
Escuela de Ingeniería Informática & Department
of Computer Science and Communications

Final Year Project

Bachelor’s Degree in Informatics Engineering
Computer Science

Evaluating YOLO in real computer
vision tasks

Autor: Amine Mbarek

Escuela de Ingeniería Informática & Department
of Computer Science and Communications

FINAL YEAR PROJECT

Bachelor’s Degree in Informatics Engineering
Computer Science

Evaluating YOLO in real computer
vision tasks

Autor: Amine Mbarek
Tutores: Valentín Cardeñoso Payo

Mohamed Hammami
Fatma Bouhlel

I dedicate my dissertation work:

To my loving parents, Sadok and Khiriya Mbarek, a special feeling of gratitude goes to you.
Your unwavering support, encouragement, and insistence on tenacity have been a constant

source of motivation and strength.

To my sister Ahlem and my brother Ahmed, who have never left my side. Your support has
been very special to me, and I am deeply grateful for your love and understanding.

To all my professors, for their invaluable guidance and wisdom.

To all my friends, who offered their support and encouragement throughout this journey.

Acknowledgements

I wish to express my sincere gratitude and appreciation to everyone who assisted and supported
me during this project.

First and foremost, I would like to express my deepest gratitude to my tutors, Mr. Va-
lentín Cardeñoso Payo, Mr. Mohamed Hammami and Mme. Fatma Bouhlel, whose constant
reviews, corrections, and guidance were fundamental to the development of this research. Their
knowledge, patience, and support were invaluable throughout the entire process.

I am also grateful to the University of Valladolid and the University of Sfax for providing
me with the opportunity to carry out this project. Their resources and academic environment
significantly contributed to the successful completion of my research.

My thanks also go to all the professors at the Faculty of Sciences in Sfax for their invaluable
help and their admirable human qualities, which I have greatly appreciated throughout my
course.

Last but not least, I would like to express my gratitude to the Entornos de Computación
Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM) Group at the University of
Valladolid for welcoming me as one of its members.

To all of you, I owe a great part of this achievement. Thank you very much.

Resumen

El objetivo principal de este trabajo es evaluar la efectividad del modelo YOLO en tareas reales
de visión por computadora, específicamente en el contexto de vehículos autónomos, utilizando
el conjunto de datos KITTI. La motivación surge de la necesidad de mejorar la seguridad en
la conducción autónoma, donde la detección precisa de peatones, ciclistas y otros vehículos
es crucial para evitar accidentes. Las tareas realizadas incluyen la investigación y análisis
de soluciones actuales, la preparación y preprocesamiento del conjunto de datos KITTI, el
entrenamiento y optimización del modelo YOLO, y la evaluación de su rendimiento en escenarios
de conducción variados. Los resultados demuestran una mejora significativa en la precisión y
eficiencia del sistema de detección de objetos, contribuyendo al desarrollo de tecnologías de
conducción autónoma más seguras y confiables. En conclusión, este trabajo avanza en la
comprensión y aplicación de la tecnología de detección de objetos, reduciendo potencialmente
la incidencia de lesiones y muertes en el tráfico vial.

Abstract

The main objective of this project is to evaluate the effectiveness of the YOLO model in
real-world computer vision tasks, specifically within the context of autonomous vehicles, using
the KITTI dataset. The motivation stems from the need to improve safety in autonomous
driving, where accurate detection of pedestrians, cyclists, and other vehicles is crucial to prevent
accidents. Tasks performed include research and analysis of current solutions, preparation
and preprocessing of the KITTI dataset, training and optimization of the YOLO model, and
evaluation of its performance in various driving scenarios. The results demonstrate a significant
improvement in the accuracy and efficiency of the object detection system, contributing to the
development of safer and more reliable autonomous driving technologies. In conclusion, this
work advances the understanding and application of object detection technology, potentially
reducing the incidence of road traffic injuries and fatalities.

Résumé

L’objectif principal de ce projet est d’évaluer l’efficacité du modèle YOLO dans des tâches réelles
de vision par ordinateur, spécifiquement dans le contexte des véhicules autonomes, en utilisant
le jeu de données KITTI. La motivation découle de la nécessité d’améliorer la sécurité dans la
conduite autonome, où la détection précise des piétons, des cyclistes et des autres véhicules est
cruciale pour prévenir les accidents. Les tâches effectuées incluent la recherche et l’analyse des

solutions actuelles, la préparation et le prétraitement du jeu de données KITTI, l’entraînement
et l’optimisation du modèle YOLO, et l’évaluation de ses performances dans divers scénarios de
conduite. Les résultats démontrent une amélioration significative de la précision et de l’efficacité
du système de détection d’objets, contribuant au développement de technologies de conduite
autonome plus sûres et plus fiables. En conclusion, ce travail fait progresser la compréhension
et l’application de la technologie de détection d’objets, réduisant potentiellement l’incidence
des blessures et des décès liés au trafic routier.

Contents

List of Tables iii

List of Figures vi

1 Introduction 1

2 Objectives and Scope 3
2.1 Objectives . 3

2.1.1 Principal Objective . 3
2.1.2 Secondary Objectives . 3

2.2 Scope . 4

3 Planning 5
3.1 Phases and costs . 5

3.1.1 Phases . 5
3.1.2 Costs . 6

4 Conceptual Framework 7
4.1 Introduction . 7
4.2 Machine Learning . 7
4.3 Deep Learning . 8

4.3.1 Convolutional Neural Network . 11
4.3.2 Hyper-parameters of Convolutional Neural Network 12

4.4 Computer Vision . 15
4.5 Conclusion . 16

5 State of the Art 19
5.1 Introduction . 19
5.2 Object Detection . 19
5.3 Autonomous vehicle . 21
5.4 Object Detection for Autonomous Vehicles . 21

5.4.1 Challenges in Object Detection for Autonomous Vehicles 21
5.4.2 Methods for object detection for Autonomous Vehicles 22

i

5.5 Conclusion . 23

6 You Only Look Once 25
6.1 Scope . 25
6.2 A revolution in object detection . 25
6.3 Versions . 27

6.3.1 YOLO . 27
6.3.2 YOLOv2 . 29
6.3.3 YOLOv3 . 29
6.3.4 YOLOv4 . 31
6.3.5 YOLOv5 . 31
6.3.6 YOLOv6 . 32
6.3.7 YOLOv7 . 33
6.3.8 YOLOv8 . 34

6.4 Applications in Computer Vision . 36
6.5 Conclusion . 36

7 Dataset 37
7.1 Introduction . 37
7.2 KITTI . 37
7.3 Dataset Preparation . 39
7.4 Conclusion . 40

8 Experiments and Evaluation 41
8.1 Introduction . 41
8.2 Experiment . 41
8.3 Metrics . 42
8.4 Dynamic Scene Composition Technique . 43
8.5 Results . 47

8.5.1 Initial series of experiments . 47
8.5.2 Second series of experiments . 49

8.6 Conclusion . 49

9 Conclusions 51
9.1 Contributions . 51
9.2 Future Work . 51

Appendices 53

Appendix A Code repository 55

Bibliography 59

ii

List of Tables

3.1 Planned phases of project development. 5

6.1 Real Time systems on PASCAL VOC 2007 [36] 26
6.2 Darknet-53 [35] . 30
6.3 Comparison of backbones [35] . 30
6.4 Performance metrics for YOLOv8 models [44] 35

8.1 Performance comparison across different DSCT numbers and categories 48
8.2 Performance comparison across different methods and categories 49

iii

iv

List of Figures

4.1 A biological neuron . 8
4.2 Formal neural network functioning as the OR logical operation. 9
4.3 Artificial Neural Network . 9
4.4 Diffrence between Machine learning and Deep Learning 10
4.5 Pedestrian classification . 10
4.6 Pedestrian detection . 11
4.7 Standard architecture of CNN . 11
4.8 Application of a filter on an image with padding p = 1 13
4.9 Application of a filter on an image with padding p = 0 and s = 2 13
4.10 Pooling Process . 13
4.11 Activation functions . 14

5.1 R-CNN Architecture: Regions with CNN features 20
5.2 Fast R-CNN Architecture . 20
5.3 Faster R-CNN Architecture . 21
5.4 Mono3D architecture . 23

6.1 The network structure of a faster R-CNN and YOLO 26
6.2 YOLO resizes the image, runs a single convolutional network on the image and

then thresholds the resulting detections by the model’s confidence [36] 26
6.3 YOLO’s Model [36]. 28
6.4 YOLO’s Architecture [36]. 28
6.5 Architecture of the YOLOv5 model [24] . 32
6.6 Overview of YOLOv6:(a) The neck of YOLOv6. (b) The structure of a BiC

module. (c) A SimCSPSPPF block [21]. 33
6.7 YOLOv8 Architecture [37]. 34
6.8 Comparison YOLOv8 with other YOLO versions [37]. 35

7.1 Recording platform: Volkswagen Passat B6 is equipped with four video cam-
eras (two color and two grayscale cameras), a rotating 3D laser scanner and a
combined GPS/IMU inertial navigation system [12]. 37

7.2 Training labels . 38
7.3 Representative samples from the dataset . 38

v

8.1 Example of confusion matrix . 42
8.2 Four images to be combined using DSCT . 44
8.3 Resizing images . 44
8.4 Creating the composite image . 45
8.5 Adjusting bounding boxes . 45
8.6 Taking a random cutout . 46
8.7 Removing out-of-bounds boxes . 46
8.8 Final composite image with object detections 47

vi

Chapter 1

Introduction

Over time, car safety systems have significantly advanced, beginning with fundamental fea-
tures like seat belts introduced by Volvo in 1959 and crumple zones by Mercedes-Benz. The
1980s saw the widespread adoption of airbags and anti-lock braking systems (ABS). By the
1990s, electronic stability control (ESC) and side airbags became common. The 2000s brought
advanced driver assistance systems (ADAS) such as lane departure warnings, adaptive cruise
control (ACC), and blind-spot detection. Recent years have seen the emergence of autonomous
features like automatic emergency braking (AEB) and pedestrian detection systems, with con-
tinued advancements towards fully autonomous vehicles and vehicle-to-everything (V2X) com-
munication.
Despite these advancements, according to the World Health Organization, approximately 1.19
million people die each year due to road traffic crashes. Vulnerable road users, such as pedes-
trians, cyclists, and motorcyclists, account for more than half of all road traffic deaths. Given
these statistics, the need for advanced object detection systems is evident. The implementation
of such systems, particularly in autonomous vehicles, has the potential to significantly reduce
these tragic numbers. Recent research shows that broadside and pedestrian collisions represent
only about 5.7% of AV accidents, significantly lower than the 42.1% seen with conventional
vehicles [33]. This significant reduction is achieved by accurately identifying and responding to
various road hazards, pedestrians, and other vehicles.
This final project focuses on evaluating the YOLO (You Only Look Once) algorithm in real-
world computer vision tasks relevant to autonomous driving. The objective is to assess the
performance of YOLO using the KITTI dataset, which is renowned for its complexity and di-
versity in autonomous driving scenarios. We will delve into the architecture and functioning of
the YOLO algorithm, examining how it can be optimized and adapted for use in the dynamic
and complex environments that autonomous vehicles navigate. By leveraging the comprehen-
sive data provided by the KITTI dataset, we aim to enhance the accuracy and efficiency of
object detection systems in identifying various road hazards, pedestrians, cyclists, and other
vehicles.
This thesis is presented in 9 chapters:

1. Introduction: Overview of car safety advancements and the need for better object

1

CHAPTER 1. INTRODUCTION

detection systems in autonomous vehicles.

2. Objectives and Scope: Outlines the project’s primary goal of developing and evaluating
an object detection system using YOLO and the KITTI dataset, along with specific tasks.

3. Planning: Breaks down the project phases, timeline, and estimated costs.

4. Conceptual Framework: Reviews machine learning and deep learning principles rele-
vant to computer vision and object detection.

