
MESETA: A new scheduling strategy for speculative parallelization of
randomized incremental algorithms

Diego R. Llanos∗

Departamento de Informática

Universidad de Valladolid, Spain

diego@infor.uva.es

David Orden†

Departamento de Matemáticas

Universidad de Alcalá, Spain

david.orden@uah.es

Belén Palop‡

Departamento de Informática

Universidad de Valladolid, Spain

b.palop@infor.uva.es

Abstract

In this work we address the problem of scheduling loops
with dependences in the context of speculative paralleliza-
tion. We show that scheduling alternatives are highly influ-
enced by the dependence violation pattern presented in the
code. We center our analysis in those algorithms where de-
pendences are less likely to appear as the execution pro-
ceeds, like incremental randomized algorithms. These al-
gorithms are, in general, hard to parallelize by hand, and
represent a challenge for any automatic parallelization
scheme. Our analysis led us to the development of MESETA,
a new scheduling strategy that takes into account the prob-
ability of a dependence violation to determine the number
of iterations being scheduled. MESETA is compared, among
others, with Fixed-Size Chunking (FSC), the only schedul-
ing alternative used so far in the context of speculative par-
allelization. Our experimental results show a 3% to 22%
speedup improvement over FSC for the same incremental
randomized algorithm.

1. Introduction

Speculative parallelization (also called thread-level
speculation) is the most promising technique for extract-
ing parallelism of irregular loops. With speculative paral-
lelization, loops that can not be analyzed at compile time
are optimistically executed in parallel. Hardware or soft-
ware mechanisms ensure that all threads access the shared
data according to sequential semantics. A dependence vio-
lation appears when one thread incorrectly consumes a da-
tum that has not been generated yet by a predecessor. In the
presence of such a violation, earlier software-only specula-
tive solutions (see, e.g. [12, 17]) interrupt the speculative

∗ Partially supported by RII3-CT-2003-506079.
† Partially supported by MCYT BFM2001-1153.
‡ Partially supported by MCYT TIC2003-08933-C02-01.

execution and re-execute the loop serially. More recent ap-
proaches [2, 6, 20] squash only the offender thread and
its successors, re-starting them with the correct data val-
ues.

It is easy to see that frequent squashes adversely affect
speculation performance. One way to reduce the cost of a
squash is to assign smaller subsets (called chunks) of iter-
ations to each thread, reducing the amount of work being
discarded in the case of a squash. Unfortunately, smaller
chunks also imply more frequent commit operations and a
higher scheduling overhead.

The problem of scheduling iterations of parallel loops
among different processors in a parallel system has been ex-
tensively studied in the literature [9, 10, 15, 22, 23]. How-
ever, the proposed solutions only deal with independent iter-
ations and their basic concern is to achieve a good load bal-
ancing among processors. Therefore, classic scheduling al-
ternatives are not useful for speculative parallelization. To
the best of our knowledge, the only scheduling mechanism
used so far in this context is Fixed-Size Chunking (FSC),
that schedules chunks of equal number of iterations among
processors. This mechanism does not take into account the
dependence distribution of the loop to be parallelized.

In this work we study in detail the problem of scheduling
loops with dependences in the context of speculative par-
allelization. We first show that the scheduling alternatives
are highly influenced by the dependence violation pattern
presented by the code. Then, we propose a new schedul-
ing alternative, MESETA, for those algorithms where de-
pendences are less likely to appear as the execution pro-
ceeds. Many incremental algorithms follow this pattern and,
among them, incremental randomized algorithms have been
very well studied and proved to achieve the best perfor-
mance. They are, in general, hard to parallelize by hand and
a challenge for any automatic parallelization scheme. This
justifies their choice to test the efficiency of MESETA.

The results obtained using a software-only speculative
engine [2], show that MESETA allows a 3% to 22% speedup
improvement over the use of FSC for the same incremental

randomized algorithm, reducing at the same time the cost
associated to the squash and re-execution of chunks of iter-
ations.

2. Scheduling alternatives for parallel loops

The problem of scheduling iterations of irregular loops
in order to assign them to different processors has been ex-
tensively studied in the literature. All existing proposals as-
sume that there are no dependences among iterations, and
therefore all the iterations can be executed in parallel in any
order. We review in this section some of the solutions that
have been proposed in the last years to this problem.

