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In the current need of optimizing agricultural production,
endophytic fungi are increasingly seen as part of the solution.
Trichoderma, subject of this review, colonizes the most
external layers of the root, improving plant growth. This colo-
nization also induces plant defenses, helping the plant to
minimize pest damage. However, if the fungi enter vascular
tissues, necrosis and nutrient competition occurs. Easily
dispersed in the environment, the fungi may affect other tar-
gets, such as insects, if the spores manage to penetrate the
insect cuticle. Mostly seen as a race for resources, space, and
with a possible interplay of toxins, Trichoderma may act as a
powerful bioinsecticide. Unforeseen effects on other organisms
of the ecosystem and trophic chain that might get exposed are
also reviewed.

Addresses
1 Recognised Research Group AGROBIOTECH, UIC-370 (JCyL),
Higher Technical School of Agricultural Engineering of Palencia, Uni-
versity of Valladolid, Palencia, Spain
2 University Institute for Research in Sustainable Forest Management
(iuFOR), University of Valladolid, Palencia, Spain

Corresponding author: Poveda, Jorge (jorge.poveda@uva.es)
Current Opinion in Environmental Science & Health 2024,
41:100566

This review comes from a themed issue on Environmental Toxicology
2025: Non-target effects of Bio-insecticides

Edited by Raul Narciso C. Guedes, Giovanni Benelli, Nicolas
Desneux and Evgenios Agathokleous

For complete overview of the section, please refer to the article
collection - Environmental Toxicology 2025: Non-target effects of Bio-
insecticides

https://doi.org/10.1016/j.coesh.2024.100566

2468-5844/© 2024 The Author(s). Published by Elsevier B.V. This is an
open access ar t i c le under the CC BY-NC l icense (h t tp : / /
creativecommons.org/licenses/by-nc/4.0/).

Keywords
Root colonization, Rot, Salicylic acid, Cascade effects, Endophyte,
Bionfungicide, Bioinsecticide.
Trichoderma: a fungus with multiple
applications
Trichoderma is a genus of filamentous fungi belonging to
the family Hypocreaceae, globally distributed in many
ecosystems. Generally present in soil, it mainly acts as a
www.sciencedirect.com
saprophyte, as a parasite of fungi, nematodes, and in-
sects, or as a plant symbiont, and can be found as a free-
living organism or associated with plant roots [1]. Due to
the application of current molecular taxonomic tools, it
is estimated that each year about 50 new species of

Trichoderma are recognized, having been described 460
different species until the year 2022 [2].

Different species within the genus Trichoderma have
been widely studied and used as biological control
agents (BCAs) in agriculture, due to different mecha-
nisms of action. Trichoderma parasitize phytopathogenic
fungi and eggs/juveniles of plant parasitic
nematodes produce potent biocidal compounds (anti-
bacterial, antifungal, oomyceticidal, nematicidal, and
insecticidal), compete for space and nutrients in the

rhizosphere in a very effective way, hindering its access
to soil pathogens, and induces in its host plants a local
and/or systemic defensive response against a possible-
future pathogen or pest attack [3]. In addition,
different Trichoderma species act as plant growth-
promoting fungi, or biofertilizers, through the synthe-
sis and release of plant hormones (auxins, cytokinins,
etc), the solubilization of nutrients present in the soil
(such as phosphorus and potassium), or the production
of siderophores to metal chelation (such as iron, copper,
zinc, or magnesium). Finally, in their interaction with

the plant, several Trichoderma species are able to induce
greater tolerance under abiotic stresses, such as drought,
salinity, or extreme temperatures [3]. All these mecha-
nisms of action have led commercial Trichoderma for-
mulations currently to represent 50%e60% of the
biofungicides on the world market [4].

