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quiero extender este agradecimiento a Álvaro y a toda mi familia. Gracias por

7



8 Agradecimientos

estar a mi lado.

I would also like to thank Professor Maarten de Vos for welcoming me into

the Biomedical Data Processing research group (BIOMED) at the KU Leuven

university. I had a fantastic time in Leuven (Belgium) with all the BIOMED

researchers, and I have learned a lot from them. Thanks for showing me your

group and the way you research, and for including me in your team. Thanks to

Joran and Guido, with whom I had the pleasure to collaborate during the stay

and I hope to continue working together in the future.

Finalmente, muchas gracias a Javier, a Raúl y a Jesús por todos los buenos
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estáis conmigo cuando os necesito.

Gracias por confiar en mı́



Abstract

Obstructive sleep apnea (OSA) is a sleep disorder in which intermittent obstruction

or narrowing of the upper airway causes recurrent pauses and cessations of normal

respiration (named apneas and hypopneas, respectively) during sleep. The most

common symptoms of OSA in chidren are snore, labored respiration or breathing

pauses, and daytime hypersomnolence. However, these symptoms can be subtle

and not easily detected. Pediatric OSA affects 1% – 5% of children, with several

negative consequences that range from cardiometabolical comorbidities such as

hypertension and dyslipidemia to neurobehabioral disorders such as neurocognitive

and attention deficits, and also hyperactivity. Early diagnosis of children at risk of

OSA is crucial to access surgical or pharmacological treatment and diminish the

chances of developing serious comorbidities.

The gold standard in the diagnosis of childhood OSA is the nocturnal, in-lab

polysomnography (PSG), a sleep study that involves the recording of cardiores-

piratory, neuronal, muscular, position, and movement signals while the patient is

sleeping in a sleep laboratory. PSG signals are inspected to locate and quantify

apnea or hypopnea events. The American Academy of Sleep Medicine (AASM)

define apneas as a reduction ≥ 90% in the airflow (AF) signal during at least two

breathing periods. Likewise, hypopneas are defined as an AF reduction ≥ 30% for

at least two breathing cycles associated with either a drop in the oxygen saturation

(SpO2) signal ≥ 3% (desaturation) or an electroencephalographic arousal. Pedi-

atric OSA is diagnosed by computing the rate of apnea/hypopnea events per hour

(e/h) of sleep (apnea-hypopnea index, AHI). OSA severity is defined according to

AHI: no OSA (AHI < 1 e/h), mild OSA (1 ≤ AHI < 5 e/h), moderate OSA (5 ≤
AHI < 10 e/h), and severe OSA (AHI ≥ 10 e/h). Notwithstanding the preference

of PSG to diagnose OSA in children, it has low availability due to scarce sleep

units, high complexity and associated costs. These reasons delay the diagnosis of

children affected by OSA, making it an underdiagnosed disease. Alternatives to
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PSG comprise the analysis of less signals, which can also be recorded outside the

sleep laboratories. This way, simplified tests involving the analysis of AF and SpO2

are a suitable alternative since these signals summarize the information required

to detect apneas and hypopneas.

The analysis of AF and SpO2 signals can be further simplified by means of

automatic signal processing algorithms. Moreover, these methods can comprise a

pattern recognition stage that automatically detects signs of pathology and provide

a simplified diagnosis of pediatric OSA. In this doctoral thesis, different advanced

machine learning (ML) algorithms such as ensemble learning and more recent

deep learning (DL) architectures combined with Explainable Artificial Intelligence

(XAI) methods are proposed to facilitate the diagnosis of pediatric OSA through

the automatic analysis of AF and SpO2 signals. The research conducted through-

out this doctoral thesis was conducted by assuming the hypothesis that automatic

analysis of overnight AF and SpO2 signals using advanced ML techniques such as

ensemble learning, DL and XAI can help to simplify the diagnosis of childhood

OSA. Thus, the main objective of this doctoral thesis was to study, develop, and

validate advanced ML methods such as ensemble learning or DL together with

new XAI techniques in the context of automatic analysis of AF and SpO2 signals,

so that these methods can be used to help diagnose pediatric OSA.

In order to conduct this research, two databases of overnight AF and SpO2

signals from a total of 2,612 sleep studies have been used. The first database was

provided by the University of Chicago (UofC) School of Medicine, and comprised

974 pediatric subjects with suspicion of OSA. The Childhood Adenotonsillectomy

Trial (CHAT) public and multicentric database contained a total of 1,638 sleep

studies performed to children with OSA symptoms.

The methodology deployed to achieve the main goal of this doctoral thesis was

split into two main branches. The first branch was a feature-engineering method-

ology that encompassed feature extraction, selection and classification stages to

estimate the presence of OSA and its severity from the most relevant and non-

redundant information extracted from AF and SpO2. Temporal, spectral, and

nonlinear parameters were computed from AF and SpO2, and the 3% oxygen desat-

uration index (ODI 3%) was also included in the analyses. Next, subsets of relevant

and non-redundant features were obtained by applying the Fast Correlation-Based

Filter (FCBF) algorithm on different combinations of AF- and SpO2-derived in-

formation. The classification stage comprised the implementation of AdaBoost

ensemble learning classifiers to estimate the OSA severity level from the subsets

of relevant and complementary information of AF and SpO2. The second branch
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included the deployment of different DL architectures aimed at quantifying OSA

severity by means of AHI estimation from the total number of detected apneic

events. Moreover, the explainability of the developed DL models was addressed

with XAI algorithms to obtain explanations about the DL models’ predictions.

The first DL architecture was a convolutional neural network (CNN) trained to

process and analyze raw AF and SpO2, while the second relied on a combina-

tion of the aforementioned CNN with a recurrent neural network (RNN), namely

CNN+RNN, by means of a transfer learning approach. This architecture was

further analyzed by means of the Gradient-weighted Class Activation Mapping

(Grad-CAM) algorithm, a XAI method that derives explanatory heatmaps asso-

ciated to the model’s predictions.

The results obtained from the feature engineering approach revealed that the

combination of AF- and SpO2-derived features with ODI 3% by means of a multi-

class AdaBoost classifier obtained the highest agreement with the actual OSA

severity in terms of 4-class accuracy (Acc4) and Cohen’s kappa (k) (Acc4=57.95%,

k=0.3984). Nevertheless, the combination of AF with ODI 3% reached the max-

imum performance to diagnose pediatric OSA in terms of accuracy (Acc), sen-

sitivity (Se), and specificity (Sp) in the AHI cutoffs of 1 e/h (Acc=81.28%,

Se=92.06%, Sp=36.00%), 5 e/h (Acc=82.05%, Se=76.03%, Sp=85.66%), and 10

e/h (Acc=90.26%, Se=62.65%, Sp=97.72%). On the other hand, the DL architec-

tures outperformed the previous feature-engineering approaches in terms of diag-

nostic performance. The Intraclass Correlation Coefficient (ICC) revealed a very

high agreement of AHI estimation in CHAT (ICC=0.9546 for CNN; ICC=0.9465

for CNN+RNN) and UofC (ICC=0.8821 for CNN; ICC=0.9004 for CNN+RNN)

