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Nonparaxial tilted waveobjects
Alexandr B. Plachenov, Pedro Chamorro-Posada and Aleksei P. Kiselev

Abstract—Simple closed-form analytical expressions for tilted
astigmatic wave beams and wavepackets that are exact solutions
of the wave equation are constructed. They are obtained through
two different but equivalent derivations, one is based on a com-
plex shift in the Bateman-type solutions, the other employs their
Lorentz transformation. Analytic expressions for the propagation
invariants: energy, momentum and orbital angular momentum
of tilted waveobjects with general astigmatism are presented.

Index Terms—Nonparaxial wave propagation, tilted waveob-
jects, propagation invariants, orbital angular momentum.

I. INTRODUCTION

ONE cannot overestimate the role played in modern
science and technology by wave phenomena described

by Gaussian-localized solutions of the wave equation

□u =
1

c2
utt − uxx − uyy − uzz = 0 , (1)

c = const. The mainstream basic approach to such processes
still rests on an approximate theory based on the parabolic
equation. However, along with this well-established paraxial
framework, in the 1980s certain exact solutions of Eq. (1) were
introduced that describe Gaussian wave beams and packets,
see, e.g. [1]–[5]. Both theories employ fairly similar mathe-
matical structures, among which the phase function plays an
outstanding role.

Within the paraxial theory of localized waveobjects, prop-
agation is restricted to angles very close to that fixed by a
particular axis. Even though tilted beams and packets can
be addressed with this approximate approach, these must
propagate at a small angle to this fundamental direction, named
optical axis in the context of optics. We will also stand by this
convention in spite of the broader scope of our work.

In the series of papers [6]–[8], an important class of
tilted wave beams was thoroughly investigated. The main
motivation for the introduction of these solutions was the
accurate and convenient analysis of propagation and scattering
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problems when the boundary plane of the aperture field is non-
orthogonal to the optical axis. In their detailed study of such
solutions, Hadad and Melamed [6]–[8] proposed a specific
version of the paraxial theory for which the tilt angle between
the direction of beam propagation and the optical axis may be
not small, although the angular distribution of the beam is still
assumed to be narrow. Paraxial tilted beams were addressed in
[9] where they were employed in a trick allowing novel higher-
order modes by integrating over the complexifying parameter.

In contrast to this previous research, we address exact
solutions of the wave equation, having similar properties
but not subject to the conditions of paraxiality that imply
the smallness of tilt angles and angular spectral widths. We
develop a further generalization of the well-known relatively
undistorted solutions containing a functional parameter that
determines the nature of the localization of the function
under consideration. These solutions can be shaped as time-
inharmonic and spatially inclined beams and packets, whose
properties will be investigated in detail. In particular, we will
show that a beam can have a propagation direction distinct
of that of its own axis and that the isoamplitude surfaces of
a packet are approximately ellipsoids with axes non-trivially
oriented with respect to direction of propagation.

Our main technical tool is a complex shift with the trans-
verse variables in the fundamental astigmatic mode solution
[5]. Looking at the matter broadly, it should be noted that the
direct use of complex shift to study localized solutions of the
wave equation goes back to Hillion [10], who applied it to a
longitudinal variable in the classical Bateman solution [11],
[12]. As a result, he arrived at the Bateman–Hillion class of
relatively undistorted waves [3], [4], which contains a rich set
of Gaussian localized beam-like and packet-like solutions with
axisymmetric phases. This class was extended in our paper [5]
by considering astigmatic phases.

The complex shift in solutions of the wave equation was
discussed in detail for the 2D case in [13]. Some preliminary
results were mentioned in a short conference paper note [14].
The tilted fundamental mode seemingly first appeared (with no
discussion) for axisymmetric case in the course of a systematic
formal consideration of Helmholtz-Gauss higher-order modes
both in paraxial [15] and in exact theory [16].

In this work, we also describe an alternative derivation
of these tilted solutions based on the observation of the
equivalence between a complex shift in the transverse coordi-
nates and the combination of a Lorentz transformation and a
rotation. A similar idea can be found in [17], devoted to the
theory of 2D Poincaré wavelets.

We present analytical expressions for the conserved quanti-
ties of Eq. (1): energy, momentum and angular momentum
of tilted beams and packets including those with general
astigmatism. The derivation is mediated by the exploration
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of the properties of our solutions in their asymptotic limits.

II. NON-TILTED ASTIGMATIC BATEMAN SOLUTIONS

We start with the formulation of astigmatic Bateman-type
exact solutions of Eq. (1) introduced in [5] and describing
highly localized non-tilted wave beams and wave packets.

A. Relatively undistorted progressing waves

We note that all the solutions of the equation (1) we are
dealing with fall under the classical definition of relatively
undistorted progressive waves [18], i.e., they have the form

u = gf(θ) , (2)

where the amplitude g = g(x, y, z, t) and the phase θ =
θ(x, y, z, t) are fixed functions, and the waveform f is an
arbitrary function of one variable. Thus, (2) describes in fact
a family of solutions with a functional parameter f . Generally
speaking, functions f , g and θ can be real or complex. In the
latter case both real and imaginary parts of u are solutions of
(1) as well.

B. Bateman-type solutions with a general astigmatic phase

We set the z-axis as the optical axis of the system and we
call the Cartesian coordinate z the longitudinal variable. The
characteristic variables

α = z − ct , β = z + ct (3)

are related, respectively, to forward and backward wave prop-
agation along the z-axis. By r =

(
x
y

)
we denote the 2D vector

of transverse coordinates, and by rT = (x, y) its transpose.
In [5], certain solutions were introduced closely related to

paraxial astigmatic fundamental modes [19] and characterized
by the complexified astigmatic Bateman phase

θ = α+ rTΓ(β)r , (4)

where Γ(β) is a 2×2 symmetric matrix with positive definite
imaginary part. The matrix Γ is thus parameterized by 6
free real constants. Being a phase in the above sense, its
dependence on β obeys the equation [5]

Γ−1(β) = Γ−1
0 + βI , (5)

where Γ−1
0 = Γ−1(0), and I is the 2×2 unit matrix. Therefore,

ImΓ−1
0 = ImΓ−1(β) is negative definite, then the matrix

ImΓ(β) is positive definite, whence the phase takes the values
in the closed complex upper half-plane C+,

Im θ ≥ 0. (6)

The phase is real only when r = 0 i.e. on the z-axis.
It is important to note that since the phase (4) is complex,

the waveform f(θ) must be an analytic function (see [20]) in
C+.

