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Luis M. San-José-Revueltaa,∗, Pablo Casaseca-de-la-Higueraa,b

aDepartment of Signal Theory and Communications, University of Valladolid, Paseo de Belén 15, 47011, Valladolid,
Spain.

bSchool of Computing, Engineering and Physical Sciences, University of the West of Scotland, High Street, Paisley,
PA1 2BE, Scotland.

Abstract

This paper proposes a novel memetic algorithm (MA) for the blind equalization of digi-
tal multiuser channels with Direct-Sequence / Code-Division Multiple-Access (DS/CDMA)
sharing scheme. Equalization involves two different tasks, the estimation of: (1) channel
response and (2) transmitted data. The corresponding channel model is first analyzed
and then the MA is developed for this specific communication system. Convergence,
population diversity and near-far resistance have been analyzed. Numerical experi-
ments include comparative results with traditional multiuser detectors as well as with
other nature-inspired approaches. Proposed receiver is proved to allow higher trans-
mission rates over existing channels, while supporting stronger interferences as well as
fading and time-variant effects. Required computation requisites are kept moderate in
most cases. Proposed MA saves approximately 80% of computation time with respect to
a standard genetic algorithm and about 15% with respect to a similar two-stage memetic
algorithm, while keeping a statistically significant higher performance. Besides, com-
plexity increases only by a factor of 5, when the number of active users doubles, instead
of 32× found for the optimum maximum likelihood algorithm. The proposed method
also exhibits high near-far resistance and achieves accurate channel response estimates,
becoming an interesting and viable alternative to so far proposed methods.

1. Introduction

The use of wireless communications and applications has experienced a huge growth
since the 90s. At the same time, transmission media (coaxial cable, optic fiber, etc)
have also improved their technology and capacity. Users demand higher storage and
transmission capacity since both terminals and applications become more complex ev-
ery year. Consequently, techniques such as Direct-Sequence /Code-Division Multiple-
Access (DS/CDMA) that admit several users in a single RF channel bandwidth, have
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been widely investigated. This multi-code system enables telecommunication operators
to offer high data rates using available (limited) bandwidth [1, 2, 3, 4].

Its improvements in soft hand-offs, capacity, low probability of interception, interfer-
ence rejection, low power spectral density, privacy and security makes of DS/CDMA an
interesting scenario for testing novel algorithms [1]. CDMA is one of the most studied
and implemented multi-access protocols. It was widely used in the second and third
(2G and 3G) generations of cellular communications. In 5G, although it was initially
one of the handled promising alternatives until a few months ago [4, 5] —specifically
Low Density Signature (LDS) CDMA [3, 6, 7]–, in the last available specification 5G-NR
Release 16, 3GPP opted for OFDM-derived schemes [8, 9]. However, countless appli-
cations today use CDMA, which is still being considered in many areas of research.
For instance, CDMA continues to be investigated and implemented in numerous In-
ternet of Things (IoT) related applications [12, 11, 10], in submarine communications
[14, 13, 16, 15], in high-performance fiber optic communications [18, 17], or satellite
communications in low orbit systems (LEO) [19]. In modern systems where security is
a key design aspect, DS/CDMA has been proposed combined with both chaotic spread-
ing sequences [25, 22, 20, 24, 13, 23, 21] and with MIMO techniques [26] to decrease the
level of MAI, improving, this way, previous TDMA, SDMA and conventional CDMA
schemes.

Modern systems require very high transmission rates. At these rates, multi-access
interference (MAI) and near-far effects are the two main critical issues affecting DS/CDMA
cellular networks [1, 27]. Intersymbol and multi-access interferences (ISI and MAI) must
be taken into account and controlled so that performance does not degrade [1]. Both ISI
and MAI can be controlled from many points of view. Conventional multiuser detectors
(MUDs) make use of filters matched to the codeword of the user of interest. However,
this is only optimum if all received codewords are independent. In real applications this
situation rarely occurs and performance notably reduces, especially if near-far degrada-
tions are present. In 1986, S. Verdú studied this issue and found that the joint extraction
of users transmitted sequences could mitigate this problem [2]. However, complexity of
the optimum detector relying on the ML criterion grows exponentially with the num-
ber of transmitters, turning unfeasible in real scenarios [1, 2]. Therefore, many authors
have paid attention to the development of suboptimal schemes that can be used on real
systems. Several techniques based on Natural Computation and Artificial Intelligence
have been proposed to address multiuser detection (see next Section).