Despite all the benefits of the use of Trichoderma in
agriculture, it can have significant adverse effects on
nontarget organisms, such as plants or beneficial insects
(developed in sections “Trichoderma as a plant pathogen”
and “Trichoderma as entomopathogen of non-target in-
sects” of this work). The aims of this paper are i) to
collect, collate, and discuss the side effects that
Trichoderma can have on these organisms, and ii) to try to
discern why they happen and what effects they have.
The infographic in Figure 1 summarizes the content of
these adverse effects with their possible causes
and consequences.
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Figure 1

Overall effects of Trichoderma on plant hosts, and insects feeding on plant tissues. Direct mechanisms, in yellow boxes, are mediated by nutrient
mobilization, nutrient competition or the release of bioactive compounds produced by fungal endophytes, which possess the potential to directly inhibit the
growth of other organisms, including insect pests. Indirect mechanisms are caused by the association between the fungi with plants, comprising changes
in growth, morphology, biochemistry, and development of the host plant. Silver boxes summarize the potential side effects of Trichoderma inoculation that
were evaluated in this review.
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Plant-Trichoderma interaction
For effective colonization of roots by Trichoderma to
occur, mutual recognition through molecular dialogue is
necessary [5]. Trichoderma produces molecules recog-
nized by root cell receptors, such as cysteine-rich
hydrophobins [6], while the plant releases molecules
in its exudates (carbohydrates, lipids, terpenoids, and
amino acids) that are recognized by Trichoderma,
directing its growth [7].

Once the Trichoderma hyphae come into contact
with roots, the penetration process begins. In order
to enter the root, Trichoderma must be able to form
channels for its hyphae across the plant cell walls.
Among the different proteolytic, cellulolytic,
xylanolytic, and pectinolytic cell wall-degrading
enzymes that are involved, we highlight the relevant
role of cellulolytic enzymes, such as swollenins and
ceratoplatanins [5].

Once inside the root, Trichoderma colonizes the cell
apoplast in a parallel pattern as the defined for the root
tissue. However, this colonization is limited only to the
epidermis and outer cortex layers (in addition to the root
surface), without reaching the inner cortex layers, or the
vascular bundles [8]. Throughout the Trichoderma-plant
symbiosis, a molecular dialogue is established in which
plant cell receptors recognize microbe-associated mo-
lecular patterns (MAMPs) of Trichoderma (sterols, chitin,
and b-glucans) in the apoplast, inducing local and sys-
temic signals in the host plant [9].
Current Opinion in Environmental Science & Health 2024, 41:100566
Trichoderma as a plant pathogen
Although Trichoderma includes species widely used as
beneficial agricultural bioinoculants, different cases of
pathogenic behavior by these species on different crops
have been reported over the years. Trichoderma is mainly a
fungus present in the soil, interacting with the rhizo-
sphere; therefore, a possible pathogenic behavior may
appear in the roots. In Jiangxi province, China, the death
of about six thousand Polygonatum cyrtonema plants was

reported in 2022 as a consequence of root infection by
Trichoderma virens, causing sunken red-brown lesions, also
on tubers [10*]. This pathogenic behavior on roots that
serve as the plant’s reserve store had already been
observed recently for Trichoderma asperellum, the causal
agent of green mold disease on sweet potato [11]. With
the evidence reported so far, there may be a pathogenic
behavior of Trichoderma on reserve roots, tubers, or bulbs,
since they represent an important source of nutrients for
a fungus that also behaves as a saprophyte. Therefore, it
is necessary to investigate why this behavior occurs and

whether it can affect other crops of great economic
importance within this group, such as potato, beet, or
onion, which would imply testing commercial products
with these crops before their massive use. This reported
pathogenic behavior of Trichoderma could be of secondary
type, after the attack of another pathogen of these crops,
which requires further studies in this respect.

In addition, Trichoderma can infect the root systems of
other plants. The ability of Trichoderma longibrachiatum to
infect the roots of red leaf lettuce [12*], causing its
www.sciencedirect.com
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death, has been described, as well as of Trichoderma viride
on tomato, bell pepper, cucumber [13], and pine tree
[14]. The reason why Trichoderma eventually kills its
host has been associated with various causes, such as
surface colonization of the root, which causes the plant
to be unable to absorb nutrients and/or water [12], or
direct maceration of root tissues [13]. Moreover,
Trichoderma can penetrate through the roots of its

host plant and cause lesions in the aerial part of the
plant, as is the case of Trichoderma koningii in maize
plants, causing internodal lesions and extensive necrosis
on roots [15,16].