Let N be the total number of iterations, and P the total
number of threads (equal to the number of processors in the
system). The two simplest scheduling techniques, that will
not be considered further due to their poor performance, are
the following. Static scheduling, divides the iteration space
statically into N/P chunks of equal size. This technique
does not allow to balance dynamically the workload dur-
ing the execution of the loops. Hence, the processors may
finish at very different times, leading to a poor load bal-
ance. On the other hand, self scheduling [22] assigns to each
thread the next iteration to be executed. This approach min-
imizes load unbalance, but at the cost of a high increase of
the scheduling overhead.

Between these two extreme solutions different alterna-
tives have been proposed. A brief description follows.

Fixed-size chunking (FSC): In this approach, proposed by
Kruskal and Weiss [10], the iteration space is statically di-
vided into chunks of equal size. Each free thread executes
the following chunk. This solution reduces synchronization
overhead in comparison with self scheduling, with a better
load balancing than the static scheduling. The efficiency of
this scheme depends on the choice of an appropriate value
for the chunk size, K , a difficult task for both programmers
and compilers. Kruskal and Weiss give the following for-
mula for the optimal value of the chunk size, Kopt:

Kopt =

(√
2Nh

σP
√

log P

)2/3

,

where σ is the variance of the iteration time, h the schedul-
ing overhead, N the number of iterations and P the number
of processors. The first three values are unknown at the be-
ginning of the loop, making it difficult to determine the op-
timal (or at least adequate) chunk size in practice.

Guided self-scheduling (GSS): This technique, proposed
by Polychronopoulos and Kuck [15], addresses the prob-
lem of uneven start times for each processor. Instead of us-
ing a fixed chunk size, they propose decreasing chunk sizes,
calculated as a decreasing function of the current iteration
number i being executed. As execution proceeds, smaller

chunks improve the balance of the workload toward the end
of the loop. Let Ri be the remaining iterations at step i. Each
chunk size, Ki, is calculated as follows:

R0 = N ; Ki =
⌈

Ri

xP

⌉
; Ri+1 = Ri − Ki;

where x should be fixed to adjust the amount of work
scheduled in each step. In order to avoid having many
small chunks by the end of the loop, an additional func-
tion GSS(K) is proposed to bound the chunk size from be-
low by K , specified either by the compiler or the program-
mer.

Factoring: This mechanism, proposed by Hummel et
al. [9], is similar in concept to GSS, but the allocation of it-
erations to processors proceeds in phases. In each phase,
a part of the remaining iterations is divided in batches
of P equal-size chunks. The optimal number of itera-
tions per batch requires the (a priori unknown) mean it-
eration time µ and, again, the variance σ. The authors
argued that, for many common distributions of chunk exe-
cution times, no more than half of the remaining iterations
should be assigned to each batch. The following equa-
tion gives the chunk size Kj for each component of the i-th
batch group.

R0 = N ; Kj =
⌈

Ri

xP

⌉
= K, ∀j ∈ {1, . . . , P};

Ri+1 = Ri − P K.

By setting x = 2, half of the remaining iterations are
scheduled in each phase.

Trapezoidal scheduling (TSS): This technique, proposed by
Tzen and Ni [23], uses chunks that decrease in size linearly.
Trapezoidal scheduling is defined as TSS(f, �, N), where f
is the size of the first chunk and � the size of the last one.
The maximum value for f is N/P : with this value, the first
P chunks will hold the first 3/4 iterations. A more conser-
vative value is to set f = N/(2P), when only the first 7/16
iterations will be executed in the first P chunks.

The area below TSS(f, �, N), called A, should be calcu-
lated in order to obtain the decreasing step, δ:

A =
⌈

2N

f + �

⌉
; δ =

f − �

A − 1

Again, the values for f and � depend on the execution
time, and no heuristics are provided to calculate them. In-
stead, conservative values f = N/2P and � = 1 are sug-
gested.

The total number of iterations being scheduled is, at
least, N for all scheduling alternatives described. Only Self

Time

RAW dependence violation
detected: offending thread
P3 and successors are
squashed and restarted.