This paper deals with the development of a novel two-stage memetic algorithm
(MA) and its application to blind joint channel estimation and symbol detection in
DS/CDMA systems. Explicit estimation of channel coefficients allows posterior pro-
cessing tasks such as MIMO signal separation, compensation of distortions and compu-
tation of certain channel parameters that can be fed back to the receiver for transmission
fine-tuning. Proposed MA efficiently solves the CDMA equalization problem, while
overcoming the drawbacks found in other approaches. For instance, conventional evo-
lutionary algorithms (EAs) can only estimate the optimum search space area within a
cost-effective time and present great problems in fine-tuning solutions [28, 29, 32, 31, 30].
These disadvantages can be overwhelmed by applying exploitative search to optimize
the final population of solutions estimated by the EAs [33, 34]. Both effectiveness and
solutions’ quality are enhanced using this two-step approach. This big family of op-
timization methods, which have elements from metaheuristic and evolutionary algo-
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rithms, and also include local learning or improvement procedures are generally known
as memetic algorithms (MAs) [34]. These have a number of advantages, such as simple
implementation and capability to deal with different functional problem representa-
tions [33, 34].

In our case, a two-stage algorithm is used. First, a genetic algorithm with a spe-
cific method for adjusting diversity is used to find the optimal search area within a
tolerable time. Secondly, a procedure making use of the k-opt heuristic local search al-
gorithm is used to improve the solution estimated during first stage, and thus extract
the global optimum solution with low computational expense [35, 36]. The main nov-
elties of our proposal are: (i) the first stage uses both mutation and crossover (the latter
with a very low probability), as opposed to [33], where mutation was only used, (ii)
population diversity is monitored and controlled using the fitness entropy, (iii) prob-
abilities of mutation and cross over are on-line adjusted using the fitness entropy, (iv)
an elitism strategy is introduced in the first stage. Besides, mutation is applied to part
of this elite, (v) a simple to implement termination criterion, and (vi) high bandwidth
efficiency since it does not requiere training sequences. These improvements allow to
work with smaller population sizes and less iterations, while convergence and near-far
resistance are improved.

The remainder of this paper is structured as follows: literature review is shown in
section 2, whilst section 3 explains equalization –joint symbol and channel estimation–
in DS/CDMA systems. Basic concepts and notation are here presented, along with the
proposed fitness function to be used in the MA. Section 4 describes the proposed MA
and shows how population diversity is monitored and controlled using the population
fitness entropy. Next, section 5 shows the numerical results with emphasis on the com-
parison with other multiuser detectors, both traditional and nature-inspired. Finally,
conclusions are presented in section 6.

2. Literature review

Many different techniques based on Natural Computation and Artificial Intelligence
have been proposed to address multiuser detection. Initial approaches were based on
single-step evolutionary algorithms (EAs), mainly Genetic Algorithms (GAs). The work
in [37] proposed a synchronous DS/CDMA MUD based on a GA. It is based on AWGN
channel and does not use diversity techniques. Its main drawback is the requirement
of good estimates of the first transmitted symbols. Later, in 2004, Yen studied the asyn-
chronous case in [38], where the effect of the surrounding symbols from other system
users is taken into account. This algorithm also estimates those symbols that are adja-
cent to those from the user of interest. Another variant of the GA, whose performance
is close to the optimal by introducing a local search algorithm before the GA, was pro-
posed in [39]. This idea of adding modules to the standard GA was used also in [40]. In
that case a multistage detector is integrated into the GA in order to speed convergence
up.

Some remarkable recent works using GAs have tried to estimate the channel re-
sponse, most of them are focused on selective Rayleigh channels [41, 42]. On the other
hand, some approaches have studied both bit-error-rate (BER) and near-far effect per-
formances. It is worth mentioning recent approaches using GAs such as [44, 43, 32, 28,
29, 30]. Earlier references can be found in [45].
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Apart from GAs, several other nature-inspired methods have also been applied to
multiuser detection. During last decade it deserves special attention those bio-inspired
methods based on swarm and evolutionary computation. These methods include the
use of ant-colony algorithms (ACO) [46, 27, 47, 48] and particle swarm optimization
(PSO) [49, 50, 51, 52, 53, 31] , among others. [49] combines a PSO algorithm with the
conventional detector, which is initially used to initialize the position of a particle, show-
ing, this way, better capability against bit error tan conventional detector. In [54] a bi-
nary PSO is applied for CDMA multiuser detection, while [51] proposed the use of the
decorrelating detector and the linear minimum mean square error (MMSE) detector to
initialize the PSO multiuser detector. Recently, [52] proposed a completely binary PSO
algorithm which is reported to resist higher noise levels and to converge in a very short
time. [53] compares performance of a PSO-based detector for CDMA with another re-
ceiver that uses the Spider monkey optimization (SMO) scheme, showing better results
for the later. [55] includes an interesting list of references in this area.