We confine our consideration to the case where the ampli-
tude g is independent of the transverse variables r. As shown
in [5], it only differs from

g =
√
detΓ(β) (7)

by a constant factor.
The ansatz (2) with the phase (4) and the amplitude (7)

is a solution of the wave equation (1). By analogy with the
paraxial case, this solution is called the fundamental astigmatic
mode. Under a proper choice of the waveform f it can describe
non-paraxial time-dependent Gaussian beams (known in the
axisymmetric case as focus wave beams [1]) and Gaussian
wave packets, see [3] and section II-D.

Aiming exclusively at the description of solutions localized
near the z-axis, we note that they must decrease with distance
from the axis. This is equivalent to assume1 that

f(θ) → 0 as Im θ → ∞. (8)

C. Special cases of astigmatism

In the case where Γ is diagonal,

Γ(β) = diag[(β − z1 − ib1)
−1, (β − z2 − ib2)

−1] (9)

and z1,2 and b1,2 are real constants, b1,2 > 0, expression
(2),(4),(7) reduces to the simple astigmatic (for z1 ̸= z2 and/or
b1 ̸= b2) solution [3]. The degenerate case where z1 = z2 = 0
and b1 = b2 = b, i.e.,

Γ(β) = (β − ib)−1I (10)

is that of complexified axisymmetric (stigmatic) Bateman–
Hillion phase first introduced in [10]. For simple astigmatic
phase (9) Eq. (7) reduces (up to a constant factor) to

g =
1√

β − z1 − ib1
√
β − z2 − ib2

, (11)

and for the axisymmetric phase (10) – to

g =
1

β − ib
. (12)

If we perform the rotation in xy-plane, then the matrix Γ(β)
for simple astigmatic phase becomes nondiagonal. Putting
formally the rotation angle in such matrix nonreal, we come
to Arnaud-Kogelnik general astigmatic phase [19]. Further, in
the course of numerical calculations, we’ll use the letter Ψ for
imaginary part of the rotation angle [5].

D. Waveforms of particular interest

The above assumption ImΓ(β) > 0 implies that Im θ ≥ 0,
and the waveform f can be taken as an arbitrary function
of a complex variable analytic in the closed upper half-plane
C+. We are interested only in those waveforms that rapidly
decrease as |r| grows and demonstrate beam-like or packetlike
behavior of the solution.

We will pay a special attention to two particular waveforms:

f(θ) = exp (ikθ) (13)

with k a real constant, and

f(θ) = exp
[
2ka

(
1−

√
1− iθ/a

)]
(14)

1It follows from the maximum modulus principle for analytic functions [21]
asserting that the maximum of the modulus of an analytic function bounded
in the domain (in our case it is C+) is attained at the boundary (in our case
it is the real axis).
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with k and a real constants. Following [2], [3] we take the
branch of the square root having positive imaginary part.

The waveform (13) is associated with a Gaussian beam and
in the axisymmetric case it reduces to the focus wave mode
[1], whereas (14) is associated with a simple Gaussian wave
packet [2], [3]. On the upper half-plane C+, the function (13)
is strongly localized near the real axis Im θ = 0 where its
modulus equals to one. The modulus of (14) is one at θ = 0,
at all other points of C+ it is smaller and, as shown in [2],
[3], exponentially decays when |θ| → ∞.

III. COMPLEX SHIFT

Translation symmetry of the wave equation (1) allows shifts,
both real and complex, with respect to transverse variables. In
this section we describe an approach to the construction of
tilted solutions via such a shift.

Let r∗ be an arbitrarily fixed complex 2D vector. Making
the shift

r 7→ r− r∗ (15)

in the generalized Bateman solution (2) with (4) and (7) we
arrive at a solution of Eq. (1), having the form of relatively
undistorted progressing wave (2) with the phase

θ∗ = α+ (r− r∗)TΓ(β)(r− r∗) (16)

and the same amplitude.
After some algebra, see Appendix A, we represent function

(16) in the form convenient for further analysis:

θ∗ = θ2 + θ1 + θ0, (17)

with

θ2 = (r− r0 − βτ tanϕ)TΓ(β)(r− r0 − βτ tanϕ) , (18)

θ1 =
z cos 2ϕ+ τT (r− r0) sin 2ϕ− ct

cos2 ϕ
, (19)

θ0 = τTΓ−1
0 τ tan2 ϕ . (20)

Here, the angle ϕ, the real unit transverse vector τ and
the real transverse vector r0 are expressible via Γ0 and r∗,
see (100),(102) but they can be treated alternatively as new
independent parameters.

As we have earlier noted, the waveform f(θ) of a com-
plexified Bateman solution is analytic on the upper half-
plane. However, the function Im θ∗ may take negative values
(because Im θ0 < 0) where f(θ∗) is not defined. To avoid this
trouble we henceforth put in (2) θ = θ∗ − θ0, i.e.,

θ = θ1 + θ2 . (21)

and consider the solution of (1) of the form

u =
√
detΓ(β)f(θ) . (22)

Also, it is convenient to perform an additional real shift of
the coordinate system in the xy plane and a rotation about
the z axis, as a result of which the vector r0 vanishes and
the direction of the vector τ coincides with the direction

of the x-axis. In what follows, we will assume that such
transformations are completed which gives

θ1 =
1

cos2 ϕ
[(z − ct cos 2ϕ) cos 2ϕ+ (x− ct sin 2ϕ) sin 2ϕ] ,

(23)

θ2 = ρTΓ(β)ρ, (24)

where

ρ = r− βτ tanϕ = (x− β tanϕ, y)T . (25)

IV. LORENTZ TRANSFORMATIONS

Here, we describe an alternative derivation of the above
tilted solutions based on the classical Lorentz transformation
[22].

A solution of the wave equation (1) in a reference frame
with space-time variables t,R, R = (x, y, z)T = (r, z)T can
be expressed in a second frame t′,R′, moving at a constant
velocity to the former, using the the Lorentz transformation

t′ =
t− vTR/c2√
1− |v|2/c2

,R′ =
R− vt√
1− |v|2/c2

. (26)

Here, v is a 3D real speed vector |v| < c specifying
the velocity of the primed Cartesian frame measured in the
unprimed frame. We now consider separately longitudinal
(Lorentz boosts) and transverse Lorentz transforms.