P1 P2 P3 P4

c12c11

c10

c1

c9

c5 c6

c4c3c2

1

2

LHS = Shared[0]

Shared[0] = RHS

LHS = Shared[0]

4

3
c8c7

Figure 1. Example of RAW dependence violation.
P1 to P4 are four different processors executing
chunks of consecutive iterations, labeled c1 to c12.

Scheduling always leads to exact correspondence. Conse-
quently, the scheduler should always check whether the up-
per limit will be exceeded, and order the execution of only
the remaining iterations.

Finally, other proposals determine the optimum chunk
size at runtime, based on the total available parallelism,
the optimal grain size and the statistical variance of execu-
tion times for individual tasks. We do not consider adaptive
scheduling policies in this work, such as the Tapering algo-
rithm by Lucco [11].

3. Scheduling with speculative parallelization

In the context of speculative parallelization, however,
loops may present dependences among iterations. A Read-
after-write (RAW) dependence violation appears when a
thread speculatively reads a value and later a predeces-
sor modifies the same value. If a dependence violation oc-
curs during the parallel execution of the loop, the offend-
ing thread and all its successors are squashed and re-started
with the correct values. Figure 1 shows the events involved
in a RAW dependence violation, where a thread modifies
a value that a successor has already consumed. Therefore,
the scheduling alternatives described in Section 2 can not
be directly applied to speculative parallelization, since they
are designed to achieve load balancing and low scheduling
overhead on loops composed of independent iterations.

We will now develop a simple model to compute an up-
per bound of the squash overhead. Suppose that some loop
is divided into C equal size chunks and that we have P pro-
cessors where we can schedule in batch P chunks at a time.
The number of batches is then B = �C/P �. Let us call ts

the time it takes to execute the loop sequentially, tc the time
to complete a chunk and tb the time to execute a batch. We
assume that the overhead time, to, measured as the time it
takes to assign each chunk to some processor plus the time
to commit or squash the results on the main copy of the
shared variables, is similar in all batches. If we assume that
all iterations take equal time, then tb = tc = ts/C + to.

We will now calculate an upper bound for the time
needed to complete the loop in parallel, tp, when only a sin-
gle squash arises and then extend this formula for several
squashes.

We can decompose tp into two parts: the time it would
take to execute the loop if there were no squashes, plus the
time it takes to re-execute the work that was already done
when the squash was produced. In the worst case, the squash
will be produced in the last iteration of some chunk. There-
fore, all the work done by later threads in this batch will be
re-executed from the beginning and

tp ≤ Btb + tb.

It is easy to see that each squash costs, at most, tb, and that
dependences between iterations in the same chunk do not
lead to squashes. Therefore, the number of squashes, Ns, is
in general, smaller than the number of dependences. Hence,
now

tp ≤ Btb + Nstb

and since tb = ts/C + to and B = C/P , we have

tp ≤ ts/P + C/P to + Ns(ts/C + to). (1)

The term Ns(ts/C + to) indicates that the greater the
number of chunks (thus, using smaller chunks), the smaller
the time lost on each squash. On the other hand, the term
C/P to indicates that we can obtain better time bounds if
we minimize the number of chunks, that is, making chunks
bigger.

If we decide to use a single chunk size during the en-
tire execution of the loop, the optimal number of chunks we
should use can be determined minimizing tp deriving as fol-
lows:

∂(ts/P + C/P to + Ns(ts/C + to))
∂C

= 0

and we obtain

C∗ =
√

NstsP

to

Therefore, the optimal number of chunks C∗ depends
on the number of squashes Ns. But changing the num-
ber of chunks varies the number of dependences leading to
squashes. That is, only one chunk executing the whole loop
would make Ns = 0, and chunks of size equal to one itera-
tion would produce one squash for each dependence.

The analysis of Eq. (1) suggests that a useful strategy for
speculative execution is to use big chunks on portions of the
loop where less dependences are expected to be found, and
smaller chunks on portions where we expect to find many
dependences.

Obviously, it is not a simple task to characterize the dis-
tribution of dependences inside a general loop. In the next
section we will study incremental randomized algorithms
and characterize their dependence pattern.

4. Incremental randomized algorithms

Incremental randomized algorithms have been deeply
studied in areas such as Computational Geometry and Opti-
mization [13, 14, 16]. They have led to simple, easy-to-code
and efficient algorithms for a variety of problems.