This paper proposes the use of a memetic algorithm to solve the equalization prob-
lem in DS/CDMA, i.e. the joint symbol detection and channel estimation tasks in a
multiuser communication system. To the best of our knowledge, no work has been
dedicated to the joint estimation of fading coefficients and users’ data symbols using a
MA.

3. Channel estimation and symbol detection in DS/CDMA

3.1. DS/CDMA channel model
The multiuser communication environment and the channel model used in this

work is next described. This channel is simultaneously shared by U active users trans-
mitting binary symbol sequences. Each user operates with a confidential normalized
signature (or codeword) from set {si(t)}Ui=1. Channel response is considered to be com-
pletely represented by both a set of flat-fading coefficients, and an additive zero-mean
white Gaussian noise (AWGN) component. All signals are supposed to be synchronously
transmitted. This assumption is considered for simplicity as it captures most of the ef-
fects of asynchronous systems with a low delay spread [56].

User i transmits an F-length sequence xi(n) of statistically-independent symbols.
Each of them modulates a codeword, si(t), which is obtained as

si(t) =

N−1∑
`=0

si,`γ(t − `Tc) (1)

where si = (si,0, ..., si,N−1)T stands for the signature of user i, Tc = T/N is the chip period
(N is known as processing gain), T denotes the symbol period and γ(t) represents a chip
waveform whose energy has been normalized.

As a consequence, the frequency content is spread by a factor N and the original nar-
rowband signal is de-sensitized to some potential channel degradation and interference
[1]. This way, the ith user transmits the following signal

yi(t) =

F−1∑
n=0

xi(n)si(t − nT ) (2)
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where xi(n) are the data symbols transmitted by the ith user. The signal at the receiver
input is

r(t) =
∑U

i=1 ri(t) + g(t) 0 ≤ t ≤ TF (3)

where g(t) denotes a complex AWGN component, which is not correlated with the users’
transmitted symbols xi(n), TF represents the frame duration, and ri(t) is

ri(t) =
√

Ei

F−1∑
n=0

bi(n)xi(n)si(t − nT ) (4)

Ei denotes the energy per bit of the ith user, and bi(n) the flat-fading coefficient of
this user. In this work, a non-stationary channel is considered, with a time variation
model defined in [57], where fading coefficients bi(n) change with time as a function of
a Doppler frequency, fd, as

bi(n + 1) = α · bi(n) + ϕ (5)

with α = exp(−2π fdT ) and ϕ represents a zero-mean AWGN signal.
The joint task of channel response estimation and detection of transmitted symbols

can be seen in Eq. (4), where both data symbols xi(n) and fading coefficients bi(n) need
to be estimated.

An schematic representation of this multiuser communication system is shown in
Fig. 1. The first block in the proposed receiver consists of a set of N filters distributed
in parallel, each of them matched to a different user signature, just after sampling the
received signal at 1/T rate. The aim of this bank of filters is to capture signal energy
only from the user of interest.

Figure 1: Representation of the multiuser channel model where U users transmit simultaneously using a
DS/CDMA sharing strategy. Ei: bit energy of user i, xi(n): symbol sequence transmitted by user i, si(t):
codeword of user i, x̂i(n): estimate of nth symbol transmitted by user i.

In order to estimate the transmitted symbols’ vector x(n) = [x1(n), . . . , xU(n)]T , we
have followed ideas in [57], where estimation is presented as a maximization issue, and
the output of the matched filters’ bank, z(n), is obtained as

z(n) = [z1(n), . . . , zU(n)]T = RB(n)Ex(n) + g (6)
5



with R being the cross-correlation matrix of users’ codewords, B(n) = diag(b1(n), . . . , bU(n)),
E = diag(

√
E1, . . . ,

√
EU), x(n) = [x1(n), . . . , xU(n)]T and g = [g1(n), . . . , gU(n)]T .

In [58] it is demonstrated that, given vector z, the log-likelihood conditional pdf
given both the fading coefficients’ matrix and the transmitted symbols’ vector, can be
obtained as

L (B(n), x(n)) =2<
{
x(n)T E[B(n)]∗z(n)

}
− x(n)T EB(n)R[B(n)]∗Ex(n) (7)

with “<” and “*” stand for the real part of a complex magnitude, and the complex
conjugate operator, respectively. Hence, both the fading coefficients’ matrix and the
users’ transmitted symbols are estimated as

(B̂(n), x̂(n)) = arg max
B(n),x(n)

{L (B(n), x(n))} (8)

Finally notice that fading coefficients are supposed to vary slowly enough so that
this fading is assumed to be constant within each symbol interval. Besides, fadings
from users i and j, i , j, are considered to be independent.