A. Longitudinal Lorentz transformation

Start with the case of v directed along the z-axis, where
r′ = r,

t′ =
t− vz/c2√
1− (v/c)

2
, z′ =

z − vt√
1− (v/c)

2
, (27)

α′ =

√
c− v

c+ v
α = λα , β′ =

√
c+ v

c− v
β =

β

λ
. (28)

Here, v is a projection of v on the z-axis. The number λ =√
c−v
c+v may be greater than or less than one depending on the

sign of v. We come up with a new relatively undistorted wave
solution of the form (2), (4), (7) with g, θ and Γ replaced by
the respective primed functions defined as follows

θ′ = λα+ rTΓ

(
β

λ

)
r = λ[α+ rTΓ′ (β) r] , (29)

g′ =

√
detΓ

(
β

λ

)
, (30)

and

Γ′ (β) =
1

λ
Γ

(
β

λ

)
. (31)

The latter formula will be needed below.
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B. Transverse Lorentz transformation

Now let the unit real vector τ be orthogonal to the z axis
and, for simplicity, we take τ = (1, 0)T . It is convenient to
define the vector v in (26) by v = cτ sinϕ, where ϕ is a
certain angle (which, as will be seen from what follows, will
have the same meaning as earlier, see (18)-(20)). The Lorentz
transformation (26) allows z′ = z, y′ = y,

t′ =
t− x sinϕ/c

cosϕ
, x′ =

x− ct sinϕ

cosϕ
, (32)

α′ =
z cosϕ+ x sinϕ− ct

cosϕ
, β′ =

z cosϕ− x sinϕ+ ct

cosϕ
.

(33)

Let us show that these transformations give the results
identical to that obtained earlier. We make a rotation of the
axes of the initial variables:

z̃ = z cosϕ− x sinϕ , x̃ = x cosϕ+ z sinϕ , t̃ = t ,

z = z̃ cosϕ+ x̃ sinϕ , x = x̃ cosϕ− z̃ sinϕ , y′ = y = ỹ ,

whence

x′ =
x̃ cosϕ− z̃ sinϕ− ct̃ sinϕ

cosϕ
= x̃− (z̃ + ct̃) tanϕ ,

α′ =
z̃ cos 2ϕ+ x̃ sin 2ϕ− ct̃

cosϕ
, β′ =

z̃ + ct̃

cosϕ

Denote β̃ = z̃ + ct̃, r̃ =
(
x̃
ỹ

)
, then

β′ =
β̃

cosϕ
, (34)

r′ =

(
x′

y′

)
= r̃− β̃τ tanϕ =: ρ̃ . (35)

Now we express the non-tilted phase (4) presented in Lorentz-
transformed variables through the rotated variables x̃, ỹ, z̃
and t̃. After an elementary, although cumbersome algebra we
obtain the expression for the new phase

θ′ = α′ + r′TΓ(β′)r′

=
z̃ cos 2ϕ+ x̃ sin 2ϕ− ct

cosϕ

+ (r̃− β̃τ tanϕ)TΓ

(
β̃

cosϕ

)
(r̃− β̃τ tanϕ)

= cosϕ

[
z̃ cos 2ϕ+ x̃ sin 2ϕ− ct

cos2 ϕ
+ ρ̃T Γ̃(β̃)ρ̃

]
, (36)

with

Γ̃(β̃) =
1

cosϕ
Γ

(
β̃

cosϕ

)
. (37)

The formula (37) will coincide with (31) if we put λ = cosϕ.
To summarize, we observe that the formulas of section

III found via complex transverse shift can be alternatively
obtained by successful application of
1) longitudinal Lorentz transformation with λ = cos−1 ϕ,
2) rotation in xz plane by the angle ϕ and
3) transverse Lorentz transformation in x-direction with the
speed v = c sinϕ.

V. PROPERTIES OF THE TILTED ASTIGMATIC PHASE

A. The phase at moderate values of coordinates and time

Consider now the properties of the tilted phase given by
(21). The function θ1 is a linear real function of x and y,
and its surface levels are planes that move with the speed c
at the angle 2ϕ to the z-axis. The function θ2 is quadratic in
r, its imaginary part Im θ2 is nonnegative and vanishes when
r = βτ tanϕ, i.e.

x = (z + ct) tanϕ , y = 0 . (38)

At each instant of time t it is a straight line, which is tilted at
an angle ϕ to z-axes. The level surfaces of Im θ2 and Re θ2
move with a speed c along the z-axis in the negative direction.

Let the phase (21) be real and fix its value. The points where
this value retains are those of intersection of the straight line
θ2 = 0 (38) which we call the beam axis, and a certain plane
θ1 = const. These points run with the speed c, the direction of
propagation lie in the xz-plane, the angle between the speed
vector and the z-axis is equal to 2ϕ.

Let us now fix the instant of time t and consider the surface
where the value of Im θ = Im θ2 is constant:

ρT ImΓ(β)ρ = const . (39)

In the stigmatic case (10), such a surface is a one-sheeted
hyperboloid, but in the general case, it is not a surface of the
second order. However, the sections of such a surface by the
planes z = const are always ellipses whose centers lie on the
line (38), and directions and lengths of the semiaxes depend
on z.

Confining the consideration to the case where τ is parallel
to the x-axis, we get

ρ = r− βτ tanϕ = (x̌/cosϕ, y̌)

where

x̌ = x cosϕ− (z + ct) sinϕ , y̌ = y

are the Cartesian coordinates in the plane orthogonal to the line
(38). It is seen that the surface (39) is flattened in the plane
xz by a factor of cosϕ as compared with a similar surface for
the non-tilted phase for the same matrix Γ(β).

Let us now turn to the surfaces Re θ = const, which we will
call fronts. Their shapes are quite intricate even in the case of a
non-shifted phase. However, we are interested in the behavior
of solutions of (1) for small ρ, where the terms quadratic in
ρ are relatively small. Since Re θ2 depends quadratically on
the transverse coordinates, the main term here turns out to
be a linear function θ1, and at points lying on (38), the level
lines of this function are tangent planes to the fronts. The
distinguishing feature of the phase (21) is that the fronts are
no longer orthogonal to the line (38) as it was in the non-tilted
case, and they intersect it at an angle π

2 − ϕ.
Consider the moving point M ∈ R3 described by

x = ct sin 2ϕ , y = 0 , z = ct cos 2ϕ , (40)

where θ = θ1 = θ2 = 0. At each instant of time, the straight
line (38) and the plane θ1 = 0 intersect at M. It moves along
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with this plane at the speed c in the direction forming the
angle 2ϕ with the z axis, always remaining in the xz plane.