5. State of the Art: Explores the latest advancements and challenges in object detection
for autonomous vehicles.

6. You Only Look Once (YOLO): Discusses the YOLO algorithm’s evolution, versions,
and architectural improvements.

7. Dataset: Details the KITTI dataset, its components, and preparation for training the
detection model.

8. Experiments and Evaluation: Describes the experimentation setup, evaluation met-
rics, and results.

9. Conclusions: Summarizes project contributions, results, and suggests future research
areas.

2

Chapter 2

Objectives and Scope

2.1 Objectives
The primary objective of this project is to evaluate the effectiveness of the YOLO model in
real-world computer vision tasks, specifically within the context of autonomous vehicles, using
the KITTI dataset. This overarching goal is broken down into several secondary objectives that
will guide the project’s development. Additionally, specific tasks are outlined to achieve these
objectives.

2.1.1 Principal Objective
• Evaluate an Object Detection System: The main objective is to evaluate the perfor-

mance of the YOLO (You Only Look Once) model in real computer vision tasks by lever-
aging the KITTI dataset. This involves analyzing the model’s effectiveness in accurately
detecting various objects within the dynamic and complex environments encountered by
autonomous vehicles.

2.1.2 Secondary Objectives
• Understand YOLO: Gain a comprehensive understanding of the YOLO (You Only

Look Once) model, including its various versions, functionalities, and practical applica-
tions in computer vision.

• Research and Analysis of Current Solutions: Conduct thorough research and anal-
ysis of existing and prior solutions in the field of object detection for autonomous vehicles.

• Dataset Preparation and Preprocessing: Prepare and preprocess the KITTI dataset
to ensure it is suitable for use with the YOLO model.

• Model Training and Optimization: Train and optimize the YOLO model to enhance
its accuracy and efficiency in detecting objects.

3

2.2. SCOPE CHAPTER 2. OBJECTIVES AND SCOPE

• Performance Evaluation: Evaluate the performance of the trained YOLO model using
standard metrics and tests in various driving scenarios.

2.2 Scope
The scope of this project encompasses the following key areas:

1. Define the Work and Develop a Plan: Clearly define the scope of the project and
develop a detailed plan with specific stages and timelines.

2. Study the Problem: Thoroughly investigate the problem of object detection in au-
tonomous vehicles, including specific challenges and requirements.

3. Locate Similar Solutions: Identify and analyze existing similar solutions, evaluating
their strengths and weaknesses.

4. Develop Our Solution: Develop a customized solution based on the YOLO model,
adapting it to the specific needs of the project.

5. Test and Experiment: Conduct tests and experiments with the developed solution,
making adjustments and improvements based on the results obtained.

By completing these tasks, we aim to achieve the primary objective of effectively evaluating the
YOLO model’s performance in real-world computer vision tasks, thereby contributing to the
advancement of object detection systems in autonomous vehicles. This evaluation is expected
to provide valuable insights that enhance the safety and reliability of autonomous driving
technologies.

4

Chapter 3

Planning

This chapter outlines the planned phases and associated costs for the development and evalu-
ation of the YOLO model in real computer vision tasks.

3.1 Phases and costs

This section provides an overview of the planned phases and associated costs for the project
development.

3.1.1 Phases
Table 3.1 outlines the planned phases of the project development along with their respective
durations.

Activity Name Days
Preliminary research and literature review 1 - 9
Definition of objectives and scope 10 - 15
Development of the conceptual framework 16 - 24
State-of-the-art and comparative analysis 25 - 33
Study and application of the YOLO algorithm 34 - 43
Dataset preparation 44 - 52
Design and execution of experiments 53 - 72
Evaluation and analysis of results 73 - 81
Writing the final document 82 - 87
Final review and corrections 88 - 90

Table 3.1: Planned phases of project development.

5

3.1. PHASES AND COSTS CHAPTER 3. PLANNING

3.1.2 Costs
The following is a detailed breakdown of the estimated costs associated with each phase of the
project:

• Preliminary research and literature review: 9 days, approximate cost of €270 for
access to databases and scientific articles.

• Definition of objectives and scope: 6 days, time spent without additional cost.

• Development of the conceptual framework: 9 days, estimated time cost of €540
(based on a rate of €15/hour for 4 hours/day).

• State-of-the-art and comparative analysis: 9 days, estimated time cost of €540.

• Study and application of the YOLO algorithm: 10 days, estimated time cost of
€600.

• Dataset preparation: 9 days, estimated cost of €540 in time and €450 in materials.

• Design and execution of experiments: 20 days, estimated cost of €1,200 in time and
€75 for 75 hours of GPU A40 usage.

• Evaluation and analysis of results: 9 days, estimated time cost of €540.

• Writing the final document: 6 days, estimated time cost of €360.

• Final review and corrections: 3 days, estimated time cost of €180.

The total estimated cost of the project is €5745, considering both material resources and time
spent.

6

Chapter 4

Conceptual Framework

4.1 Introduction
The conceptual framework of this research is grounded in the foundational principles and ad-
vancements of machine learning and deep learning. This chapter aims to provide a comprehen-
sive overview of these fields, focusing on the algorithms, techniques, and architectures that form
the backbone of modern computer vision systems. We will explore key concepts, such as su-
pervised and unsupervised learning, delve into the evolution of deep learning with a particular
emphasis on neural networks, and discuss the impact of convolutional neural networks (CNNs)
in transforming the landscape of image processing and object detection. This framework sets the
stage for understanding the methodologies and technologies applied in the subsequent chapters
of this work.

4.2 Machine Learning
Machine Learning [4] is a branch of Artificial Intelligence that aims to design and develop algo-
rithms that allow computers to improve their performance in performing a task from experience.
However, unlike traditional programming, where software is developed based on pre-established
rules, in Machine Learning, we let computers ”program themselves” through the information
in the provided data [27]. This process is known as training. Once this stage is completed, the
obtained model will be able to obtain answers for new, unknown data sets.
The most widely adopted machine learning methods are supervised learning and unsupervised
learning:

• Supervised Learning: supervised learning involves designing a model that connects
training data to a set of output values. This means that the training data provided to
the algorithm includes the desired solutions, known as labels. This method allows the
algorithm to learn by comparing its actual output with the taught outputs to find errors
and adjust the model accordingly. Supervised learning enables the model to predict label
values on additional unlabeled data.

7

4.3. DEEP LEARNING CHAPTER 4. CONCEPTUAL FRAMEWORK

• Unsupervised Learning: in this case, the example data used to train the algorithm
is not labeled, meaning we do not know the outcome. The goal is to find associations
or patterns among the data based on their similarities. As examples of unsupervised
learning techniques, we can differentiate between two groups: those oriented towards
clustering (searching for groupings within the data), which include algorithms like k-
means, k-medians, or self-organizing maps, and those oriented towards dimensionality
reduction, such as principal component analysis [27].

4.3 Deep Learning
Deep learning is defined as a class of machine learning techniques that enable computational
models composed of multiple processing layers to learn representations of data with multiple
levels of abstraction [23]. This concept has emerged since the 2000s and it relies on artificial
neural networks which are systems inspired by the biological neurons in the human brain.
However, artificial neural networks have been exciting since the middle of the 20th century.
The first artificial neuron was mentioned in 1943 when Warren McCulloch and Walter Pitts
published their first mathematical and computational model of the biological neuron: the formal
neuron, which is directly inspired by its biological counterpart.

Figure 4.1: A biological neuron

A biological neuron is composed of a soma (cell body), an axon and dendrites as shown in
Figure 4.1. The dendrites form a network of neural receptors that transmit electrical signals
from other neurons to the neuron’s body. A neuron receives electrical signals through the
dendrites, and when the neuron receives enough signals in a given time (a few milliseconds), it
triggers its own signals. The functioning of a neuron is relatively simple, but when a neuron is
connected to thousands of others and there are billions of neurons, it creates networks capable
of solving extremely complex problems. Warren McCulloch and Walter Pitts proposed the first
artificial neuron which is a very simplified model of the biological neuron. The neuron shown
in Figure 4.2 has one or more binary inputs and an output. The way it operates is simple:

8

CHAPTER 4. CONCEPTUAL FRAMEWORK 4.3. DEEP LEARNING

the neuron activates its output (output active = 1) if its inputs exceed a certain threshold.
From this neuron, it is possible to construct any network of artificial neurons capable of solving
logical operations.

Figure 4.2: Formal neural network functioning as the OR logical operation.

Nowadays, the neuron architecture has developed and evolved significantly from its early con-
ceptualization. As illustrated in the Figure 4.3, a modern artificial neuron consists of multiple
inputs (x1, x2, . . . , xn), each associated with a weight (w1j, w2j, . . . , wnj). These inputs are pro-
cessed through a transfer function that computes the net input (netj) by summing the weighted
inputs. This net input is then passed through an activation function, which determines the
neuron’s output (oj). The activation function introduces non-linearity into the model, en-
abling the network to capture complex patterns in data. Additionally, a threshold (θj) can
be applied to control the activation. This intricate structure allows deep learning models to
perform sophisticated tasks, learning representations from raw data through multiple layers of
abstraction.

Figure 4.3: Artificial Neural Network

Deep learning uses neural networks with multiple layers to automatically learn and extract
features from raw data. This process involves stacking many layers of artificial neurons, each
layer learning increasingly abstract representations of the data. In contrast to traditional
machine learning, where a significant portion of the process involves manual feature extraction
by experts, deep learning automates this step. As illustrated in Figure 4.4, machine learning
typically involves an initial step of feature extraction performed by a human, followed by

9

4.3. DEEP LEARNING CHAPTER 4. CONCEPTUAL FRAMEWORK

classification through algorithms such as decision trees. On the other hand, deep learning
integrates feature extraction and classification into a single, end-to-end process handled entirely
by the neural network. This integration allows deep learning models to achieve remarkable
results across a wide range of applications such as voice recognition [7], surveillance [19], natural
language processing (NLP) [30], and so forth.

Figure 4.4: Diffrence between Machine learning and Deep Learning

Classification focuses on identifying the class of an image from the object it represents, as shown
in Figure 4.5. In contrast, object detection focuses on identifying and locating objects within
the image, as illustrated in Figure 4.6.

Figure 4.5: Pedestrian classification

10

CHAPTER 4. CONCEPTUAL FRAMEWORK 4.3. DEEP LEARNING

Figure 4.6: Pedestrian detection

4.3.1 Convolutional Neural Network

CNN is a popular and widely used algorithm in deep learning [34]. It is a type of deep learning
model for processing data that has a grid pattern, such as images, which is inspired by the orga-
nization of animal visual cortex [46]. It was first introduced by Kunihiko Fukushima and later
developed by Yann LeCun, who integrated CNN with back-propagation theory to recognize
handwritten digits and document recognition [11]. CNN is an extension of the multilayer per-
ceptrons (MLPs) designed to effectively address their main disadvantages [47]. It aims to limit
the number of inputs while preserving the strong ’spatially local’ correlation of natural images.
CNN automatically extracts features from input images, is resistant to slight distortions, and
uses weight sharing to reduce the number of network parameters [47].

Let’s see how a convolutional neural network works. A CNN architecture is formed by a stack
of processing layers: convolutional layer (CONV), pooling layer (POOL), fully connected layer
(FC), and a softmax layer for classification. The last layer can be substituted with another
type of classifier such as a Support Vector Machine (SVM) (cf. Figure 4.7).

Figure 4.7: Standard architecture of CNN

11

4.3. DEEP LEARNING CHAPTER 4. CONCEPTUAL FRAMEWORK

4.3.2 Hyper-parameters of Convolutional Neural Net-
work

The performance and efficiency of CNN are significantly influenced by a set of hyperparameters.
These hyperparameters are crucial as they control the network’s architecture, training process,
and overall behavior. Here, we delve into some of the essential hyperparameters of CNNs, their
roles, and their impact on network performance.

• Number of layers: It defines the depth of the network.

• Number of filters: It represents the number of times a filter has been applied within a
layer.