As a consequence, the optimization problem to solve consists in the joint estimation
of B(n) and x(n), which is repeated at every symbol period T .

4. Design methodology

The proposed algorithm involves two stages: first, it uses a GA with a diversity
control procedure, and afterwards, an heuristic k-opt exploitative search algorithm to
fine-tune the output from the first stage. It is well known that one of the main advan-
tages of GAs is that, considering a specific application, they require very few a priori
assumptions to achieve a near optimum estimate [40, 37, 38]. This GA constitutes the
first stage. Next, the local search method fine-tunes the fittest GA output so as to effi-
ciently provide a quasi-optimum solution. Notice that this procedure is run assuming
that the first stage (GA) has reached a near-optimum solution estimate.

4.1. Genetic algorithm (Step 1)
4.1.1. Basic concepts

In a GA, possible solution estimates are encoded in a binary vector usually known
as chromosome (or individual) and, during the GA cycle, genetic operators are applied to
a subgroup of the fittest chromosomes with the aim of preserving crucial knowledge.
The selection process relies on the principle of survival of the fittest individuals: those ones
with highest fitness will have more chances to be selected for reproduction.

This description of the standard GA is quite generic, however, implementation of
many aspects can be particularized to each specific problem, for instance: initial gener-
ation of individuals and their encoding, definition of the operators (selection, crossover
and mutation) and many other implementation tasks. Some of these design issues are
next described.
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4.1.2. Coding, selection and fitness evaluation
First, the initial population is randomly created with np binary-encoded individuals,

and each one is evaluated according to its fitness. In the proposed equalization problem,
Eq. (7) is used for evaluating the fitness of every member of the population, since both
transmitted symbols and fading coefficients are encoded into chromosome CHRi(n, k)
as:

CHRi(n, k) = [Bi(n, k), xi(n, k)]
= [(bi,1(n, k), bi,2(n, k), . . . , bi,U(n, k)), . . .
. . . (xi,1(n, k), xi,2(n, k), . . . , xi,U(n, k))]
1 ≤ k ≤ ng, 1 ≤ i ≤ np, 0 ≤ n ≤ F − 1 (9)

where n, k, i and U stand for the nth symbol period, the kth GA generation, the ith
population individual, and the amount of active transmitters, respectively. On the right
part of CHRi(n, k), vector xi(n, k) represents the estimates of the U transmitted symbols.
On the left, fading coefficients bi(n, k) are encoded. Since these coefficients are usually
complex values, their real and imaginary parts are, each one, binary encoded, using
10+1 (sign) bits. A 22-bit long string is this way obtained.

Due to the assumption of synchronous transmission, one GA is executed in each
symbol interval (every T seconds). Therefore, fading coefficients estimates obtained
when the GA finishes, are kept as initialization values for next symbol period, where a
new GA will start. This agrees with the hypothesis of low time variation of the channel
fading, involving that fading coefficients slightly change within each period T .

In contrast to the MA proposed in [33], our proposed genetic algorithm implements
two different genetic operators: crossover and mutation, with the former used with a
very low probability.

Selection of chromosomes for mutation and crossover is based on a stochastic rule,
where the fittest chromosomes can be selected with a higher probability than the weak-
est ones. Therefore, the ith chromosome CHRi(k) will be selected at iteration k with
probability Φi(k)/

∑np

j=1 Φ j(k), where Φi represents the fitness of individual i given by Eq.
(7). This scheme is readily implemented using a selection method known as roulette
wheel, where the size of each circular sector is proportional to the aptitude of each chro-
mosome [59].

4.1.3. Genetic operators
Two genetic operators are applied: mutation and crossover. Mutation modifies chro-

mosomes with probability Pm, modifying the value of certain positions. Both the specific
position within CHRi and its new value, are randomly obtained. This operator increases
the explorative search of the solutions’ space. A low probability Pm prevents any part in
CHRi from remaining fixed, while a high value results in a random search. Therefore,
Pm should be correctly adjusted. For instance, in our application, and in accordance to
[60], a nice trade-off solution is achieved with an initial value Pm(0) ∈ [0.02 − 0.05].

Mutation operator is invoked following the scheme proposed in [33], i.e., descendant
chromosome comes given by

NEW CHRi,k = sign(CHRi,k +Nk(0, σ)), k = 1, 2, . . . ,K (10)
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where NEW CHRi,k and CHRi,k represent the k-th component of the i-th offspring and
parent individuals, respectively, Nk(η, σ) is a Gaussian random variable with mean η
and standard deviation σ. A new random value is obtained for each k. Notice that σ
allows to control how closely the offspring is relative to its corresponding parents.