test sets, which was also confirmed in terms of Acc4 and k. The agreement was

higher in CHAT (Acc4=72.55%, k=0.6011 for CNN; Acc4=74.51%, k=0.6231 for

CNN+RNN), while the results in the UofC surpassed those reached with the Ad-

aBoost models (Acc4=61.79%, k=0.4469 for CNN; Acc4=62.31%, k=0.4495 for

CNN+RNN). Comparing both DL models, CNN+RNN outperformed CNN. A

superior ability to diagnose OSA was obtained in all AHI cutoffs, with very high

diagnostic performance in 1 e/h (Acc=87.25%, Se=87.03%, Sp=88.06%), 5 e/h

(Acc=93.46%, Se=80.22%, Sp=99.07%), and 10 e/h (Acc=93.46%, Se=71.43%,

Sp=96.97%) in the CHAT test set, whereas these metrics were also high in

the UofC test set in 1 e/h (Acc=84.10%, Se=96.83%, Sp=30.67%), 5 e/h

(Acc=84.62%, Se=82.88%, Sp=85.66%), and 10 e/h (Acc=90.51%, Se=78.31%,

Sp=93.81%). These results indicate that the CNN+RNN model is the most accu-

rate model among all the approaches covered in this doctoral thesis. The Grad-
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CAM-derived explanatory heatmaps obtained from this model revealed that it fo-

cused in sudden AF amplitude changes and desaturations to detect and quantify

OSA-related events. Nevertheless, these heatmaps also revealed that the model

usually misses some hypopneas associated to arousals and is sensitive to abrupt

variations in both signals caused by artifacts.

The characterization of AF and SpO2 revealed that both signals exhibited

relevant and complementary features according to the results obtained using the

FCBF feature selection algorithm. SpO2-derived ODI 3% was the most relevant

and dominant feature, whereas the central tendency measure computed from AF

was also relevant and non-redundant with ODI 3%. This complementary informa-

tion from both signals reached the highest diagnostic performance in comparison

with approaches that only included the information from one of these signals.

Nevertheless, ODI 3% contributed the most to enhance OSA detection by means

of AdaBoost. Overall, the multi-class AdaBoost models reached remarkable di-

agnostic performance compared to other approaches that also combined AF with

ODI 3%. These results suggest that AF and SpO2 can be complementary and

useful together to detect pediatric OSA. However, the superior diagnostic ability

of DL-based approaches was clearly demonstrated. The CNN model trained with

both signals outperformed a very similar previous approach based solely on SpO2

in 1 and 5 e/h, indicating that the contribution of AF was remarkable to enhance

the utility of this CNN model. The architecture obtained by extending the afore-

mentioned dual-channel CNN model to a CNN+RNN naturally surpassed all the

previous approaches focused on detecting pediatric OSA. This highlights the use-

fulness of a DL architecture that combines different techniques to automatically

learn the particularities of AF and SpO2 signals. In addition, the use of Grad-

CAM enabled the discovery of relevant OSA-related patterns of the input signals

that are automatically detected by the DL algoritms and can aid users to reinforce

their trust in the DL-based models. In view of these results, the methods proposed

in this doctoral thesis could be used to develop a screening test of pediatric OSA

that would alleviate the waiting lists of pediatric sleep laboratories.

In summary, the results achieved by the methods proposed in this research al-

low us to conclude that the automatic analysis of AF and SpO2 based on ensemble

and DL methods combined with XAI have demonstrated a remarkable diagnostic

usefulness, and can be used to deploy alternative, simple, reliable and trustworthy

screening methods to serve as an aid in the diagnosis of OSA in children.
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B.2 Hipótesis y objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.3 Materiales y métodos . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.3.1 Bases de datos . . . . . . . . . . . . . . . . . . . . . . . . . 101
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Chapter 1

Introduction

This doctoral thesis focused on the automatic analysis of respiratory airflow (AF)

and peripheral blood oxygen saturation (oximetry, SpO2) signals to help in the

diagnosis of pediatric obstructive sleep apnea (OSA). With the objective of au-

tomating the analysis of these two overnight signals, several algorithms were specif-

ically designed to process and characterize the signals, extract useful information

related to the disease, and finally determine the presence and severity of OSA. The

approaches covered in this doctoral thesis relied on machine learning (ML) tech-

niques such as ensemble learning, deep learning (DL), and explainable artificial

intelligence (XAI). ML and DL models were developed to estimate the presence

and severity of OSA, whereas XAI methods were used to analyze the patterns

present in the signals that DL algorithms link to the presence of OSA. The results

of these studies were published in three journal articles, all of them indexed in

the Web of Science�(WOS) Journal Citation Reports (JCR). Thus, this doctoral

thesis is presented as a compendium of publications.

The articles included in the compendium of publications propose novel tech-

niques applied to AF and SpO2 to enhance the diagnosis of OSA in children. The

thematic consistency is introduced in Section 1.1. The research conducted in this

doctoral thesis is framed into the fields of biomedical engineering, biomedical sig-

nal processing, and ML, which are exposed in Section 1.2 devoted to the general

context of this thesis. The medical background of the doctoral thesis is centered

in pediatric OSA (Section 1.3), a prevalent sleep disorder with important negative

consequences concerning the development of children. The diagnosis of pediatric

OSA is described in Section 1.4, along with their limitations, disadvantages, and

possible alternatives. In this view, the state-of-the-art alternatives that encompass

1
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the use of data-driven models such as ML, DL, and XAI to aid in the diagnosis of

childhood OSA are rewiewed in Section 1.5.

1.1 Compendium of publications: thematic con-

sistency

OSA is a type of sleep disordered breathing (SDB) syndrome caused by recurrent,

intermittent obstructions of the airway, either total (apneas) or partial (hypop-

neas), during sleep (Dehlink and Tan, 2016). The prevalence of OSA in children

ranges between 1% and 5% according to epidemiological studies (Kaditis et al.,

2016b; Marcus et al., 2012), but the actual rate of children who suffer OSA may be

higher and represents a child health concern in many countries. Childhood OSA

is associated to a variety of cardiometabolical and neurobehavioral comorbidities,

such as hypertension, dyslipidemia, and neurocognitive deficits (Marcus et al.,

2012; Tauman and Gozal, 2011). Timely diagnosis of children with suspicion of

OSA is crucial to avoid its negative consequences, but remains challenging due to

the complications of the most accepted diagnostic procedures. The gold standard

for OSA diagnosis is an in-lab overnight polysomnography (PSG), a complex and

expensive test, with limited availability, and uncomfortable for children (Dehlink

and Tan, 2016; Marcus et al., 2012). The disadvantages of PSG hinder the ac-

cess to a timely diagnosis of OSA, resulting in long waiting lists. Therefore, the

simplification of OSA diagnosis is required to enhance the access to a convenient

examination and possible treatment of affected children (Brockmann et al., 2018).

The research conducted in this doctoral thesis was aimed at providing tools

to automatically analyze overnight AF and SpO2, two signals directly involved in

PSG, and enabling a simplified diagnosis of pediatric OSA directly from them. The

three papers included in the compendium of publications assessed the diagnostic

ability of overnight AF and SpO2 to predict OSA, each of them proposing different

ML, DL and XAI algorithms. All scientific contributions proposed a novel method-

ology to automatically process overnight AF and SpO2, extract useful information

from these signals, and finally derive a prediction of the severity of OSA. The pro-

posed ML methods covered from advanced feature-engineering algorithms, such

as ensemble learning, to the most recent DL architectures combined with XAI.