Further it will be convenient to use the Cartesian coordinates
rotated relative to the original system (x, y, z) by an angle 2ϕ

x̂ = −z sin 2ϕ+ x cos 2ϕ , ŷ = y , ẑ = z cos 2ϕ+ x sin 2ϕ,
(41)

in which the direction of the axis ẑ coincides with the direction
of motion of the point M. In these coordinates, the expression
for the phase (21) takes the form

θ = θ1 + θ2 =
ẑ − ct

cos2 ϕ
+ ρTΓ(β)ρ , (42)

where

β = ẑ cos 2ϕ− x̂ sin 2ϕ+ ct , ρ = (x̂+ (ẑ− ct) tanϕ, ŷ)T .

B. The phase at large values of coordinates and time

Consider first the phase (21) in the case when either time
or distance is large. It is immediately seen from (42) that
at any fixed point both Re θ and Im θ tend to infinity as t
becomes large. Similarly, at any fixed instant of time Re θ
grows infinitely with R =

√
x2 + y2 + z2, but Im θ tends to

infinity with |ρ|, that is with the distance from the beam axis
(38).

We now address the case of the coordinated tendency of
both distance and time to infinity, which is important for what
follows. Let both ct and R tend to infinity, provided that their
difference

s = R− ct

remains limited, which condition we present as follows

s = O(1), ct → +∞. (43)

Such asymptotics of the non-tilted Bateman-type solutions for
the axisymmetric case were found in [2], [3].

The asymptotics of θ depends on the direction in which the
observation point

R = (ct+ s)n (44)

moves, where n = R/R is the unit vector directed from the
origin to R. If n is opposite to the direction of the z-axis,
then β remains limited, as does Im θ, while Re θ → ∞. For
all other directions β → ∞.

First, we observe that, for large values β, the formula (5)
implies

Γ(β) =
(
Γ−1
0 + βI

)−1 ≈ I/β − Γ−1
0 /β2. (45)

Therefore,

θ2 = ρTΓ(β)ρ ≈ |ρ|2/β − ρTΓ−1
0 ρ/β2 . (46)

The use of the definition of ρ (25) yields

|ρ|2

β
=

x2 + y2

β
− 2x tanϕ+ (z + ct) tan2 ϕ (47)

for the first term on the right-hand side of (46).
Thence, the expression (23) for θ1 is easily transformed to

θ1 = (z − ct) + 2x tanϕ− (z + ct) tan2 ϕ. (48)

With the observation that z − ct = (z2 − c2t2)/β, we
obtain from (46), (47) and (48) for large values of β the
approximation

θ = θ1 + θ2 ≈ R2 − c2t2

β
− ρTΓ−1

0 ρ

β2
.

With a small difficulty, we find the limit function to which θ
tends as β → ∞,

θ((ct+ s)n, t) → Θ, (49)
Θ = Θ(s,n) = Θ1 +Θ2 , (50)

where Θ1 is linear with respect to s, and Θ2 is independent
of s and is approximately quadratic in distance from the beam
axis:

Θ1 = Θ1(s,n) = 2hs , (51)

Θ2 = Θ2(s) = −h2 sin2 χψTΓ−1
0 ψ . (52)

Here, ψ is the 2D vector defined by

ψ = (cosφ− tan(χ/2) tanϕ, sinφ)T , (53)

and

h = h(n) =
1

1 + cosχ cos 2ϕ− sinχ cosφ sin 2ϕ
. (54)

We use spherical angular coordinates (χ, φ) with the polar
axis along the ẑ-axis (41):

x̂ = R sinχ cosφ , ŷ = R sinχ sinφ , ẑ = R cosχ ,

0 ≤ χ ≤ π, −π < φ ≤ π. Where n is opposite to the direction
of the z-axis, i.e., at χ = π − 2ϕ, φ = 0, the functions h and
Θ turn to infinity.

It deserves to be mentioned that though the splitting of the
phase Θ into a sum (50) is somewhat similar to representation
(42), neither Θ1 is the limit of θ1, nor θ2 → Θ2.

VI. TILTED SOLUTIONS WITH PARTICULAR WAVEFORMS

A. Gaussian beams

Let us move on to considering solutions of the wave
equation (1) of the form (22) with the waveform (13):

u =
√
detΓ(β) exp(ikθ)

= exp

(
ik

cos2 ϕ
(z cos 2ϕ+ x sin 2ϕ− ct)

)
×
√
detΓ(β) exp

(
ikρTΓ(β)ρ

)
. (55)

The first factor on the right-hand side is a plane wave corre-
sponding to the wavenumber k cos−2 ϕ and propagating under
the angle 2ϕ with the axis z. Other two factors represent a
Gaussian beam whose axis (38) is tilted by the angle ϕ at the
z-axis. Modulus of the solutions (55) is given by

|u| =
√
|detΓ(β)| exp(−k Im θ2)

=
√
|detΓ(β)| exp

(
−kρT ImΓ(β)ρ

)
. (56)

Solution (55) is not square integrable and has an infinite
energy.
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B. Gaussian wavepackets at moderate values of coordinates
and time

Consider the waveform f(θ) given by (14), for which in [3]
is shown that (8) holds and the modulus of function

u =
√
detΓ(β) exp

[
2ka

(
1−

√
1− iθ/a

)]
(57)

attains its maximum at the moving point M described by (40).
At this point, the maximum value of the modulus of function
f equals to one, and the solution (57) becomes

u|R=M =
√
detΓ(B) (58)

with B = β|R=M = 2ct cos2 ϕ.
The structure of the function (57) around the point (40)

depends on the values of the parameters k, a and the matrix
Γ(β) and changes with time.