Meanwhile, crossover operator obtains two new chromosomes (descendants) by merg-
ing two parents at specific points. The crossover operator is applied with probability
Pc � 1. Since progenitors are selected from highest fitness chromosomes, the small
modifications performed over these data structures are supposed to generate good in-
dividuals, as well.

Crossover is applied with probability Pc = 0.01. We get next generation by selecting
the np fittest individuals from the parents and descendants sets considered together.

4.1.4. Elitism, termination criteria and convergence
Elitism is implemented in our GA. This means that individuals with the highest

fitness are directly selected and inserted into next generation. In our experiments mu-
tation is applied to half of the elite with probability Pm,e = 0.2Pm, while crossover is not
implemented.

Successive iterations of the GA are performed until a termination criterion is veri-
fied; in our real-time DS/CDMA application, the algorithm is iterated until a predeter-
mined number of fitness evaluations is reached. Once the last iteration has been run,
the GA output is given by the chromosome whose fitness is the highest,

GA OUTPUT = CHRi best(ng, k) =

= [Bi best(ng, k), xi best(ng, k)] (11)

An schematic flowchart of the GA structure is shown in Fig. 2.
Once the GA has finished, the exploitative searching method of Step-2 is invoked to

improve the solution estimate in Eq. (11).

4.1.5. Diversity control
GA convergence is greatly improved with the introduction of procedures that op-

timize population diversity. Classic GAs tend to converge to non-optimal solutions,
mainly as a result of a selection that greatly relies on fitness [61]. This implies that pop-
ulation will be formed mainly by the fittest individuals, resulting in low diversity and
low quality solutions. On the other hand, GAs suffer from excessive computational
load, in part due to the load of the genetic operators in addition to fitness evaluations.
Common population sizes (np) can be a huge number of several hundreds (300-2000)
for equalization involving both users’ data and channel coefficients estimation. The GA
here proposed works with less chromosomes (60 to 400 individuals) due to the use of
a population diversity control scheme, where genetic operators rely on the Shannon
entropy of the population fitness, which is obtained as

H(P[k]) = −

np∑
i=1

Φ∗i log Φ∗i (12)

with Φ∗i (k) being the normalized value of the fitness of the ith individual, i.e.,

Φ∗i (k) =
Φi(k)∑np

j=1 Φ j(k)
, 1 ≤ i ≤ np (13)
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Figure 2: Simplified flowchart of the proposed GA constituting the first stage of the memetic algorithm. Two
genetic operators are implemented: crossover and mutation. Elitism is also implemented at the end of each
iteration.

The aim is to adapt the explorative/exploitative sense of the search depending on the
population diversity estimated at each stage of the convergence cycle. When entropy
H is high, it means that population individuals are very similar. In this case, Pm is
increased and Pc is decreased, in order to increase diversity by boosting explorative
search. On the other hand, if H is low, meaning that individuals are quite different,
then Pm is decreased and Pc increased.

The thus designed GA is implemented in stage I of the proposed MA. It requires
notably less computational load than the standard GA since dynamic operators allow
to work with smaller population sizes, and, consequently, genetic operators and fitness
evaluations are computed less frequently.

4.2. Local refinement using the k-opt algorithm (Step-2)
Local search procedures focus their search in the neighborhood of the best solution

estimate found so far until no improvement is found. The neighborhood of chromosome
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CHRi is defined as the set of chromosomes obtained by flipping one or more compo-
nents in the chromosome encoding –see Eq. (9).

The smallest neighborhood is obtained flipping only one bit of the chromosome.
This is known as 1-opt neighborhood, and aims to find the position whose flip involves
the highest fitness gain (GAIN = Φ(CHRi

′) − Φ(CHRi)) in each iteration. Lim et al.
estimated the gain associated to the change of value of the kth bit in a chromosome [33].

In general, the k-opt neighborhood of a specific chromosome is the set of chromo-
somes obtained by simultaneously flipping j bits (1 ≤ j ≤ k) in that chromosome. This
can be expressed as:

NHk−opt(CHRi) =
{
CHR′i ∈ S/d

∗(CHRi,CHR′i) ≤ k
}

(14)

where S represents the complete space of solutions and d∗ stands for the Hamming
distance between two binary vectors. Notice that, the k-opt neighborhood size grows
exponentially with the number of flipped bits k: |NHk−opt(CHRi)| =

∑k
i=0

(
k
i

)
.

