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A codimension one singular holomorphic foliation is Newton 
non-degenerate if it satisfies some non-degeneracy conditions, 
in terms of its Newton polyhedra system. These conditions are 
similar to the ones of Kouchnirenko and Oka for the case of 
functions. We introduce the concept of logarithmic reduction 
of singularities and we prove that a foliation is Newton non-
degenerate if and only if it admits a logarithmic reduction of 
singularities of a combinatorial nature.
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1. Introduction

A foliation F on a complex space M admits a combinatorial logarithmic reduction 
of singularities with respect to a normal crossings divisor E ⊂ M when the centers 
of blowing-up are compatible with the natural stratification provided by E. The data 
(M, E; F) is called a foliated space. The goal of this paper is to characterize the class 
of codimension one foliations admitting such reductions of singularities. We give this 
characterization in terms of the Newton polyhedra associated to the pair (F , E), and we 
state the Equivalence Theorem as follows:
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Theorem 1. A foliated space admits a combinatorial logarithmic reduction of singu-
larities if and only if it is Newton non-degenerate.

A foliated space (M, E; F) is logarithmically desingularized, or logarithmically regular, 
at a point p ∈ M if there is a local generator η of F at p that can be written as

η =
e∑

j=1
aj

dxj

xj
+

n∑
j=e+1

ajdyj ,

where E = (
∏e

j=1 xj = 0) and there is at least one unit among the coefficients 
a1, a2, . . . , an. A combinatorial logarithmic reduction of singularities intends to trans-
form the foliated space into a logarithmically regular one.

This kind of reduction of singularities is closely related with the classical one for 
foliations, whose development starts at the work of Seidenberg [10], in dimension two, and 
at the papers [2,3], in higher dimension. More precisely, when there are no “hidden saddle-
nodes” in the foliation, the logarithmically regular points coincide with the classical 
presimple points in the cited works.

The concept of Newton non-degenerate foliated space is given by extending the clas-
sical ideas for germs of hypersurface in the works [5,9]. We attach a polyhedron NS to 
each stratum S of the natural stratification induced by E. Each compact face of NS

provides a weighted initial form for a local logarithmic generator of the foliation. We 
ask the weighted initial forms to have no zeros in the corresponding spaces of the form 
(S, p) × T , where T is a complex torus, at any point p ∈ S. When these non-degeneracy 
conditions hold, we say that the foliated space is Newton non-degenerate.

The proof of the Equivalence Theorem is based in two fundamental results. The first 
one is the stability of being Newton non-degenerate under combinatorial blowing-ups and 
blowing-downs. The second one is the equivalence between being Newton non-degenerate 
and being logarithmically desingularized, under the hypothesis of having a desingularized 
polyhedra system. In this way, we conclude by applying a reduction of singularities for 
the polyhedra system, whose existence is proved in [6].

Frobenius integrability condition does not intervene in the theorem. Hence, we have 
a similar statement for fields of hyperplanes, although the geometrical interpretation is 
different than in the case of codimension one foliations.

2. Combinatorial logarithmic reduction of singularities

Let M be a n-dimensional nonsingular complex analytic space. A foliation F on M
is an invertible coherent OM -submodule F ⊂ Ω1

M , integrable and saturated in the sense 
that F = F⊥⊥. In local terms, a foliation is generated by a Frobenius integrable germ 
of holomorphic one-form

ω = f1dz1 + f2dz2 + · · · + fndzn,
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without common factors in its coefficients.
For our purposes, we need to consider normal crossings divisors on M . A normal 

crossings divisor E = ∪i∈IEi is a finite union of smooth hypersurfaces Ei such that E
can be seen as a union of coordinate hyperplanes, locally at each point p ∈ M . Besides 
to this usual definition, we ask to the sets EJ = ∩j∈JEj to be connected for any J ⊂ I; 
that is the EJ are the adherence of the strata defined by E. We refer to this additional 
condition by saying that E is a strong normal crossings divisor. We say that such a 
pair (M, E) is an ambient space. We define a combinatorial blowing-up between ambient 
spaces as a map