Solution (57) is square integrable and its energy is finite.
For moderate values of t and k, a both large which ensures a

strong localization of the solution around M, we, analogously
to the consideration of the non-tilted axisymmetric solutions
in [2], [3], expand the square root in powers of θ and obtain

2ka
(
1−

√
1− iθ/a

)
≈ k

(
iθ − θ2/4a

)
≈ k

(
iθ − θ21/4a

)
,

(59)
which is true wherever the solution is not exponentially small.
Omitting higher order term allows for (40) near M the
expression

u ≈
√

detΓ(B) exp(ikθ1) exp
[
k
(
iθ2 − θ21/4a

)]
, (60)

where θ1 and θ2 given by (42) with β = B. There, the
exponent of the second exponential in (60) is a quadratic
form with respect to deviations of Cartesian coordinates of
observation point R from M, its real part is negative definite.
The modulus level surfaces of (60) are ellipsoids described by

ρT ImΓ(B)ρ+
θ21
4a

= const .

We note that principal axes of these ellipsoids are parallel
neither to coordinate axes, nor to the straight line (38), nor
to the trajectory of the point M. In the process of the packet
propagation, directions of such axes rotate together with the
directions of principal axes of the matrix ImΓ.

These features are illustrated in Figures 1, 2 and 5, which
displays the space-time evolution of untilted and tilted beam-
like and packet-like solutions. Similar plots for solutions with
general astigmatism are shown in Figures 3, 4 and 6. The
visible distinction of some level surfaces from ellipsoids is
observed far from the moving point M.

As it was shown in [5], the above beam and packet solutions
near M are related in such a way that the beam acts as
the envelope of the corresponding packet in their respective
spatiotemporal evolution. Such feature is illustrated in Figure
7 that shows corresponding beams and packets both in the
tilted and non tilted case.

Fig. 1: Level surfaces of |u| for an untilted Gaussian stigmatic
packet and the amplitude of the corresponding beam at differ-
ent times. z1 = z2 = 4, b1 = b2 = 3, and k = 5.

Fig. 2: Level surfaces of |u| for a tilted Gaussian stigmatic
packet and the amplitude of the corresponding beam at differ-
ent times. ϕ = π/6, z1 = z2 = 4, b1 = b2 = 3, and k = 5.
Vectors w1 = 20τ and w2 = 20es indicate the respective
directions of vectors τ and the unit speed vector es.

C. Gaussian wavepackets at large values of coordinates and
time

If either R or t is large, the phase (21) tends to infinity
whence the solution (22) is exponentially small.

Assume now that R and t grow in such a way that the
condition (43) is satisfied. If n is opposite to the direction
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Fig. 3: Level surfaces of |u| for an untilted GA packet and
the amplitude of the corresponding beam at different times.
z1 = 3, z2 = 10, b1 = 4, b2 = 1, k = 5 and Ψ = 0.15.

of the z-axis, then β = const, and θ → ∞, whence the
solution (22) exponentially decays. At all other directions of
n, θ → Θ(s,n), and β ≈ R/h(n), and, as seen from (10), the
asymptotics of the amplitude (7) is

√
detΓ(β) ≈ h(n)/R.

Therefore,

u ≈ h(n)

R
f(Θ(s,n)) ≈ h(n)

ct
f(Θ(s,n)) , (61)

with Θ(s,n) = Θ(R−ct,n) given by (50). For the waveform
(14), the function (61) exponentially decreases as |s| grows,
see [3].

Similarly to (59), we find that near the maximum modulus
of the solution,

2ka
(
1−

√
1− iθ/a

)
≈ k

(
iΘ−Θ2

1/4a
)
. (62)

The function Θ1 is real and vanishes at s = 0, i.e., on the
sphere R = ct. The function Θ2 is complex with ImΘ2 ≥ 0
and vanishes at χ = 0. In a neighborhood of the moving point
M characterized by s = 0, χ = 0, at which Θ = 0, we hold
the terms quadratic in s and χ, which gives

Θ(s,n) ≈ 2h0s− h2
0χ

2ψT
0 Γ

−1
0 ψ0 (63)

Fig. 4: Level surfaces of |u| for a tilted GA packet and the
amplitude of the corresponding beam at different times. ϕ =
π/6, z1 = 3, z2 = 10, b1 = 4, b2 = 1, k = 5 and Ψ = 0.15.
Vectors w1 = 20τ and w2 = 20es indicate the respective
directions of vectors τ and the unit speed vector es.

where

ψ0 = (cosφ, sinφ)T , h0 =
1

1 + cos 2ϕ
=

1

2 cos2 ϕ
. (64)

Thence,

u((ct+ s)n, t) ≈ h0

ct
exp(2ikh0s)

× exp
{
kh2

0

[
−iχ2ψT

0 Γ
−1
0 ψ0 − s2/a

]}
, (65)

which is applicable at large k where u is not exponentially
small.

Further, we will be confined to large values of β which
occurs at all directions n except the one opposite to the
direction of the z-axis, where z = −(ct + s) and β = −s
does not grow with time. There

√
detΓ(β) does not vanish,

but the waveform exponentially tends to zero. Therefore we
neglect contribution of a small neighborhood of this direction
to integrals describing energy, momentum and OAM.
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Fig. 5: Level surfaces of the real part of a Gaussian stig-
matic packet at different times. Untilted ϕ = 0 solutions
are displayed on the left column. The corresponding tilted
solutions with ϕ = π/6 are shown on right column. In all
cases, z1 = z2 = 4, b1 = b2 = 3, and k = 5. Solid blue and
dashed-dote red lines indicate the respective directions of τ
and the speed vector.

VII. ENERGY AND MOMENTUM OF A TILTED WAVEPACKET

In this section, we derive the analytic expressions for the
first two conserved quantities of the wave equation (1), namely,
the energy E and momentum P, for a tilted wavepacket
solution. We employ their independence on time for a con-
venient calculation in the asymptotic limit. In what follows,
the waveform f(θ) is assumed to be strongly localized with
respect to θ, that is, with respect to α = z − ct, x, and y for
moderate values of t, and with respect to s = R − ct and χ
for large t.

