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4.1 Introduction

The world population does not stop growing. In 2021, we have reached 7.9 billion
people worldwide (Worldmeters.info, 2021) and estimates suggest that by 2050 we
could reach 9.7 billion people (United Nations, 2019). This growth would translate into
an increase in demand for food. Therefore increasing food security and access to nutri-
tious and healthy diets is a priority (FAO, IFAD, UNICEF, WFP, & WHO, 2020).
Currently, there is growing inequality in access to basic resources, around a tenth of the
population is undernourished (FAO et al., 2021). On the other hand, in countries where
food security is assured, there is a growing awareness of the “costs of diets.” Mainly
healthcare-related costs that are associated with unhealthy diets and environmental
impacts such as CO2 emissions, climatic change, and the abuse of agrochemicals
(Springmann, 2020). There is growing public concern about the risks to human and
environmental health posed by agrochemicals in fresh produce, as well as the potential
resistance that pathogens can develop after continued use (Wisniewski, Droby, Norelli,
Liu, & Schena, 2016).

This panorama leads us to the conclusion that we must increase the accessibility of
healthy foods and reduce our environmental impact. Among these aliments, fresh, unpro-
cessed products such as fruits and vegetables stand out. One strategy to ensure the avail-
ability of fresh produce is through the control of postharvest diseases, which are a major
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cause of fresh produce losses. By reducing postharvest losses, the crop yield per hectare is
increased without increasing the cultivated land or the productive pressure on the soil.
This is an indispensable objective, considering that we are losing arable land due to popu-
lation growth and the consequent demand for residential and industrial spaces. For now,
the problem is solved with the conversion of forest land into arable land (Tong & Qiu,
2020). In addition, the quality of the products after harvest is very important, as it will
influence the entire production chain and affect their storage capacity, transport and,
above all, shelf life, a characteristic highly valued by consumers (Mahajan, Caleb, Singh,
Watkins, & Geyer, 2014). If the product has not correctly preserved all its organoleptic
characteristics or does not have a good appearance, it may be rejected by the end con-
sumer or intermediaries (Makhal, Robertson, Thyne, & Mirosa, 2021). Fruits and
vegetables losses caused by postharvest diseases can be around 50%�55% of total produc-
tion, while fungal spoilage is responsible for 20%�35% of the losses that occur during
handling in postproduction, storage, and shipping of fresh produce (Dukare et al., 2019;
Dukare, Singh, Jangra, & Bhushan, 2020; Nunes, 2012; Zhang, Mahunu, Castoria, Apaliya,
& Yang, 2017).

In addition to multimillion dollar losses, some microorganisms can pose a threat to
health as they generate mycotoxins (Dukare et al., 2019; Huang, Ren Li, Feng, Dong, &
Ren, 2021). Because of that, for many years, strategies have been carried out to reduce or
prevent infections. Among the most popular treatments are chemical treatments, followed
by heat or radiation (Mahajan et al., 2014). However, the application of several agrochem-
icals against certain postharvest diseases has been banned or reduced due to a lack of effi-
cient and novel active compounds, the establishment of resistant pathogens, the high
levels of agrochemical residues in fresh produce, negative environmental impacts, and tox-
icological problems related to human health (Droby, 2006).

Chemical treatments are known to be effective and, for now, necessary. However, agro-
chemicals can pose a health risk. Especially when they are applied postharvest and the
product is consumed raw in a short period of time after treatment (Lawal, Wong, Tan,
Abdulra’Uf, & Alsharif, 2018). Furthermore, many of these products degrade very slowly,
and their persistence in the environment represents an additional problem (Mari, Di
Francesco, & Bertolini, 2014). As a result, regulation is increasingly strict. Therefore
although the use of pesticides is the main strategy to treat postharvest diseases, there is a
growing interest in new approaches that do not harm the biosphere and the ecosphere.
One of these nondestructive and green approaches to postharvest handling of fresh pro-
duce is the use of endophytic fungi. They act as biological control agents (BCAs) for post-
harvest diseases in fresh products, both by direct application and by the use of their
secondary metabolites.

4.2 Main pathogen-diseases of postharvest fresh produce

Vegetables and fruits are rich in nutrients, high in moisture, and low in pH, being the
perfect niche for microbial growth (Droby, Chalutz, Wilson, & Wisniewski, 1992).
However, due to the diversity of postharvest pathogens, the colonization process of these
niches differs from one pathogen to another. Some require a wound to penetrate, but
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others can enter by directly damaging healthy tissue or through natural openings (sto-
mata, lenticels, stems, etc.) (Prusky & Lichter, 2007). Regardless of their route of entry,
they usually remain quiescent until the fruits begin to ripen.

4.2.1 Botrytis cinerea

B. cinerea is a necrotrophic airborne fungus and the causative agent of the disease
known as gray mold (Poveda, Barquero, & González-Andrés, 2020; Van Baarlen,
Woltering, Staats, & Van Kan, 2007). This fungus is one of the most important plant and
postharvest pathogens in the world (Dean et al., 2012; Zhang, Qin, Li, & Tian, 2014). The
pathogens cause serious losses in more than 200 crop species worldwide, causing rot in
fruits and aerial parts of plants (Wan et al., 2021; Williamson, Tudzynski, Tudzynski, &
Van Kan, 2007). However, the total damage caused by this pathogen cannot be accounted
for, because it occurs at all stages of production and retailing and in a broad host range.
Even though the infection can occur at any stage, most commonly occurs when the tissues
are young. This confronts the fact that the symptoms usually appear after harvesting, dur-
ing transport, or storage of healthy crops (Abdel-Rahim & Abo-Elyousr, 2017). This phe-
nomenon is due to the ability of Botrytis to remain quiescent until the conditions for
development are favorable and changes are observed in the environment and/or in plant
physiology (Williamson et al., 2007).

Some of the crops in which B. cinerea is known as an important postharvest pathogen are:
pome fruit (Wenneker & Thomma, 2020), tomato (Liu, Gao, et al., 2020), nectarines
(Tahmasebi, Golmohammadi, Nematollahzadeh, Davari, & Chamani, 2020), peach (Suktawee
et al., 2019), strawberries (Lafarga et al., 2019), blueberry (Kumar, Baghel, Yadav, & Dhakar,
2018), eggplant, cucurbits, bulbs, leafy vegetables, green beans, carrots, onions and peppers
(Cole, Jarvis, & Schweikert, 2003; Lugauskas, Repečkiene, & Novošinskas, 2005).

4.2.2 Penicillium spp.

The fungal genus Penicillium contains more than 150 species. It belongs to the phylum
Ascomycota and is ubiquitous, being present in soil, vegetation, air, and indoor environ-
ments (Visagie et al., 2014). The genus Penicillium occurs recurrently on fruits and
vegetables after harvest (Huang et al., 2021). However, only a few species are considered as
relevant plant pathogens (Samson & Pitt, 2003). The three most important postharvest path-
ogen species within the Penicillium genus are Penicillium digitatum, the causative agent of the
disease known as gray mold, Penicillium italicum, responsible for generating blue mold rot,
and P. expansum, responsible for blue mold. As an example, in citrus, 90% of the losses are
caused by these fungi (Brasil & Siddiqui, 2018; Macarisin et al., 2007). They are pathogens
that enter the plant through wounds during growth in the field as well as in the postharvest
stages (Wan, Kahramanoğlu, & Okatan, 2021). Furthermore, this genera produces mycotox-
ins such as ochratoxin A, citrinin or patulin, which are potentially carcinogenic, mutagenic,
and can cause nephrotoxicity and hepatotoxicity (Prencipe et al., 2018; Qi et al., 2014).