π : (M ′, E′) → (M,E), E′ = π−1(E)

induced by a blowing-up M ′ → M centered at one of the sets EJ ⊂ E.
A foliated space (M, E; F) is the datum of an ambient space (M, E) and a foliation 

F on M . A combinatorial blowing-up π : (M ′, E′) → (M, E) is admissible for (M, E; F)
when the center EJ is invariant for F . We write, for short

π : (M ′, E′;F ′) → (M,E;F),

where F ′ is the transform of F by π.
We consider the set HM,E of the subsets J ⊂ I, such that EJ �= ∅. Given J ∈ HM,E , 

the stratum SJ is

SJ = EJ \ ∪j∈I\JEj .

In order to give labels in a convenient manner for local coordinate systems at the points 
of SJ , we make a choice of a set c(J), for each J ∈ HM,E , such that J ∩ c(J) = ∅ and 
#J ∪ c(J) = n. For each point p ∈ SJ , a local coordinate system (x, y) adapted to E is 
a pair of families of germs of functions

x = (xj)j∈J , y = (yj)j∈c(J),

such that their union forms a local coordinate system at p and the divisor E is given by 
E = (

∏
j∈J xj = 0).

Taking a logarithmic point of view with respect to the divisor E, we consider F as 
being locally defined at a point p ∈ M by a meromorphic one-form

η =
∑
j∈J

aj
dxj

xj
+

∑
j∈c(J)

ajdyj , (1)

without common factors in its coefficients, where J corresponds to the stratum SJ

such that p ∈ SJ . This expression allows us to define the logarithmic singular locus 
logSing(F , E) as follows:
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logSing(F , E) = {p ∈ M ; νp(F , E) > 0},

where νp(F , E) is the minimum of the orders at p of the coefficients of η.
We say that a set EJ is a log-admissible center of blowing-up for (M, E; F) when 

EJ ⊂ logSing(F , E).

Remark 2.1. Note that if EJ is log-admissible, it is also admissible.

Definition 1. A foliated space (M, E; F) is of logarithmic toric type if there is a finite 
sequence of log-admissible combinatorial blowing-ups

(M ′, E′;F ′) → · · · → (M1, E
1;F1) → (M,E;F) (2)

such that logSing(F ′, E′) = ∅.

Remark 2.2. The reduction of singularities for holomorphic foliations [2,3,10], attempts 
two objectives: to obtain either presimple points or, the more restrictive, simple points. 
Roughly speaking, simple points are “presimple ones without resonances”. There is a 
context in which presimple points coincide with logarithmically non-singular points: the 
case of complex hyperbolic foliations (see [7]). We recall that a foliation F on M is 
complex hyperbolic (see [4]) if there is no holomorphic map φ : (C2, 0) → M such that 
0 is a saddle-node for φ−1F . In the two dimensional case, being complex hyperbolic 
is equivalent to have a reduction of singularities without saddle-nodes; this is the case 
considered in [1].

Hence, in the complex hyperbolic context, a foliated space is of logarithmic toric type 
if and only if it has a “combinatorial reduction of singularities to presimple points” (weak 
toric type in [8]). Then, as a direct consequence of Theorem 1, we have that a complex 
hyperbolic foliated space is Newton non-degenerate if and only if it is of weak toric type.

3. Newton non-degenerate foliated spaces

We devote this section to introduce the definition of Newton non-degenerate foliated 
spaces (M, E; F). In order to do it, we use Newton polyhedra systems, following the 
definitions introduced in [6].

The set HM,E , introduced before, is called support fabric in [6]; as we have seen, it 
represents the natural stratification on M induced by E. We associate to each J ∈ HM,E

a positively convex polyhedron NJ ⊂ RJ
≥0 as follows. Take a point p in the stratum SJ

and a local logarithmic generator η of F at p as in Equation (1). We decompose each 
coefficient aj of η as

aj =
∑

σ∈ZJ

aj,σ(y)xσ, xσ =
∏
j∈J

x
σ(j)
j . (3)
≥0
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The polyhedron NJ is the positively convex hull in RJ of the set Supp(η; (x, y)), where

Supp(η; (x,y)) = {σ ∈ ZJ ; there is j ∈ J ∪ c(J) with aj,σ(y) �= 0}.