A. A general wavepacket

In this subsection, we do not presume any specific expres-
sion for the waveform which must be just localized to allow
the convergence of the arising integrals. The leading terms of
derivatives of (61) in the area (43) are given by differentiating
only the waweform f(Θ). Introducing the notation

df(Θ)/dΘ := ḟ(Θ)

Fig. 6: Level surfaces of the real part of the a GA packet at
different times. Untilted ϕ = 0 solutions are displayed on the
left column. The corresponding tilted solutions with ϕ = π/6
are shown on right column. In all cases, z1 = 3, z2 = 10,
b1 = 4, b2 = 1, k = 5 and Ψ = 0.15. Solid blue and dashed-
dote red lines indicate the respective directions of τ and the
speed vector.

and observing that ∂Θ(s, χ, φ)/∂s = 2h, we find the approx-
imations

1

c
ut ≈

−2h2

R
ḟ(Θ) ,∇u ≈ 2h2

R
ḟ(Θ)n. (66)

The expressions for energy density and for momentum density
[23], [24] are

E =
1

2

(
|∇u|2 + 1

c2
|ut|2

)
≈ 2h4

R2
|ḟ(Θ)|2 (67)

and
P = − 1

2c2
Re(ut∇u∗) ≈ 2h4

cR2
|ḟ (Θ) |2n. (68)

The star in (68) denotes complex conjugation. Here, we have
noted that |h| = h and replaced ct by R, which is approxi-
mately correct in the area (43). For an acoustic wavepacket,
the energy and momentum of the sound wave are obtained
multiplying Eqs. (67) and (68) by ρ0, the density of the fluid
at rest.

Energy E =
∫∫∫

R3 E d3R and momentum P =∫∫∫
R3 P d3R are independent of time and can be conveniently

found via integration of the respective densities at large t.
The integrands are small outside the area (43) which allows



9

(a)

(b)

(c)

(d)

Fig. 7: Level surfaces of the real part of the GA packet and
isosurfaces of the corresponding beams |u| at t = 6. (a) and
(c) are untilted solutions. (b) and (d) are tilted solutions with
ϕ = π/6. (a) and (b) are stigmatic solutions with z1 = z2 = 4,
b1 = b2 = 3, and k = 5. (c) and (d) are solutions with general
astigmatism with z1 = 3, z2 = 10, b1 = 4, b2 = 1, k = 5 and
Ψ = 0.15.

us to integrate the expressions (67) and (68) over the entire
space. We write the volume element as dxdydz ≡ d3R =
R2d2ndR = R2 sinχdχdφdR, denoting by d2n the area

element of the unit sphere S2. Integration over R turns into
integration over s. We obtain:

E = 4

∫∫
S2

h4(n) d2n

∫ ∞

−∞
|ḟ(Θ(s,n))|2 ds, (69)

P =
2

c

∫∫
S2

h4(n)n d2n

∫ ∞

−∞
|ḟ(Θ(s,n))|2 ds. (70)

In the axisymmetric case, the momentum P is parallel to
the ẑ-axis.

B. The Gaussian wavepacket (14) at large values of k

Next, we will address the above specific Gaussian
wavepacket under the condition that k is large. We will employ
the observation that ImΘ ≥ 0 and the absolute values of
integrands in (69) in (70) reach sharp maxima where the
arguments of exponentials in (59) vanish. As was shown in
section VI-C, this occurs where χ = 0 and s = 0. Assuming
s and χ small, and using the notation (64), we get from (62)

|ḟ(Θ)|2 ≈ k2 exp
{
2kh2

0

[
χ2ψT

0 ImΓ−1
0 ψ0 − s2/a

]}
. (71)

From (69) we obtain

E ≈ 4k2h4
0

∫∫
S2

exp
[
2kh2

0χ
2ψT

0 ImΓ−1
0 ψ0

]
d2n (72)

×
∫ +∞

−∞
exp

[
−2kh2

0s
2/a
]
ds . (73)

Noting that ∫ ∞

−∞
exp(−ms2)ds =

√
π/m, (74)

we replace the inner integral by
√
πa/

√
2kh0 and come up

with

E = 4k2h4
0

√
πa√
2kh0

∫ π

0

χdχ

∫ π

−π

dφ exp
[
2kh2

0χ
2ψT

0 ImΓ−1
0 ψ0

]
.

(75)

We extend with a small error the integration with respect χ
and φ to the whole plane. Using the formula (see, e.g., [25])∫∫

R2

exp (−rTAr)d2r =
π√
detA

(76)

allows

E ≈ 4k2h4
0 ·

π

2kh2
0

√
det ImΓ−1

0

·
√
πa√
2kh0

=

=
π3/2

cos2 ϕ

√
ka

2 det ImΓ−1
0

. (77)

Similarly, for momentum we obtain from (70)

P ≈ π3/2

2c cos2 ϕ

√
ka

2 det ImΓ−1
0

n0 , (78)

where n0 is the unit vector along the ẑ axis.
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VIII. ORBITAL ANGULAR MOMENTUM OF A TILTED
WAVEPACKET

A. Orbital angular momentum in the general case

The density of angular momentum with respect to the ẑ-axis
is [23], [24]

J = − 1

2c
Re(u∗

φut). (79)

Calculating the derivative uφ in the area (43), which requires
taking into account the dependencies on φ of both phase and
amplitude, gives:

uφ ≈ −h2 sin2 χ

R
(ψTΓ−1

0 ψ)φḟ(Θ) + uhhφ , (80)

where

(ψTΓ−1
0 ψ)φ

= 2(− sinφ , cosφ)Γ−1
0 (cosφ+ tan(χ/2) tanϕ , sinφ)T ,

(81)

and
hφ = −h2 sinχ sinφ sin 2ϕ . (82)

Further,

uh ≈ h

R
ḟ(Θ) ·Θh +

1

R
f(Θ) , (83)

where
Θh = 2s− 2h sin2 χψTΓ−1

0 ψ . (84)

Employing (66) we get the expression for the OAM J =∫∫∫
R3 J d3R in the form of a sum:

J =
1

c
(I1 + I2 + I3), (85)

I1 = −
∫∫

S2

h5 sin2 χ[ψT ReΓ−1
0 ψ]φ d2n

∫ ∞

−∞
|ḟ(Θ(s,n))|2 ds,

(86)

I2 =

∫∫
S2

h3hφ d2n×
∫ ∞

−∞
|ḟ(Θ(s,n))|2 ReΘh ds, (87)

I3 =

∫∫
S2

h2hφ d2n

∫ ∞

−∞
Re(ḟ(Θ(s,n))f∗(Θ(s,n))) ds .