Some of the crops in which Penicillium spp. is recognized as important postharvest
pathogen: pome fruit, tomato (Liu, Gao, et al., 2020), stone fruit (Zhang et al., 2016), citrus
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fruit (Costa, Bazioli, de Moraes Pontes, & Fill, 2019), onion, garlic, cabbage, sugar beet and
yam (Chávez-Magdaleno, González-Estrada, Ramos-Guerrero, Plascencia-Jatomea, &
Gutiérrez-Martı́nez, 2018).

4.2.3 Colletotrichum spp.

Colletotrichum spp. is an ascomycete belonging to coelomycetes asexual genus, with an
hemibiotrophic lifestyle (Dean et al., 2012). It is an important phytopathogen, almost every
crop is susceptible to one of its 200 species (Marin-Felix et al., 2017). It shows a characteristic
damage pattern with leaf spots of anthracnose and blight and postharvest fruit rot.
Symptoms may appear on fruits, flowers, leaves and branches of various horticultural crops,
causing great losses in important crops, especially fruits, vegetables, and ornamentals (Dean
et al., 2012). Colletotrichum is a quiescent fungus, that can cause losses of 80% of production
during storage, transportation, or marketing (Damasceno et al., 2019). Some of the crops in
which Colletotrichum spp. is known as an important postharvest pathogen are: blueberries
(Liu, Zheng, et al., 2020), grapes (Solairaj, Guillaume Legrand, Yang, & Zhang, 2020; Solairaj,
Yang, Guillaume Legrand, Routledge, & Zhang, 2021), citrus fruit (Boubaker et al., 2016),
beans, onions, avocado (Chávez-Magdaleno et al., 2018) and pome fruit, where it is one of
the two most prevalent postharvest pathogens (Wenneker & Thomma, 2020).

4.2.4 Monilinia spp.

Monilinia is an important ascomycete fungal pathogen genus belonging to the Helotiales
order. There are more than 30 species of this genus. Among them, three species (Monilinia
fructicola, M. fructigena, and M. laxa) stand out for being particularly aggressive, generating
important economic losses in postharvest (Huang et al., 2021). These pathogens are capa-
ble of infecting a wide variety of tissues and organs, generating different symptomatolo-
gies, depending on the plant host (Holb, 2008). The infection usually starts on the tree and
it is translated into soft decay in fruits, when the sugar content increases (Wan et al.,
2021). These pathogens cause diseases that include twig canker, blossom blight, and brown
rot (Bellamy, Xu, & Shaw, 2021). Monilinia causes significant losses because it is the main
disease present in stone fruit. In fact, brown rot is responsible for more than half of post-
harvest losses in peaches worldwide (Obi, Barriuso, & Gogorcena, 2018) and 1.7 Mh/year
are lost due Monilinia for peach and nectarine alone (Martini & Mari, 2014). Another crop
in which Monilinia is recognized as an important postharvest pathogen is pome fruit
(Wenneker & Thomma, 2020).

4.2.5 Alternaria spp.

Alternaria spp. belongs to the division Ascomycota and to the Pleosporales order. It is an
opportunistic pathogenic fungus that is responsible for being the main cause of black rot.
The symptoms of this disease are black spots on fruit and vegetables (Wan et al., 2021). In
particular, Alternaria alternata is widely distributed being the main postharvest disease that
occurs on tomatoes (Xu et al., 2014). Alternaria is the most relevant disease in tomato and is
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responsible for large losses on Brassicaceae crops (Nowicki, Nowakowska, Niezgoda, &
Kozik, 2012). Some of the crops in which Alternaria spp. is known as an important posthar-
vest pathogen are: pome fruit (Weber, Dralle, Jork, & Niedersachsen, 2013), citrus fruit
(Boubaker et al., 2016), strawberries (Lafarga et al., 2019), grapes (Solairaj et al., 2020, 2021),
cucumber, carrots, cabbages, cauliflowers, and peppers (Chávez-Magdaleno et al., 2018).

4.2.6 Other fungal pathogens

Rhizopus, Aspergillus, Geotrichum, and Botryosphaeria have a major implication on several
postharvest crops of fruit and vegetables (Dukare et al., 2020). Rhizopus is the causative agent
of soft rot in plums, nectarines and grapes. It causes significant losses in peach, and is one of
the most pathogenic microorganisms in tomato (Kong et al., 2019). Aspergillus causes black rot
in grapes, with special relevance in tropical climates (Solairaj et al., 2020). Geotrichum causes
acid rot in citrus fruits, the second most important disease after those generated by the genus
Penicillium (Boubaker et al., 2016). Botryosphaeriaceae spp. are the causal agents of diseases such
as leaf spot, fruit and root rot, dieback, and trunk canker on different fruits such as avocado,
guava, and persimmon (Navarro, Edwards Molina, & Nogueira Júnior, 2021).

4.2.7 Bacterial pathogens

In vegetables and fruits, postharvest fungal pathogens are responsible for 80%�90% of
total losses due to microbial diseases (Gomes, Queiroz, & Pereira, 2015; Anthracnose,
2014). However, it is worth mentioning some bacteria that cause significant losses as post-
harvest pathogens. The most important ones are Erwinia spp., Pseudomonas spp. and
Xanthomonas spp. Erwinia spp. causes bacterial soft rot in bulbs (onion and garlic), cruci-
fers (cabbage), cucurbits, roots tubers (carrots, potato), solanaceous (tomato, pepper, egg-
plant), pome fruit, asparagus, celery, and lettuce. Xanthomonas spp. is the causative agent
of the diseases known as bacterial canker in citrus, bacterial blight in legumes (peas and
beans) and bacterial rot in lettuce. Lastly, Pseudomonas spp. is responsible for soft rot in let-
tuce, celery, and asparagus, bacterial speck in solanaceous, bacterial blight legumes, black
pit in citrus and warts in cucurbits (Antunes & Cavaco, 2010).

4.3 Postharvest disease management in fresh produce

To avoid the proliferation of pathogenic microorganisms in postharvest, fresh products are
usually treated before or after harvest. Depending on the nature of the process, they are classi-
fied as chemical, physical, or biological treatments, although they may appear in combination.

4.3.1 Chemical control

Chemical control is the usual treatment to control postharvest diseases. Specifically, fungi-
cides are the most common postharvest agrochemicals (Gomes et al., 2015). These fungicides
have different mechanisms of action, for example, acting on respiration, osmoregulation,
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microtubule assembly, sterol biosynthesis, etc. (Leroux, 2007). Therefore they are a very effec-
tive tool, whose use is widespread. However, it increasingly presents more detractors, due to
the residual toxicity, environmental pollution, long degradation period, the appearance of
resistant strains, and the side effects on humans (Antunes & Cavaco, 2010). In contrast to these
products, new low-toxicity chemicals commonly known as GRAS are emerging. These have a
minimal impact on humans and the environment. Currently, new synthetic treatments are
being developed, including the use of nanomaterials that control the development of diseases
(Roberto, Youssef, Hashim, & Ippolito, 2019) and organic and inorganic salts that are cheap,
accessible, and can be used as synthetic edible coatings (Palou, 2018). They can be an alterna-
tive to the classical chemical treatment, among other emerging strategies such as physical
treatments and/or biocontrol agents.