In their general formulation, the input of an incremen-
tal randomized algorithm is a set of elements (not neces-
sarily points), for which a certain output needs to be com-
puted. The algorithm proceeds incrementally by adding the
input elements one by one and obtaining the intermediate
results. The main feature is that the elements are added in
random order, determined by the choice of a random per-
mutation at the beginning.

Our main concern is that, independently of the prob-
lem, these algorithms are shown to present a common de-
pendence pattern: At the beginning of the execution many
iterations depend on values calculated by previous ones.
However, as the execution proceeds, fewer and fewer de-
pendences arise between different iterations. This behavior
makes possible (and attractive) to develop scheduling strate-
gies for the speculative parallelization of this type of algo-
rithms, as well as all algorithms sharing their dependence
pattern, and motivates the proposal of MESETA in Section 5.

4.1. Expected number of dependences

Let S and φ(S) represent respectively the input and the
output of an incremental randomized algorithm. These algo-
rithms start by choosing a random permutation {s1, . . . , sn}
of the elements in S and then incrementally construct φ(Ri)
for Ri := {s1, . . . , si}.

In order to study the expected number of dependences
appearing at a given step i, let us introduce the following
two notions: We call violators those elements of S not pro-
cessed yet that would cause the present output φ(Ri) to be
updated, that is, the elements leading to a potential RAW de-
pendence. The extreme elements will be the ones needed to
define the present output φ(Ri).

More formally:

V (Ri) := {s ∈ S \ Ri : φ(Ri ∪ {s}) �= φ(Ri)}

is the set of violators of Ri in S, and

X(Ri) := {s ∈ Ri : φ(Ri \ {s}) �= φ(Ri)}

is the set of extreme elements of Ri.
For a couple of examples consider the computation of

the Convex Hull [5, 21] and the Smallest Enclosing Cir-
cle [24]. The Convex Hull and the Smallest Enclosing Cir-
cle problems consist, respectively, in obtaining the smallest
convex polygon and the smallest circle that enclose a set of
points in the plane. Let us choose S to be a subset of points
in R

2. Considering φ ≡Convex Hull, the violators V (Ri)
are those points outside ConvexHull(Ri), while the ex-
treme points X(Ri) are the vertices of this convex hull. For
φ ≡Smallest Enclosing Circle, the points outside the small-
est enclosing circle of Ri are the violators V (Ri), and the
extreme points X(Ri) are the points defining this circle.

As observed above, the number |V (Ri)| of violators
equals the number of potential RAW dependences at step i.
The Sampling Lemma, whose proof can be found in [7],
states a relationship between the expected number of ex-
treme elements found before processing element i and the
expected number of violators to be found afterwards. At
any step i the probability of causing a potential RAW de-
pendences is xi+1

i+1 . Incremental randomized algorithms are
used when xi is asymptotically smaller than i and hence this
probability decreases as execution proceeds.

4.2. Incremental randomized construction of a
Convex Hull

For the randomized construction of the 2-dimensional
Convex Hull, the usual input data sets are uniform distri-
butions of points in a k-gon (see [8]). We will not consider
degenerate cases, like i cocircular points, in which every it-
eration is dependent on the previous ones and the problem
is inherently non-parallel. It is well known, see [18, 19],
that in order to define the convex hull of i points uniformly
distributed in a k-gon, only xi = O(k log(i)) of them are
needed, while only xi = O(3

√
i) are needed for the limit sit-

uation of points uniformly distributed in a disc.
We have performed several sequential executions on

small sets of points in order to accurately determine the con-
stants involved, which tend to be 2.60 for the square and
3.34 for the disc. Hence, the Sampling Lemma for incre-
mental randomized algorithms claims that the probabilities
2.60 log(i)/i (square) and 3.34 3

√
i/i (disc) of causing a po-

tential RAW dependence are much higher at the first itera-
tions.

Two sample executions for square- and disc-shaped in-
put sets have been made in order to check this result. We
have used constant size blocks of 1 000 iterations of the
main loop with the best incremental randomized algorithm

for computing 2-dimensional Convex Hulls, due to Clark-
son et al. [4]. As expected, only a portion of the potential
RAW dependences turn into real RAW dependences, since
some of them appear inside each chunk and will be exe-
cuted sequentially. Figure 2 shows the effective distribution
of RAW dependences for both input sets. The situation can
be considered stable when the probability ε of finding a po-
tential RAW dependence is close enough to 0. Also as ex-
pected, this happens earlier in the square than in the disc.