Remark 3.1. The definition of NJ is independent of the choice of p ∈ SJ , the particular 
adapted coordinate system and also of the local logarithmic generator η that we consider.

The Newton polyhedra system NM,E;F is the family {NJ}J∈HM,E
.

Remark 3.2. The construction of the NJ is compatible with the natural projections 
pr : RJ ′ → RJ , when J ⊂ J ′, in the sense that NJ = pr(NJ ′). This property is the 
essential condition asked in the general theory of polyhedra systems in [6].

The non-degeneracy conditions for the definition of Newton non-degenerate foliated 
spaces, concern to the “weighted initial forms” associated to the compact faces of the 
polyhedra. Next, we give the precise statements and definitions.

3.1. Weighted initial forms

Given J ⊂ I, a J-vector of weights is a linear map ρ : RJ → R such that ρ(σ) > 0, for 
every non-zero σ ∈ RJ

≥0. Note that the set of values Vρ = ρ(ZJ
≥0) has the same ordinal 

as Z≥0.
Let us fix J ∈ HM,E and a J-vector of weights ρ : RJ → R. We build the “espaces 

étalé” Gρ → SJ and Aρ → SJ of ρ-weithed initial forms, as follows.
We define the fibers at a point p ∈ SJ . Given v ∈ Vρ, we consider Iv ⊂ OM,p the ideal 

generated by the monomials xσ with ρ(σ) ≥ v, where (x, y) is a coordinate system at p
adapted to E. On this way, we obtain a ρ-weighted filtration {Iv}v∈Vρ

of the local ring 
OM,p. The associated ρ-graded algebra is

Gρ
p = ⊕v∈Vρ

Gρ
p(v),

where Gρ
p(v) = Iv/I

+
v = Iv/Iv+ , with v+ = min{b ∈ Vρ; b > v}. Note that we have 

Gρ
p(0) � OSJ ,p, hence Gρ

p is an OSJ ,p-graded algebra. Moreover, there is an isomorphism

Gρ
p � OSJ ,p[T], T = (Tj)j∈J (4)

in the category of OSJ ,p-graded algebras, where the class xσ + I+
ρ(σ) ∈ Gρ

p(ρ(σ)) is sent 
to the monomial Tσ with weight ρ(σ). Thanks to the isomorphisms in Equation (4), the 
disjoint union

Gρ = ∪p∈SJ
{p} ×Gρ

p
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has a topology such that the natural projection Gρ → SJ is an “espace étalé”. We obtain 
that Gρ is an OSJ

-graded algebra locally isomorphic to OSJ
[T], with the weights given 

by ρ.
In a similar way, we build the Gρ

p-graded module Aρ
p = ⊕vA

ρ
p(v), obtained from the 

free OM,p-module Ω1
M,p(logE) of the germs at p of logarithmic one-forms with poles 

along E. As before, we globalize this construction to obtain a Gρ-graded module Aρ

with fibers Aρ
p. For more details see [7].

Remark 3.3. The constructions of Gρ and Aρ do not depend on the choices of local 
coordinate systems adapted to E.

For a non-zero logarithmic germ of one-form η ∈ ΩM,p(logE), the ρ-value νρ(η) of 
η is the maximum of the values v in Vρ such that η ∈ IvΩM,p(logE). Then, there is a 
well-defined ρ-initial form Lρ

pη ∈ Aρ
p(ν), where ν = νρ(η). By means of the isomorphisms

Aρ
p � (Gρ

p)n � (OSJ ,p[T])n,

and taking notations as in Equations (1) and (3), we associate to the ρ-initial form Lρ
pη

the family Lρ
p(η) = (Aj [T])j∈J∪c(J) of ρ-homogeneous polynomials Aj [T] defined by