4.3.2 Physical treatments

Physical treatments are usually divided into those that make use of a heat treatment
and those that do not. However, the most widespread physical treatment to reduce post-
harvest pathogen losses is to keep the product at a low temperature and control the stor-
age atmosphere. Often it is not considered a treatment per se because the main purpose is
to slow down the processes of maturation, senescence, and respiratory rate, but this leads
to a reduction in the development of microorganisms (Wan et al., 2021).

Thermal treatments include air, steam, or hot water treatments. These methods are very
effective but, they can alter organoleptic characteristics such as texture, taste, smell, or
color, as well as reduce vitamin or mineral content (Zhang et al., 2017).

Conventional nonthermal physical technologies are microwaves and radio frequencies,
hyperbaric and hypobaric pressures, and far ultraviolet radiation (Wenneker & Thomma,
2020). In addition, there are new technologies that are currently being applied such as differ-
ent packaging systems, pulsed light (PL), high hydrostatic pressure, ionizing radiation, cold
plasma, high-power ultrasound, and dense phase carbon dioxide (Pinela & Ferreira, 2017).
These treatments, unlike the previous ones, do not modify the final products. Even so, they
do have drawbacks, in some cases they are quite expensive. They also reduce the microbiota
present in vegetables and fruits, eliminating both beneficial and pathogenic microorganisms,
leaving a free niche after treatment, allowing a secondary infection. To increase the stability
of the treatment, it could be combined with a subsequent biological treatment that repopu-
lates the surfaces of the products with beneficial endophytes (Zhang et al., 2017).

4.3.3 Biological control

The term biological control refers to a compendium of postharvest disease control tech-
niques that can be preventive and/or corrective. Its most frequent use is attributed to sup-
pressing the pathogenicity or populations of one or more pathogens through the use of
live microorganisms. The definition can be expanded to recognize the use of products
derived from microorganisms or other living beings. The organism that is used as a tool is
called a BCA. Formulations of BCAs can be very varied, from plant extracts to combina-
tions of microorganisms with specific activities (Zhang et al., 2017).
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One strategy that is gaining popularity is the use of edible films or coatings. They are
made with natural products, derived from plants, bacteria, fungi, and even insects. They
are used in the food packaging industry in a similar way to the plastic that wraps fruits
and vegetables. This coating acts by preventing microbial decay, improving the quality of
the product, both in terms of appearance and texture and biochemically, protecting the
phytochemicals it naturally contains. They can be made from proteins, lipids, or polysac-
charides (Wan et al., 2021). Another procedure that is very effective to prevent pathogenic
infections is the use of plant or microbial volatile organic compounds (VOCs). These com-
pounds have antimicrobial activity, and can be used as biopesticides (Poveda, Barquero,
et al., 2020). However, not all BCA have a direct mechanism of action. Some signaling
molecules, such as plant hormones, can induce a certain degree of resistance against
pathogens in the plant itself or in the harvested product. These hormones such as salicylic
acid (SA) or jasmonic acid (JA) can be administered exogenously and reduce the symp-
toms caused by postharvest pathogens (Poveda, 2020).

4.4 Endophytic fungi and agriculture

Endophytes are fungi, bacteria, protists, or archaea that live in association with the liv-
ing tissues of a plant without generating symptoms of infection (Wilson, 1995). They colo-
nize, partly or throughout their lifespan, the internal organs and tissues such as roots,
stems, seeds, leaves, and fruits (Kumar et al., 2021).

Endophytic fungi are involved in some key plant functions such as growth promotion,
secondary metabolite production, or disease and pest control (Kumar, Soni, Jain, Dash, &
Goel, 2019; Kumar et al., 2021). To promote plant growth, these fungi have various strate-
gies. The first is to improve the accessibility of limiting nutrients: nitrogen, phosphorus,
potassium, or zinc, by directly transferring these nutrients from organic matter to the plant,
improving the plant’s uptake efficiency, or modifying the solubility of nutrients and increas-
ing their bioavailability. Another strategy is based on the production of phytohormones that
promote growth, such as indole acetic acid and gibberellins (Poveda, Eugui, Abril-Urı́as, &
Velasco, 2021). The second application is to increase tolerance to abiotic stress. It can occur
through two mechanisms: activation of plant stress responses or through the biosynthesis of
antistress compounds. In this way, endophytic fungi can promote growth in conditions of
drought, high salinity, low amounts of nutrients, or extreme temperatures (Lata, Chowdhury,
Gond, & White, 2018). The last application is the reduction of the attack of phytophages and
pathogens. Some endophytic fungi are capable of reducing the damage caused by biotic
stresses through direct strategies such as parasitism, antibiosis, the synthesis of lytic
enzymes, competition for space and nutrients, and the activation of plant defenses
(Mantzoukas & Eliopoulos, 2020; Poveda, Abril-Urias, & Escobar, 2020).

4.5 Endophytic fungi as biocontrol agents in postharvest

Fungi are found as epiphytes and endophytes of fruits and vegetables, being part of their
composition, forming a whole holobiont (Kusstatscher et al., 2020). Thanks to the new omics
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techniques, the diversity and function of the internal and external microbiome of fruits and
vegetables can be quickly and accurately characterized (Droby & Wisniewski, 2018; Zhang
et al., 2021). This information is an important starting point for the study of new postharvest
BCAs and products for fresh produce based on endophytic fungi (Droby & Wisniewski,
2018; Nayak, Mukherjee, Sengupta, & Samanta, 2019; Sare, Jijakli, & Massart, 2021).

Endophytic fungi can play an important role as BCAs in fruits and vegetables in post-
harvest, due to different mechanisms of action (Huang et al., 2021). The competition for
space and nutrients (mainly iron), antibiosis, and the activation of plant defense responses
stand out (Huang et al., 2021). Endophytic fungi produce a wide range of antimicrobial
compounds, such as antibiotics, alkaloids, VOCs or lytic enzymes (chitinases, glucanases,
etc.) (Poveda et al., 2021; Spadaro & Droby, 2016). On the other hand, the activation
of plant defenses leads to the accumulation in the tissues of fruits and vegetables of
pathogenesis-related proteins (PRs), phytoalexins or defense-related enzymes (catalases,
peroxidases, etc.) (Poveda, 2020; Spadaro & Droby, 2016). Specifically, in recent years, the
development of new BCAs based on endophytic fungi with the capacity to produce anti-
microbial VOCs is gaining great development, a process known as myofumigation (Gomes
et al., 2015). Table 4.1 shows all the studies on the use of endophytic fungi (yeasts and fila-
mentous fungi) as BCAs against postharvest pathogens in fresh products. In addition,
Fig. 4.1 shows an infographic as a summary of the different mechanisms of action
described for these BCAs.