The principles of the Lin-Kernighan algorithms can be used to find a subset of the k-
opt neighborhood [35, 36]. The goal is to improve solution by changing certain positions
of it in every iteration. A set of K new estimates (K is the length of the binary vector
CHR) is obtained by changing the value of the bit whose associated gain is the highest.
Each bit can only be changed once. This yields a set of K solutions, from which only the
best one becomes the input for next iteration. This way, the value of a variable number
of positions is changed in each iteration in order to improve the solution quality.

5. Results and Discussion

Performance of the developed algorithm is next evaluated using numerical simu-
lations. Synchronous transmission and additive white Gaussian noise is considered
unless otherwise specified. Binary Phase Shift Keying (BPSK) modulation, a squared
chip waveform γ(t) –see Eq. (1)–, a processing gain N = 31 and a Doppler frequency
fd = 1 krad/sec, are used. Besides, orthogonal signatures are conformed using Gold
sequences. All algorithms were tested on an Intel(R) Core(TM) i5-6200U CPU (2.4GHz)
and 8G RAM with Matlab(R).

5.1. Probability of Error vs SNR
Fig. 3 shows the bit error probability (BER) of User 1 (also known as user of interest,

UOI) as a function of signal quality, which is evaluated using the signal-to-noise (SNR)
power ratio E1/N0, for different estimation algorithms. U = 10 active users and a near-
far effect of 4 dB (i.e. E j/E1 = 4 dB, 2 ≤ j ≤ U) representing that the remaining users
have a 4 dB higher power, is considered. The first stage of the MA is implemented with
a population size of np=60 chromosomes.

The algorithms chosen for comparison are: (i) standard GA –though it is a simpler
one-stage algorithm it is a commonly used key reference to compare with–, (ii) a re-
cently developed GA (GA-SJ from now on) [29], (iii) the two-stage memetic algorithm
developed by Lim and Venkatesk (MA-LV from now on) [33], (iv) the two-stage detector
by Ergun and Hacioglu [40] (GA-MSD), (v) several conventional detectors, such as the
matched filter (MF) detector, the decorrelator detector and the MMSE detector.
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Figure 3: Estimation of the Bit Error Rate performance for different values of the signal-to-noise ratio (SNR,
dB) for several multiuser detectors. U = 10 active users. Near-far distortion: E j/E1=4 dB for j > 1.

Comparing MA to a standard GA-based detector, it can be seen how MA’s perfor-
mance approaches that of the single user scenario (a lower bound for the BER of any
multiuser detector is obtained by estimating the probability of error when U = 1 –i.e.
absence of interfering users– [1]). GA-based MUD has difficulties to converge as SNR
increases, even when implemented with a higher number of iterations and generations.
Specifically, the proposed MA is implemented with np,MA = 60 individuals, while GA
uses np,GA = 300. On the other hand, the number of iterations in GA is ng,GA = 500, while
step-1 of our MA uses 250.

The GA-SJ algorithm is reported to be an efficient method [29]. We can see how the
BER achieved with the here proposed MA is very close to GA-SJ’s BER. However, the
introduction of a second stage in our MA allows to reduce the population size required
in Stage 1 in about 20-25%. As a consequence, global computation time is now reduced
about 30% with respect to GA-SJ.

This reduction in generations and population size involves a decrease in the number
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of required fitness function evaluations (symbol ] stands for Number of):

]Fit EvalGA = (1 + Pc + Pm)ng,GAnp,GA

]Fit EvalMA ' (1 + Pc + Pm)
1
3

ng,GA
1
5

np,GA

=
1
15
]Fit EvalGA

]Fit EvalGA−S J ' (1 + Pc + Pm)
1
4

ng,GA
2
5

np,GA

=
1
10
]Fit EvalGA

]Fit EvalMA '
2
3
]Fit EvalGA−S J

However, due to the load of step-2 in the proposed MA, the final reduction in time is
approximately 77% with respect to Std-GA, and about 20% with respect to GA-SJ.

Apart from one-stage GAs, two different nature-inspired methods were implemented
for comparison, MA-LV [33] and GA-MSD [40]. Fig. 3 also shows results when both
algorithms are implemented keeping an equivalent computational load (by properly
setting the number of fitness evaluations). It can be seen that performances of MA and
MA-LV are similar for SNRuser 1 ≤ 11 dB. For higher values proposed MA performs
better. This is due to the fact that MA efficiently combines the explorative/exploitative
sense of search due to the dynamic functioning of the genetic operators, by monitor-
ing the population fitness entropy, as explained in section 4.1.5. On the other hand,
GA-MSD shows slightly higher BERs, specially for SNRuser1 > 12 dB. Notice that perfor-
mances of these three two-step algorithms are always better than those of conventional
and one-stage methods. BER plots of three traditional detectors –the matched filter
(MF) detector, the Minimum Mean Square Error (MMSE) detector and the decorrelator
detector–, are shown in Fig. 3, as well.