Aj [T] =
∑

σ∈Δρ∩ZJ
≥0

aj,σ(y)Tσ, (5)

where Δρ = {σ ∈ RJ ; ρ(σ) = νρ(η)}. In this way, we can consider the set Lρ
p(η) = 0 of 

common zeros of the Aj [T] as a subset of (SJ , p) ×CJ .
Let us denote by WJ the set of J-vectors of weights. The compact faces of NJ are 

precisely the sets Fρ = Δρ ∩ NJ , where ρ ∈ WJ . Given ρ, ρ′ ∈ WJ , we have that 
Lρ
p(η) = Lρ′

p (η) if and only if Fρ = Fρ′ . Denote by WJ,F the set of J-vectors of weights 
ρ such that Fρ = F . In this way, we obtain a partition {WJ,F } of WJ , by the compact 
faces F of NJ . This gives sense to the expression “initial form of η with respect to a 
compact face F”.

The ρ-initial form LρF of the foliation F is defined as the Gρ-submodule of Aρ locally 
generated by the weighted initial forms Lρ

pη, where η are local logarithmic generators of 
the foliated space (M, E; F).

3.2. Non-degeneracy conditions

We say that a foliated space (M, E; F) is non-degenerate at p ∈ SJ with respect to 
ρ ∈ WJ when we have that

(Lρ
p(η) = 0) ∩ (SJ , p) × (C∗)J = ∅, (6)

where η is a local logarithmic generator of F as in Equation (1) and C∗ = C \ {0}. Note 
that if Fρ = Fρ′ , the condition also holds for ρ′. Thus, we say that the foliated space 
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is non-degenerate at p ∈ SJ with respect to a compact face F of NJ if it is so for the 
ρ ∈ WJ,F .

Remark 3.4. Note that Equation (6) holds for a local logarithmic generator η of F if and 
only if it does for xση, since Lρ

p(xση) = TσLρ
p(η).

Definition 2. A foliated space (M, E; F) is Newton non-degenerate at a point p ∈ M if 
it is non-degenerate at p with respect to each compact face of NJ , where J is such that 
p ∈ SJ . It is Newton non-degenerate if it is so at every point of M .

Remark 3.5. Being Newton non-degenerate at a point is an open property.

4. Blowing-ups and blowing-downs

In this section we see that the property of being Newton non-degenerate is stable by 
combinatorial blowing-ups and blowing-downs. This is one of the keys for the proof of 
the equivalence statement.

Proposition 1. Let π : (M ′, E′; F ′) → (M, E; F) be a combinatorial blowing-up be-
tween foliated spaces. We have that (M, E; F) is Newton non-degenerate if and only 
if (M ′, E′; F ′) is Newton non-degenerate.

Write, for short, H = HM,E and H′ = HM ′,E′ . Assume that the center of π is EJ , 
with J ∈ H. The blowing-ups of support fabrics is an abstract procedure introduced 
in [6] that is compatible, in a natural way, with the geometrical blowing-up of ambient 
spaces. Following [6], we have that

H = Hs ∪ KJ ,

where KJ = {K ∈ H; J ⊂ K} and Hs = H\KJ . Recall that EJ is the adherence of the 
stratum SJ and it is the union of the strata given by EJ = ∪K∈KJ

SK . The strata SK , 
with K ∈ KJ are the ones disappearing after the blowing-up. Given K ∈ KJ , the inverse 
image π−1(SK) is a union of strata S′

K′(A), with K ′(A) ∈ H′K
∞ , where

H′K
∞ = {(K ′(A); A � J}; K ′(A) = (K \ J) ∪A ∪ {∞}.

Moreover π(S′
K′(A)) = SK , for each K ′(A) ∈ H′K

∞ . In this way, we have that

H′ = Hs ∪
( ⋃

K∈KJ

H′K
∞

)
.

Note that if K ∈ Hs, the stratum SK has not been modified by the blowing-up and we 
can identify S′

K = π−1(SK) with SK ; moreover, in this case, we have that E′
K is the 

strict transform of EK .
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Proving Proposition 1 is equivalent to show that (M, E; F) is Newton non-degenerate 
at a point p ∈ M if and only if (M ′, E′; F ′) is so at each point q of the inverse image 
π−1(p). We proceed in this way.