5. MESETA: Scheduling strategy for incre-
mental randomized algorithms

We have seen in the previous section how the number
of dependences appearing in an incremental randomized al-
gorithm tends to decrease as the algorithm proceeds. This
is why it is rather difficult to find a fixed block size that
minimizes the number of squashes. Moreover, the rest of
scheduling alternatives proposed lead to poor performance,
since they schedule bigger chunk sizes at the beginning
of the loop, precisely where we have proved that potential
RAW dependences are more likely to be found.

We propose here a new scheduling strategy for the spec-
ulative execution of those algorithms in which dependences
are less likely to appear as execution proceeds, like incre-
mental randomized algorithms. MESETA (Spanish word for
tableland) divides the execution of the loop into three parts
(see Fig. 3): At the beginning of the loop, many depen-
dences are likely to be found. We propose to assign small
chunks to processors in that part of the execution, progres-
sively increasing their size as the execution proceeds. The
benefits are twofold. First, we are preventing dependences
between distant iterations to appear since they will not be
processed in parallel (and therefore many potential RAW
dependences will not turn into real RAW dependences).
Second, the amount of work to be redone after each squash
is smaller, since we are scheduling small chunks. Except
for FSC, any of the scheduling functions reviewed in Sec-
tion 2 can be mirrored with respect to the y-axis and applied
here in order to obtain increasing size chunks.

The probability of finding dependences between itera-
tions will lower as the execution proceeds, reaching some ε
where the situation can be considered stable. At this point
we can use a fixed chunk size to minimize both squash and
overhead costs.

Finally, in the last part of the loop we can safely assume
that the number of dependences can be neglected. At this
point, our main concern is load balancing. To achieve this
goal, any of the techniques proposed in Section 2 can again
be applied.

Some decisions still have to be made in order to show
that MESETA improves the performance of the fixed-block-
size basic technique.

Chunk size

ChunksThreshold

Figure 3. Distribution of chunk sizes in MESETA.

The first problem is how to determine the number of it-
erations to be executed before the probability of finding
dependences is considered low enough. In Section 4.1 we
have seen that incremental randomized algorithms follow
the Sampling Lemma. Hence, for them, the probability of
having a potential RAW dependence can be computed for
any value of i. Once a threshold ε is chosen, it is easy to
derive from the formula the iteration i in which that ε is
achieved. Even though this threshold can be as close to 0
as the implementer’s optimism allows, our experimental re-
sults show that conservative enough iteration numbers are
obtained in most cases with ε = 3 · 10−4.

Let us illustrate this by considering again the Con-
vex Hull problem. For the case of a randomly-distributed
square-shaped input set, setting

2.60 log(i)/i = 3 · 10−4 =⇒ i ≈ 105,

while for a randomly-distributed disc-shaped input set,

3.34 3
√

i/i = 3 · 10−4 =⇒ i ≈ 106.

The second important decision is to fix the chunk size for
the stable part of the loop. This decision will be postponed
to the next section since, unfortunately, it does not only de-
pend on the dependence pattern but also on the overheads
produced by squashed threads.

We reach finally the descending part of the MESETA. We
can now simply rely on known scheduling solutions pre-
sented in Section 2, since squashes are less and less likely
to happen and we only have to care about load balancing.
For the different alternatives, we will apply the parameters
proposed by the authors in each case, starting at the height
of the tableland. This will determine the iteration number in
which the descending part of MESETA starts.

6. Experimental results

A state-of-the-art, software-only speculative paralleliza-
tion engine [2] was used to execute in parallel the Clark-
son’s incremental randomized algorithm for the Convex
Hull problem [4]. We executed in parallel the outer loop,
that accounts for 100% of the algorithm sequential execu-
tion time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000 10000

R
A

W
 d

ep
en

de
nc

es
 p

er
 b

lo
ck

Blocks of 1000 iterations (log scale)

Square input set

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000 10000

R
A

W
 d

ep
en

de
nc

es
 p

er
 b

lo
ck

Blocks of 1000 iterations (log scale)

Disc input set

Figure 2. Effective RAW dependences in Clarkson’s algorithm for the 2-D Convex Hull (log scales).