However, Trichoderma does not require root penetration
to behave as a pathogen, having been described as a
causal agent of diseases directly on leaves and post-
harvest products. In leaves of Curcuma wenyujin and
Dendrobium nobile, the fungi Trichoderma koningiopsis and
T. longibrachiatum, respectively, were identified as the

causal agents of yellowing, wilting, and black circular
spots confirmed by Koch’s postulate [17,18]. In the
case of postharvest produce, different Trichoderma
species have been described to colonize tissues and
produce important diseases. In maize ears, Trichoderma
afroharzianum has been found as the causal agent of a
new disease (ear rot), confirmed by its isolation from
crop fields in Southern Germany and its re-inoculation
by silk channel ears under controlled conditions [19].
This pathogenic behavior has also been reported on
citrus fruits, e.g. from the previously described

T. viride causal agent of pine dieback on lemon fruits
[14]. Similarly, in 2009, Trichoderma atroviride was
described for the first time as a causal agent of man-
darin fruit rot, after harvest, degreening, and storage
under ambient conditions [20]. The mechanisms
involved in the behavior of Trichoderma as a pathogen of
aerial plant organs are so far unknown. Therefore, in
order to avoid and/or prevent eventual damages when
used as plant growth-promoting fungi or BCAs, it be-
comes crucial to get understanding on the reasons
behind the pathogenic behavior of Thichoderma, and
what are the mechanisms involved.

How and why Trichoderma behaves as a plant
pathogen?
How a beneficial symbiont organism becomes a path-

ogen under certain conditions and with certain hosts is
one of the questions to be deciphered in the coming
years. Several studies have been carried out on this
subject, under different perspectives. Some of them
have analyzed and compared the genomes of different
species of Trichoderma, reaching the conclusion that
mycoparasitism must have been the ancestral life form
of these fungi. Subsequently, the presence of phyto-
pathogenic fungi and root exudates in the rhizosphere
(both Trichoderma food sources) led to an evolutionary
change of Trichoderma into a plant symbiont fungus after

successfully colonizing the plant root [21,22].
www.sciencedirect.com
More recently, a novel work has gone a step forward in
the explanation of the evolution of Trichoderma from
mycoparasite to beneficial fungus [23*]. From an
evolutionary perspective, several Trichoderma species
were brought into contact with model plants Marchantia
polymorpha (liverwort), Dryopteris affinis (pteridophyte),
and Arabidopsis thaliana (angiosperm). None of the
Trichoderma species used showed pathogenic behavior on

the pteridophyte and angiosperm. However, T. virens,
T. brevicompactum and T. hamatum behaved as pathogens
on liverworts, colonizing their tissues and sporulating on
them. Furthermore, it was reported how the exogenous
addition of salicylic acid (SA) in these liverworts
prevented the pathogenic behavior of Trichoderma [23*].
Therefore, Trichoderma could have had an evolutionary
moment in which it behaved as a plant pathogen. The
development of the SA-mediated defensive response by
plants would have been the key that favored a symbiotic
behavior of the fungus.

In addition to phytopathogens, beneficial microorgan-
isms also have to be able to override or bypass the de-
fenses of their host plant in order to colonize it [24]. In
the case of SA, several beneficial microorganisms require
suppression of their signal on roots in order to colonize
them effectively, such as nodule-forming rhizobacteria
[25], endophytic fungi [26], and even arbuscular
mycorrhizal fungi (AMF) [27]. Moreover, it has been
described a pathogenic behavior on the liverwort
M. polymorpha in the particular case of AMF. Similarly to

Trichoderma, such pathogenic behavior is mediated by
the absence of a plant defensive response mediated by
SA [28].

The role of SA in the success of root colonization by
Trichoderma has been addressed in recent years [29]. In
the first hours of Trichoderma-root interaction, there is a
decrease in the expression of SA-related genes locally,
leading to a momentary suppression of the plant’s
defensive responses, which is quickly recovered [30,31].
Several works have used SA-deficient ethylene signaling
mutants of A. thaliana to elucidate the behavior of

Trichoderma. With Trichoderma harzianum, the absence of a
locally SA-mediated defensive response in the roots of
the sid2 mutant led to massive root colonization by the
fungus, reaching the vascular bundles. In this case,
Trichoderma behaved as a pathogen, rotting all plant tis-
sues, from roots to leaves [32]. Similarly, root coloniza-
tion of the tomato sid2 mutant by T. harzianum was
greater than in the wild ecotype [33]. Therefore, SA
plays a key role in the behavior of Trichoderma as a plant
symbiont, since in its absence it becomes a sys-
temic pathogen.