• Size of filter (f)

• Padding(p): It involves inserting zeros at the edges of the input image to control the size
of the resulting image (cf. Figure 4.8). Indeed, following the application of a filter to an
image, the size of the image is reduced. Consequently, the pixels at the edges of the input
image are not considered if a filter is applied to the filtered image. The value of p, which
allows preserving the size of the image after applying a filter, is calculated as follows in
the case where a stride s = 1:

p =
f − 1

2
(4.1)

• Stride (s): It is the step size at which we move the kernel across the input (cf. Figure 4.9).
The horizontal stride represents the step size at which we move the kernel horizontally
across the image, while the vertical stride represents the step size at which we move the
kernel vertically across the image. To simplify, we will use the same value for both the
horizontal and vertical strides to simplify the model.

• Pooling strategy: This is a function applied within the pooling layer to extract, for
example, the maximum value (’Max pooling’) or the average value (’Average pooling’)
(cf. Figure 4.10) from a block of size (f × f).

12

CHAPTER 4. CONCEPTUAL FRAMEWORK 4.3. DEEP LEARNING

Figure 4.8: Application of a filter on an image with padding p = 1

Figure 4.9: Application of a filter on an image with padding p = 0 and s = 2

Figure 4.10: Pooling Process

13

4.3. DEEP LEARNING CHAPTER 4. CONCEPTUAL FRAMEWORK

Convolutional Layer

A convolution involves sliding a kernel over the input feature map, computing the product
between each element of the kernel and the input element it overlaps, and summing the results
to obtain the output at each location [8]. It produces an output image called a ”feature map”.
In general, multiple filters are applied to progressively extract features from the image (edges,
regions, textures, and more). The convolutional layer introduces non-linearity transformations
through activation functions. Usually, activation functions follow the application of the convo-
lution product. There are various activation functions, such as Rectified Linear Units (ReLU),
Hyperbolic Tangent (TanH), and Linear (cf. Figure 4.11). However, ReLU has been found to
achieve better performance in most situations and it is defined as follows [5]:

a = max(0, x) (4.2)

Figure 4.11: Activation functions

Pooling Layer

The pooling layer is often placed between two convolutional layers. It receives multiple feature
maps as input and then reduces the size of each one. In simpler terms, the pooling operation
involves reducing the size of the feature maps while preserving their important characteristics.
There are different pooling strategies, including max pooling, which selects the maximum value
from the input data, average pooling, which computes the average value of the input data (cf.
Figure 4.10), and probabilistic pooling, which randomly selects a value from the input data [5].

Fully Connected Layer

The output feature maps from the final convolutional or pooling layer are transformed into a
one-dimensional array of numbers and connected to one or more fully connected layers. In these
layers, each input is weighted and connected to every output. Using a fully connected layer
to learn non-linear combinations of these features is an effective strategy. As a result, fully
connected layers are frequently used as the final layers in a CNN. They compute the weighted
sum of the features from the previous layer, incorporating the specific parameter inputs to
achieve a desired output result.

14

CHAPTER 4. CONCEPTUAL FRAMEWORK 4.4. COMPUTER VISION

Softmax Layer

The softmax layer is a loss layer that uses the probabilities returned by the softmax activation
function to determine the class of an image. This function normalizes the output of the final
layer of the convolutional neural network to produce a vector of n real numbers (n corresponds
to the number of classes). These numbers, whose sum equals 1, reflect the probabilities that
the input image matches each of the original classes.

4.4 Computer Vision
Computer vision aims to design systems capable of analyzing and interpreting digital images and
videos using filtering techniques. These systems employ algorithms and mathematical models
to extract relevant information from visual data. Computer vision thus enables the replacement
of the human eye and brain for observation and judgment, offering numerous possibilities for
research and industry [16].
Since the 1950s, scientists and engineers have strived to develop methods allowing machines to
perceive and understand visual data. The first experiments date back to 1959 when neurophys-
iologists exposed a cat to various images to observe the correlation with its brain’s responses.
They found that the cat initially reacted to contours and sharp lines, which scientifically in-
dicated that image processing began with simple shapes such as straight edges. Around the
same time, the first computer image scanning technology was developed, enabling computers
to scan and acquire images. Another significant milestone was reached in 1963 when computers
succeeded in converting two-dimensional images into three-dimensional shapes. In the 1960s,
artificial intelligence emerged as an academic field of study, marking the beginning of the quest
for artificial intelligence to solve the challenge of human vision [20]. In 1974, optical character
recognition (OCR) technology was introduced, allowing the recognition of printed text in any
font. Similarly, intelligent character recognition (ICR) could decipher handwritten text using
neural networks. Since then, OCR and ICR have found their use in document and invoice pro-
cessing, license plate recognition, mobile payments, machine translation, and other commonly
used applications [20].
In the year 2000, research primarily focused on object recognition, while in 2001, the first real-
time facial recognition applications appeared. The standardization of labeling and annotating
visual datasets began to develop in the 2000s [20].
Here are some notable advancements in convolutional networks, ordered chronologically:

• LeNet: LeNet, a 7-level convolutional network introduced by LeCun et al. in 1998
[42], which classifies digits, has been applied by several banks to recognize handwritten
numbers on scanned checks in 32x32 pixels. The ability to process higher resolution
images requires more and larger convolutional layers, thus this technique is limited by
the availability of computational resources.

• AlexNet: Initially, AlexNet was written with CUDA to run with GPU support, which

15

4.5. CONCLUSION CHAPTER 4. CONCEPTUAL FRAMEWORK

participated in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in
2012. AlexNet significantly outperformed all its previous competitors and won the chal-
lenge by reducing the top-5 error from 26% to 15.3%. It was designed by the Supervision
group, consisting of Alex Krizhevsky [22]. AlexNet had a major impact in the field of
machine learning, particularly in the application of deep learning to computer vision.
AlexNet contained eight layers; the first five were convolutional layers, and the last three
were fully connected layers. It had two parallel CNN pipelines trained on two GPUs with
cross-connections and used the non-saturating activation function ReLU, which showed
improved training performance compared to Tanh and Sigmoid.

• ZFNet: ZFNet was proposed by Matthew Zeiler and Rob Fergus [48]. ZFNet won
the ILSVRC 2013. It was an improvement on AlexNet by fine-tuning the architecture
hyperparameters, notably by increasing the size of the intermediate convolutional layers
and making the stride and filter size on the first layer smaller.

• VGGNet: VGGNet secured first place at the ILSVRC competition in 2014 for the VGG
group. It is an improvement over AlexNet and consists of 19 layers. This architecture
strikes a balance between the depth of the CNN, which positively impacts its performance,
and its requirements in terms of memory and computation time [40].

• GoogleNet: GoogleNet was invented by Szegedy et al. [43] and it was the winner of
the ILSVRC 2014. Its main contribution was the addition of an inception module. This
module applies convolutions of different sizes to extract features at various scales.

• ResNet: Residual Network, developed by Kaiming He et al., won the ILSVRC 2015 [17].
The ResNet architecture is composed of 152 layers, making it seven times deeper than
previous architectures. This number of layers has had a positive impact on the correct
classification rate. ResNet surpasses the performance of VGGNet and GoogLeNet archi-
tectures in terms of correct classification rates. However, it is computationally intensive.

These advancements in computer vision have laid the groundwork for more complex tasks,
such as object detection, which involves identifying and localizing objects within an image.
The next section will delve into the evolution and significance of object detection in the realm
of computer vision.

4.5 Conclusion
This chapter has provided a comprehensive overview of the conceptual framework underpinning
our research, focusing on the essential aspects of machine learning and deep learning, with a
particular emphasis on convolutional neural networks. We have explored the historical context,
theoretical foundations, and practical implementations of these technologies, illustrating their
evolution and significance in the field of computer vision. By understanding these concepts,

16

CHAPTER 4. CONCEPTUAL FRAMEWORK 4.5. CONCLUSION

we have established a solid foundation for the subsequent chapters, where we will apply these
principles to specific tasks in autonomous driving and object detection.

17

4.5. CONCLUSION CHAPTER 4. CONCEPTUAL FRAMEWORK

18

Chapter 5

State of the Art

5.1 Introduction
The field of object detection has witnessed significant advancements in recent years, driven by
the development of sophisticated algorithms and the increasing computational power available
for training complex models. This chapter provides an overview of the current state-of-the-art
techniques in object detection, highlighting key methodologies and their applications, partic-
ularly in the domain of autonomous vehicles. We will explore various convolutional neural
network (CNN) architectures that have revolutionized object detection, discuss the specific
challenges faced in this field, and review the methods developed to address these challenges.
This exploration sets the stage for understanding the technical foundation upon which modern
object detection systems are built.

5.2 Object Detection
Object detection is important in computer vision which aims to identify and locate objects
present in an image or video. It uses convolutional neural networks (CNNs) to analyze and
classify specific features of the image, such as edges and shapes. Then, it uses this information to
identify objects and their locations in the image. It plays an essential role in many applications,
such as autonomous vehicles where an understanding of the visual environment is required the
needs of object detection include accuracy, speed, the ability to process scenes and adaptation
to different object categories.
Several specialized CNN architectures have been developed for this purpose. Region-based
CNNs (R-CNN) was proposed by Ross Girshick in 2014. As illustrated in Figure 5.1, This
model introduced a three-module approach: Region Proposal Generation, Feature Extraction,
and Classification and Localization [15]. The Region Proposal Generation module defines the
set of candidate detections available for the detector. The Feature Extraction module uses a
large convolutional neural network to extract a fixed-length feature vector from each region.
Finally, the Classification and Localization module utilizes class-specific linear SVMs to classify

19

5.2. OBJECT DETECTION CHAPTER 5. STATE OF THE ART

and precisely locate objects. The R-CNN achieved a mean average precision (mAP) de 53.7%
on PASCAL VOC 2010 and 31.4% on the 200-class detection dataset ILSVRC2013 [15]. It
outperformed the best previous model OverFeat [38], which had a top result of 24.3%.

Figure 5.1: R-CNN Architecture: Regions with CNN features

This approach was later refined in Fast R-CNN by Ross Girshick [14] which improved speed and
accuracy. Fast R-CNN takes an entire image and a set of object proposals as input. First, it
processes the entire image with several convolutional (conv) and max pooling layers to produce
a feature map. Next, for each object proposal, a region of interest (RoI) pooling layer extracts
a fixed-length feature vector from the feature map. Each feature vector is then fed into a
sequence of fully connected (FC) layers, which ultimately branch into two sibling output layers:
One layer produces softmax probability estimates over K object classes plus a ”background”
class and one layer produces four real-valued numbers for each of the K object classes. Each set
of 4 values encodes the refined bounding box positions for one of the K classes. Fast R-CNN
achieves a result of 66.1% on VOC2010 and the best result on VOC12 with a mAP of 65.7%
(and 68.4% with additional data) [14].

Figure 5.2: Fast R-CNN Architecture

In 2016, Shaoqing Ren proposed Faster R-CNN [18]. Faster R-CNN uses the proposed regions
in Fast-CNN and introduced a Region Proposal Network (RPN), that takes the feature map
(of any size) and produces a set of rectangular object proposals, each with a precision score
(cf. Figure 5.3). The result obtained by this model with the mscoco (COCO val) database is
a mAP@0.5 of 41.5% and a mAP@0.5 of 42.7% on COCO test-dev.

20

CHAPTER 5. STATE OF THE ART 5.3. AUTONOMOUS VEHICLE

Figure 5.3: Faster R-CNN Architecture

Other notable architectures include YOLO (You Only Look Once), which will be discussed in
chapter 6.

5.3 Autonomous vehicle
An autonomous vehicle is a type of vehicle that uses advanced technologies to operate with-
out human intervention. It is equipped with cameras and other technologies to perceive the
environment and make appropriate decisions. Automakers have developed these vehicles to
improve road safety, considering the increase in fatal accidents on the roads.