Ensemble learning methods encompassed exhaustive feature extraction, selection,

and classification stages, whereas DL-based approaches unified the aforementioned

stages, enabling an automated algorithm to predict OSA directly from the raw sig-
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nals. Finally, the last paper of the compendium addressed the interpretability of

DL models by applying a XAI algorithm that uncovers the black-box nature of

current complex data-driven models. Figure 1.1 illustrates the thematic consis-

tency of the articles that constitute this doctoral thesis, which are introduced in

the next paragraphs of this section.

The three articles in the compendium of publications included the assessment

of the methods in populations of children with symptoms suggestive of OSA that

underwent PSG testing. To do so, AF and SpO2 signals were processed and an-

ENSEMBLE LEARNING: FEATURE ENGINEERING + ADABOOST

PEDIATRIC AIRFLOW AND OXIMETRY SIGNALS

ENTROPY 2020
Assessment of Airflow and Oximetry Signals to Detect Pediatric Sleep Apnea-Hypopnea 

Syndrome Using AdaBoost

FEATURE EXTRACTION

AID IN THE DIAGNOSIS OF PEDIATRIC 

OSA VIA AUTOMATIC ANALYSIS OF 

OVERNIGHT AIRFLOW AND 

OXIMETRY

DEEP LEARNING + XPLAINABLE AI: CONVOLUTIONAL AND

RECURRENT NEURAL NETWORKS + GRAD-CAM

CBM 2022
A 2D convolutional neural network to detect sleep apnea in children using

airflow and oximetry

BSPC 2024
An explainable deep-learning architecture for pediatric sleep apnea identification

from overnight airflow and oximetry signals

FEATURE SELECTION CLASSIFICATION:

MULTICLASS

ADABOOST

A H

D D

Figure 1.1: Thematic consistency between the publications of this doctoral thesis. AI:
Artificial Intelligence; BSPC: Biomedical Signal Processing and Control; CBM: Comput-
ers in Biology and Medicine; Grad-CAM: Gradient-weighted Class Activation Mapping;
OSA: Obstructive Sleep Apnea.
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alyzed using different methodologies. The first article of the compendium was

focused on assessing the diagnostic ability of AF and SpO2 signals to detect pedi-

atric OSA either alone and combined (Jiménez-Garćıa et al., 2020). Both signals

were exhaustively characterized by extracting time-domain statistics, spectral and

nonlinear features, as well as the 3% oxygen desaturation index (ODI 3%) com-

puted from SpO2. The OSA severity was obtained using the multiclass AdaBoost

ensemble learning algorithm fed with combinations of relevant and non-redundant

features. The feature sets that included information from both signals (especially

ODI 3%) reached the highest accuracy, suggesting the complementarity of AF and

SpO2 to automatically diagnose pediatric OSA (Jiménez-Garćıa et al., 2020). The

second and third articles of the compendium proposed DL models to automatically

diagnose OSA from overnight AF and SpO2. A two-dimensional convolutional

neural network (CNN), as well as a combination of CNN with a recurrent neural

network (RNN) were developed and tested in these articles (Jiménez-Garćıa et al.,

2022, 2024). The target of CNN and CNN + RNN architectures was the com-

putation of the apnea-hypopnea index (AHI), the main marker of pediatric OSA,

from the amount of detected apneic events in these two signals. Additionally, the

Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was

used to explain the behavior of the CNN + RNN algorithm and identify relevant

OSA-related patterns found by the DL model from the raw signals (Jiménez-Garćıa

et al., 2024). In summary, the three approaches included in this research covered

different state-of-the-art algorithms to aid in the diagnosis of pediatric OSA and

also described the transition from a classical ML perspective to a novel explainable

DL framework.

Titles, authors, journals, and abstracts of the articles included in the com-

pendium of this doctoral thesis are shown in the next three pages. The journals

in which the articles were published also include their respective Journal Impact

Factor (JIF). Due to this doctoral thesis is presented as a compendium of publi-

cations, the complete articles have been included in Sections 7.1, 7.2, and 7.3 for

a suitable understanding of this dissertation.
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Assessment of Airflow and Oximetry Signals to Detect Pediatric Sleep

Apnea-Hypopnea Syndrome Using AdaBoost (Jiménez-Garćıa et al.,

2020).

Jorge Jiménez-Garćıa, Gonzalo C. Gutiérrez-Tobal, Maŕıa Garćıa, Leila

Kheirandish-Gozal, Adrián Mart́ın-Montero, Daniel Álvarez, Félix del Campo,

David Gozal, and Roberto Hornero. Entropy, vol. 22 (6), pp. 670, 2020. JIF in

2020: 2.524, Q2 in “Physics, Multidisciplinary” (JCR-WOS).

Abstract: The reference standard to diagnose pediatric Obstructive Sleep

Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When

polysomnography is either unavailable or has limited availability, OSA screening

may comprise the automatic analysis of a minimum number of signals. The pri-

mary objective of this study was to evaluate the complementarity of airflow (AF)

and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally,

a secondary goal was to assess the utility of a multiclass AdaBoost classifier to

predict OSA severity in children. We extracted the same features from AF and

SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen

Desaturation Index (ODI) as a common clinically used variable. Then, feature

selection was conducted using the Fast Correlation-Based Filter method and

AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features

outperformed the diagnostic performance of each signal alone, reaching 0.39

Cohens’s kappa in the four-class classification task. OSA vs. No OSA accuracies

reached 81.28%, 82.05% and 90.26% in the apnea–hypopnea index cutoffs 1, 5 and

10 events/h, respectively. The most relevant information from SpO2 was redun-

dant with ODI 3%, and AF was complementary to them. Thus, the joint analysis

of AF and SpO2 enhanced the diagnostic performance of each signal alone using

AdaBoost, thereby enabling a potential screening alternative for OSA in children.
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A 2D convolutional neural network to detect sleep apnea in children

using airflow and oximetry (Jiménez-Garćıa et al., 2022).

Jorge Jiménez-Garćıa, Maŕıa Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila

Kheirandish-Gozal, Fernando Vaquerizo-Villar, Daniel Álvarez, Félix del Campo,

David Gozal, and Roberto Hornero. Computers in Biology and Medicine, vol.

147, pp. 105784, 2022. JIF in 2022: 7.7, Q1(D1) in “Mathematical & com-

putational biology” (JCR-WOS).

Abstract: The gold standard approach to diagnose obstructive sleep apnea (OSA)

in children is overnight in-lab polysomnography (PSG), which is labor-intensive

for clinicians and onerous to healthcare systems and families. Simplification

of PSG should enhance availability and comfort, and reduce complexity and

waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the

information needed to detect apneas and hypopneas, but automatic analysis of

these signals using deep-learning algorithms has not been extensively investigated

in the pediatric context. The aim of this study was to evaluate a convolutional

neural network (CNN) architecture based on these two signals to estimate the

severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood

Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a

clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and

SpO2 signals was implemented to estimate the number of apneic events, and

the total apnea-hypopnea index (AHI) was estimated. A training-validation-test

strategy was used to train the CNN, adjust the hyperparameters, and assess the

diagnostic ability of the algorithm, respectively. Classification into four OSA

severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy

and Cohen’s Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79%

and 0.4469 in the clinical dataset, respectively. Binary classification accuracy

using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in

CHAT, and 84.10%–90.26% in the clinical database. The proposed CNN-based

architecture achieved high diagnostic ability in two independent databases,

outperforming previous approaches that employed SpO2 signals alone, or other

classical feature-engineering approaches. Therefore, analysis of AF and SpO2

signals using deep learning can be useful to deploy reliable computer-aided

diagnostic tools for childhood OSA.
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An explainable deep-learning architecture for pediatric sleep apnea

identification from overnight airflow and oximetry signals (Jiménez-

Garćıa et al., 2024).