During the last decades, numerous studies have been conducted to find endophytic fungi
with the ability to control different postharvest pathogens in fresh products, without delving
into the possible mechanisms of action involved. In this way, different species have been
described within the endophytic yeast genera Aureobasidium (Kheireddine, Essghaier, Hedi,
Dhieb, & Sadfi-Zouaoui, 2018; Rathnayake, Savocchia, Schmidtke, & Steel, 2018), Candida
(Fernandez-San Millan, Larraya, Farran, Ancin, & Veramendi, 2021; Vilaplana, Cifuentes, Vaca,
Cevallos-Cevallos, & Valencia-Chamorro, 2020), Clavispora (Kheireddine et al., 2018; Pereyra,
Dı́az, Meinhardt, & Dib, 2020), Metschnikowia (Fernandez-San Millan et al., 2021; Spadaro,
Ciavorella, Dianpeng, Garibaldi, & Gullino, 2010; Zhang, Spadaro, Garibaldi, & Gullino,
2010a), Pichia (Vilaplana et al., 2020), Saccharomycopsis (Abdel-Rahim & Abo-Elyousr, 2017;
Pimenta et al., 2009), or Wickerhamomyces (Fernandez-San Millan et al., 2021), or filamentous
endophytic fungi such as Epicoccum nigrum (Larena, De Cal, & Melgarejo, 2004; Mari et al.,
2007), with great capacity to control pathogens such as B. cinerea, M. fructicola, A. alternata,
P. expansum, M. laxa or Colletotrichum musae.

The different studies carried out in this sense have also tried to develop effective forms
of application of fungi as BCAs in postharvest and to know the duration and effect on the
quality of fresh products of their use. The endophytic yeast of olives Wickerhamomyces
anomalus has been applied to “Valencia” oranges through the use of biofilms obtained
from sodium alginate and locust bean gum, increasing the survival of the yeast by 85%,
reducing the affectation by P. digitatum in 73% and improving the quality of fresh produce
(reducing weight loss and maintaining firmness) (Aloui Licciardello, Khwaldia, Hamdi, &
Restuccia, 2015). In the case of the filamentous fungus Fusarium chlamydosporum, isolated
from stems and leaves of Calotropis procera, its application through biosynthesized silver
nanoparticles has been reported to increase the ability to control P. digitatum in oranges
(El, 2020). Other studies have determined the effect of the simultaneous application of
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TABLE 4.1 Yeasts and endophytic fungi used in the control of postharvest pathogens in fresh produce, indicating the mechanisms of action involved.

Group Species
Isolation
plant-organ

Use in fresh
produce Pathogen Effect

Mechanism of
action Reference

Yeasts Aureobasidium
pullulans

Sweet cherries Sweet
cherries
Table grapes

Botrytis cinerea,
Monilinia laxa

Disease reduction Not identified Schena et al. (2003)

Apples Apples Penicillium
expansum

Disease reduction Competition for
nutrients

Bencheqroun et al. (2006)

Apples Apples B. cinerea Disease reduction Competition for
nutrients

Vero et al. (2009)

Peaches Peaches M. laxa Disease reduction Not identified Zhang et al. (2010b)

Plums Peaches
Apples
Plums

M. laxa,
B. cinerea,
P. expansum

Disease reduction Lytic enzyme production Zhang et al. (2010a)

Grapes Grapes Aspergillus
carbonarius

Disease reduction Competition for
nutrients and space

De Curtis et al. (2012)

Peaches Peaches
Nectarines

M. laxa,
M. fructicola,
M. fructigena

Disease reduction Competition for
nutrients and space

Mari, Martini, Spadoni,
Rouissi, and Bertolini
(2012)

Peaches Apples B. cinerea,
Colletotrichum
acutatum,
P. expansum

Disease reduction Production of antifungal
volatiles

Mari, Martini, Guidarelli,
and Neri et al. (2012)

Plums (in vitro) B. cinerea,
M. laxa,
P. expansum

Inhibition of
pathogen growth

Lytic enzyme production Zhang et al. (2012)

Plums Apples P. expansum,
B. cinerea,
M. fructicola,
Alternaria alternata

Inhibition of
pathogen growth

Lytic enzyme production Banani et al. (2014)

Peaches Apples
Oranges

B. cinerea,
C. acutatum
P. expansum,
P. digitatum
P. italicum

Disease reduction Production of antifungal
volatiles

Di Francesco et al. (2015)

(Continued)



TABLE 4.1 (Continued)

Group Species

Isolation

plant-organ

Use in fresh

produce Pathogen Effect

Mechanism of

action Reference

Pomegranates Strawberries
Tangerines

Penicillium
digitatum,
P. italicum

Disease reduction Production of antifungal
volatiles

Parafati, Vitale,
Restuccia, and Cirvilleri
(2017)

Apples Apples B. cinerea Disease reduction Not identified Kheireddine et al. (2018)

Vineyard tissues Grapes Greeneria uvicola Disease reduction Not identified Rathnayake et al. (2018)

Apples (in vitro) P. expansum,
P. digitatum

Inhibition of
pathogen growth

Competition for
nutrients and space
Production of antifungal
volatiles
Lytic enzyme production

Agirman and Erten
(2020)

Peaches Cherries
Peaches
Apricots

M. laxa,
M. polystroma,
M. fructigena

Inhibition of
pathogen growth

Production of antifungal
volatiles
Activation of plant
defenses

Di Francesco et al. (2020)

Baccharis
dracunculifolia
tissues

In vitro B. cinerea Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Oki et al. (2021)

Candida guilliermondii Tomato tissues Tomatoes Rhizopus stolonifer Disease reduction Production of antifungal
nonvolatile compounds

Celis-Zambrano et al.
(2014)

C. inconspicua Pineapples Yellow
pitahayas
Bananas

A. alternata,
Colletotrichum
musae

Disease reduction Not identified Vilaplana et al. (2020)

C. lusitaniae Grapes Tomatoes
Grapes
Apples

P. expansum Disease reduction Not identified Fernandez-San Millan
et al. (2021)

C. maltosa Peaches Peaches Mucor circinelloides Disease reduction Competition for
nutrients and space

Restuccia et al. (2006)

C. oleophila Tomatoes In silico � � Competition for
nutrients and space
Lytic enzyme production
Activation of plant
defenses

Sui et al. (2020)



Grapes Tomatoes
Grapes
Apples

P. expansum Disease reduction Not identified Fernandez-San Millan
et al. (2021)

C. stellimalicola Citrus leaves Oranges P. italicum Disease reduction Lytic enzyme production da Cunha, Ferraz, Wehr,
and Kupper (2018)

C. tropicalis Olive leaves Olive fruits Colletotrichum
gloeosporioides

Disease reduction Competition for
nutrients and space
Lytic enzyme production

Pesce et al. (2018)

Citeromycesmatritensis Apples Apples B. cinerea Disease reduction Not identified Kheireddine et al. (2018)

Clavispora lusitaniae Citrus fruits Lemons P. digitatum Disease reduction Not identified Perez et al. (2017)

Citrus fruits Lemons P. digitatum Disease reduction Not identified Pereyra et al. (2020)

Cryptococcus albidus Olive fruits Olive fruits Colletotrichum
gloeosporioides

Disease reduction Competition for
nutrients and space
Lytic enzyme production

Pesce et al. (2018)

C. flavescens Apples Apples B. cinerea Disease reduction Not identified Kheireddine et al. (2018)

C. laurentii Apples Sweet
cherries

M. fructicola Disease reduction Not identified Qin et al. (2006)

Debaryomyces hansenii Lemons Grapes P. digitatum Disease reduction Competition for
nutrients

Droby, Chalutz, Wilson,
and Wisniewski (1989)

Apples Apples M. fructigena Disease reduction Lytic enzyme production Madbouly et al. (2020)