5.4 Object Detection for Autonomous Vehicles

5.4.1 Challenges in Object Detection for Autonomous
Vehicles

The challenges in object detection for autonomous vehicles are multifaceted and arise from
various technical and environmental factors. Some of the key challenges include:

• Scale and Shape Variability: Different sizes of objects such as cars and cyclists, and
multiple objects with different aspect ratios within the same window pose significant
challenges for detection systems.

• Occlusion and Overlapping Objects: Detecting objects that are partially visible or

21

5.4. OBJECT DETECTION FOR AUTONOMOUS VEHICLESCHAPTER 5. STATE OF THE ART

occluded by other objects requires advanced algorithms capable of handling incomplete
information.

• Real-Time Processing: Real-time detection and interpretation of objects with high
accuracy and speed are critical for the safety and efficiency of autonomous vehicles. This
includes minimizing false positives and negatives.

These challenges highlight the need for continuous advancements in object detection algo-
rithms, integration of robust models, and development of comprehensive datasets to improve
the performance and reliability of autonomous vehicles.

5.4.2 Methods for object detection for Autonomous Ve-
hicles

Object detection methods can be broadly categorized into two types: two-stage detectors and
one-stage detectors.

Two stage detectors

Two-stage detectors first generate a set of object proposals and then refine these proposals to
achieve precise detection. This approach typically involves a proposal generation stage followed
by a classification stage.

• Regionlets [26]: Regionlets propose boxes through Selective Search and then re-localize
them using a top-down approach. It extracts 1-D features from rectangular regions within
the detection window and trains thousands of weak classifiers using RealBoost. These
features are transformed into sparse binary vectors, which are then combined to form a
high-dimensional feature space for robust detection. The model also includes a precise
localization component that adjusts bounding box coordinates based on predicted local-
ization errors, learned through support vector regression. This approach uses a voting
mechanism for better accuracy and mitigates overfitting by sampling numerous bounding
boxes around ground truth objects during training.

• DPM-VOC+VP [32]: DPM-VOC+VP extend the Deformable Part-based Model [10],
which is an object detection method that uses a collection of deformable parts and dis-
criminative training to accurately detect and localize objects within images, to 3D by
connecting parts across various viewpoints and incorporating a 3D-aware loss function.

• Mono3D [3]: Mono3D generates 3D object proposals from a single monocular image
using an energy minimization approach that places object candidates in 3D space and
scores them based on semantic segmentation, context, size, location priors, and typical
object shape (c.f Figure 5.4).

22

CHAPTER 5. STATE OF THE ART 5.5. CONCLUSION

Figure 5.4: Mono3D architecture

• LSVM-MDPM-sv [9, 10]: LSVM-MDPM-sv is an adaptation of the DPM that uti-
lizes latent support vector machines (LSVM) for supervised learning to improve object
detection by training on a representative subset of clean training samples and fine-tuning
the model parameters.

One stage detectors

One-stage detectors perform object localization and classification in a single forward pass
through the network, offering faster processing times at the potential cost of lower accuracy
compared to two-stage detectors.

• Complexer-YOLO [39]: Complexer-YOLO is a real-time 3D object detection that
operates on semantic point clouds by incorporating visual point-wise class features pre-
dicting real 3D object dimensions.

5.5 Conclusion
In this chapter, we have examined the cutting-edge advancements in object detection, focusing
on the evolution from traditional methods to advanced CNN architectures like R-CNN, Fast
R-CNN, and Faster R-CNN. These technologies have significantly improved the accuracy and
speed of detecting and localizing objects in images, which is critical for applications such as
autonomous vehicles. We have also discussed the unique challenges in object detection for
autonomous vehicles, emphasizing the need for real-time processing and robust algorithms to
handle scale variability, occlusions, and overlapping objects. Understanding these state-of-the-
art techniques and their applications provides a comprehensive foundation for the subsequent
discussions on the implementation and evaluation of object detection systems in our research.

23

5.5. CONCLUSION CHAPTER 5. STATE OF THE ART

24

Chapter 6

You Only Look Once

YOLO appeared in 2015 and since then has become a standard in ANN applied to computer
vision. This chapter summarises the main motivation for this work, an overview and objectives.

6.1 Scope
Nowadays, in the world of computers, finding and recognizing objects in pictures or videos is
highly important. It helps in various things like making self-driving cars safer, keeping an eye
on places with surveillance cameras, and even helping doctors spot diseases in medical scans.
Among the algorithms developed for this purpose, YOLO, ”You Only Look Once”, stands out
as a new approach to object detection known for its balance between speed and latency. It has
become almost a standard way of detecting objects in computer vision.
The primary objective of this chapter is to delve into YOLO, the difference between this ap-
proach and old algorithms, its architectural design, and methodology, giving a close examination
of its impact on object detection.
We’ll see how YOLO’s efficient single-network approach is different from the old way of detecting
objects, paving the way for real-time applications across various domains.

6.2 A revolution in object detection
YOLO is a state-of-the-art, real-time object detection algorithm and is extremely fast and
accurate. Before YOLO’s emergence in 2015, Systems used sliding window object detection
and iterations such as RCNN, fast RCNN, and faster RCNN they segment an image into
numerous regions and then run a classifier on each one, and high scores for that classifier would
be considered detections in the image. This process required thousands of classifier runs and
neural network evaluations per image to achieve detection. With YOLO, instead of looking at
an image thousands of times to produce detection, You Only Look Once, YOLO only needs
the image or video to pass one time through its network (c.f Figure 6.1), and that’s why it is
called YOLO.

25

6.2. A REVOLUTION IN OBJECT DETECTIONCHAPTER 6. YOU ONLY LOOK ONCE

Figure 6.1: The network structure of a faster R-CNN and YOLO

However, YOLO outperformed most of the previous object detection algorithms (c.f Table 6.1).

Table 6.1: Real Time systems on PASCAL VOC 2007 [36]
.

The primary methodology of YOLO is to resize the image, process it through a single con-
volutional network, and then refine the resulting detections based on the model’s confidence
thresholds (c.f Figure 6.2).

Figure 6.2: YOLO resizes the image, runs a single convolutional network on the image and
then thresholds the resulting detections by the model’s confidence [36]

.

26

CHAPTER 6. YOU ONLY LOOK ONCE 6.3. VERSIONS

6.3 Versions
YOLO has evolved through several versions, with each new version bringing advancements and
betterment to the initial mechanism.

6.3.1 YOLO
YOLO [36] is the Original version known for speed, with lower accuracy. It resizes the image
to 448 × 448, runs a single convolutional network, that has 24 convolutional layers followed
by 2 fully connected layers, on the image and then thresholds the resulting detections by the
model’s confidence.
This version introduced the initial methodology: architecture, unified detection and training,
which are described in the following sections.

Unified detection

Unified detection refers to the simultaneous prediction of bounding boxes and class probabilities
across multiple scales within a single network. YOLO divides the image into an S × S grid. If
the center of an object falls within a grid cell, that cell is responsible for detecting that object.
Additionally, each cell predicts B bounding boxes and corresponding confidence scores. The
confidence scores indicate the model’s certainty that a box contains an object and the accuracy
of the box prediction. Confidence is defined as Pr(Object)× IOUpred

truth. If no object is predicted
in a cell, the confidence score should be zero. Conversely, if an object is present, the confidence
score should reflect how well the predicted box matches the real object.
Each bounding box consists of five predictions: x, y, w, h, and confidence. The (x, y) coordi-
nates represent the center of the box relative to the grid cell boundaries. The width and height
(w, h) are predicted relative to the entire image. The confidence score reflects the accuracy of
the predicted box compared to the actual object, calculated using the intersection over union
(IOU) with the ground truth.
Furthermore, each grid cell predicts C conditional class probabilities Pr(Classi | Object). These
probabilities are conditioned on the presence of an object within the grid cell. Only one set of
class probabilities is predicted per grid cell, regardless of the number of bounding boxes B.
Figure 6.3 illustrates how the image is divided into an S×S grid, with each grid cell predicting B

bounding boxes, the associated confidence scores, and C class probabilities. These predictions
are encoded as an S × S × (B × 5 + C) tensor.

Architecture

YOLO implements a convolutional neural network, the initial convolutional layers of the net-
work extract features from the image while the fully connected layers predict the output prob-
abilities and coordinates. It has 24 convolutional layers followed by 2 fully connected layers
and uses 1 × 1 reduction layers followed by 3 × 3 convolutional layers (c.f Figure 6.4).

27

6.3. VERSIONS CHAPTER 6. YOU ONLY LOOK ONCE

Figure 6.3: YOLO’s Model [36].

Figure 6.4: YOLO’s Architecture [36].

Training

The training process started with pretraining the convolutional layers on the ImageNet 1000-
class competition dataset. Specifically, the first 20 convolutional layers are utilized, followed
by an average-pooling layer and a fully connected layer.
After approximately a week of training, the model achieves an impressive single crop top-5
accuracy of 88% on the ImageNet 2012 validation set, comparable to models found in Caffe’s
Model Zoo. Subsequently, the architecture is adapted for object detection. To further augment
its capabilities, the developers integrated four additional convolutional layers and two fully
connected layers into the network. Consequently, they adjusted the input resolution (from
224×224 to 448×448) and refined the process of predicting class probabilities and bounding
box coordinates. Also, to enhance accuracy, they normalized bounding box dimensions and
introduced specialized predictors per object. This tailored approach maximizes detection per-
formance and recall.

28

CHAPTER 6. YOU ONLY LOOK ONCE 6.3. VERSIONS

6.3.2 YOLOv2
YOLOv2 [36], an evolution of the original YOLO, builds upon the original YOLO architecture
with enhancements aimed at improving accuracy and speed. YOLOv2 introduces several en-
hancements, including the use of batch normalization, high-resolution classifiers, anchor boxes
and dimension clustering.

1. Batch Normalization: By adding batch normalization to all of the convolutional layers in
YOLO, there was more than 2% improvement in mAP.

2. High-Resolution Classifier: YOLOv2 was trained at 448×448 images for 10 epochs on
ImageNet then it was fine-tuned. This helped increase of almost 4% mAP.

3. Anchor Boxes: Instead of predicting bounding boxes directly, YOLOv2 predicts anchor
boxes, which are predefined boxes of various sizes and aspect ratios(input image of 416
and output feature of 13×13). These anchor boxes improve localization accuracy by
providing better initial estimates for object-bound boxes. The results are 69.5 mAP with
a recall of 81%. With anchor boxes, the model gets 69.2 mAP with a recall of 88%.

4. Dimension Clustering: YOLOv2 utilizes dimension clustering to identify the most rep-
resentative bounding box dimensions in the dataset. By clustering the dimensions of
ground-truth bounding boxes, YOLOv2 can learn to predict more accurate bounding
boxes.

6.3.3 YOLOv3
Building upon YOLOv2, YOLOv3 [35] represents a significant advancement in real-time object
detection. YOLOv3 introduced several improvements including Bounding Box Prediction, Class
Prediction, Predictions Across Scales, Feature Extractor and Training.

1. Bounding Box Prediction: Following YOLOv2, YOLOv3 predicts bounding boxes
using dimension clusters as anchor boxes. The network predicts four coordinates for each
bounding box: tx, ty, tw, and th. These coordinates correspond to the center of the box
and its width and height. During training, the network uses the sum of squared error loss
to compute the ground truth value for each coordinate prediction.

2. Class Prediction: Each box predicts the classes the bounding box may contain using
multilabel classification. Instead of using a softmax, YOLOv3 uses independent logistic
classifiers for class predictions. This approach is beneficial for complex datasets with
overlapping labels, as it better models the data.

3. Predictions Across Scales: YOLOv3 predicts boxes at 3 different scales and extracts
features from those scales using a concept similar to feature pyramid networks. The
network then upsamples and merges the features from different layers to obtain more

29

6.3. VERSIONS CHAPTER 6. YOU ONLY LOOK ONCE

Table 6.2: Darknet-53 [35]

Table 6.3: Comparison of backbones [35]

meaningful semantic information and finer-grained details. This process allows YOLOv3
to predict boxes for the final scale, benefiting from prior computation and fine-grained
features from early on in the network.