Jorge Jiménez-Garćıa, Maŕıa Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila

Kheirandish-Gozal, Fernando Vaquerizo-Villar, Daniel Álvarez, Félix del Campo,

David Gozal, and Roberto Hornero. Biomedical Signal Processing and Control,

vol. 87, part B, pp. 105490, 2024. JIF in 2022: 5.1, Q2 in “Engineering,

Biomedical” (JCR-WOS).

Abstract: Deep-learning algorithms have been proposed to analyze overnight

airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric

obstructive sleep apnea (OSA), but current algorithms are hardly interpretable.

Explainable artificial intelligence (XAI) algorithms can clarify the models-derived

predictions on these signals, enhancing their diagnostic trustworthiness. Here,

we assess an explainable architecture that combines convolutional and recurrent

neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and

SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public

database (n = 1,638) and a proprietary database (n = 974). These signals were

arranged in 30-min segments and processed by the CNN + RNN architecture

to derive the number of apneic events per segment. The apnea-hypopnea index

(AHI) was computed from the CNN + RNN-derived estimates and grouped

into four OSA severity levels. The Gradient-weighted Class Activation Mapping

(Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related

patterns of interest. The AHI regression reached very high agreement (intraclass

correlation coefficient > 0.9), while OSA severity classification achieved 4-class

accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495,

in CHAT and the private datasets, respectively. All diagnostic accuracies on

increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM

heatmaps revealed that the model focuses on sudden AF cessations and SpO2

drops to detect apneas and hypopneas with desaturations, and often discards

patterns of hypopneas linked to arousals. Therefore, an interpretable CNN +

RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in

symptomatic children at risk of OSA.
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1.2 Context: biomedical engineering, biomedical

signal processing, and artificial intelligence

The research presented in this doctoral thesis is framed in the biomedical en-

gineering field. This is a research-oriented category of engineering that covers

the application of diverse technologies in biology and medicine. Biomedical engi-

neering is thus an interdisciplinary field in which engineers and clinicians create

synergies to meet the needs of healthcare systems (Bronzino, 2006). This can be

achieved by the application of chemical, mechanical, material, electrical, electronic,

and optical engineering to the understanding, modification or control of biolog-

ical systems, development of new devices to monitor physical activity, detection

and treatment of diseases, management of large amounts of biological and medical

data, etc. The field of biomedical engineering encompasses several research areas

such as biomechanics, biomaterials, biotechnology, bioinformatics, and biosensors

among others (Bronzino, 2006). This doctoral thesis addressed the aid in the di-

agnosis of pediatric OSA through a biomedical engineering perspective, applying

biomedical signal processing and artificial intelligence techniques to physiological

data recordings.

Biomedical signals represent the variations of a certain measurement (elec-

tromagnetic, optical, acoustic, chemical, etc.) obtained from the human body

throughout time, and are frequently recorded to analyze the behavior of differ-

ent groups of organs such as the cardiovascular, respiratory or nervous systems

(Bronzino, 2006; Rangayyan, 2015). These recordings are useful for clinicians to

identify pathological patterns and diagnose diseases. However, the interpretation

of biomedical signals is a tedious task that requires expert knowledge and valuable

time from the medical staff. Moreover, these signals are usually affected by noise

and/or artifacts that hide the characteristics of both normal and abnormal patterns

present in the biomedical recordings (Rangayyan, 2015). Consequently, signal pro-

cessing solutions have been deployed to aid in the understanding of biomedical sig-

nals, to provide tools to automatically extract information from them, and to serve

as a clinical decision support to diagnose several diseases (Rangayyan, 2015). The

use of biomedical signal processing algorithms contribute to automate the analysis

and interpretation of medical recordings, additionally reducing the human subjec-

tivity, and potentially increasing the diagnostic reliability. The analyses carried

out in this thesis relied on biomedical signal processing methods to extract useful

OSA-related information from AF and SpO2 recordings.

The major novelty of this research is related to the application of artificial intel-
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ligence (AI) techniques such as ML, DL, and XAI, to perform a pattern recognition

task on biomedical signals. AI is the suite of techniques and technologies that al-

low the development of intelligent computer programs, that is, algorithms that

solve problems by applying a kind of reasoning gathered from domain knowledge.

This can be achieved by applying a set of rules that allows to solve the problem or

by learning a mathematical, data-driven model that infers the solution (Aggarwal,

2021; Ertel, 2017). This latter approach is the fundamental idea of ML, which

refers to the set of algorithms that are able to create a model that learns from

existing data and has the capability to generalize (i.e., to accurately provide the

desired output on unseen data) (Aggarwal, 2021; Ertel, 2017). The learning ap-

proach can be either unsupervised, in which the algorithm finds intrinsic patterns

in the data to group or segment them, or supervised, in which examples are la-

beled with the expected output and the algorithm try to match this solution from

input data (Aggarwal, 2021; Ertel, 2017). Regarding the output, supervised learn-

ing approaches can be split into classification (categorical output) and regression

(continuous variable) (Witten et al., 2011). This doctoral thesis focused exclu-

sively on the implementation of supervised ML methods, given that the diagnosis

of pediatric OSA was addressed by detecting the presence and severity of OSA

through classification and regression algorithms.

Classical supervised ML techniques were based on simple mathematical models

such as linear regression, discriminant analysis, logistic regression (LR), decision

trees (DT), and support vector machines (SVM) (Witten et al., 2011). However,

these simple models were limited by their ability to derive a sufficiently accurate

model in some datasets (i.e., high bias). When these mathematical models evolved

to more complex, nonlinear solutions, they became more sensitive to the partic-

ularities of limited training data, thus failing to retain their generalizability (i.e.,

high variability) (Witten et al., 2011). Ensemble learning is an umbrella term

that gathers all ML approaches aimed at producing an accurate and generalizable

model by combining the outputs of several diverse, simple models (Kuncheva, 2014;

Sagi and Rokach, 2018). The idea behind ensemble learning is that a committee

of experts will take better decisions by reaching a consensus than any of them

alone (Sagi and Rokach, 2018). This way, ensemble learning approaches solve a

complex problem by dividing it into simple parts and combining their solutions,

in a divide-and-conquer philosophy (Kuncheva, 2014). In this doctoral thesis, an

ensemble learning algorithm was implemented to derive the diagnosis of pediatric

OSA trough the information extracted from AF and SpO2 signals (Jiménez-Garćıa

et al., 2020).
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Neural networks (NNs) fall into another specific branch of ML algorithms in-

spired in the behavior of large, complex interconnections of brain neurons. They

mimic the propagation and processing of electric stimulus throughout the nervous

system (Goodfellow et al., 2016). Feed-forward NNs became widespread in many

tasks during the early 2000s, but the research interest in developing deep NNs

(DNNs) such as CNNs and RNNs was limited due to computational demands.