Grapes Tomatoes
Grapes
Apples

P. expansum Disease reduction Not identified Fernandez-San Millan
et al. (2021)

Galactomyces candidum Tomato leaves Cherry
tomatoes

Athelia rolfsii Disease reduction Production of antifungal
volatiles

Cai, Chiu, and Chou
(2021)

G. geotrichum Apples Apples M. fructigena Disease reduction Lytic enzyme production Madbouly et al. (2020)

Hanseniaspora uvarum Strawberry fruits Strawberries B. cinerea,
R. stolonifer

Disease reduction Activation of plant
defenses

Cai et al. (2015)

(Continued)



TABLE 4.1 (Continued)

Group Species

Isolation

plant-organ

Use in fresh

produce Pathogen Effect

Mechanism of

action Reference

Loquat fruits Kiwifruits B. cinerea,
A. alternata

Disease reduction Activation of plant
defenses

Cheng et al. (2019)

Hypopichia pseudoburtonii Grapes Tomatoes
Grapes
Apples

P. expansum Disease reduction Not identified Fernandez-San Millan
et al. (2021)

Metschnikowia fructicola Grapes Grapes B. cinerea Disease reduction Not identified Kurtzman and Droby
(2001)

Grapes Apples Alternaria sp.,
Aspergillus sp.,
Comoclatris sp.,
Stemphylium sp.,
Nigrospora sp.,
Penicillium sp.,
Podosphaera sp.

Disease reduction Microbiota modification Biasi et al. (2021)

Grapes Strawberries M. fructicola Disease reduction Microbiota modification Zhimo et al. (2021)

M. pulcherrima Apples Apples B. cinerea,
P. expansum

Disease reduction Not identified Spadaro et al. (2010)

Grapes Grapes A. carbonarius Disease reduction Competition for
nutrients and space

De Curtis et al. (2012)

Grapes Tomatoes
Grapes
Apples

B. cinerea Disease reduction Not identified Fernandez-San Millan
et al. (2021)

Loquat leaves Loquat fruits Pestalotiopsis
vismiae

Disease reduction Biofilm formation
Competition for
nutrients and space

Yang et al. (2021)

Metschnikowia sp. Peaches Peaches M. laxa Disease reduction Not identified Zhang et al. (2010b)

Papiliotrema aspenensis Rice, corn and
sugarcane leaves

Mango fruits C. gloeosporioides Disease reduction Production of antifungal
volátiles
Biofilm formation
Competition for
nutrients

Konsue et al. (2020)



Pichia fermentans Peaches Peaches Mucor circinelloides Disease reduction Competition for
nutrients and space

Restuccia et al. (2006)

Citrus fruits Lemons P. digitatum Disease reduction Not identified Perez et al. (2017)

P. galeiformis Citrus tissues Oranges P. digitatum Disease reduction Competition for
nutrients and space
Production of antifungal
volatiles

Chen et al. (2020)

P. guilliermondil Lemon tissues Oranges P. italicum Disease reduction Competition for
nutrients and space

Arras, De Cicco, and
Arru (1998)

P. kluyveri Blackberries Yellow
pitahayas
Bananas

A. alternata,
Colletotrichum
musae

Disease reduction Not identified Vilaplana et al. (2020)

P. kudriavzevii Olive fruits Olive fruits Colletotrichum
gloeosporioides

Disease reduction Competition for
nutrients and space
Lytic enzyme production

Pesce et al. (2018)

Apples Apples M. fructigena Disease reduction Lytic enzyme production Madbouly et al. (2020)

P. membranefaciens Apples Sweet
cherries

M. fructicola Disease reduction Not identified Qin et al. (2006)

Peaches Peaches R. stolonifer Disease reduction Activation of plant
defenses

Zhang et al. (2020)

Pseudozyma fusiformata Peaches Peaches M. laxa Disease reduction Not identified Zhang et al. (2010b)

P. hubeiensis Rice, corn and
sugarcane leaves

Mango fruits Lasiodiplodia
theobromae

Disease reduction Production of antifungal
volátiles
Biofilm formation
Competition for
nutrients

Konsue et al. (2020)

Rhodotorula glutinis Apples Apples M. fructigena Disease reduction Lytic enzyme production Madbouly et al. (2020)

Saccharomyces cerevisiae Olives Oranges P. digitatum Disease reduction Lytic enzyme production Platania et al. (2012)

Saccharomycopsis
fibuligera

Guava fruits Guava fruits B. cinerea Disease reduction Not identified Abdel-Rahim and Abo-
Elyousr (2017)

(Continued)



TABLE 4.1 (Continued)

Group Species

Isolation

plant-organ

Use in fresh

produce Pathogen Effect

Mechanism of

action Reference

S. crataegensis Acrocomia aculeata
fruits

Oranges P. digitatum Disease reduction Not identified Pimenta et al. (2009)

Saccharomyces sp. Different fruits and
vegetables

Kinnow
fruits

P. digitatum Disease reduction Not identified Habiba et al. (2019)

Schwanniomyces vanrijiae Apples Apples M. fructigena Disease reduction Lytic enzyme production Madbouly et al. (2020)

Lemons Lemons P. digitatum Disease reduction Activation of plant
defensesu

Abo-Elyousr Al-Qurashi,
and Almasoudi (2021)

Trichosporon asahii Leaves, petioles
and fruit of papaya

Papayas C. gloeosporioides Disease reduction Competition for
space

Hassan, Mohamed,
Yusoff, Hata, and Tajidin
(2021)

Torulaspora indica Rice, corn and
sugarcane leaves

Mango fruits Lasiodiplodia
theobromae

Disease reduction Production of antifungal
volátiles
Biofilm formation
Competition for
nutrients

Konsue et al. (2020)

Wickerhamomyces
anomalus

Olives Oranges P. digitatum Disease reduction Lytic enzyme production Platania et al. (2012)

Olives Oranges P. digitatum Disease reduction Not identified Aloui et al. (2015)

Pomegranates Strawberries
Tangerines

B. cinerea,
P. digitatum,
P. italicum

Disease reduction Production of antifungal
volatiles

Parafati et al. (2017)

Olive stems Olive fruits Colletotrichum
gloeosporioides

Disease reduction Competition for
nutrients and spaceLytic
enzyme production

Pesce et al. (2018)

Grapes Tomatoes
Grapes
Apples

B. cinerea Disease reduction Not identified Fernandez-San Millan
et al. (2021)

Not indicated Apples P. expansum Disease reduction Competition for
nutrients and space
Activation of plant
defenses

Zhao et al. (2021)



Yarrowia lipolytica Grapes Table grapes Talaromyces
rugulosus

Disease reduction Competition for
nutrients and space

Yang et al. (2017)

Not identified Leaves and fruits
of chili

Chili fruits Colletotrichum
capsici

Disease reduction Not identified Chaisemsaeng,
Mongkolthanaruk, and
Bunyatratchata (2013)

Filamentous
fungi

Albifimbria verrucaria Grape leaves Grapes B. cinerea Disease reduction Production of antifungal
nonvolatile compounds
Lytic enzyme production

Li et al. (2020)

Aspergillus fumigatus Melia azedarach
steam

In vitro B. cinerea
A. alternata
A. solani
C. gloeosporioides

Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Li et al. (2012)

Ceratocystis fimbriata Pomegranate tree
tissues

Peaches
Oranges

M. fructicola
P. digitatum

Disease reduction Production of antifungal
volatiles

Li et al. (2015)