(88)
Note that I3 = 0, which follows from the observation that

2hRe(ḟ(Θ(s,n))f∗(Θ(s,n))) = (|f(Θ(s,n))|2)s ,

whence the inner integral over s in (88) vanishes in virtue of
the rapid decrease of the waveform at infinity. So, in general

J =
1

c
(I1 + I2) . (89)

Under the additional assumption

|f(ReΘ + i ImΘ)| = |f(−ReΘ + i ImΘ)| (90)

valid for the Gaussian-packet waveform (14), the expression
for I2 allows simplification. Indeed

ReΘh =
ReΘ

h
− h sin2 χψT ReΓ−1

0 ψ , (91)

which allows us to replace ReΘh in the inner integral in (87)
by the second term on the right-hand side of (91). We come
up with formula (89) where I1 is given by (86) and

I2 =

∫∫
S2

h6 sin3 χ sinφ sin 2ϕψT ReΓ−1
0 ψ d2n

×
∫ ∞

−∞
|ḟ(Θ(s,n))|2 ds. (92)

B. The Gaussian wavepacket (14) at large values of k

As in the previous section, for the waveform (14), the
approximation (71) shows that for large k, the integrands
in (86) and (87) are localized at small values of χ. Since
the integrand in (87) contains an additional multiplier sinχ
compared to (86), vanishing near the maximum point, we
conclude that for large k,

|I2| ≪ |I1|,

and I2 in (89) can be neglected. As a result of calculations
the details of which are given in Appendix B, we find the
asymptotics of the integral (86) and obtain:

J ≈ 1

c

π3/2(µ1 − µ2) sin 2κ
8

√
a

2k det ImΓ−1
0

(
1

λ2
− 1

λ1

)
,

(93)

where λ1 > λ2 > 0 and µ1 > µ2 are eigenvalues of the
matrices − ImΓ−1

0 and ReΓ−1
0 , respectively, and κ is the

angle between the eigenvectors corresponding to λ1 and µ1.
It is remarkable that in contrast to the results for energy (77)

and momentum (78), the expression (93) does not depend on
the tilt angle ϕ. Also noteworthy is the fact that the value of
OAM (93) is proportional to k−1/2, while (77) and (78) are
proportional to k1/2.

IX. DISCUSSION

We have obtained closed-form expressions for scalar tilted
non-paraxial waveobjects. The derivation was done in two
ways, showing that complex shifts and Lorentz transforma-
tions of Bateman-type expressions lead to the same class of
solutions of the wave equation. The solutions found can, in
particular, be used for builiding new localized solutions by
integrating with appropriate weights over the shift parameter,
generalizing a construction presented in [9] for simple astig-
matism in the paraxial case.

We have also derived the analytical expressions of the
propagation invariants of the scalar wave equation for the tilted
waveobjects, including those with general astigmatism. These
results give the energy, momentum and angular momentum of
tilted sound waves in a straightforward manner, via the simple
application of the factor ρ0, the density of the unperturbed
fluid.

Even though sound and electromagnetic wave phenomena
display strong contrasts in their structural physical properties:
scalar versus vectorial, oscillations that are longitudinal to the
propagation axis in contrast to transverse, the first requiring a
material support and the second not, they are both described
by the same fundamental mathematical apparatus: the wave
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equation (1). In the case of electromagnetic waves, a full vector
treatment requires to establish a precise relation between
the scalar and the full vector electromagnetic problems. For
instance, the scalar wavefunction can be set as one component
of the vector potential [26].

Light carries both spin angular momentum (SAM) and
OAM. Whereas SAM is associated to its polarization state,
OAM is linked to the phase structure of the optical field. OAM
is best described using the canonical momentum density [27],
which is proportional to the local gradient of the phase of the
field. While spin is intrinsic to the vector characteristics of the
fields, the orbital momentum density can be defined equally
for vector or scalar optical waveobjects [27], [28].

The conserved quantities presented in this work apply in
general to the solutions of the wave equation with indepen-
dence of their physical context. Nevertheless, the momentum
density in scalar optics is normally treated as the optical
current [28]

P = Imu∗∇u (94)

from which the angular momentum density is J = R × P .
The optical current of Equation (94) has also been shown
to correspond to the nonzero cycle-averaged part of the
momentum density of the scalar waveobject u [29]. It can
be recognized as a normalized form of the momentum density
in the quantum domain, where u is the quantum wavefunction
and the conventions for the scalar conserved quantities for
photons and phonons meet.

Even though light carrying OAM is often structured as an
optical vortex, solutions of the wave equation with general
astigmatism [5], [19] can hold very large values of OAM
yet they lack wavefront singularities [30]–[32]. The family
of the tilted waves presented here encompasses this class
of astigmatic beams and packets with distinct OAM spec-
tral properties that open many highly interesting potential
applications in quantum physics and quantum communications
driven by OAM management. These include the engineering
of multidimensional photon states and the generation of en-
tangled photons with very large OAM quantum numbers for
improved sensitivy quantum metrology and the exploration
of the quantum limits of the information capacity of OAM
photonic carriers and quantum-classical coupling [31].

The role played by Lorentz transformations in the inception
of tilted waveobjects unveiled in this work makes these solu-
tions specially appealing form the viewpoint of the rapidly
growing interest on the properties of waveobjects carrying
AM under relativistic transformations [33]. This includes
fundamental questions like the AM-dependent transverse shift
in the relativistic Hall effect [34] or the scattering of high-
energy OAM-carrying waveobjects [33] and it is also notably
relevant in relation to the recent burst of spatiotemporal vortex
pulses and the interest raised on their AM properties when they
are subject of Lorentz transformations [35]. In this work, we
put forward OAM-carrying spatiotemporal tilted pulses with
general astigmatism, of a markedly distinct type of related
solutions previously studied [33], [35], whose propagation
properties are dictated by relativistic transformations.

ACKNOWLEDGMENT

Authors are indebted to Maria Perel for a helpful discussion
and to the anonymous reviewer for constructive comments.

APPENDIX
A. A DETAILED DERIVATION OF A CONVENIENT

REPRESENTATION OF THE FUNCTION (16)

We are now going to derive a representation of the phase
function (16) suitable for further interpretation. Its structure
is prompted by earlier research [9], [13] which addressed
particular cases of the general astigmatic solution.