Numerical results indicate that simple methods (standard GA and MF) cannot cor-
rectly converge even when the power of user 1 is high. These results are coherent since
MF is known to suffer from BER performance degradation in fading channels [1]. On
the other hand, MMSE and decorrelator lead to an intermediate performance between
the two-stage methods and the MF or the standard GA.

Finally, we compare performances of three two-stage nature-inspired methods using
the Friedman test [62]. The problem test suite consists of 8 optimization problems, each
one defined with a specific value of SNRuser1(dB) = γ dB, γ ∈ [7, 14]. The Friedman test
is conducted to detect significant behaviour differences between two or more detectors.
Average rankings are shown in Table 1. The best average ranking (lowest value) is in
italic and corresponds to our MA approach, which outperforms the other two schemes.
A p-value of 0.0015 is obtained showing that there exist significant differences between
the behaviour of the three algorithms.

5.2. Bit Error Rate vs number of transmitting users (capacity)
The number of actively transmitting users over the channel affects performance. The

capacity of the channel quantitatively evaluates its ability to deal with this. Capacity
curves show the bit error rate in terms of the number of active users. Fig. 4 shows the
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Table 1: Average ranking achieved with the Friedman test for three two-stage nature-inspired multiuser de-
tectors. Each test problem comes given by a specific SNRuser1(dB) value, from set {7, 8, 9, 10, 11, 12, 13, 14}.

Algorithm Friedman Test Score
Memetic Algorithm 1.25

MA-LV 1.75
Std-GA 3.00

plots for different methods (MA, MA-LV, GA-MSD, MF and MMSE), depending on the
number of simultaneously transmitting users.
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Figure 4: Estimates of the Bit Error Rate depending on the number of transitting users U. Ei = E j, 1 ≤ i, j ≤
U, i , j.

In this simulation every user is forced to transmit with the same power, i.e. Ei =

E j, 1 ≤ i, j ≤ U, i , j. Simulation results show that nature-inspired schemes perform
better than MF and MMSE, whose performances are clearly degraded by multi-access
interferences.

Performances of MA and MA-LV (two-stage nonlinear schemes) are very close. How-
ever, MA’s performance is a little better, specially when the number of users is high
(U > 5) and multi-access interference is more relevant. On the other hand, the GA-MSD
detector shows a performance that drops with respect to MA and MA-LV. This degrada-
tion increases with the number of active users. This way, GA-MSD has an intermediate
performance between two-stage MAs and conventional detectors.

Another notable advantage of the proposed MA and the other nature-inspired ap-
proaches, in contrast to traditional optimization methods, is that they do not need any
memory elements, since information related to previous iterations does not need to be
stored.

Computational load in terms of the number of transmitting users U is shown in Table
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2. Results concerning the standard GA (Std-GA), GA-SJ [29] and MA-LV [33] multiuser
detectors are included for comparison, as well. Both Population size and the number of
iterations are shown for U = 10, 15 and 20.

Table 2: Population size (np) and number of generations (ng) required for different values of parameter U (ac-
tive users) for the following multiuser detectors: (i) proposed memetic algorithm (MA), (ii) standard genetic
algorithm (Std-GA), (iii) GA-SJ [29] and (iv) MA-LV.

No. of Population size Generations
users (np) (ng)
(U) MA Std-GA GA-SJ MA-LV MA Std-GA GA-SJ MA-LV
10 60 300 75 70 250 500 275 250
15 150 750 190 170 300 1000 350 300
20 400 2000 500 430 400 1500 500 400

Notice that, in general, population size of GA-SJ is ∼ 75% less than that of Std-
GA, and proposed MA uses ∼ 20 − 25% less individuals than GA-SJ. MA-LV requires
∼ 10−15% more individuals than proposed MA. If we look at the number of generations,
both proposed MA and MA-LV reduce this parameter ∼ 10−20% with respect to GA-SJ,
and ∼ 50 − 70% with respect to Std-GA.

Results in Table 2 were obtained adjusting parameters of the different algorithms in
order to achieve a similar performance than that of the MA, so as to make fair compar-
isons. This is accomplished by adjusting the number of generations, ng, and population
size, np.