Daldinia eschscholtzii Barleria prionitis
leaves

Strawberries C. acutatum Disease reduction Production of antifungal
volatiles

Khruengsai,
Pripdeevech,
Tanapichatsakul et al.
(2021)

Epicoccum dendrobii Cunninghamia
lanceolata leaves

Apples C. gloeosporioides Disease reduction Production of antifungal
nonvolatile compounds

Bian et al. (2021)

E. nigrum Peach twigs In vitro M. laxa Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Larena, Liñán, and
Melgarejo (2003)

Peach twigs Peaches M. laxa Disease reduction Not identified Larena et al. (2004)

Peach twigs Nectarines M. laxa Disease reduction Not identified Mari et al. (2007)

Fusarium
chlamydosporum

Stems and leaves
of Calotropis procera

Oranges P. digitatum Disease reduction Not identified El (2020)

Fusarium sp. Taxus baccata bark In vitro Fusarium
oxysporum
Aspergillus niger
R. stolonifer

Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Tayung, Barik, and Jha
(2010)

Hypoxylon anthochroum Leaves of Bursera
lancifolia and
Gliricidia sepium

Cherry
tomatoes

F. oxysporum Inhibition of
pathogen growth

Production of antifungal
volatiles

Medina-Romero et al.
(2017)

(Continued)



TABLE 4.1 (Continued)

Group Species

Isolation

plant-organ

Use in fresh

produce Pathogen Effect

Mechanism of

action Reference

Leaves of
B. lancifolia,
G. sepium,
Hippocratea
acapulcensis and
Sapium
macrocarpum

Cherry
tomatoes

F. oxysporum Inhibition of
pathogen growth

Production of antifungal
volatiles

Macı́as-Rubalcava et al.
(2018)

Muscodor albus Limbs of
Cinnamomum
zeylanicum

Apples B. cinerea
P. expansum

Disease reduction Production of antifungal
volatiles

Mercier and Jiménez
(2004)

Limbs of
C. zeylanicum

Lemons P. digitatum
Geotrichum citri-
aurantii

Disease reduction Production of antifungal
volatiles

Mercier and Smilanick
(2005)

Rye seeds (in vitro) B. cinerea
P. expansum
Sclerotinia
sclerotiorum
Erwinia carotovora
pv. carotovora
Pseudomonas
fluorescens
Escherichia coli

Inhibition of
pathogen growth

Production of
antimicrobial volatiles

Ramin et al. (2005)

Limbs of
C. zeylanicum

Grapes B. cinerea Disease reduction Production of antifungal
volatiles

Gabler et al. (2006)

Limbs of
C. zeylanicum

Peaches M. fructicola Disease reduction Production of antifungal
volatiles

Schnabel and Mercier
(2006)

Limbs of
C. zeylanicum

Apples B. cinerea,
P. expansum
S. sclerotiorum

Disease reduction Production of antifungal
volatiles

Ramin et al. (2007)

Limbs of
C. zeylanicum

Table grapes B. cinerea Disease reduction Production of antifungal
volatiles

Gabler et al. (2010)

Muscodor suthepensis Leaves and stems
of Cinnamomum
bejolghota

Tangerines P. digitatum Disease reduction Production of antifungal
volatiles

Suwannarach et al.
(2016)



Nodulisporium sp. Cinnamomum
loureirii

Apples B. cinerea
P. expansum

Disease reduction Production of antifungal
volatiles

Park et al. (2010)

Leaves and stems
of Lagerstroemia
loudoni

Tangor
Tangerines

P. expansum
P. digitatum

Inhibition of
pathogen growth

Production of antifungal
volatiles

Suwannarach et al.
(2013)

Leaves of Peperomia
dindygulensis

Oranges P. digitatum Disease reduction Production of antifungal
volatiles

Yeh et al. (2021)

Oxyporus latemarginatus Pepper tissues Apples B. cinerea Disease reduction Production of antifungal
volatiles

Lee et al. (2009)

Penicillium rolfsii Papaya leaves Papayas Neoscytalidium
dimidiatum

Disease reduction Activation of plant
defenses

Wang et al. (2021)

Phaeosphaeria nodorum Plums In vitro M. fructicola Inhibition of
pathogen growth

Production of antifungal
volatiles

Pimenta et al. (2012)

Phomopsis sp. Gossypium hirsutum
roots

In vitro B. cienerea
S. sclerotiorum

Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Jing, Yang, Hai Feng,
Yong Hao, and Jian Hua
(2011)

Preussia africana B. dracunculifolia
tissues

In vitro B. cinerea
C. acutatum
P. digitatum
Pestalotiopsis
longisetula

Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Oki et al. (2021)

Trichodermaafroharzianum Schefflera leucantha
leaves

Chilies F. oxysporum
F. proliferatum

Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Khruengsai,
Pripdeevech, D’Souza
et al. (2021)

T. asperellum Muskmelons
tissues

Muskmelons Fusarium
incarnatum

Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Intana et al. (2021)

Xylaria arbuscula B. dracunculifolia
tissues

In vitro B. cinerea Inhibition of
pathogen growth

Production of antifungal
nonvolatile compounds

Oki et al. (2021)



chemical fungicides or additives with endophytic fungi in postharvest. In lemons it was
found as Clavispora lusitaniae and Pichia fermentans yeasts were able to tolerate different
commonly used postharvest fungicides (thiabendazole and imazalil), allowing the simulta-
neous application of chemical and biological control strategies against P. digitatum (Perez
et al., 2017). Similarly, the application of food additives, such as ammonium molybdate
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FIGURE 4.1 Summary info-
graphic of different mechanisms of
action described for endophytic
fungi against postharvest diseases
in fresh produce.
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and sodium bicarbonate, in peaches maintained the ability of the yeasts Clavispora laurentii
and Pichia membranifaciens to control M. fructicola (Qin, Tian, Xu, Chan, & Li, 2006).
Regarding the durability of the treatment, a study carried out over 2 years with
A. pullulans, isolated from sweet cherries, reported how the preharvest application could
be a fundamental factor to increase its population throughout the storage and to pene-
trate in the fruit, improving it significantly if the treatment is carried out during flower-
ing (Schena, Nigro, Pentimone, Ligorio, & Ippolito, 2003). Furthermore, it has been
possible to determine in treatments with A. pullulans or Pseudozyma fusiformata in pea-
ches, how the use of these BCAs in postharvest does not modify the quality of the fresh
produce (soluble solids, firmness, ascorbic acid content, and acidity) (Zhang, Spadaro,
Garibaldi, & Gullino, 2010b).

4.5.1 Competition for space and nutrients

Endophytic fungi are very efficient at exploiting certain niches and nutrients such as
minerals (Fe, N. . .), glucose or oxygen sources. This gives them an advantage over patho-
gens, which can be displaced. For example, in fruit and vegetable wounds, endophytes
can establish themselves preferentially, before pathogens, preventing the establishment of
pathogens that can control postharvest diseases (Huang et al., 2021).