The second item in Eq. (16) is a complex-valued quadratic
form of a complex matrix Γ(β) on a complex vector r− r∗.
Inspired by earlier study of particular cases, we are seeking
its representation in the form (17) where

θ2 = θ2(r, β) = (r− r̆(β))TΓ(β)(r− r̆(β)) (95)

is the value of the quadratic form of the matrix Γ(β) on a yet
unknown real vector r̆ chosen in such a way that θ1 = θ1(r, β)
is a real and linear both in r and in β. With this in view, we
seek the vector r− r∗ as a sum

r− r∗ = (r− r̆(β)) + (r̆(β)− r∗) ,

with the first item real and the second satisfying the require-
ment that the vector defined as

κ = Γ(β)(r̆(β)− r∗) . (96)

is real. Actually, (96) is equivalent to

Γ−1(β)κ = r̆(β)− r∗ ,

whence, since r̆ is assumed real,

ImΓ−1κ = − Im r∗ ,

and
ReΓ−1(β)κ = r̆(β)− Re r∗ .

According to (5), the matrix ImΓ−1 = ImΓ−1
0 is constant,

non-degenerate and negative definite whence the vector

κ = −(ImΓ−1)−1 Im r∗ = −(ImΓ−1
0 )−1 Im r∗ (97)

is independent of β. Making use of (5), we obtain

r̃(β) = Re r∗ + (ReΓ−1
0 + βI)κ . (98)

A straightforward calculation employing (97) and (98) al-
lows

(r− r∗)TΓ(β)(r− r∗) =

(r−r̆(β))TΓ(β)(r−r̆(β))+2κT (r−r̆(β))+κT (Γ−1
0 +βI)κ.

which defines in fact the desired representation (17).
To give it a convenient form, we introduce a couple of

notations. Introduce a constant vector by

r0 = Re r∗ +ReΓ−1
0 κ ,

Let
κ = τ |κ| (99)
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where

τ =
κ

|κ|
= − (ImΓ−1

0 )−1 Im r∗

|(ImΓ−1
0 )−1 Im r∗|

(100)

is a unit vector along κ, and

|κ| = tanϕ , (101)

or

ϕ = arctan |κ| = arctan |(ImΓ−1
0 )−1 Im r∗| . (102)

Now the items on the right-hand side of Eq. (17) can be
written as follows

θ2 = (r− r0 − κβ)TΓ(β)(r− r0 − κβ) =
(r− r0 − βτ tanϕ)TΓ(β)(r− r0 − βτ tanϕ) , (103)

θ1 = α+ 2κT (r− r0)− |κ|2β =

z(1− |κ|2) + 2κT (r− r0)− ct(1 + |κ|2) =
z cos 2ϕ+ τT (r− r0) sin 2ϕ− ct

cos2 ϕ
, (104)

and
θ0 = κTΓ−1

0 κ . (105)

The term (105) has negative imaginary part because ImΓ−1
0

is negative definite.

APPENDIX
B. ASYMPTOTIC DERIVATION OF THE INTEGRAL I1

Substitution of (71) into (86) gives the appoximation

I1 ≈ −k2h5
0

∫∫
R2

χ2(ψT
0 ReΓ−1

0 ψ0)φ

× exp
(
2kh2

0χ
2ψT

0 ImΓ−1
0 ψ0

)
χdχdφ (106)

×
∫ ∞

−∞
exp

(
−2kh2

0s
2/a
)
ds .

By the formula (74), the integral over s equals
√

πa/2k/h0.
Now we will represent the expression (ψT

0 ReΓ−1
0 ψ0)φ as a

quadratic form of a certain matrix Q. Noticing that

∂φψ0 = (− sinφ , cosφ)T = Vψ0 , ∂φψ
T
0 = −ψT

0 V ,

where V =

(
0 −1
1 0

)
, we get:

∂φ[ψ
T
0 ReΓ−1

0 ψ0] = ψ
T
0 Qψ0

with Q = ReΓ−1
0 V −VReΓ−1

0 .
Let us change the variables χ and φ to ξ =

√
2kh0χ cosφ

and η =
√
2kh0χ sinφ. Next, we introduce the vector ζ =

(ξ , η)T and extend the integration with respect to ξ and η to
the whole plane R2. The integral under consideration becomes

I1 ≈ −1

4

√
πa

2k

∫∫
R2

ζTQζ exp
(
−ζTAζ

)
d2ζ , (107)

where we denoted for brevity A = − ImΓ−1
0 .

Without loss of generality, we assume that the positive
definite matrix A is diagonal,

ζTAζ = λ1ξ
2 + λ2η

2 , (108)

and λ1 > λ2 > 0 (this can be achieved by rotating the
coordinate axes in the (ξ, η) plane). Denote by µ1 > µ2 the
eigenvalues of B = ReΓ−1

0 . The following representation for
B holds true

B =
µ1 + µ2

2
I+

µ1 − µ2

2

(
cos 2κ sin 2κ
sin 2κ − cos 2κ

)
, (109)

where I is the unit matrix, κ is the angle between those
eigenvectors of the matrices A and B that correspond to their
largest eigenvalues λ1 and µ1. Simple calculation shows that

Q = BV −VB = −(µ1 − µ2)

(
− sin 2κ cos 2κ
cos 2κ sin 2κ

)
,

whence

ζTQζ = −(µ1 − µ2)
[
sin 2κ(−ξ2 + η2) + 2 cos 2κ · ξη

]
.

(110)

After observing that the integral of the last term in square
brackets on the right side of (110) vanishes and the use of
(108) and (110), we obtain from (107):

I1 ≈
√

πa

2k

(µ1 − µ2) sin 2κ
4

×
{
−
∫ ∞

−∞
ξ2 exp(−λ1ξ

2) dξ

∫ ∞

−∞
exp(−λ2η

2) dη

+

∫ ∞

−∞
exp(−λ1ξ

2) dξ

∫ ∞

−∞
η2 exp(−λ2η

2) dη

}
.

Applying the formula
∫∞
−∞ σ2 exp(−m2σ2) dσ =

√
π/2m3

(see, e.g., [36]) together with (74), we find

J ≈ 1

c

π3/2(µ1 − µ2) sin 2κ
8

√
a

2kλ1λ2

(
1

λ2
− 1

λ1

)
(111)

The last expression is the same as (93) because λ1λ2 =
det ImΓ−1

0 .
We note that the formula (111) for the integral (93) is similar

to the one given in [32] without a commentary.
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