Although, so far, the explanations for why Trichoderma
behaves as a pathogen are linked to the ability of the
host plant to defend itself, there could be other expla-
nations not yet addressed. For example, the symbiosis
Current Opinion in Environmental Science & Health 2024, 41:100566
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may appear after Trichodermamutations that may modify
its way of recognizing the plant as a symbiont. It is also
noteworthy that there are many fungal genera that
include both pathogenic and endophytic species (and
even strains) for the same host plant. This could be the
case of Trichoderma, having to start considering the genus
as a mixture of beneficial and pathogenic fungi. In
addition, current climatic changes could induce in

Trichoderma and in its host plants important changes,
such as a weakening of plant defenses or a greater
aggressiveness of Trichoderma in its behavior as a sapro-
phyte, leading to an attack on healthy plant tissues.
These physiological changes in plant and fungus would
be a direct consequence of extreme situations derived
from climate change, such as drought, which weakens
plant defenses and can induce pathogenic behavior in
the fungus, necessary for its survival in niches without
other sources of nutrients.
Development of Trichoderma
bioinsecticides
Bioinsecticides are insect-pest control agents based on
living microorganisms or the natural products they pro-
duce. Similar to the use of Trichoderma strains as bio-
fungicides, the inhibition of insect growth is produced
either by direct inhibition mechanisms, such as nutrient
scavenging or producing fungal secondary metabolites
that compromise insect growth, or the activation of
plant defense mechanisms that would deter the insect
that feeds on the plant material [34]. Even though the
insecticidal potential of the genus Beauveria has been
reported to be the most important [35,36], Trichoderma
is proven to act as a contact bioinsecticide against some
hemipteran pests, such as aphids with soft cuticula, or
mirid bugs [37*]. Although the mode of action is yet to
be fully understood, plant sap analyses and feeding
behavior seem to indicate that bug deterrence is un-
likely to be explained by changes in sap nutrient
composition, thus pointing out at direct inhibition
mechanisms according to the division stated here above.

Direct insect deterrence would i) imply that the fungal
conidia have entered the insect via the chitinous cuticle.

The use of a surfactant is often necessary to assure
contact between fungal spores and the cuticle. Once the
spores have entered the insect body, ii) they differen-
tiate into blastospores. The insect’s lifespan is then
shortened due to production of insecticidal toxins,
which are species-dependent. Toxins might impair the
insect metabolism. Moreover, the fungal subsequent
phases of growth rely on iii) the development of fungal
mycelia, which will consume the host nutrients in the
haemolymph [38e40]. The fitness of insect pests, such
as aphids or whiteflies, is especially affected by the
availability of nitrogen sources, such as amino acids,

which will be readily consumed by 178 of the
fungi [41,42].
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The most challenging part of bioinsecticide strategies
with Trichoderma is optimizing the spray strategy, since
pipetting fungal spores, such as performed in many lab
trials is not representative of using bioinsecticides in
agricultural setups, either in greenhouses or open fields.
However, since promising results have been noticed,
more research is necessary in using the most effective
fungal concentration and spray strategy [43].
Trichoderma as entomopathogen of
nontarget insects
A growing number of studies have reported possible
cascading effects when using in crop production and
plant protection endophytic fungi, such as Trichoderma,
as they may affect arthropods with which the plant
interacts [44]. However, most of these studies have
focused on the three-way interaction between benefi-
cial fungi and pest arthropods via the induction of plant
defenses [44]. One of the interactions that could get
affected by the fungal endophyte is that between
plants and their pollinators. Such interaction might get

unbalanced by the fungal-boosted plant vigor, which
may in turn affect blooming period and production of
flowers [45]. This indirect effect would not imply
pathogenicity but may affect the fitness of the insect
via nutrient availability and foraging costs. On the other
hand, secondary metabolites are one of the most
studied effects of fungal inoculation in the roots [46],
but we know have direct proof that plant sap metabo-
lites finally arrive at the floral tissues [47]. Once there,
secondary metabolites impaired by the fungus may
affect floral attractiveness to pollinators via the fraction

of plant secondary compounds that are volatile and
contribute to floral scent. In this regard, it becomes
necessary to bring together the effects of natural en-
emies and plant pathogens on volatile organic com-
pounds (VOCs) into plant pollination studies.