It is important to highlight that competition for space and nutrients is a strategy cur-
rently only reported for endophytic yeasts, without having been described for filamentous
fungi. Through competition for space and nutrients, different yeast species are able to con-
trol postharvest diseases implicated in direct damage to health. For example, A. pullulans
and Metschnikowia pulcherrima reduce the incidence of Aspergillus carbonarius in grapes,
preventing the accumulation of ochratoxin A in wines, one of the most toxic and wide-
spread mycotoxins (De Curtis, de Felice, Ianiri, De Cicco, & Castoria, 2012). Furthermore,
yeasts with this mechanism of action can be used in integrated control strategies, as they
tolerate the fungicides most commonly used in postharvest. In this sense, A. pullulans
effectively competes for iron against B. cinerea in apples, reducing the disease, being resis-
tant to the fungicides thiabendazole, iprodione, and imazalil (Vero, Garmendia, González,
Garat, & Wisniewski, 2009).

Determining the competition for space and nutrients in endophytic yeasts is done by
direct observation under the microscope of the growth and/or biofilm formation, or by pro-
viding nutrients in a targeted manner. By scanning electron microscopy, it has been
described how M. pulcherrima, isolated from loquat leaves, rapidly colonizes the wounds of
loquat fruits forming biofilms, competing for space and iron with the pathogen Pestalotiopsis
vismiae (causing gray spot rot) and reducing the incidence of disease (Yang et al., 2021).
Similarly, the action of Pichia galeiformis against P. digitatum in oranges (Chen, Yi, Deng,
Ruan, & Zeng, 2020), W. anomalus against P. expansum in apples (Zhao et al., 2021), or
Yarrowia lipolytica against Talaromyces rugulosus on table grapes has been described (Yang
et al., 2017).

The production of siderophores is a mechanism used by endophytic yeasts to chelate
iron and prevent its use by pathogens. The ability to produce siderophores and compete
for iron has been described in the yeasts Papiliotrema aspenensis, P. hubeiensis, and
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Torulaspora indica, isolated from rice, corn, and sugarcane leaves, and used effectively as
BCAs in mango fruits against the pathogen Lasiodiplodia theobromae, reducing the incidence
of disease by 90% (Konsue, Dethoup, & Limtong, 2020). The nutrients involved in competi-
tion can be very varied. For example, in apples infected with P. expansum, it was reported
that A. pullulans yeast competed for nutrients by adding apple juice and verifying how the
yeast-BCA capacity disappeared (Bencheqroun et al., 2006).

4.5.2 Antibiosis

Endophytic fungi synthesize a wide range of compounds derived from their secondary
metabolism that have different biological activities (Rustamova, Bozorov, Efferth, &
Abulimiti, 2020). Among these metabolites, VOCs stand out for their antimicrobial capacity
(Poveda et al., 2021; Rustamova et al., 2020).

With regard to diffusible nonvolatile secondary metabolites, their potential use against
postharvest pathogens has been described through the application of extracts generated in
liquid culture media. The filamentous endophytic fungi Albifimbria verrucaria generate
extracts capable of protecting grapes against B. cinerea (Li, Chang, Gao, & Wang, 2020).

The organic phase of filtrates from cultures of the yeast Candida guilliermondii was able to
reduce the disease caused by Rhizopus stolonifer in tomatoes by 80% (Celis-Zambrano et al.,
2014). Similarly, using the organic solvent ethyl acetate, different antifungal secondary meta-
bolites were obtained from an Epicoccum dendrobii culture, effective against Colletotrichum
gloeosporioides in apples (Bian et al., 2021). In the case of some endophytic fungi, the antifungal
effect is associated with the production of an isolated metabolite, as in the protection of chilies
and muskmelons against Fusarium rot by phenylethyl alcohol released by Trichoderma afrohar-
zianum and T. asperellum, respectively (Intana, Kheawleng, & Sunpapao, 2021; Khruengsai,
Pripdeevech, D’Souza, & Panuwet, 2021). However, the antifungal capacity may be due to dif-
ferent compounds, such as 12β-hydroxy-13α-methoxyverruculogen TR-2, verruculogen, fumi-
tremorgin B or helvolic acid release by Aspergillus fumigatus to suppress the growth of
B. cinerea, A. alternata, A. solani and C. gloeosporioides (Li, Zhang, Zhang, & Gao, 2012).

The use of endophytic fungi in the management of postharvest diseases through the
production of VOCs is gaining great prominence in recent years, a process known as myo-
fumigation (Kaddes, Fauconnier, Sassi, Nasraoui, & Jijakli, 2019). As far as yeasts are con-
cerned, the ability of A. pullulans, isolated from peaches, to produce the antifungal VOC 2-
phenethyl alcohol has been described. This metabolite is involved in the control of a wide
variety of different postharvest pathogens (B. cinerea, C. acutatum, P. expansum, P. digitatum,
P. italicum, M. laxa, M. fructicola, M. polystroma, or M. fructigena) (Di Francesco, Ugolini,
Lazzeri, & Mari, 2015; Di Francesco, Di Foggia, & Baraldi, 2020).

In the case of endophytic filamentous fungi, numerous antimicrobial VOCs have been
identified against the main postharvest diseases. For example, the endophyte of Barleria
prionitis leaves, Daldinia eschscholtzii, reduces the symptoms generated by C. acutatum in
strawberries by producing the VOCs elemicin, benzaldehyde dimethyl acetal, ethyl sor-
bate, methyl geranate, trans-sabinene hydrate, and 3,5-dimethyl-4-heptanone (Khruengsai,
Pripdeevech, Tanapichatsakul, et al., 2021). Phaeosphaeria nodorum is an endophyte isolated
from plums whose VOCs (ethyl acetate, acetic acid, 3-methyl-1-butanol, 2-propyn-1-ol and
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2-propenenitrile) inhibit the development of the pathogen M. fructicola, producing a reduc-
tion in hyphal amplitude and a collapse of its internal content (Pimenta, Moreira da Silva,
Buyer, & Janisiewicz, 2012). The main endophytic fungi used in postharvest mycofumiga-
tion are Muscodor albus and Nodulisporium sp. (anamorph of Hypoxylon anthochroum). In the
case of M. albus, isolated from limbs of Cinnamomum zeylanicum, its antifungal capacity
against fungi and postharvest pathogenic bacteria (B. cinerea, P. expansum, Sclerotinia sclero-
tiorum, Erwinia carotovora pv. carotovora, Pseudomonas fluorescens, and Escherichia coli) is due
mainly to 2-methyl-1-butanol and isobutyric acid VOCs (Mercier & Jiménez, 2004; Ramin,
Braun, Prange, & DeLong, 2005). The antifungal capacity of Nodulisporium sp. is related to
different VOCs, depending on the isolate used, including, elemene, 1-methyl-1,4-cyclohex-
adiene, β-selinene, α-selinene or eucalyptol, among other VOCs (Park et al., 2010;
Suwannarach et al., 2013). The antifungal effect of these VOCs has been described with
foliar endophytic isolates of H. anthochroum, when used against F. oxysporum in cherry
tomatoes. The different VOCs identified, mainly sesquiterpenes and monoterpenes, cause
the inhibition of the pathogen’s growth by blocking its respiration and altering the cell
membrane permeability, which causes damage to the hyphal morphology (Macı́as-
Rubalcava, Sánchez-Fernández, Roque-Flores, Lappe-Oliveras, & Medina-Romero, 2018;
Medina-Romero, Roque-Flores, & Macı́as-Rubalcava, 2017).