Let us take a point p ∈ M . If p /∈ EJ , there is a unique point over p and the blowing-up 
induces a local isomorphism; hence, we are done.

We assume now that p ∈ EJ . There is a unique K ∈ KJ such that p belongs to the 
stratum SK . The inverse image π−1(p) intersects all the strata S′

K′(A), with A � J . Let 
us give a partition {WA

K}A�J of WK and bijections

φA
K : WA

K → WK′(A), A � J

such that the following “stability” property holds:

(S) Let us consider a K-vector of weights ρ ∈ WA
K and its image ρ′ = φA

K(ρ). The foli-
ated space (M, E; F) is non-degenerate at p with respect to ρ if and only if (M ′, E′; F ′)
is non-degenerate at each q ∈ π−1(p) ∩ S′

K′(A) with respect to ρ′.

Once this is achieved, we end the proof of Proposition 1 as follows.
• Assume that (M, E; F) is Newton non-degenerate at p and take q ∈ π−1(p); let 

us see that the transformed foliated space (M ′, E′; F ′) is also Newton non-degenerate 
at q. There is A � J such that q belongs to the stratum S′

K′(A). We need to see that 
(M ′, E′; F ′) is non-degenerate at the point q with respect to all the K ′(A)-vector of 
weights ρ′. Taking ρ = (φA

K)−1(ρ′), we know that (M, E; F) is non-degenerate at p with 
respect to ρ. Now by property “S” we are done.

• Conversely, we suppose that (M ′, E′; F ′) is Newton non-degenerate at each point 
q ∈ π−1(p), and let us show that (M, E; F) is Newton non-degenerate at p. We have to 
see that (M, E; F) is non-degenerate at p with respect to any K-vector of weights ρ. In 
view of the partition of WK , there is A � J such that ρ ∈ WA

K . Taking ρ′ = φA
K(ρ), we 

have that (M ′, E′; F ′) is non-degenerate at each q ∈ π−1(p) ∩ S′
K′(A) with respect to ρ′. 

By property “S” we conclude.
Below we show the existence of a partition {WA

K}A�J of WK and bijections φA
K with 

the property “S”.
For each A � J , we define the subset WA

K ⊂ WK as being the set of K-vectors of 
weights ρ ∈ WK such that there is a number rρ > 0 with the properties:

ρ(σK,j) = rρ, j ∈ J \A; ρ(σK,j) > rρ, j ∈ A,

where {σK,j}j∈K denotes the standard basis of the R-vector space RK . The bijection 
φA
K : WA

K → WK′(A) is given by φA
K(ρ) = ρ′, where

ρ′(σK′(A),j) =

⎧⎪⎨
⎪⎩

ρ(σK,j), j ∈ K \ J
ρ(σK,j) − rρ, j ∈ A

r , j = ∞.
ρ
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Let us prove that Property “S” holds. Recall that we have fixed a K-vector of weights 
ρ ∈ WA

K and its image ρ′ = φA
K(ρ) ∈ WK′(A).

Now we describe the relationship between the initial forms LρF and Lρ′F ′, working 
in local coordinates at p and at q. We consider a local logarithmic generator η of F at p; 
the foliation F ′ is defined by the pull-back η′ = π∗η, more precisely, a local logarithmic 
generator of F ′ at q is given by dividing η′ by a power of a local equation of the excep-
tional divisor (recall that E′ contains the exceptional divisor of π). Note that, in view 
of Remark 3.4, we can work directly with η′, in order to deal with the non-degeneracy 
condition of Lρ′F ′.