4. Feature Extractor: YOLOv3 uses a new network for feature extraction called Darknet-
53, which is a hybrid approach between the network used in YOLOv2, Darknet-19, and
residual network architecture. Darknet-53 has shortcut connections and is significantly
larger, with 53 convolutional layers as shown in Table 6.2. Moreover, table 6.3 con-
firms that it performs similarly to state-of-the-art classifiers but with fewer floating point
operations and more speed.

5. Training: YOLOv3 is trained on full images with multi-scale training, data augmen-
tation, and batch normalization. The Darknet neural network framework is used for

30

CHAPTER 6. YOU ONLY LOOK ONCE 6.3. VERSIONS

training and testing.

6.3.4 YOLOv4
YOLOv4 [1] consists of:

1. Backbone: CSPDarknet53 which is a modified version of the Darknet architecture. The
CSPDarknet53 backbone is designed to efficiently handle large-scale datasets and tasks,
making it suitable for real-time object detection.

2. Neck: PANet which is utilized for instance segmentation due to its proficiency in main-
taining spatial information, which is crucial for precise pixel localization during mask
generation.

3. Head: based on YOLOv3 architecture, which is an anchor-based detection head. This
architecture is optimized for high-quality and real-time object detection.

Moreover, it introduces several innovative concepts, including ”Bag of Freebies” (BoF) and
”Bag of Specials” (BoS) to improve both the backbone and detector components.

1. Bag of Freebies (BoF): YOLOv4 integrates several BoF techniques, including DropBlock
regularization, Class label smoothing, and CIoU loss. These techniques are aimed at
improving the accuracy and robustness of the detector without sacrificing speed.

2. Bag of Specials (BoS): YOLOv4 integrates several BoS techniques, such as Mish ac-
tivation, SPP-block, SAM-block, PAN path-aggregation block, and DIoU-NMS. These
techniques enhance specific attributes of the model, such as feature integration, attention
mechanisms, and post-processing for screening model prediction results.

6.3.5 YOLOv5
YOLOv5 [29] represents a significant advancement in object detection technology, It grows
on what came before while introducing several new features and improvements to enhance
performance and usability.

1. Model Architecture: YOLOv5 maintains the foundational architecture of YOLO (You
Only Look Once) models, employing a convolutional neural network (CNN) for object
detection. However, it introduces refinements and optimizations aimed at enhancing both
accuracy and efficiency.

2. Backbone Network: YOLOv5 embraces an innovative backbone network architecture,
typically drawing inspiration from models like EfficientNet or CSPNet. These backbone
networks offer superior feature extraction capabilities, empowering YOLOv5 to achieve
heightened precision in object detection tasks.

31

6.3. VERSIONS CHAPTER 6. YOU ONLY LOOK ONCE

3. Training Enhancements: YOLOv5 incorporates diverse training enhancements to bolster
model convergence and performance. These include advanced techniques such as hyper-
parameter optimization, learning rate scheduling, and data augmentation strategies like
CutMix and MixUp.

4. Experiment Tracking: YOLOv5 seamlessly integrates experiment tracking functionalities,
enabling users to monitor and analyze training progress in real-time. This functionality
proves invaluable for researchers and developers, facilitating a deeper understanding of
model behavior and informed decision-making throughout the training process.

5. Automatic Export: YOLOv5 streamlines the deployment process by automatically ex-
porting trained models to popular export formats, such as TensorFlow SavedModel or
ONNX.

6. Usability Improvements: YOLOv5 introduces several enhancements geared towards im-
proving user experience, including a user-friendly command-line interface (CLI) and com-
prehensive documentation.

Figure 6.5 illustrates the intricate design and network components of YOLOv5.

Figure 6.5: Architecture of the YOLOv5 model [24]

6.3.6 YOLOv6
YOLOv6 [21] introduces several enhancements to its architectural design and training method-
ology, including the implementation of a Bi-directional Concatenation (BiC) module, an anchor-
aided training (AAT) strategy, and an improved backbone , neck design and Self-Distillation.

32

CHAPTER 6. YOU ONLY LOOK ONCE 6.3. VERSIONS

Figure 6.6: Overview of YOLOv6:(a) The neck of YOLOv6. (b) The structure of a BiC module.
(c) A SimCSPSPPF block [21].

1. Bidirectional Concatenation (BiC) Module: The BiC module is introduced to provide
more accurate localization signals in the neck of the YOLOv6 detector. It is applied
to the top-down pathway of the Feature Pyramid Network (FPN) to improve perfor-
mance without significant loss of efficiency. Also, The BiC module significantly boosts
the performance of small object detection, particularly for YOLOv6-S and YOLOv6-L,
improving the detection performance on small objects by 1.8%.

2. Enhanced Backbone and Neck Design: The YOLOv6 introduces an extended backbone
and neck design, reinforcing it to achieve state-of-the-art performance on the COCO
dataset at a high-resolution input. Also, feature integration at multiple scales is proven
to be a critical and effective component of object detection, and the Feature Pyramid
Network (FPN) is used to aggregate high-level semantic features and low-level features
via a top-down pathway (c.f Figure 6.6).

3. Anchor-Aided Training (AAT) Strategy: The AAT strategy combines the advantages
of both anchor-based and anchor-free paradigms. It introduces anchor-based auxiliary
branches in the classification and regression head during training, which are removed at
inference to boost accuracy performance without decreasing speed.

4. Self-Distillation: YOLOv6 introduces self-distillation to boost the performance of small
models, where the heavier branch for DFL is taken as an enhanced auxiliary regression
branch during training and is removed at inference to avoid marked speed decline.

6.3.7 YOLOv7
YOLOv7 [45] introduces an architecture of real-time object detectors and model scaling method.
It includes model re-parameterization, and dynamic label assignment.

1. Model Re-parameterization: Model re-parameterization techniques merge multiple com-
putational modules into one at the inference stage. This technique can be divided into
module-level ensemble and model-level ensemble. At the module level, re-parameterization
splits a module into multiple identical or different module branches during training and

33

6.3. VERSIONS CHAPTER 6. YOU ONLY LOOK ONCE

integrates them into a completely equivalent module during inference. These new re-
parameterization modules have been developed and designed for various architectures,
enhancing their efficiency and performance.

2. Dynamic Label Assignment: Dynamic label assignment technology introduces new issues
in the training of models with multiple output layers, particularly in assigning dynamic
targets for the outputs of different branches. To tackle this issue, a new label assignment
method called coarse-to-fine lead guided label assignment has been proposed to address
this problem, aiming to provide effective solutions for handling dynamic label assignments
across different branches.

3. Model Scaling: Model scaling involves scaling up or down an already designed model to
fit different computing devices using factors such as resolution, depth, width, and stage.
These Compound scaling methods have been proposed to maintain the properties of the
model and its optimal structure during scaling.

6.3.8 YOLOv8

Figure 6.7: YOLOv8 Architecture [37].

YOLOv8 [37] builds on the success of previous versions, introducing new features and improve-
ments for enhanced performance, flexibility, and efficiency. YOLOv8 supports various vision
AI tasks, including detection, segmentation, pose estimation, tracking, and classification. This
flexibility lets users apply YOLOv8’s features in different areas and fields. YOLOv8 introduces
numerous improvements compared to the earlier versions of YOLO such as a new neural net-
work architecture (c.f Figure 6.7) that utilizes both Feature Pyramid Network (FPN) and Path
Aggregation Network (PAN) and a new labeling tool called RoboFlow Annotate that simplifies
the annotation process.

1. Feature Pyramid Network (FPN): The FPN operates by gradually reducing the spatial
resolution of the input image while increasing the number of feature channels. This
technique generates feature maps that are capable of detecting objects at different scales
and resolutions.

34

CHAPTER 6. YOU ONLY LOOK ONCE 6.3. VERSIONS

2. Path Aggregation Network (PAN): The PAN architecture aggregates features from differ-
ent levels of the network through skip connections. This enables the network to effectively
capture features at multiple scales and resolutions, which is crucial for accurately detect-
ing objects of different sizes and shapes.

3. RoboFlow Annotate: RoboFlow Annotate is used for image annotation and object detec-
tion tasks in computer vision. It makes it easier to annotate images for training the model
and includes several features such as auto labeling, labeling shortcuts, and customizable
hotkeys.

Figure 6.8 demonstrates the effectiveness of YOLOv8 in object detection and its potential for
further improvements in the future.

Figure 6.8: Comparison YOLOv8 with other YOLO versions [37].

Table 6.4 presents the performance metrics for different pre-trained models of YOLOv8. The
table highlights the balance between model complexity, speed, and accuracy, providing insights
into the trade-offs for various applications.

Model Size (pixels) mAPval 50-
95

Speed CPU
ONNX (ms)

Speed A100
TensorRT
(ms)

Params (M) FLOPs (B)

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

Table 6.4: Performance metrics for YOLOv8 models [44]

35

6.4. APPLICATIONS IN COMPUTER VISION CHAPTER 6. YOU ONLY LOOK ONCE

6.4 Applications in Computer Vision
Now we will see some real examples of YOLO systems applied in different sectors.

• Agriculture: In agriculture, YOLO-based systems are applied for monitoring crop
health, detecting pests, and assessing plant growth. These systems provide farmers with
valuable insights, helping them to optimize crop yield and reduce losses. As demonstrated
in [25], YOLO is employed to detect pests such as true bugs in hazelnut orchards.The
system achieves high precision, aiding in early pest detection.

• Medical Imaging: YOLO algorithms have significant applications in the healthcare sec-
tor, particularly in medical imaging. They assist in the detection and diagnosis of various
diseases, including cancer, from medical images. According to [31], YOLOv8 is applied
to medical images such as blood smear images for acute lymphoblastic leukemia, Pap
smear images for cervical cancer, histopathological images for lung and colon cancer, and
dermatoscopic images for skin cancer. By detecting and delineating tumor boundaries,
YOLOv8 assists radiologists in identifying malignant areas more accurately.

• Manufacturing: YOLO algorithms also find applications in the manufacturing industry
for quality control and anomaly detection. According to [41], YOLOv4 is used to detect
three critical anomalies in bottles: dents on the bottle surface, skewed caps, and non-
straight bottles. By leveraging computer vision and machine learning techniques, the
system efficiently identifies defects in real-time, ensuring high-quality production.

6.5 Conclusion
In this chapter, we explored the evolution and significance of the YOLO algorithm in object
detection. We examined its different versions, from the original YOLO to the latest YOLOv8,
highlighting the architectural advancements and improvements in accuracy and speed. The
unified detection approach, combined with continuous enhancements, has made YOLO a stan-
dard in the field of computer vision, enabling real-time applications across various domains
such as agriculture, medical imaging, and manufacturing.

36

Chapter 7

Dataset

7.1 Introduction
In this chapter, we provide a detailed overview of the KITTI dataset, which is fundamental to
our research in autonomous driving object detection. We will discuss the dataset’s collection
process, its structure, and the specific preparations required to utilize it effectively for training
our model.

7.2 KITTI
The KITTI dataset, introduced by Geiger et al. in 2012, serves as a benchmark for object
detection in autonomous driving research [13]. It has been recorded from a moving platform
(c.f Figure 7.1) while driving in and around Karlsruhe, Germany by the Karlsruhe Institute of
Technology (KIT) and the Toyota Technological Institute of Chicago (TTI-C) and it consists
of 7,481 training images and 7,518 test images.

Figure 7.1: Recording platform: Volkswagen Passat B6 is equipped with four video cameras
(two color and two grayscale cameras), a rotating 3D laser scanner and a combined GPS/IMU
inertial navigation system [12].