The number of violations between executions is bounded
by the number of points lying outside the convex hull com-
puted up to their insertion. Thus, we have used three differ-
ent standard input sets: one composed by 40 million points
randomly distributed inside a square, and another two with
10 and 40 million random points inside a disc. The input
sets have been generated using the random points genera-
tor of CGAL 2.4 [1] and have been randomly ordered us-
ing its shuffle function. The expected performance for
these sets is the same as for any other with the same shape
and size. The following table resumes the characteristics of
the algorithm and the input sets used.

Input description Spec data Iterations % of
size in KB per invocation violations

Square set, 40M points 15 39,999,997 0.64
Disc set, 10M points 86 9,999,997 15.48
Disc set, 40M points 137 39,999,997 7.35

The experiments performed were done on a Sun Fire
15K symmetric multiprocessor (SMP), equipped with
900MHz UltraSparc-III processors. The system runs
SunOS 5.8. The application was compiled with the Forte
Developer 7 Fortran 95 compiler using the highest opti-
mization settings for our execution environment. Times
shown in the following sections represent the time spent in
the execution of the main loop of the application. The time
needed to read the input set and the time needed to out-
put the convex hull have not been taken into account.
The application had exclusive use of the processors dur-
ing the entire execution and we use wall-clock time in our
measurements.

6.1. Comparing different MESETA shapes

We will now measure the performance of our schedul-
ing proposal for incremental randomized algorithms with
respect to existent solutions. Recall that we divide the
scheduling profile into three parts, scheduling increasing
chunk sizes at the beginning (to avoid dependence viola-
tions), a fixed block size for the stable part of the loop, and
decreasing chunk sizes at the end in order to achieve a good
load balancing.

1.201.20 1.20

1.68 1.64

1.83 1.82
1.73 1.76 1.75 1.69 1.69 1.70

1.61 1.56 1.56 1.53

1.41 1.38
1.29

1.67

Sequential Time

50 %

75 %

100 %

25 %

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���������

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���������
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

������
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���

���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���
���
���

���
���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���
���

���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���

���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���

���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

GSS Fact Trap
4 processors

GSS Fact Trap
8 processors

GSS Fact Trap
12 processors

GSS Fact Trap
16 processors

GSS Fact Trap
20 processors

GSS Fact Trap
24 processors

GSS Fact Trap
28 processors

����
����
����
����

��������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��������

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Spin

Busy

Memory ops.

Commit

Contention

Figure 4. Execution time breakdown using dif-
ferent versions of MESETA to process the disc-
shaped input set with 10 million points.

Three different scheduling functions will be used to dis-
tribute iterations in both the beginning and end of the specu-
lative execution: GSS, Factoring, and Trapezoidal schedul-
ing. We compare them in the execution of the Convex Hull
algorithm for a disc-shaped, 10 million points input set. For
this input set, almost 16% of the iterations lead to depen-
dences. Therefore, a correct choice of the scheduling mech-
anism is very important. Figure 4 shows their execution
time breakdown. As can be seen from the figure, the rela-
tive performance is similar for all three mechanisms, with a
slight slowdown for the Trapezoidal version of the MESETA

scheduling. The execution time breakdown shows that most
of the time is consumed by speculative memory operations,
and that contention and commit times are not significant for
this problem (see [2] for more details on the behavior of the
speculative engine).

To better compare these scheduling functions, Fig. 5
shows the number of dependence violations triggered by
each one of our scheduling strategy versions, together with
the number of corresponding squashed threads. We can con-
clude that the behavior of both GSS and Factoring versions
is very similar, not only in terms of speedup, but also in
terms of squashes and violations. The Trapezoidal version,
on the other hand, leads to a bigger number of dependence
violations and squashes. This cost might have been also
reflected in the speedup results. However, the speedup re-
sults are not as bad as we might expect, because Trape-

zoidal scheduling divides the iteration space to be sched-
uled in fewer blocks than the other alternatives. Therefore,
the scheduling and commit costs are smaller, mitigating the
slowdown produced by a higher number of squashes.

