.020

Fitz-Walter, Z. (2015). Achievement unlocked: Investigating the design of effective gamification experi-
ences for mobile applications and devices. (PhD. Thesis). Queensland University of Technology.

Grama, A., Gupta, A., Karypis, G., & Kumar, V. (2003). Introduction to Parallel Computing (2nd ed.).
New York, NY: Pearson Education.

Hakulinen, L., Auvinen, T., & Korhonen, A. (2013). Empirical study on the effect of achievement badges
in TRAKLA?2 online learning environment. In Learning and Teaching in Computing and Engineering
(LaTiCE) (pp. 47-54). IEEE.

Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work?—a literature review of empirical
studies on gamification.47th Hawaii International Conference on System Sciences (HICSS) (pp. 3025-
3034). IEEE. doi:10.1109/HICSS.2014.377

Ibanez, M., Di Serio, A., & Delgado Kloos, C. (2014). Gamification for Engaging Computer Science
Students in Learning Activities: A Case Study. IEEE Transactions on Learning Technologies, 7(3),
291-301. doi:10.1109/TLT.2014.2329293

Forum, M. P. (2015). MPI: A Message-Passing Interface Standard Version 3.1. Author.
Moodle Learning Management System Webpage. (n.d.). Retrieved 1 14, 2016, from https://moodle.org/

Muntean, C. L. (2011). Raising engagement in e-learning through gamification.6th International Confer-
ence on Virtual Learning ICVL, (pp. 323-329).

Navarro, C. A., Hitschfeld-Kahler, N., & Mateu, L. (2014). A Survey on Parallel Computing and its
Applications in Data-Parallel Problems Using GPU Architectures. Communications in Computational
Physics, 15(2), 285-329.

OpenMP Architecture Board. (2013). OpenMP Application Program Interface Version 4.0. Author.

Sanders, J., & Kandrot, E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Pro-
gramming (1st ed.). Addison-Wesley Professional.

Simdes, J., Redondo, R. D., & Vilas, A. F. (2013). A social gamification framework for a K-6 learning
platform. Computers in Human Behavior, 29(2), 345-353. d0i:10.1016/j.chb.2012.06.007

Wu, T. (1998). The Secure Remote Password Protocol.Internet Society Network and Distributed System
Security Symposium, 98, 97-111.

129