The way in which these endophytic fungi are applied as postharvest mycofumigants
involves the use of plant material where they can grow and develop. For M. albus, rye grains
colonized by mycelium and applied in commercial fruit packaging are usually used, a strat-
egy capable of completely reducing the disease caused by B. cinerea, P. expansum or S. sclero-
tiorum in grapes and apples (Gabler, Fassel, Mercier, & Smilanick, 2006; Ramin, Prange,
Braun, & Delong, 2007). Other culture substrates can also be used, such as bagasse for the
fungus Nodulisporium sp (Yeh, Wang, Chen, Tsai, & Chung, 2021), or wheat bran�rice hull
for Oxyporus latemarginatus (Lee et al., 2009). Furthermore, endophytic fungi as fumigants
can be used in combination with other postharvest disease management strategies. In pea-
ches stored at cold (1�2�C), the use of M. albus as a mycofumigant in closed cardboard
boxes significantly reduces the decay caused by M. fructicola (Schnabel & Mercier, 2006). In
table grapes, the simultaneous application of M. albus and ozone has been shown to reduce
B. cinerea damage by up to 3% (Gabler, Mercier, Jiménez, & Smilanick, 2010).

Within the mechanism of action of antibiosis, endophytic fungi can synthesize several
enzymes with hydrolase activity. These cell wall lytic enzymes, such as glucanases and
chitinases, enable the fungus to degrade the cell wall of postharvest pathogens (Huang
et al., 2021). In the case of endophytic filament fungi used as BCAs in postharvest, only
the involvement of chitinases in the management of B. cinerea in grapes by A. verrucaria
has been described so far (Li et al., 2020). On the other hand, numerous species of endo-
phytic yeast producing lytic enzymes effective in the control of these pathogens have been
described. The production of chitinases, pectinases, β-1,3-glucanases and proteases by
Galactomyces geotrichum, Pichia kudriavzevii, Rhodotorula glutinis, Schwanniomyces vanrijiae
or Debaryomyces hansenii stand out (Madbouly, Abo Elyousr, & Ismail, 2020). Other endo-
phytic yeasts produce mainly a type of hydrolytic enzyme, such as β-glucanases by
W. anomalus and Saccharomyces cerevisiae (Platania, Restuccia, Muccilli, & Cirvilleri, 2012),
alkaline serine proteases by A. pullulans (Banani et al., 2014), or phosphilipases by
W. anomalus, P. kudriavzevii, Candida tropicalis and Cryptococcus albidus (Pesce et al., 2018).
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To study the production of cell wall lytic enzymes by endophytic yeasts, they are usually
grown in salt-poor medium, where the only available carbon source is the cell wall of
pathogenic fungi (Zhang et al., 2010a).

4.5.3 Activation of plant defenses

Endophytic fungi, when colonizing plant tissues or organs, can generate a local or sys-
temic defense state by acting as BCA (Huang et al., 2021). Indirectly, it has been described
how the tissues of cherries, peaches, or apricots are able to perceive the VOCs emitted by
A. pullulans and activate physical defensive responses, such as increasing the fruit waxes
complexity (Di Francesco et al., 2020). In peaches treated with P. membranifaciens, activa-
tion of the mitogen-activated protein kinase pathway and signaling by ethylene, SA and
jasmonate (JA) has been documented, due to plant recognition of the pathogen-associated
molecular patterns (MAMPs) of the endophyte. Thanks to the activation of these signaling
pathways, peaches-tissues increase the activity of defense-related enzymes against the
pathogen R. stolonifer, including peroxidase (POD), polyphenol oxidase (PPO), phenylala-
nine ammonia-lyase (PAL) and catalase (CAT) (Zhang et al., 2020). Similarly, W. anomalus
reduces P. expansum disease in apples by increasing the plant content of flavonoids and
total phenols, and PPO, POD, CAT, PAL, and ascorbate peroxidase (APX) activity (Zhao
et al., 2021). This mechanism of action has been reported in other endophytic yeasts, such
as Hanseniaspora uvarum (Cai Yang, Xiao, Qin & Si, 2015; Cheng, Nie, Jiang, & Li, 2019),
and filamentous fungi, such as P. rolfsii (Wang, Zhang, Yuan, & Chen, 2021).

4.5.4 Microbiota modification

As indicated above, the microbiota of fruits and vegetables can greatly contribute to the
management of different postharvest diseases. Accordingly, the use of endophytic fungi can
actively modify the microbial diversity of plant tissues, therefore, acting indirectly as BCAs. It
has been reported that the endophytic yeast of grapes Metschnikowia fructicola is capable
of increasing the diversity of beneficial bacteria (such as the genera Methylobacterium,
Sphingomonas, Rhizobium or Bacillus) present in apples and strawberries, reducing fungal diver-
sity, and improving the control of various fungal diseases (Biasi et al., 2021; Zhimo et al., 2021).

Finally, it is important to note that, under certain conditions, some of these endophytic
fungi can also behave as postharvest pathogens of fruits and vegetables. For example,
E. nigrum and A. pullulans can be rot producers in grapes that have suffered severe dehy-
dration during storage (Lorenzini & Zapparoli, 2015).

4.6 Future challenges and perspectives

Endophytic fungi are a very promising postharvest tool. In addition, they allow for a
wide range of solutions because they are quite versatile and can generate a wide variety of
biocontrol products. Microorganisms can be applied, modifying the microbiota, and allow-
ing a sustained response over time. Equally, by-products generated by these fungi in the
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form of biopesticides, activators of the plant’s defenses, etc. can be added. We must inves-
tigate in depth the mechanisms of action to establish protocols and elucidate the applica-
tion window and the most effective treatment based on the characteristics of the product,
other complementary treatments, and the conditions to which the product will be sub-
jected throughout the retail chain. To achieve this, it is essential to know the possible inter-
actions between the environment, the plant’s genotype or the microbiota that may be
present initially, since it can lead to changes in the effectiveness of the treatment.
Therefore we must exhaustively monitor the products that are entering the market and
establish the effectiveness and duration of the effect. For now, the information is limited,
and it is difficult to predict when the treatment will begin to be effective after inoculation
and how long it will be maintained over time. We must take into account that the condi-
tions may change throughout harvest, transportation, or storage and that can certainly
affect treatment. In turn, the industry will have to overcome challenges such as scaling the
production of these compounds and finding the best format to supply them.

On the other hand, the development of techniques such as metagenomics, metabolo-
mics, and massive sequencing, will allow us to discover new metabolites and endophytes
that are difficult to cultivate or obtain in the laboratory. Access to this information can
help us discover new compounds or protection tools that can be used through genetic
engineering for the improvement of plants.

Finally, we must explore the perspective of how endophytes can contribute, not only to
the maintenance of the health of the plant and fresh products but can also have a benefit
at other deeper levels. Among them are the improvements to the quality of the postharvest
products, enriching them in some way. Or a potential improvement in human health
because the microbiota present in the fruits and vegetables we eat could eventually modify
the human microbiota.

4.7 Conclusions

It is essential to find solutions to food waste in postharvest. Many of the strategies to
combat it are dangerous for human health, the environment, consume a lot of resources,
or are expensive. The incorporation of fungal endophytes as postharvest biocontrol tools
may represent an improvement, as some of the commercialized products have already
shown. However, they must be accompanied by other complementary processes because a
single approach is not enough. Postharvest disease management is a complex problem
that requires a holistic approach to find an alternative that can truly supersede current
methods. Furthermore, more research is needed on their drive mechanisms and how they
can affect the environment and humans.
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