In line with recent investigations in microbial ecology,
the inoculation with a fungus such as Trichoderma, that
may establish in the insect’s internal tissues, is also
subjected to cascade effects. In that sense, the microbe
that arrives first would decrease the chances of subse-

quent microbes to colonize, a mechanism that is overall
known as “priority effects” [48]. In the particular case of
nonharmful insects, it is known that they have a com-
munity of gut microbiota composed by yeasts and bac-
teria, being core and noncore. This microbiota is first
acquired via the parental line during insect develop-
ment. This vertical transmission often leads to consis-
tent microbial features across populations, known as
“core microbiota.” This core microbiota is later enriched
via environmental inputs, mainly via feeding resources
[49]. Inoculation with Trichoderma might affect the
dynamic of gut colonization, thus finally affecting insect

individual lifespan, and ultimately, even colony
fitness [50].
www.sciencedirect.com
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Microorganisms in the endosphere also promote plant
defense against herbivores both above and belowground
by providing feeding deterrence or antibiosis. One direct
consequence on herbivores would be the induction of
associated molecular patterns in plants, but, further-
more, fungi that get to inhabit floral nectar and insect
honeydew may produce VOCs that attract beneficial
insects like natural enemies of the herbivore. Doing so,

they provide indirect pest control in a four-way ecolog-
ical interaction involving plants, fungi, the insect pest,
and its natural insect enemy [43].
Conclusions and proposals for future
studies
About 60% of all fungal-based BCAs are contributed by
Trichoderma-based biopesticides, which are available in
different formulations. It is the most popular due to its
diverse mechanisms of biocontrol that include antibi-
osis, colonization, competition, direct mycoparasitism,
etc. This makes these fungi a powerful tool to be used
in many crops and agricultural setups, but, on the other
hand, also makes effects on nontarget organisms
more feasible.

The pathogenicity of Trichoderma for plant hosts is
mediated by a complex signal interplay between the
plant and the fungi at the root cortex. It is impossible to
gather the whole complexity of external signals that may
modulate a molecular response, but current biochemical
and molecular annotation and expression tools definitely
help to understand the mechanism base and thus gather
predictive responses in new applications, such as new
plant crops or even cultivars within the same crop [37].
More strikingly, Trichodermamay act as pathogen in aerial
plant organs, such as leaves, where mechanisms involved
are yet not understood. Gathering such knowledge is, of

course, key to prevent the transition from symbiont to
pathogen that is specifically reviewed in this piece.

This review has pointed out that direct and indirect
interactions between beneficial partners, for instance,
exemplified by pollinating arthropods and endophytic
fungi, can strongly modify the final impacts on crop yield
and, therefore, deserve specific attention by the
research community. There is potential to use syner-
gistic actions between plant mutualistic counterparts to
increase yield, but, more importantly, moving away from

the traditional separation among fields (entomology and
microbiology) would positively impact our power to
predict yields in more realistic crop scenarios, where all
players act at once. Given the multiple benefits of mi-
croorganisms to plants and the existence of cascade ef-
fects with insects on different trophic levels, we argue
that future pest management strategies should consider
and exploit the whole range of possibilities that micro-
organisms offer to enhance plant defense and increase
attraction, fecundity, and performance of natural
www.sciencedirect.com
enemies. The exploration of such interplay is particu-
larly favored by the current framework of further
limiting chemical pesticides.

Even though testing potential side effects on arthro-
pods is already a great scientific challenge, due to the
need of testing different conditions, crops, or even va-
rieties, there are noninsect plant pests that could be

also affected by Trichoderma inoculation, such as nema-
todes [51]. On a wider ecological context, it is impor-
tant to note that there is growing concern about the
potential of Trichoderma species of being causal agents of
human mycoses, which has been largely disre-
garded [52*].
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