In this case, Wilcoxon test [63] between MA and Std-GA, and between MA and MA-
LV. was run. This test finds significant performance differences between two methods.
In the first case, the test yields a p-value of 0.0398, showing again a significant improve-
ment of MA with respect to Std-GA at the 0.1 level of significance. When the test was
applied to proposed MA and MA-LV the p value was 0.112, showing that MA is not
significantly better than MA-LV, though MA gets a better ranking than MA-LV.

5.3. Channel estimation accuracy
Next, the accuracy of the fading coefficients estimates is analyzed. Figure 5 shows

the minimum square error plots for four different schemes (proposed MA, MA-LV in
[33], and the “MAP-GCGS” and “MAP-GS” algorithms developed in [64]), for several
Ek/N0 values measured along a 100 symbols long frame. The number of active users
is U = 8, all of them transmitting with the same power. Numerical results show that
proposed MA requires, on average, approximately 20-30 symbol periods to achieve low
error estimates, while MAP-GS and MAP-GCGS require about 45-60 samples, and the
MA-LV detector requires a period of about 35-50 samples.

An additional advantage of both MAs is that no supervised initial period is required.
Conversely, both MAP-GCGS and MAP-GS need a 18 samples long training period.

5.4. Near-far performance
The near-far effect reflects the situation when part of the interfering users are closer

to the base-station than the user of interest. This involves that their signals are received
with stronger power than the one coming from the user of interest, making, this way,
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Figure 5: Average MSE of the channel estimate over the first 100 known symbols. Mean values obtained after
50 symbol frames. The energy received for every transmitting users is the same. U = 8 active users.

more difficult the problem of extracting useful data [1, 2]. The UOI’s BER as a function
of the difference between the power received from the UOI and from the other users is
now evaluated. Three interfering users (U = 4), N = 32 and noise variance σ2

n = 0.5, are
considered. Power from the three interfering users is the same at reception antenna.

Figure 6 shows the near-far performance of our MA depending on the SNR of the
UOI. The mean received symbol energies of the remaining users are 0, 5, 10 and 15 dB
higher than the UOI’s energy. Numerical results show that when 5 ≤ Ek/E1 ≤ 10 dB,
MA detector has good near-far capabilities up to E1/N0 ≈ 18 dB. Higher values of E1/E0
lead to a slight BER degradation.

The BER plots corresponding to: (i) the decorrelator detector, which is known to be
near-far resistant, and (ii) the MA-LV algorithm, are also shown for Ek/E1 = 10 dB to
allow comparison. It can be seen how the decorrelator performance notably decreases
with respect to MA for the same Ek/E1 value, while MA-LV shows an intermediate
performance.

This way, we demonstrate that our proposed multiuser detector is robust and near-
far resistant when both inter-symbol and multi-access interferences exist. Besides, im-
provements with respect to MA-LV –see end of section 1– are proved to lead to better
near-far resistance.

6. Conclusions

A memetic algorithm based multiuser detector has been developed so as to prop-
erly estimate both the channel response and the transmitted symbols in a multiuser
DS/CDMA scenario, which is one of the most important and studied problems in mod-
ern communications.

Numerical experiments were carried out to compare the proposed MA MUD to dif-
ferent nature-inspired detectors, as far as we know, in fair terms, including comparisons
to many well-known traditional schemes such as the matched filter, the decorrelator and
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Figure 6: BER performance for K = 10 users with Ek/E1 = 0, 5, 10 and 15 dB for k = 2, . . . ,U. User 1: user of
interest.

even some Bayesian approaches, as well. Proposed MA is an efficient alternative when
approaching this complex optimization problem, offering a remarkable performance,
especially under unfavorable conditions (e.g. low signal-to-noise power ratio of the
user of interest, considerable number of interferers, or existence of near-far effects).

Whenever these degradations are not high, other two-stage nature-inspired algo-
rithms show a performance similar to that of the MA detector and the optimum re-
ceiver. When ISI or MAI become stronger or the UOIs power is smaller, proposed
MA achieves a better performance, in part as a result of its efficient search capabilities
that adjust population diversity by in-service monitoring the population fitness entropy.
This way, probabilities of crossover and mutation are fine-tuned using this information,
thus adapting the exploitative/explorative sense of the search.

On the other hand, the analysis of statistical significance carried out using both
Friedman and Wilcoxon tests reveals that MA clearly outperforms the Genetic Algo-
rithm approach, and also has better scores than other memetic algorithms shown for
comparison.

The obtained multiuser detector allows an efficient use of band-limited real chan-
nels. Transmission rates can be increased –even when the number of actively transmit-
ting users is high, and/or when fading and interference become stronger– more than
with previous approaches, at the expense of, in worst case, limited computation incre-
ments.
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