We used the 2D object detection in KITTI dataset consisting of 7481 training images, labeled,

37

7.2. KITTI CHAPTER 7. DATASET

and 7518 test images, unlabeled, comprising a total of 80.256 labeled objects. All images are
color and saved as png.
The dataset contains 9 labels, as shown in Figure 7.2: Car, Van, Truck, Pedestrian, Per-
son_sitting, Cyclist, Tram, Misc (Miscellaneous): this label is used for miscellaneous objects
that do not fit neatly into other categories, and Dontcare: this label is used to indicate regions
of the image where objects are present but are not annotated.
Figure 7.3 shows a representative samples from the dataset.

Figure 7.2: Training labels

Figure 7.3: Representative samples from the dataset

38

CHAPTER 7. DATASET 7.3. DATASET PREPARATION

7.3 Dataset Preparation
Due to the unavailability of ground truth annotations for the test set, our work will focus on the
7,481 training images. Following the train/test split suggested by Chen et al. [2], we divided
the KITTI training dataset into 3,712 training images and 3,769 testing images. Our analysis
primarily focused on the labels: Car, Pedestrian, and Cyclist.
YOLO requires the directory structure to include separate train, validation, and test data. We
organized the data to be like this:

kitti
train

images
labels

test
images
labels

data.yaml
Initially, the labels were structured as follows:

• (object_type): Specifies the type of annotated object.

• (truncation): Represents the visible portion of the object as a float between 0.0 and 1.0,
where 0.0 indicates full visibility and 1.0 signifies that the object is entirely outside the
image frame.

• (occlusion): Indicates the level of occlusion with an integer value, where 0 means the
object is fully visible and higher values indicate increased occlusion.

• (alpha): Measures the observation angle of the object in radians relative to the camera,
specifically the angle between the object’s heading direction and the camera’s positive
x-axis.

• (left), (top), (right), (bottom): These are the 2D bounding box coordinates in the image,
specifying the pixel positions of the top-left and bottom-right corners of the bounding
box.

• (height), (width), (length): Provide the object’s 3D dimensions (height, width, and
length) in meters.

• (x), (y), (z): The 3D coordinates of the object’s center within the camera coordinate
system, measured in meters.

• (rotation_y): Describes the object’s rotation around the y-axis in the camera coordinate
system, expressed in radians.

However, for training a YOLOv8 model, only (object_type), (left), (top), (right), and (bottom)

were necessary. So, we removed all the rest of the labels. Since (object_type) is represented as

39

7.4. CONCLUSION CHAPTER 7. DATASET

a string, we proceeded to map all labels, converting (object_type) into corresponding numerical
identifiers. The mapping is as follows:

{
"0": "Car",
"1": "Pedestrian",
"2": "Cyclist",

}

Then, we then normalized the coordinates ((left)(top)(right)(bottom)) using the equations:

xcenter =
left + right

2

ycenter =
top + bottom

2

width = right − left
height = bottom − top

xcenter_normalized =
xcenter

image_width
ycenter_normalized =

ycenter

image_height

width_normalized =
width

image_width

height_normalized =
height

image_height

The data.yaml file contains the following configuration:

• train: ../train/images (path to the directory containing training images)

• val: (path to the directory containing validation images)

• test: ../test/images (path to the directory containing testing images)

• nc: 3 (number of classes)

• names: [”Car”, ”Pedestrian”, ”Cyclist”] (Class Labels)

7.4 Conclusion
In this chapter, we have provided an overview of the KITTI dataset, detailing its components,
structure, and the specific preparations required for training our model. By understanding the
dataset’s intricacies and how to properly format and utilize it, we lay the groundwork for effec-
tive model training and evaluation. In the next chapter, we will delve into the experimentation
and evaluation processes to assess the performance of our trained model.

40

Chapter 8

Experiments and Evaluation

8.1 Introduction
This chapter details the experimental setup and evaluation metrics used to assess the perfor-
mance of our object detection models. We begin by outlining the configuration and hyper-
parameters. Subsequently, we introduce the metrics utilized to evaluate model performance.
Additionally, we explore the Dynamic Scene Composition Technique (DSCT). The chapter con-
cludes with a comprehensive analysis of the results, comparing our models with state-of-the-art
alternatives to highlight their effectiveness and potential for real-world applications.

8.2 Experiment
To get the best model, we used the YOLOv8 pre-trained model, which is trained on the COCO
dataset and includes 80 pre-defined classes: yolov8x.pt.
The model was initialized with the following configuration and hyperparameters:

• Batch Size (batch): This determines the number of images the algorithm processes
within each sub-cycle into which an epoch is divided. During the experimentation, the
model was executed with batch value of 32.

• Learning Rate (lr0|lrf): This is the step value in which weights are updated in each
iteration to minimize the loss function. In this case, we adjusted the initial learning rate
and final learning rate with a value of 0.0001.

• Epochs (epochs): An epoch is a complete cycle of processing all the data grouped in
batches. Therefore, the number of epochs set for training equals the number of times
each image is processed. During training, the epoch value was 100 epochs and we saved
the model for each 10 epochs.

• Image size (imgz): the desired image size for training. Before being input into the
model, all images are adjusted to this specified dimension. we tested on image size 640.

41

8.3. METRICS CHAPTER 8. EXPERIMENTS AND EVALUATION

• Device (device): Indicates the hardware utilized for the training process. In our work,
we used NVIDIA A40 GPU.

• Data source (data): Specifies the location of the dataset configuration file (for exam-
ple, data.yaml). We used ”kitti/data.yaml”.

8.3 Metrics
To evaluate our model, we used several metrics, including:

• Confusion matrix: A confusion matrix is a useful tool for assessing the performance
of a machine learning model, typically presented in a tabular format. It enables data
scientists to gain detailed insights into their model’s accuracy, including areas where it
may be making errors or displaying weaknesses. By analyzing the confusion matrix,
practitioners can make informed adjustments and enhancements to improve the model’s
predictive capabilities [6].

Figure 8.1: Example of confusion matrix

The confusion matrix contains:

– True Positive (TP): The model accurately predicted the positive class. For ex-
ample, correctly identifying a Car as a Car.

– True Negative (TN): The model accurately predicted the negative class. For
example, correctly identifying a Cyclist as not a Car.

– False Positive (FP): The model incorrectly predicted the positive class. For ex-
ample, misidentifying a Cyclist as a Car.

– False Negative (FN): The model incorrectly predicted the negative class. For
example, misidentifying a Car as a Cyclist.

42

CHAPTER 8. EXPERIMENTS AND EVALUATION DSCT

• AP (Average Precision): Average precision (AP) is the area under the Precision-Recall
curve. Precision measures the ratio of true positive predictions to the total number of
positive predictions made by the model. It is calculated as the ratio of true positives
(TP) to the sum of true positives and false positives (FP):

P =
TP

TP + FP

Recall quantifies the ability of the model to correctly identify all relevant instances. It is
calculated as the ratio of true positives to the sum of true positives and false negatives
(FN):

R =
TP

TP + FN

AP is a metric used to evaluate the model’s performance across different Intersection
over Union (IoU) thresholds. Intersection over Union (IoU) measures the overlap between
predicted and ground truth bounding boxes and is calculated as:

IoU =
Area of Intersection

Area of Union

To test our models we used the object development kit provided by KITTI [13]. KITTI assesses
detection for each class in three categories: easy, moderate, and hard, which are defined based
on the levels of occlusion and truncation of objects [13].

• Easy: Minimum bounding box height of 40 pixels, with maximum of fully visible objects
and a maximum truncation of 15%.

• Moderate: Minimum bounding box height of 25 pixels, with maximum of partially
occluded objects and a maximum truncation of 30%.

• Hard: Minimum bounding box height of 25 pixels, with maximum difficult to see objects,
and a maximum truncation of 50%.

In accordance with the standard KITTI setup, a Ground Truth (GT) instance is considered
recalled when the Intersection over Union (IoU) exceeds 70% for cars, and 50% for pedestrians
and cyclists.

8.4 Dynamic Scene Composition Technique
The Dynamic Scene Composition Technique (DSCT) involves merging four distinct images
into one composite image, thereby creating a diverse and complex input for the model. This
method introduces spatial and contextual variations, compelling the model to learn more robust
features. By combining different images, DSCT simulates a variety of real-world scenarios
within a single training example. The step-by-step process of DSCT includes several key stages:

43

DSCT CHAPTER 8. EXPERIMENTS AND EVALUATION

Firstly, four images are randomly selected from the training dataset. These images are then
combined into a single composite image, ensuring diverse object placements and backgrounds.
Next, the bounding boxes and annotations are modified to accurately represent objects within
the composite image. Finally, the composite image undergoes additional augmentation pro-
cesses such as scaling, rotation, and color adjustments. This comprehensive approach enhances
the model’s ability to generalize across various scenarios, leading to improved performance in
object detection tasks.
The DSCT is applied with a range of numbers from 0.0 to 1.0, indicating the probability of
applying the augmentation. A probability of 1.0 means that the augmentation is applied to
every image, while a lower probability, such as 0.1, indicates that for each image processed,
there is a 10% chance that the mosaic augmentation will be applied and a 90% chance that it
will not be applied.
Example of the DSCT [28]: The initial four images are shown in Figure 8.2.

Figure 8.2: Four images to be combined using DSCT

1. Resize Each Image: Each image is resized to 256x256 pixels, with bounding boxes
adjusted accordingly (c.f Figure 8.3).

Figure 8.3: Resizing images

2. Create Composite Image: A new 512x512 image is created, and the resized images are
placed in the four corners. The bounding boxes may initially be misaligned (c.f Figure
8.4).

44

CHAPTER 8. EXPERIMENTS AND EVALUATION DSCT

Figure 8.4: Creating the composite image

3. Move Bounding Boxes: Bounding boxes are repositioned as follows:

• Top-left image boxes remain unchanged.

• Top-right image boxes are moved 256 pixels to the right.

• Bottom-left image boxes are moved 256 pixels down.

• Bottom-right image boxes are moved 256 pixels to the right and 256 pixels down
(c.f Figure 8.5).

Figure 8.5: Adjusting bounding boxes

45

DSCT CHAPTER 8. EXPERIMENTS AND EVALUATION

4. Take Random Cutout: A random 256x256 pixel section is selected from the composite
image. This cutout is chosen to include parts of all four images to ensure diversity (c.f
Figure 8.6).

Figure 8.6: Taking a random cutout

5. Remove Out-of-Bounds Boxes: Bounding boxes outside the cutout are removed,
while those partially inside are retained (c.f Figure 8.7).

Figure 8.7: Removing out-of-bounds boxes

6. Resize Remaining Boxes: Remaining bounding boxes are resized to fit within the
cutout, ensuring they are correctly proportioned (c.f Figure 8.8).

46

CHAPTER 8. EXPERIMENTS AND EVALUATION 8.5. RESULTS

Figure 8.8: Final composite image with object detections

This method preserves the integrity of the bounding boxes and ensures the model is exposed to
diverse features within a single image. The final composite image demonstrates the effectiveness
of DSCT, maintaining even the smallest features, such as a sandwich in the top-left corner,
which helps the model generalize better (c.f Figure 8.8).

8.5 Results

To evaluate the performance of our proposed method for object detection accuracy from im-
ages, we conducted two series of experiments. The first series aimed to assess the impact of
varying the Dynamic Scene Composition Technique (DSCT) parameter values across different
object categories. The second series compared the performance of our proposed method against
several state-of-the-art models. The experiments were designed to ensure a rigorous evaluation,
adhering to protocols established in leading research works. We set a confidence threshold of
0.15 for these experiments.

8.5.1 Initial series of experiments
In the initial series of experiments, we aimed to evaluate the performance impact of varying
DSCT parameter values across different object categories. The methodology involved adjusting
the DSCT values and measuring the model’s performance in detecting cars, pedestrians, and
cyclists under varying conditions.