However, the enthusiasm on DL algorithms expanded after the AlexNet CNN al-

gorithm largely surpassed all image recognition methods that competed in the

2012 ImageNet challenge (Goodfellow et al., 2016). This way, the development

of DNN-, CNN- and RNN-based applications exploded, becoming the state-of-the

art in almost all pattern recognition tasks (Lecun et al., 2015). The characteristics

of DL algorithms facilitate the development of pattern recognition methodologies

able to learn from raw data (i.e., images, signals, text, etc.) rather than human-

engineered features (Goodfellow et al., 2016). Thus, DL unifies the learning process

by automatically identifying the relevant patterns in the data and utilize them to

make predictions (Lecun et al., 2015). In this doctoral thesis, CNN and RNN

algorithms were implemented to automatically analyze AF and SpO2 signals and

estimate the presence and severity of OSA (Jiménez-Garćıa et al., 2022, 2024).

Despite the high capabilities of current ML and DL algorithms to automatically

process data and derive top-performing models, they have to face an important

drawback related to their transparency. Complex ML models, especially DL ap-

proaches, usually fail to supply explanatory information about the decision making

process (Adadi and Berrada, 2018; Barredo Arrieta et al., 2020). This shortcoming

has motivated part of the AI research community to address the interpretability

of ML and DL architectures by proposing models, algorithms, and methodolo-

gies into the framework of XAI (Adadi and Berrada, 2018; Barredo Arrieta et al.,

2020). This new field is aimed at proposing interpretable ML solutions, that is,

developing accurate models that also have the capability to explain the decision-

making process (Barredo Arrieta et al., 2020). This way, final users can understand

and manage AI, and finally trust in the ML-derived predictions (Barredo Arrieta

et al., 2020). The deployment of XAI-grounded solutions is crucial in the medical

field involving the use of ML or DL as a diagnostic aid tool, since both clinicians

and patients need to comprehend and trust the decision-making process. In this

view, several XAI methods have been applied in biomedical data such as clinical

features or medical images, but these methods have not been extensively used in

other data sources like biomedical signals (Loh et al., 2022). The application of

XAI has been addressed in this doctoral thesis in order to interpret the patterns



1.3. Pediatric obstructive sleep apnea (OSA) 11

of AF and SpO2 signals associated to the presence of apneic events detected by

our DL architecture (Jiménez-Garćıa et al., 2024).

This doctoral thesis focused on the analysis of AF and SpO2 signals to derive

ensemble and DL models that can serve as an aid in the diagnosis of pediatric

OSA. Within a biomedical engineering research framework, we deployed biomed-

ical signal processing techniques together with various ensemble learning and DL

approaches such as AdaBoost, CNNs, and RNNs to estimate the presence and

severity of OSA in children, and also enhanced the explainability of DL approaches

using Grad-CAM. Thus, the topics addressed in this section constitute the research

framework of this doctoral thesis.

1.3 Pediatric obstructive sleep apnea (OSA)

1.3.1 Definition and prevalence

Sleep apnea (SA) is characterized by respiratory cessations during sleep. Con-

cretely, OSA is a sleep disorder in which the upper airway is recurrently blocked

or narrowed during sleep, leading to intermittent episodes of obstructive apneas

or hypopneas, respectively (Dehlink and Tan, 2016; Moffa et al., 2020). These ob-

structions interrupt the normal respiratory AF, are linked to increased respiratory

effort, and cause episodes of oxyhemoglobin saturation (blood oxygen saturation,

SaO2) reductions (Bitners and Arens, 2020; DelRosso, 2016). Apnea events may

also occur without obstruction during sleep, leading to Central Sleep Apnea (CSA),

characterized by the absence of cerebral stimuli to continue breathing and there-

fore by the absence of respiratory effort as well (Bitners and Arens, 2020). Mixed

apneas have characteristics of both obstructive and central apnea during the event

(Bitners and Arens, 2020). The presence of OSA or CSA leads to sleep disrup-

tions that alter the normal development of sleep stages and affected children end

up suffering restless sleep and its consequences (Dehlink and Tan, 2016).

The American Academy of Sleep Medicine (AASM) defined specific rules to

identify apneas and hypopneas in children from sleep studies (Berry et al., 2012).

According to these rules, AF reductions ≥90% with respect to previous normal

respiration during at least 2 breathing periods are considered apneas, while hy-

popneas are defined as AF reductions ≥30% for two or more breaths followed by

a drop ≥3% in the SpO2 levels or an arousal (Berry et al., 2012). The AASM

establishes more restrictive criteria to score apneic events in children compared to

adults, as long as the minimum duration is 10 seconds for adults and 2 breaths
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(5-7s) for children (Berry et al., 2012).

Pediatric OSA is a prevalent sleep disorder. The most common symptoms of

OSA include snore, breath pauses, daytime sleepiness, and morning headaches, but

these and many other symptoms can be subtle and not easily noticed by parents

and caregivers (Tauman and Gozal, 2011). Snoring children usually have suspicion

of suffering OSA, and approximately represent 7.2% of the pediatric population

(Li et al., 2010; Marcus et al., 2012). However, only a percentage of these children

actually have OSA (Tauman and Gozal, 2011). An international study involving

4,191 pediatric subjects worldwide revealed that 72.9% of children referred to a

PSG study due to suspicion of OSA (reported snore and/or breathing pauses) were

finally diagnosed with any degree of OSA severity, suggesting that the majority

of symptomatic children actually have OSA (Hornero et al., 2017). This result

is coherent with those obtained in some epidemiological studies that estimated

the prevalence of OSA is up to 5.7% while others reported a more conservative

rate between 1% and 5% (DelRosso, 2016; Marcus et al., 2012). Notwithstanding

this high prevalence, the actual rate of affected children may be higher due to

a large number of cases that are not properly diagnosed as a consequence of the

unavailability and large waiting lists of sleep laboratories (Brockmann et al., 2018).

1.3.2 Causes and consequences

The main cause of OSA is the normal respiration disturbance following upper air-

way collapse. In children, this is due to the relaxation of muscles and other tissues

surrounding the naso- and oropharynx combined with the upper airway narrow-

ing caused by adenotonsillar hypertrophy, obesity, craniofacial abnormalities and

neuromuscular disorders (Moffa et al., 2020). Adenoids and tonsils hypertrophy

usually favors the development of OSA in children, since enlarged adenoids and

tonsils can occlude the nasopharynx and oropharynx during sleep, respectively

(Moffa et al., 2020). Figure 1.2 shows different degrees of tonsillar hypertrophy

that can lead to throat obstruction. The higher the degree of hypertrophy, the

more collapsible the upper airway is (Brodsky, 1989). Adenotonsillar hypertrophy

is a normal condition in the childhood and coincides with the pediatric OSA peak

of prevalence (from 2 to 8 years old) (DelRosso, 2016). Another common but less

frequent cause of larynx obstruction is the presence of adipose tissue in the neck

of obese children, making obesity a risk factor of pediatric OSA (DelRosso, 2016;

Moffa et al., 2020). Maxillofacial or craniofacial anatomy abnormalities such as

macroglossia, retrognathia, micrognathia, and midfacehypoplasia can also favor
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Figure 1.2: Degrees of tonsillar hypertrophy ranked from 0 (absence) to 4 (almost
complete obstruction). Adapted from Callén Blecua (2017) with permission (CC BY-
NC-ND 3.0).

airway obstruction and predispose to childhood OSA (Bitners and Arens, 2020;

DelRosso, 2016). These abnormalities are present in children with conditions like

Down syndrome, Prader Willi syndrome, or Pierre Robin sequence, who are fre-

quently affected by OSA (Bitners and Arens, 2020; DelRosso, 2016; Moffa et al.,

2020).