6.2. Performance evaluation of MESETA

The last part of our study is to compare the performance
of MESETA with respect to Fixed-Size Chunking (the only
scheduling mechanism used so far in the field of specula-
tive parallelization) and GSS (a mechanism widely used in
the scheduling of loops with no dependences). Fixed-Size
Chunking will be used with the chunk size that leads to the
maximum speedup for this particular problem [3]: 1 024 it-
erations for the disc and 4 096 for the square. GSS will be
used with x = 1. The version of MESETA that will be con-
sidered is the one that uses GSS for both the increasing and
decreasing part of the loop execution: As we saw above, this
function leads to slightly better speedups than the other al-
ternatives. The optimum block size for the stable part of the
loop has been experimentally obtained [3], turning out to be
around 2 500 for the disc and 5 000 for the square, indepen-
dently of the number of processors.

Figure 6 shows the relative speedup of both approaches
in the execution of the Convex Hull for a 40-million-points
input set, both disc- and square-shaped. From the figure we
can draw the following observations: First, MESETA over-
comes the Fixed-Size Chunking approach in all cases, with
a performance gain of 12% to 22% for the disc-shaped in-
put set, and 3% to 11% for the square-shaped input set, with
the exception of the four-processors run in the latter, where
the speedups are equal for both systems. The gain is pro-
portionally higher for the disc because, as expected, this in-
put set generates much more dependences than the square-
shaped one, and therefore benefits more from our schedul-
ing strategy.

Second, as we saw in Section 3, GSS is not suitable for
speculative parallelization of loops with dependences, and
this observation is confirmed by the experimental results.
The same considerations can apply to TSS and Factoring as
well.

Finally, no performance loss due to the higher schedul-
ing cost of MESETA in comparison with Fixed-Size Chunk-
ing has been observed in any experiment.

7. Conclusions

In this work we study in detail the problem of schedul-
ing loops with dependences in the context of speculative
parallelization. We show that the scheduling alternatives
are highly influenced by the dependence violation pattern
presented by the code. We center our analysis in those al-
gorithms where dependences are less likely to appear as

the execution proceeds, like incremental randomized algo-
rithms. We propose MESETA, a new scheduling strategy
that schedules variable-size chunks of iterations according
to the probability of a dependence violation for each part of
the loop. Our results show a 3% to 22% speedup improve-
ment of MESETA over Fixed-Size Chunking for the same
incremental randomized algorithm, leading to a better ex-
traction of its inherent parallelism.

Acknowledgments

Part of this work was carried out while David Orden vis-
ited the Departamento de Informática, Universidad de Val-
ladolid, with support of the Universidad de Alcalá. Diego R.
Llanos and Belén Palop would like to thank Manuel Abel-
lanas and the Departamento de Matemática Aplicada, Uni-
versidad Politécnica de Madrid, where part of this research
was performed. The authors would also like to thank the
EPCC (Edinburgh Parallel Computing Center) for the main
computing resources used in this work and its support staff,
in particular, Chris Johnson and Catherine Inglis.

References

[1] CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org/.

[2] M. Cintra and D. R. Llanos. Toward efficient and robust
software speculative parallelization on multiprocessors. In
Proceedings of the SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), June 2003.

[3] M. Cintra, D. R. Llanos, and B. Palop. Speculative par-
allelization of a randomized incremental convex hull algo-
rithm. In Proc. of the Comput. Geom. and Applications
(CGA), LNCS 3045, pages 188–197, May 2004.

[4] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on
randomized incremental constructions. Comput. Geom. The-
ory Appl., 3(4):185–212, 1993.

[5] K. L. Clarkson and P. W. Shor. Applications of random sam-
pling in computational geometry, II. Discrete and Computa-
tional Geometry, 4(1):387–421, 1989.

[6] F. Dang, H. Yu, and L. Rauchwerger. The R-LRPD Test:
Speculative Parallelization of Partially Parallel Loops. In
Proc. of the 16th International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’02), April 2002.

[7] B. Gärtner and E. Welzl. A simple sampling lemma: Analy-
sis and applications in geometric optimization. Discrete and
Computational Geometry, 25(4):569–590, 2001.