We write from now K ′ = K ′(A). Let (x, y) be a coordinate system adapted to E at 
the point p. Let us describe the morphism π locally at q ∈ π−1(p) ∩ SK′ by means of 
coordinates (x′, y′) adapted to E′. We can place q at some of “the standard charts of the 
blowing-up”, that are parameterized by the elements of J \A. Then, there is j0 ∈ J \A
and scalars λj ∈ C∗, for j ∈ JA = J \ (A ∪ {j0}), such that the equations of π are the 
following ones:

xj = x′
j , y� = y′�, for j ∈ K \ J and 
 ∈ c(K),

xj0 = x′
∞, xj = x′

∞x′
j , for j ∈ A,

xj = x′
∞(y′j + λj), for j ∈ JA.

Write ν = νρ(η) and Δρ = {σ ∈ ZK
≥0; ρ(σ) = ν}. We can decompose η as a sum 

η = η0 + η̃ such that νρ(η̃) > ν and

η0 =
∑
σ∈Δρ

ησxσ; ησ =
∑
j∈K

aj,σ(y)dxj

xj
+

∑
j∈c(K)

aj,σ(y)dyj .

Given σ ∈ ZK
≥0, we denote λ(σ) to the element of ZK′

≥0 such that λ(σ)(j) = σ(j), if 
j ∈ K ′ \ {∞} and λ(σ)(∞) =

∑
j∈J σ(j). We have that π∗xσ = Uσx′λ(σ), where

Uσ =
∏

j∈JA

(y′j + λj)σ(j).

Note that the equality ρ′(λ(σ)) = ρ(σ) holds. Moreover, we have that νρ′(η′) = νρ(η) = ν; 
more precisely, if we write η′ = π∗η0 + π∗η̃, we see that

νρ′(π∗η0) = ν; νρ′(π∗η̃) > ν.

Hence, the ρ′-initial form of η′ coincides with the ρ′-initial form of π∗η0. The pull-back 
of η0 by π is given by

π∗η0 =
∑

π∗ησUσxλ(σ).

σ∈Δρ
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We denote Δ′
ρ′ = {σ′ ∈ ZK′

≥0; ρ′(σ′) = ν}. Noting that λ defines a bijection λ : Δρ → Δ′
ρ′ , 

we can write

π∗η0 =
∑

σ′∈Δ′
ρ′

η̄σ′x′σ′
,

where η̄σ′ = Uσπ
∗ησ, if σ′ = λ(σ); the expression of η̄σ′ is given by

U−1
σ η̄σ′ =

∑
K′\{∞}

aj,σ(y′)
dx′

j

x′
j

+
(∑

j∈J

aj,σ(y′)
)dx′

∞
x′
∞

+ (7)

+
∑
j∈JA

aj,σ(y′)
y′j + λj

dy′j +
∑

j∈c(K)

aj,σ(y′)dy′j ,

where we identify the set c(K ′) with the union c(K) ∪ JA. In view of Equation (7), we 
have the following relationship between the initial forms Lρ

p(η) = (Aj [T])j∈K∪c(K) and 
Lρ′
q (η′) = (A′

j [T′])j∈K′∪c(K′) given by:

A′
∞ =

∑
j∈J F ′

j ,

A′
j = F ′

j , j ∈ K ′ \ {∞} ∪ c(K)
A′

j = (y′j + λj)−1F ′
j , j ∈ JA

(8)

where F ′
j =

∑
σ∈Δρ

aj,σ(y′)UσT′λ(σ).
The relations appearing in Equation (8), allow us to complete the proof of the Stability 

Property “S”. More precisely, let us prove that (M, E; F) is degenerate at p with respect 
to ρ if and only if there is a point q ∈ π−1(p) ∩ S′

K′ such that (M ′, E′; F ′) is degenerate 
at q, with respect to ρ′.

• Assume that the foliated space (M, E; F) is degenerate at p with respect to ρ. 
There is μ ∈ (C∗)K such that Aj |p(μ) = 0, for every j ∈ K ∪ c(K). Take the point 
q ∈ π−1(p) ∩ SK′ defined by λj = μj/μj0 ∈ C∗, for j ∈ JA, and the vector μ′ ∈ (C∗)K′

given by

μ′
j = μj/μj0 , j ∈ A; μ′

j = μj , j ∈ K \ J ; μ′
∞ = μj0 .