Childhood OSA affects the normal development of sleep, leading to restless

sleep, enuresis, daytime hypersomnolence, along with growth and development

alterations (Joosten et al., 2017). The negative outcomes of OSA are classified

mainly in two groups: neuro-behavioral and cardio-metabolical (Blechner and

Williamson, 2016). Behavior alterations like hyperactivity, impulsivity, and ag-

gressivity, as well as neurocognitive deficits like attention, executive function, and

language deficits have been associated to the presence of OSA in children (Bit-

ners and Arens, 2020). Regarding cardiometabolical alterations, the most common

manifestations are metabolic syndrome, pulmonary and arterial hypertension and



14 Chapter 1. Introduction

long-term endothelial dysfunction (Blechner and Williamson, 2016). It has also

been observed that obesity can be both cause and consequence of pediatric OSA

since the daytime sleepiness and tiredness can limit the physical activity of children

(Blechner and Williamson, 2016). These negative outcomes of pediatric OSA im-

pact the future well-being of children, and stress the importance of early diagnosis

of children at risk in order to mitigate future comorbidities.

1.4 OSA diagnosis in children: polysomnography

(PSG)

Pediatric specialists should assess children with symptoms related to OSA in pri-

mary care facilities and refer them to the sleep specialist to confirm the diagnosis

(Meltzer and Paisley, 2023). Overnight sleep studies are recommended to diag-

nose SDB related diseases such as OSA. The gold standard to diagnose pediatric

OSA is an in-lab PSG, in which neuronal, cardiorespiratory, muscular, position

and movement signals are recorded during the night and subsequently analyzed

(Berry et al., 2020; Jon, 2009). These recordings are obtained by placing elec-

trodes and other sensors on the patient’s body (Jon, 2009). Respiratory channels

such as oronasal AF, nasal pressure, thoracic and abdominal movements, as well

as SpO2 reflect the changes in normal respiration due to OSA (Jon, 2009; Stowe

and Afolabi-Brown, 2020). As mentioned in Section 1.3.1, the information of AF

and SpO2 signals included in the PSG is used by sleep specialists to score apnea

and hypopnea events in sleep studies (Berry et al., 2020; Mazzotti et al., 2018).

The rate of apnea or hypopnea events per hour (e/h) of sleep is the AHI, which

constitutes the main indicator of OSA presence and severity (Bitners and Arens,

2020; Moffa et al., 2020). The AHI thresholds of 1, 5, and 10 e/h are established

to define mild, moderate, and severe OSA. This way, the 4-level classification of

pediatric OSA is the following (Bitners and Arens, 2020; Moffa et al., 2020):

� No OSA: AHI < 1 e/h.

� Mild OSA: 1 e/h ≤ AHI < 5 e/h.

� Moderate OSA: 5 e/h ≤ AHI < 10 e/h.

� Severe OSA: AHI ≥ 10 e/h.

These thresholds are considerably lower than those used to define OSA severity in

the adult population (5, 15, and 30 e/h), indicating that the criteria to score apneic
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events (introduced in Section 1.3.1) to diagnose pediatric OSA is more stringent

(Berry et al., 2012). This is due to the children-specific characteristics of upper

airway obstructions during sleep, which are more subtle than those observed in

adults (e.g., lower duration and less severe desaturations). As a consequence, adult

criteria is unable to correctly identify obstructive events in children (Rosen et al.,

1992). Moreover, the negative consequences of OSA in the pediatric population

have tightened the diagnostic requirements. While 5 e/h is the AHI cutoff used to

diagnose the lowest OSA severity in adults, this threshold is established to refer

surgical treatment in children (Kaditis et al., 2016b).

1.4.1 Alternatives to polysomnography

Notwithstanding the preference of PSG to diagnose pediatric OSA, its shortcom-

ings have motivated the search for diagnostic alternatives. The main drawback of

PSG is the limited availability, caused by the scarcity of pediatric sleep laborato-

ries at hospitals. Reasons why PSG is relatively unavailable are related with the

costs, both material and personnel (Dehlink and Tan, 2016; Tan et al., 2015). The

equipment to perform PSG includes electroencephalography (EEG), electroculog-

raphy (EOG), electrocardiography (ECG), electromiography (EMG), respiratory

monitoring, pulse oximetry, etc., that make it thorough but expensive (Jon, 2009;

Mazzotti et al., 2018; Riha et al., 2023). Regarding personnel costs, the interpre-

tation of PSG requires specialized medical staff to manually score sleep stages,

apneic events, and other findings in the physiological signals (Borrelli et al., 2023).

OSA diagnosis through PSG is thus demanding and inefficient. Another limitation

of performing PSG in children is the disturbance of spending the night hospital-

ized in a sleep laboratory with several sensors and wires attached to the body,

that could be distressing for them and result in a non-representative sleep study

(Stowe and Afolabi-Brown, 2020). The aforementioned causes enlarge the waiting

lists and delay the access to a convenient diagnosis.

The efforts to mitigate the drawbacks of PSG have focused on developing diag-

nostic alternatives that reduce the complexity and costs while increase the avail-

ability of a proper OSA diagnosis (Brockmann et al., 2018). This can be achieved

by using less signals and enabling the possibility to perform the tests at patients’

home with portable equipment (Tan et al., 2015). Sleep studies can be classified

in 4 types according to the number of signals involved in the recording and the

possibility of performing them outside the hospital (Riha et al., 2023):

� Type 1 (In-lab PSG): Involves the recording of up to 32 biomedical signals
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in an attended sleep laboratory.

� Type 2 (Portable PSG): The sleep studies can be performed at patient’s

home with a portable device that records a minimum of 7 physiological

signals: EEG, EOG, EMG, ECG, SpO2, AF, and respiratory effort.

� Type 3 (Respiratory polygraphy, RP): Also known as Home Sleep Apnea Test

(HSAT), it comprises the recording of 4 to 7 signals, including ECG, SpO2

and two or more respiratory channels such as AF (nasal pressure and/or

thermistor) and respiratory movements (thoracic and/or abdominal effort).

� Type 4 (Single or dual channel approaches): The simplest sleep studies that

do not meet Type 3 criteria are usually recordings of nocturnal pulse oxime-

try and/or single channel AF.

All these alternatives to perform sleep studies have advantages and drawbacks.

Type 1 and 2 devices are more complex but include the recording of EEG, EOG,

and EMG channels, which is useful to identify sleep stages and derive sleep pa-

rameters such as latency, wake after sleep onset and total sleep time, among others

(Stowe and Afolabi-Brown, 2020). On the other side, type 3 and 4 devices greatly

reduce complexity and costs compared to type 1 and 2 approaches, since they only

focus on cardiorespiratory signals involved in the identification of apneas and hy-

popneas (Tan et al., 2015). HSAT is well established as an alternative to PSG in

adullt OSA, but there was much more skepticism about its effectiveness in children

(Oceja et al., 2021; Tan et al., 2015). Recent studies comparing RP against PSG

to diagnose childhood OSA pointed out the feasibility of these simplified tests,

especially to primarily diagnose moderate or severe OSA (Alonso-Álvarez et al.,

2015; Chiner et al., 2020; Tan et al., 2014). In addition to this, single channel

approaches have also gained relevance to evaluate OSA in symptomatic children

(Kaditis et al., 2016a). In summary, all these simplifications of PSG allow cost

reduction, increased availability, and patient comfort.