47

8.5. RESULTS CHAPTER 8. EXPERIMENTS AND EVALUATION

DSCT Car Pedestrian Cyclist Overall
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

0.0 92.42 85.32 77.9 56.14 47.41 40.39 63.0 37.64 35.28 70.52 56.12 51.19
0.1 93.79 86.01 78.8 58.56 51.79 46.68 60.57 41.79 40.48 70.97 59.86 55.32
0.2 94.36 86.58 79.35 59.55 52.34 45.32 62.38 39.59 37.54 72.10 59.50 54.74
0.3 91.37 85.56 80.82 64.02 54.81 47.75 65.66 42.08 40.29 73.02 60.82 56.95
0.4 91.77 85.32 80.38 59.57 52.06 45.1 63.39 40.79 38.56 71.58 59.39 54.68
0.5 93.43 84.96 77.44 55.25 48.44 43.49 63.13 42.83 40.81 70.60 58.08 53.25
0.6 91.44 85.69 80.78 62.69 53.89 46.96 64.51 42.29 40.45 72.21 60.62 56.06
0.7 93.8 88.52 81.38 62.24 54.5 47.6 65.5 43.51 41.95 73.85 62.18 56.98
0.8 92.99 86.05 78.76 59.62 50.84 45.8 61.83 42.27 40.72 71.48 59.72 55.09
0.9 91.84 85.37 80.52 59.44 51.93 45.16 63.25 44.95 42.88 71.51 60.75 56.19
1.0 92.0 85.54 80.62 61.66 52.9 47.97 66.04 42.47 40.68 73.23 60.97 56.42

Table 8.1: Performance comparison across different DSCT numbers and categories

The results, shown in Table 8.1, highlights the effectiveness of our models across various DSCT
values and object categories. Notably, DSCT 0.7 consistently delivers the best overall perfor-
mance, demonstrating its importance and dominance:

• Car Detection: DSCT 0.7 achieves the highest performance in the Moderate (88.52%)
and Hard (81.38%) categories, while maintaining competitive performance in the Easy
category (93.8%). This showcases the robustness of DSCT 0.7 in handling car detection
under various conditions.

• Pedestrian Detection: Although DSCT 0.3 performs best in the Easy category (64.02%),
DSCT 0.7 delivers strong results across Moderate (54.5%) and Hard (47.6%) categories.
This indicates DSCT 0.7’s capability to effectively detect pedestrians in more challenging
scenarios.

• Cyclist Detection: DSCT 0.7 shows excellent performance in the Moderate (43.51%)
and Hard (41.95%) categories, while being competitive in the Easy category (65.5%).
This highlights the versatility and effectiveness of DSCT 0.7 in cyclist detection tasks.

• Overall Performance: DSCT 0.7 stands out with the highest overall performance across
all difficulty levels, achieving 73.85% (Easy), 62.18% (Moderate), and 56.98% (Hard).
This underscores the dominance of DSCT 0.7, making it the most effective setting for
robust and reliable object detection across diverse categories and conditions.

These results underscore the strong performance of DSCT 0.7 across different categories and
difficulty levels. The comparison demonstrates the robustness and competitiveness of DSCT
0.7, highlighting its advanced capabilities and potential for further enhancement to achieve
even higher accuracy and reliability in diverse and challenging environments.

48

CHAPTER 8. EXPERIMENTS AND EVALUATION 8.6. CONCLUSION

8.5.2 Second series of experiments
To demonstrate the effectiveness of our model, we compare its performance with several ad-
vanced models including Regionlets, DPM-VOC+VP, Mono3D, LSVM-MDPM-sv, and Complexer-
YOLO. The performance metrics are compared across three categories (Car, Pedestrian, Cy-
clist) and three difficulty levels (Easy, Moderate, Hard):

Method Car Pedestrian Cyclist
Easy Mod Hard Easy Mod Hard Easy Mod Hard

Mono3D[3] 92.33 88.66 78.96 80.35 66.68 63.44 76.04 66.36 58.87
DPM-VOC+VP[32] 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

Regionlets[26] 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83
LSVM-MDPM-sv[9, 10] 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21
Complexer-YOLO[39] 55.63 49.44 44.13 19.45 15.32 14.80 28.36 23.48 15.60

Proposed Method (DSCT 0.7) 93.8 88.52 81.38 62.24 54.5 47.6 65.5 43.51 41.95

Table 8.2: Performance comparison across different methods and categories

The comparison, shown in Table 8.2, highlights the effectiveness of our proposed method (DSCT
0.7) relative to several advanced models:

• Car Detection: Our method achieves the highest performance in the Easy (93.8%) and
Hard (81.38%) categories, and shows competitive performance in the Moderate (88.52%)
category. This demonstrates the robustness of our method in handling car detection
under various conditions.

• Pedestrian Detection: Our method delivers strong results across Moderate (54.5%) and
Hard (47.6%) categories, while being competitive in the Easy category (62.24%). This
indicates our method’s capability to effectively detect pedestrians in more challenging
scenarios.

• Cyclist Detection: Our method shows excellent performance in the Moderate (43.51%)
and Hard (41.95%) categories, while being competitive in the Easy category (65.5%). This
highlights the versatility and effectiveness of our method in cyclist detection tasks.

These results underscore the strong performance and dominance of our proposed method across
different categories and difficulty levels. The comparison demonstrates the robustness and
competitiveness of our approach, highlighting its advanced capabilities and potential for fur-
ther enhancement to achieve even higher accuracy and reliability in diverse and challenging
environments.

8.6 Conclusion
In this chapter, we have presented the detailed methodology and results of our experiments
using the YOLOv8 model for object detection on the KITTI dataset. By leveraging advanced

49

8.6. CONCLUSION CHAPTER 8. EXPERIMENTS AND EVALUATION

techniques such as the Dynamic Scene Composition Technique (DSCT), we have demonstrated
improvements in model performance, particularly in challenging scenarios. Our evaluation,
which included metrics like the confusion matrix and Average Precision (AP), highlighted the
robustness and accuracy of our models. Furthermore, the comparative analysis with state-
of-the-art models underscored the competitiveness of our approach. These findings validate
the effectiveness of our methods and provide a solid foundation for further enhancements and
applications in autonomous driving and other computer vision tasks.

50

Chapter 9

Conclusions

9.1 Contributions
This final project has made significant contributions to the field of object detection for au-
tonomous vehicles through the exploration and application of the YOLOv8 algorithm using the
KITTI dataset. A thorough review of existing object detection methods and technologies was
conducted, highlighting the evolution and advancements in the field, especially in the context
of autonomous vehicles. Additionally, a novel approach called the Dynamic Scene Composition
Technique (DSCT) was introduced to enhance the robustness of the detection model. This
technique involves merging multiple images to create a diverse training dataset, which helps
the model learn to handle a variety of real-world scenarios.
The results of the proposed YOLOv8 model demonstrated significant improvements in certain
categories and conditions, particularly with the integration of DSCT. The performance of the
YOLOv8 model was also benchmarked against other advanced models, showing competitive
results and highlighting the effectiveness of the proposed methods. Moreover, the prepara-
tion and preprocessing of the KITTI dataset were meticulously documented, providing a clear
framework for future research and applications in this domain.

9.2 Future Work
While this final project has achieved substantial progress, there are several avenues for future
research and improvement. Future work could involve integrating data from additional sensors,
such as LiDAR and radar, to enhance the accuracy and reliability of the object detection model.
Additionally, utilizing more diverse and extensive datasets beyond KITTI can help in training
a more robust model capable of handling various driving environments and conditions.
The techniques and methodologies developed in this thesis can be extended to other fields such
as robotics, surveillance, and smart city infrastructure, where object detection plays a critical
role. By building on the findings and contributions of this research, future studies can further
advance the capabilities of object detection systems and their applications in various domains.

51

9.2. FUTURE WORK CHAPTER 9. CONCLUSIONS

In conclusion, this thesis has laid a solid foundation for the application of advanced object
detection algorithms in autonomous vehicles. The proposed methods and findings not only
contribute to the academic knowledge base but also have practical implications for enhancing
the safety and efficiency of autonomous driving technologies. Future research building on this
work has the potential to make significant strides in the field of computer vision and autonomous
systems.

52

Appendices

53

Appendix A

Code repository

In this appendix, we describe the code repository associated with the project and provide
instructions on how to use it to replicate the experiments.

Directory Structure
• DatasetPreparation: Contains scripts for preparing datasets.

– keep_ness.py
– map.py
– normalization.py

• devkit_object-3: Contains scripts and data for evaluation and mapping.

• train.py: Script for training the YOLO model.

• test.py: Script for testing the YOLO model.

• data.yaml: Configuration file for the dataset.

• trainlist.txt: List of training data files.

• testlist.txt: List of testing data files.

• reverse.py: Script to prepare and convert normalized labels to actual coordinates for
testing.

• keep.py: Script to test the labels.

Getting Started

Prerequisites
• Python 3.10

55

APPENDIX A. CODE REPOSITORY

• Install ultralytics:

pip install ultralytics

• Install pillow:

pip install pillow==10.3.0

Usage

Dataset Preparation
Prepare your dataset using the scripts in the DatasetPreparation directory. For example:

python DatasetPreparation/keep_ness.py

Training
Train the YOLO model using the train.py script:

python train.py

Testing
Generate the test results of the model using the test.py script:

python test.py

Model Evaluation
To evaluate the model, use the evaluation kit. You need to reverse the normalization and
change the labels first. For missing values (occlusion, 3D coordinates, etc.), insert the ignored
values (e.g., -1, -10).
To reverse the normalization and fill in the missing data use:

python reverse.py

To evaluate the model use:

python keep.py

Check this link for more information on testing using the KITTI evaluation kit.
GitHub link: LINK

56

https://github.com/cguindel/eval_kitti
https://github.com/Aminembarek2/TFG-YOLO/tree/master

APPENDIX A. CODE REPOSITORY

Conclusion
By following the steps outlined above, you should be able to replicate the experiments conducted
in this project. For any issues or questions, refer to the README.md file in the repository for
additional information.

57

APPENDIX A. CODE REPOSITORY

58

Bibliography

[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal
Speed and Accuracy of Object Detection”. In: (2020). url: https://arxiv.org/pdf/
2004.10934.pdf.

[2] Xiaozhi Chen et al. “3D Object Proposals for Accurate Object Class Detection”. In:
Advances in Neural Information Processing Systems. Vol. 28. 2015, pp. 424–432. url:
https : / / www . cvlibs . net / projects / autonomous _ vision _ survey / literature /
Chen2015NIPS.pdf.

[3] Xiaozhi Chen et al. “Monocular 3D Object Detection for Autonomous Driving”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 2147–
2156. doi: 10.1109/CVPR.2016.236.

[4] R. Y. Choi et al. “Introduction to Machine Learning, Neural Networks, and Deep Learn-
ing”. In: Translational Vision Science & Technology 9.2 (Feb. 2020), p. 14. doi: 10.1167/
tvst.9.2.14.

[5] Musab Coşkun et al. “An Overview of Popular Deep Learning Methods”. In: European
Journal of Technique 7.2 (2017), pp. 165–176. url: https://dergipark.org.tr/en/
download/article-file/437659.

[6] DataCamp. What is a Confusion Matrix in Machine Learning? Nov. 2023. url: https:
/ / www . datacamp . com / tutorial / what - is - a - confusion - matrix - in - machine -
learning.

[7] P. Deepa and Rashmita Khilar. “A Report on Voice Recognition System: Techniques,
Methodologies and Challenges using Deep Neural Network”. In: (2021), pp. 1–5. doi:
10.1109/i-PACT52855.2021.9697005.

[8] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep
learning”. In: (2018). arXiv: 1603.07285 [stat.ML]. url: https://arxiv.org/abs/
1603.07285v2.

[9] Kai Fan et al. “Fast Second Order Stochastic Backpropagation for Variational Inference”.
In: Advances in Neural Information Processing Systems 28 (NIPS 2015). 2015. url:
https://proceedings.neurips.cc/paper/2015/hash/fc3cf452d3da8402bebb765225ce8c0e-
Abstract.html.