We have that A′
j |q(μ′) = 0, for every j ∈ K ′ ∪ c(K ′). Hence (M ′, E′; F ′) is degenerate 

at q with respect to ρ′.
• Consider a point q ∈ π−1(p) ∩SK′ defined by (λj)j∈JA

, with λj ∈ C∗. Suppose that 
(M ′, E′; F ′) is degenerate at q with respect to ρ′. There is a vector μ′ ∈ (C∗)K′ such 
that A′

j |q(μ′) = 0, for every j ∈ K ′ ∪ c(K ′). We take the vector μ ∈ (C∗)K given by

μj0 = μ′
∞, μj = μ′

∞μ′
j , μ� = μ′

�, μk = μ′
∞λk; j ∈ A, 
 ∈ K \ J, k ∈ JA.

We have that Aj |p(μ) = 0, for every j ∈ K ∪ c(K). Hence (M, E; F) is degenerate at p
with respect to ρ.
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5. Equivalence theorem

The objective on this section is to complete the proof of our main statement:

Theorem 1. A foliated space is Newton non-degenerate if and only if it is of logarithmic 
toric type.

We consider a foliated space (M, E; F) and we denote by N = {NJ}J∈H the Newton 
polyhedra system associated to it. The proof of Theorem 1 is a consequence of the 
following facts:

1. Theorem 1 holds when N is desingularized in the sense that each polyhedron NJ

has a single vertex. More precisely, if N is desingularized, then (M, E; F) is Newton 
non-degenerate if and only if logSing(F , E) = ∅. This property can be verified in a 
direct way by looking at each point.

2. The existence of reduction of singularities for the polyhedra system N with admis-
sible centers EJ , that is, when the polyhedron NJ has more than one vertex. This 
result is proved in [6, Theorem 2].

3. The compatibility between admissible blowing-ups of polyhedra systems and com-
binatorial log-admissible blowing-ups of foliated spaces. The main remark here is 
that EJ ⊂ logSing(F , E) if and only if NJ has more than one vertex. Hence, we 
have that EJ is an admissible center for the polyhedra system N if and only if it 
is a log-admissible center for the foliated space. Moreover, the polyhedra system N ′

associated to the transform of the foliated space by a combinatorial log-admissible 
blowing-up is equal to the “abstract” transformed polyhedra system of N introduced 
in [6].

4. The stability of being Newton non-degenerate under combinatorial blowing-ups and 
blowing-downs, stated in Proposition 1.

Let us conclude with the proof of Theorem 1.
Assume first that (M, E; F) is of logarithmic toric type. Fix a log-admissible combi-

natorial reduction of singularities

(M ′, E′;F ′) → · · · → (M1, E
1;F1) → (M,E;F)

given as in Equation (2). Since (M ′, E′; F ′) is logarithmically desingularized, we have 
that E′

J ′ �⊂ logSing(F ′, E′), for any J ′ ∈ HM ′,E′ . This implies that the polyhedra system 
N ′ associated to (M ′, E′; F ′) is desingularized. By Fact (1.), we have that (M ′, E′; F ′)
is Newton non-degenerate and by Fact (4.) we conclude that (M, E; F) is also Newton 
non-degenerate.

Suppose now that the foliated space (M, E; F) is Newton non-degenerate. Thanks 
to the compatibility stated in Fact (3.) and the existence of reduction of singularities 
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of the polyhedra system N stated in Fact (2.), we have a sequence of log-admissible 
combinatorial blowing-ups

(M ′, E′;F ′) → (M,E;F),

such that the polyhedra system N ′ associated to (M ′, E′; F ′) is desingularized. More-
over, we know that (M ′, E′; F ′) is Newton non-degenerate, by the stability property of 
Fact (4.). Then, we can use Fact (1.) to conclude that (M ′, E′; F ′) is desingularized, that 
is, logSing(F ′, E′) = ∅. As a consequence, we have found a log-admissible combinatorial 
reduction of singularities. Hence (M, E; F) is of logarithmic toric type.
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