Following the trend of aforementioned simplified diagnostic tests, this doctoral

thesis was aimed at reducing the number of required signals. Here, AF and SpO2

recordings were exclusively used to derive an automatic diagnosis of OSA and its

severity based on the AHI. As mentioned in Sections 1.3.1 and 1.4, these two signals

are mainly involved in the detection of apneas and hypopneas, and therefore to

derive the AHI. The AF signal is presented in Section 1.4.2, and the SpO2 signal

is introduced in Section 1.4.3.
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1.4.2 The airflow (AF) signal

Respiratory AF measures the flow of inhaled/exhaled air throughout time. The

most accurate way to quantify AF is the pneumotachography, but it is unfeasible

to perform in sleep studies since it requires placing an obtrusive mask in the pa-

tient’s face (Roebuck et al., 2014; Shokoueinejad et al., 2017). AF can be easily

and non-invasively measured during sleep using nasal pressure and/or oronasal

thermal sensors. The former detect the differential pressure during inhalation and

exhalation while the latter respond to temperature changes (the sensor is cooled

during inhalation and warmed during exhalation). This way, both AF signal wave-

forms represent the cyclic pattern of respiration (Roebuck et al., 2014). According

to the AASM recommendations, thermistor is the choice to score apneas, while

nasal pressure is preferred to score hypopneas. Nevertheless, thermistor is also the

recommended alternative to score hypopneas if nasal pressure sensor is not avail-

able, and they are able to register both nasal and mouth breathing (Berry et al.,

2012). In addition, the improved sensitivity of polyvinylidene fluoride (PVDF)

sensors make oronasal thermistors a reasonable choice to record respiratory AF

and score both apneas and hypopneas using only one channel (Berry et al., 2012;

Shokoueinejad et al., 2017).

Figure 1.3 represent intervals of the AF signal linked to normal respiration as

well as during apnea and hypopnea events. It can be seen that the amplitude of

AF oscillations determine the presence of these apneic events. However, some AF

reductions ≥ 30 % are not considered hypopneas unless they are associated to a

desaturation ≥ 3% or an arousal.

1.4.3 The oximetry (SpO2) signal

The persistent occurrence of apneic events diminish the amount of oxygen avail-

able in the lungs to be transferred to the hemoglobin (Hb) molecules of the blood.

This results in intervals of hypoxemia, that is, low levels of oxygen in the blood

(Marcus et al., 2012). SaO2 is the percentage of Hb molecules carrying oxygen

(oxyhemoglobin, O2Hb) with respect to the total Hb in the arterial blood (Chan

et al., 2013). This parameter can be continuously monitored with a pulse oxime-

ter, which computes SpO2 and pulse rate (PR) from optical photoplethysmography

(PPG) signals obtained from peripheral tissues such as a finger, toe, or ear lobe

(Allen, 2007). This is achieved by illuminating them from one side and receiving

the trespassing light on the other side (Allen, 2007; Chan et al., 2013). Pulse

oximeters exploit the optical characteristics of peripheral tissues and their vari-
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Figure 1.3: Example of airflow (AF) and oximetry (SpO2) signal with presence of apnea
and hypopnea events, together with their associated desaturations.

ations in presence of pulsatile arterial blood circulation. These devices obtain

PPG signals at two different wavelengths in the spectrum of red (660 nm) to near-

infrared (940 nm) light, which amplitude substantially differ for different SpO2

levels (Allen, 2007; Chan et al., 2013). Then, the amplitude ratios between direct

current (DC) and alternating current (AC) components of PPG are continuously

measured to compute the SpO2 signal (Chan et al., 2013).

Figure 1.3 shows an example of the SpO2 signal with recurrent desaturation

events caused by consecutive apneas and hypopneas. These events begin with a

drop of the SpO2 level few seconds after the apnea/hypopnea is observed in the

AF signal, and end after normal respiration is reestablished, so they are delayed

with respect to the apneic events.

The use of pulse oximeters has become widespread and portable SpO2

recorders, viewed as a PSG alternative, have been proposed to simplify OSA di-

agnosis (Chan et al., 2013; del Campo et al., 2018). Some studies have indicated

the diagnostic usefulness of SpO2 as a screening tool in adults, but the scientific

evidence is more scarce in the case of children (del Campo et al., 2018). In this

context, SpO2-derived parameters such as ODI 3% or McGill score have shown

good predictive power in symptomatic children (Kaditis et al., 2016a). Although

these parameters have shown good predictive power for moderate-to-severe OSA,

they still miss the mildest cases (i.e., underestimate the actual OSA severity)

(Brouillette et al., 2000; Kaditis et al., 2016a; Van Eyck and Verhulst, 2018). To

overcome this issue, some researchers suggested that SpO2 can be complemented
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with other signals such as AF or PR in order to increase its diagnostic ability

(Alonso-Álvarez et al., 2015; Van Eyck and Verhulst, 2018). This can be achieved

by using both sources to automatically compute OSA severity via ML approaches

(Gutiérrez-Tobal et al., 2022; Van Eyck and Verhulst, 2018).

1.5 State-of-the-art: machine learning ap-

proaches to aid in the diagnosis of pediatric

OSA

Due to the aforementioned disadvantages of PSG-based sleep studies, the research

focus has pointed to the automatic processing of these biomedical recordings (Maz-

zotti et al., 2018). This way, a reduced set of PSG signals such as EEG, AF, SpO2,

PPG, or ECG can be analyzed using computer-based algorithms aimed at detect-

ing signs of OSA pathology and investigate novel biomarkers related to the disease

(Mazzotti et al., 2018). These algorithms can also provide features beyond classical

descriptors such as sleep efficiency, ODI 3%, or the percentage of sleep time spend

with SpO2 < 90% using spectral, nonlinear and many other techniques (Mazzotti

et al., 2018; Mendonca et al., 2019). Moreover, these characterization methods

have been combined with several ML models with the objective of determining

the presence of apneic events in the signals as well as deriving an OSA diagnosis

(Mendonca et al., 2019; Uddin et al., 2018). However, a large part of this research

has been done in adult OSA cohorts, and the implementation of these techniques

in childhood OSA is still pending (Gutiérrez-Tobal et al., 2022).

Regarding the application of automatic methods to detect pediatric OSA, the

most commonly used signals are AF , SpO2, ECG-derived heart rate variability

(HRV), and PPG-derived pulse rate variability (PRV) (Bertoni and Isaiah, 2019;

Gutiérrez-Tobal et al., 2022). It is worth noting that parameters such as OSA

symptoms, clinical findings, ODI, and other sociodemographic variables have also

been used to derive automatic models based on LR (Chang et al., 2013; Skotko

et al., 2017; Wu et al., 2017). The study of Calderón et al. (2020) focused on a

comparison of LR, SVM, and AdaBoost models fed with oximetric variables such

as ODI 3% and 4%, the number of SpO2 drops greater than certain levels, and the

percentage of time spent under 90% and 92% of SpO2, obtained from a database

of 453 subjects. Other studies evaluated ML algorithms such as LR, bootstrap ag-

gregation, random forest, and SVM trained with demographical and clinical data,

OSA-related findings, ODI, and actigraphy-derived parameters (Bertoni et al.,
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2020).