59

https://arxiv.org/pdf/2004.10934.pdf
https://arxiv.org/pdf/2004.10934.pdf
https://www.cvlibs.net/projects/autonomous_vision_survey/literature/Chen2015NIPS.pdf
https://www.cvlibs.net/projects/autonomous_vision_survey/literature/Chen2015NIPS.pdf
https://doi.org/10.1109/CVPR.2016.236
https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1167/tvst.9.2.14
https://dergipark.org.tr/en/download/article-file/437659
https://dergipark.org.tr/en/download/article-file/437659
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://doi.org/10.1109/i-PACT52855.2021.9697005
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285v2
https://arxiv.org/abs/1603.07285v2
https://proceedings.neurips.cc/paper/2015/hash/fc3cf452d3da8402bebb765225ce8c0e-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/fc3cf452d3da8402bebb765225ce8c0e-Abstract.html

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Pedro F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part-Based
Models”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 32.9 (2010),
pp. 1627–1645. doi: 10.1109/TPAMI.2009.167.

[11] Kunihiko Fukushima. “Neocognitron: A Self-organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in Position”. In: Biological Cy-
bernetics 36 (1980), pp. 193–202. url: https://www.rctn.org/bruno/public/papers/
Fukushima1980.pdf.

[12] A Geiger et al. “Vision meets robotics: The KITTI dataset”. In: The International Journal
of Robotics Research (2013). doi: 10.1177/0278364913491297. url: https://doi.org/
10.1177%2F0278364913491297.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous Driv-
ing? The KITTI Vision Benchmark Suite”. In: Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2012.

[14] R. Girshick. “Fast R-CNN”. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 2015, pp. 1440–1448. doi: 10.1109/ICCV.2015.169. url:
https://ieeexplore.ieee.org/document/7410526.

[15] R. Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation”. In: CVPR ’14 Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 580–587.

[16] Meng-Hao Guo et al. “Attention Mechanisms in Computer Vision: A Survey”. In: Journal
of LaTeX Class Files 14.8 (Nov. 2021), pp. 1–20. url: https://arxiv.org/abs/2111.
07624.

[17] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: arXiv preprint
arXiv:1512.03385v1 (2015).

[18] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of
the 28th International Conference on Neural Information Processing Systems (NIPS).
2015, pp. 770–778. url: https://papers.nips.cc/paper_files/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

[19] Chao Huang et al. “Abnormal Event Detection Using Deep Contrastive Learning for
Intelligent Video Surveillance System”. In: IEEE Transactions on Industrial Informatics
18.8 (2022), pp. 5171–5180. url: https://doi.org/10.1109/TII.2021.3122801.

[20] IBM. Qu’est-ce que la Computer Vision ? url: https://www.ibm.com/ca-fr/topics/
computer-vision.

[21] Katsamenis et al. “YOLOv6 v3.0: A Full-Scale Reloading”. In: (2023). url: https://
doi.org/10.48550/arXiv.2301.05586.

60

https://doi.org/10.1109/TPAMI.2009.167
https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177%2F0278364913491297
https://doi.org/10.1177%2F0278364913491297
https://doi.org/10.1109/ICCV.2015.169
https://ieeexplore.ieee.org/document/7410526
https://arxiv.org/abs/2111.07624
https://arxiv.org/abs/2111.07624
https://papers.nips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://papers.nips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1109/TII.2021.3122801
https://www.ibm.com/ca-fr/topics/computer-vision
https://www.ibm.com/ca-fr/topics/computer-vision
https://doi.org/10.48550/arXiv.2301.05586
https://doi.org/10.48550/arXiv.2301.05586

BIBLIOGRAPHY BIBLIOGRAPHY

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: 1 (2012), pp. 1097–1105. url: https://proceedings.
neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521
(2015), pp. 436–444. doi: 10.1038/nature14539.

[24] Chuyi Li et al. “TraCon: A novel dataset for real-time traffic cones detection using deep
learning”. In: (2023).

[25] Martina Lippi et al. “A YOLO-Based Pest Detection System for Precision Agriculture”.
In: 2021 29th Mediterranean Conference on Control and Automation (MED). 2021,
pp. 342–347. doi: 10.1109/MED51440.2021.9480344.

[26] C. Long et al. “Accurate object detection with location relaxation and regionlets relocal-
ization”. In: Proceedings of the Asian Conference on Computer Vision (ACCV) (2014).

[27] Paula Mielgo Martín. Procesamiento automático de imágenes y vídeos con técnicas de
Deep Learning. Tutors: Anibal Bregón Bregón, Jorge Silvestre Vilches. July 2022.

[28] Gabriel Mongaras. YOLOX Explanation: Mosaic and Mixup for Data Augmentation. 2021.
url: https://gmongaras.medium.com/yolox-explanation-mosaic-and-mixup-for-
data-augmentation-3839465a3adf (visited on 06/17/2024).

[29] Upesh Nepal and Hossein Eslamiat. “Comparing YOLOv3, YOLOv4 and YOLOv5 for
Autonomous Landing Spot Detection in Faulty UAVs”. In: (2022). url: https://doi.
org/10.3390/s22020464.

[30] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. “A Survey of the Usages of Deep
Learning for Natural Language Processing”. In: IEEE Transactions on Neural Networks
and Learning Systems 32.2 (2021), pp. 604–624. doi: 10.1109/TNNLS.2020.2979670.

[31] N. Palanivel et al. “The Art of YOLOv8 Algorithm in Cancer Diagnosis using Medical
Imaging”. In: 2023 International Conference on System, Computation, Automation and
Networking (ICSCAN). 2023, pp. 1–6. doi: 10.1109/ICSCAN58655.2023.10395046.

[32] Bojan Pepik et al. “Multi-View and 3D Deformable Part Models”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 37.11 (2015), pp. 2232–2245. doi: 10.
1109/TPAMI.2015.2408347.

[33] Đorđe Petrović, Radomir Mijailović, and Dalibor Pešić. “Traffic Accidents with Au-
tonomous Vehicles: Type of Collisions, Manoeuvres and Errors of Conventional Vehicles’
Drivers”. In: Transportation Research Procedia 45 (2020), pp. 161–168. doi: 10.1016/j.
trpro.2020.03.003. url: https://www.sciencedirect.com/science/article/pii/
S2352146520301654.

[34] Samira Pouyanfar et al. “A Survey on Deep Learning: Algorithms, Techniques, and Appli-
cations”. In: ACM Comput. Surv. 51.5 (Sept. 2018), 92:1–92:36. doi: 10.1145/3234150.

61

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/MED51440.2021.9480344
https://gmongaras.medium.com/yolox-explanation-mosaic-and-mixup-for-data-augmentation-3839465a3adf
https://gmongaras.medium.com/yolox-explanation-mosaic-and-mixup-for-data-augmentation-3839465a3adf
https://doi.org/10.3390/s22020464
https://doi.org/10.3390/s22020464
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1109/ICSCAN58655.2023.10395046
https://doi.org/10.1109/TPAMI.2015.2408347
https://doi.org/10.1109/TPAMI.2015.2408347
https://doi.org/10.1016/j.trpro.2020.03.003
https://doi.org/10.1016/j.trpro.2020.03.003
https://www.sciencedirect.com/science/article/pii/S2352146520301654
https://www.sciencedirect.com/science/article/pii/S2352146520301654
https://doi.org/10.1145/3234150

BIBLIOGRAPHY BIBLIOGRAPHY

[35] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In: (2018).
url: https://arxiv.org/pdf/1804.02767.pdf.

[36] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In:
(2015). url: https://arxiv.org/pdf/1506.02640.pdf.

[37] Dillon Reis et al. “Real-Time Flying Object Detection with YOLOv8”. In: (2023). url:
https://arxiv.org/pdf/2305.09972.pdf.

[38] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks”. In: arXiv preprint arXiv:1312.6229 (2014). url: https:
//arxiv.org/pdf/1312.6229v4.

[39] Martin Simon et al. “Complexer-YOLO: Real-Time 3D Object Detection and Tracking
on Semantic Point Clouds”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). 2019. url: https://cs.brown.
edu/people/pfelzens/papers/lsvm-pami.pdf.

[40] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks For Large-
Scale Image Recognition”. In: CoRR Computing Research Repository abs/1409.1556 (2014).

[41] Sai Lahari Sreerama et al. “Anomaly Detection Model for Bottles in a Manufacturing
Unit”. In: 2023 3rd International Conference on Innovative Mechanisms for Industry Ap-
plications (ICIMIA). 2023, pp. 1488–1493. doi: 10.1109/ICIMIA60377.2023.10426102.

[42] D.C. Swanson et al. “Proposed Terms and Definitions for Power Quality: IEEE P1159.3/D9”.
In: IEEE Transactions on Power Delivery 14.1 (1999), pp. 123–129. doi: 10.1109/61.
736681. url: https://ieeexplore.ieee.org/document/726791.

[43] Christian Szegedy et al. “Going Deeper with Convolutions”. In: (2015).

[44] Ultralytics. Ultralytics GitHub Repository. 2024. url: https://github.com/ultralytics/
ultralytics.

[45] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors”. In: (2022). url:
https://arxiv.org/pdf/2207.02696.pdf.

[46] R. Yamashita et al. “Convolutional neural networks: an overview and application in radi-
ology”. In: Insights into Imaging 9 (2018), pp. 611–629. doi: 10.1007/s13244-018-0639-
9. url: https://insightsimaging.springeropen.com/articles/10.1007/s13244-
018-0639-9.

[47] Mokri Mohammed Zakaria. Classification des images avec les réseaux de neurones. Uni-
versité de Tlemcen. 2017. url: http://dspace.univ-tlemcen.dz/bitstream/112/
12235/1/Classification-des-images-avec-les-reseaux-de-neurones.pdf.

[48] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional net-
works”. In: (2014), pp. 818–833.

62

https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/2305.09972.pdf
https://arxiv.org/pdf/1312.6229v4
https://arxiv.org/pdf/1312.6229v4
https://cs.brown.edu/people/pfelzens/papers/lsvm-pami.pdf
https://cs.brown.edu/people/pfelzens/papers/lsvm-pami.pdf
https://doi.org/10.1109/ICIMIA60377.2023.10426102
https://doi.org/10.1109/61.736681
https://doi.org/10.1109/61.736681
https://ieeexplore.ieee.org/document/726791
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://arxiv.org/pdf/2207.02696.pdf
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
http://dspace.univ-tlemcen.dz/bitstream/112/12235/1/Classification-des-images-avec-les-reseaux-de-neurones.pdf
http://dspace.univ-tlemcen.dz/bitstream/112/12235/1/Classification-des-images-avec-les-reseaux-de-neurones.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

63

	List of Tables
	List of Figures
	Introduction
	Objectives and Scope
	Objectives
	Principal Objective
	Secondary Objectives

	Scope

	Planning
	Phases and costs
	Phases
	Costs

	Conceptual Framework
	Introduction
	Machine Learning
	Deep Learning
	Convolutional Neural Network
	Hyper-parameters of Convolutional Neural Network

	Computer Vision
	Conclusion

	State of the Art
	Introduction
	Object Detection
	Autonomous vehicle
	Object Detection for Autonomous Vehicles
	Challenges in Object Detection for Autonomous Vehicles
	Methods for object detection for Autonomous Vehicles

	Conclusion

	You Only Look Once
	Scope
	A revolution in object detection
	Versions
	YOLO
	YOLOv2
	YOLOv3
	YOLOv4
	YOLOv5
	YOLOv6
	YOLOv7
	YOLOv8

	Applications in Computer Vision
	Conclusion

	Dataset
	Introduction
	KITTI
	Dataset Preparation
	Conclusion

	Experiments and Evaluation
	Introduction
	Experiment
	Metrics
	Dynamic Scene Composition Technique
	Results
	Initial series of experiments
	Second series of experiments

	Conclusion

	Conclusions
	Contributions
	Future Work

	Appendices
	Appendix Code repository
	Bibliography