[8] S. Har-Peled. On the expected complexity of random con-
vex hulls. Technical Report 330, School of Mathematical
Sciences, Tel-Aviv University, 1998.

[9] S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: A
Method for Scheduling Parallel Loops. Communications of
the ACM, 35(2):90–100, August 1992.

[10] C. P. Kruskal and A. Weiss. Allocating independent subtasks
on parallel processors. IEEE Transactions on Software En-
gineering, SE-11(10):1001–1016, 1990.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 4 8 12 16 20 24 28

Processors

Dependence violations

Meseta-Trapezoidal
Meseta-GSS

Meseta-Factoring

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 4 8 12 16 20 24 28

Processors

Number of threads squashed

Meseta-Trapezoidal
Meseta-GSS

Meseta-Factoring

Figure 5. Dependence violations and number of threads squashed during the execution of the disc-shaped in-
put set with 10 million points.

 0

 1

 2

 3

 0 4 8 12 16 20 24 28

S
pe

ed
up

Processors

Speedup, disc-shaped input set, 40M points

Meseta-GSS
Fixed-Size Chunking

GSS

 0

 1

 2

 3

 4

 5

 6

 0 4 8 12 16 20 24 28

S
pe

ed
up

Processors

Speedup, square-shaped input set, 40M points

Meseta-GSS
Fixed-Size Chunking

GSS

Figure 6. Speedups during the execution of the Convex Hull with different number of processors.

[11] S. Lucco. A dynamic scheduling method for irregular paral-
lel programs. In PLDI ’92: Proceedings of the ACM SIG-
PLAN 1992 conference on Programming language design
and implementation, pages 200–211. ACM Press, 1992.

[12] M. Gupta and R. Nim. Techniques for run-time paralleliza-
tion of loops. Supercomputing, November 1998.

[13] K. Mulmuley. Randomized algorithms in Computational Ge-
ometry. In J.-R. Sack and J. Urrutia, editors, Handbook
of Computational Geometry, chapter 16, pages 703–724.
North-Holland Publishing Co., 2000.

[14] K. Mulmuley and O. Schwarzkopf. Randomized algorithms.
In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 34, pages
633–652. CRC Press, New York, 1997.

[15] C. D. Polychronopoulos and D. J. Kuck. Guided self-
scheduling: A practical scheduling scheme for parallel
supercomputers. IEEE Transactions on Computers, C-
36(12):1425–1439, December 1987.

[16] S. Rajasekaran, P. M. Paradalos, J. H. Reif, and J. D. Rolim,
editors. Handbook of Randomized Computing: Volumes I
and II, volume 9 of Combinatorial Optimization. Kluwer
Academic Publishers, 2001.

[17] L. Rauchwerger and D. A. Padua. The LRPD test: Specula-
tive run-time parallelization of loops with privatization and
reduction parallelization. In Conf. on Programming Lan-

guages Design and Implementation, pages 218–232, June
1995.

[18] H. Raynaud. Sur l’enveloppe convexe des nuages de points
aléatoires dans �n . Journal of Applied Probability, 7:35–48,
1970.

[19] A. Renyi and R. Sulanke. Über die konvexe hülle von n
zufällig gerwähten punkten II. Zeitschrift für Wahrschein-
lichkeitstheorie und verwandte Gebiete, 3:138–147, 1964.

[20] P. Rundberg and P. Stenström. Low-Cost Thread-Level Data
Dependence Speculation on Multiprocessors. In Workshop
on Scalable Shared Memory Multiprocessors, June 2000.

[21] R. Seidel. Linear programming and convex hulls made easy.
In Proceedings of the 6th Annual ACM Symposium on Com-
putational Geometry, pages 211–215, 1990.

[22] P. Tang and P.-C. Yew. Processor self-scheduling for mul-
tiple nested parallel loops. In IEEE Intl. Conf. on Parallel
Processing, pages 528–535, August 1986.

[23] T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A prati-
cal scheduling scheme for parallel compilers. IEEE Transac-
tions on Parallel and Distributed Systems, 4(1):87–98, 1993.

[24] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In
H. Maurer, editor, New Results and new Trends in Computer
Science, number 555 in LNCS, pages 359–370. Springer,
1991.

View publication stats

https://www.researchgate.net/publication/221617257