ECG is one of the most frequently analyzed signals in sleep studies, given

that the effects of respiratory events are also noticeable in the cardiac pattern

(Mazzotti et al., 2018). Apneas and hypopneas produce changes in the HRV as a

response to the lack of oxygen, characterized by repeated episodes of bradycardia

and tachycardia. This characteristic has been exploited in some studies aimed

at assessing the ECG and HRV. Shouldice et al. (2004) applied temporal and

spectral techniques to classify ECG signal segments into normal and apneic and

derive a rate of apneic segments on the overnight signal. Other recent studies

proposed the spectral analysis of the HRV signal in specific frequency bands, which

were more suitable to characterize pediatric OSA (Mart́ın-Montero et al., 2021b).

This approach was further extended to the analysis of bispectral features and the

diagnostic ability of a feed-forward NN was also assessed (Mart́ın-Montero et al.,

2021a).

Undoubtedly, the ease of use of pulse oximeters together with the diagnostic

usefulness of pulse oximetry signals have placed these devices in an advantageous

place to substitute PSG. The majority of studies dealing with the diagnosis of

pediatric OSA analyzed SpO2, PRV, or PPG signals, either alone or combined.

The studies of Gil et al. (2010) and Lazaro et al. (2014) analyzed the PPG wave-

forms, focusing on the amplitude fluctuation decreases and the pulse transit time

variability as well as the spectral analysis of PRV, respectively. To do that they

utilized a database of 21 pediatric subjects and linear discriminant analysis (LDA)

classifiers to derive the OSA diagnosis. The usefulness of PRV has also been as-

sesed in the study conducted by Dehkordi et al. (2016). Temporal and spectral

parameters, together with detrended fluctuation analysis (DFA) were computed

and presented to a least absolute shrinkage and selection operator (LASSO) clas-

sifier to identify patients with and without SDB. The combination of PRV and

SpO2 have also been addressed by Garde et al. (2014), who combined statistical,

spectral, and non-linear features from both signals in a LDA classification model.

The PhoneOximeter�mobile device has been used in these studies to record a total

of 146 PPG signals, with PRV and SpO2 subsequently obtained from that signal.

This approach was further assessed with a modified set of SpO2 and PRV features

as well as LR models to detect three severity levels of SDB (Garde et al., 2019).

Another group of studies involved the utilization of single-channel SpO2 alone.

A multicenter study involving 13 different hospitals assessed the diagnostic use-

fulness of a NN-based algorithm using a database of 4,191 children worldwide

(Hornero et al., 2017). To our knowledge, this is the largest database of pedi-
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atric sleep studies aimed at OSA detection. In the development of the algorithm,

ODI 3%, time-domain statistics, spectral and nonlinear features were extracted

from overnight SpO2, and the final NN model was trained with a subset of non-

redundant features (Hornero et al., 2017). This model was further validated in

a subsequent study involving 432 additional patients (Xu et al., 2019). Looking

for a more thorough characterization of SpO2 behavior in the presence of OSA,

other studies proposed techniques such as symbolic dynamics and DFA to en-

hance the diagnostic ability of this signal (Álvarez et al., 2018; Vaquerizo-Villar

et al., 2018a). Alternatively, bispectral and wavelet analyses were also considered

(Gutierrez-Tobal et al., 2018; Vaquerizo-Villar et al., 2018b,c). Regarding the ML

models, these studies mainly implemented LR, SVM, or NN algorithms. Other

classifiers such as LDA and quadratic discriminant analysis (QDA) have been also

assessed in similar studies (Crespo et al., 2018).

The AF signal has been analyzed using automatic methods to fully character-

ize its behavior in presence of normal respiration and apneic events. Preliminary

studies addressed the spectral analysis of single channel AF as well as the irregu-

larity and variability of this signal using spectral entropies and central tendency

measure (CTM), respectively (Barroso-Garćıa et al., 2017; Gutiérrez-Tobal et al.,

2015). The latter analyses also involved the AF-derived respiratory rate variability

(RRV) (Barroso-Garćıa et al., 2017). LR classifiers were implemented to derive

the final binary OSA classification (Barroso-Garćıa et al., 2017; Gutiérrez-Tobal

et al., 2015). Delving into this characterization, recurrence plots and more ad-

vanced bispectral and wavelet analyses were also proposed (Barroso-Garćıa et al.,

2020, 2021a,b). The features obtained from these methods were used to derive

the AHI with different single-layer NN approaches. Of note, one of these stud-

ies also assessed an AdaBoost classifier to predict OSA severity (Barroso-Garćıa

et al., 2021b). It was observed from these studies that the diagnostic ability of

AF-driven models increases when the ODI 3% is also included in the feature sets,

highlighting the complementarity of AF with this oximetric index (Barroso-Garćıa

et al., 2020, 2021a,b).

As mentioned in the previous paragraphs, most of the ML models used to pre-

dict pediatric OSA followed the traditional pipeline of pattern recognition algo-

rithms: feature extraction, selection and classification. In spite of the widespread

implantation of DL to evaluate adult OSA, the number of studies that applied DL

models to detect OSA in children has been more limited (Gutiérrez-Tobal et al.,

2022; Mostafa et al., 2019). One study utilized wavelet scalograms of the AF signal

recorded from a nasal pressure sensor to detect events of obstructive apnea and
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hypopnea, as well as central apneas, with DL (Crowson et al., 2023). Several pre-

trained CNN architectures were adapted to predict the presence of apneic events

using transfer learning and a database of 936 AF segments from 28 patients, but no

subject-based classification was performed (Crowson et al., 2023). To our knowl-

edge, only Vaquerizo-Villar et al. (2021) proposed a CNN algorithm to predict

pediatric OSA severity from single-channel SpO2 recordings. This method was

developed using a public database of 1,638 sleep studies and externally validated

and tested in two proprietary datasets comprising 980 and 587 subjects. Similarly,

the study of Garćıa-Vicente et al. (2023) presented a CNN-based architecture to

derive the AHI from overnight ECG. In this case, the algorithm was deployed and

tested using a public database comprising 1,610 recordings. None of the aforemen-

tioned DL-based approaches to detect OSA from AF, SpO2, or ECG involved the

analysis of these signals jointly.

The application of XAI techniques to complement ML- or DL-based decision-

making algorithms is increasingly common in the medical field. The most

widespread XAI approaches in biomedical applications are Shapley Additive Ex-

planations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME)

in the case of feature-based ML models, and Grad-CAM is the preferred choice

when dealing with DL models such as CNNs (Loh et al., 2022). However, there is

a lack of studies aimed at interpreting pediatric OSA detection models. As proof

of this, previously mentioned studies did not apply any XAI technique to reveal

OSA-related patterns learned by their architectures. Only one study applied the

SHAP framework to increase the interpretability of a feature-based XGBoost that

combined ODI with heart rate statistics and other clinical variables (Ye et al.,

2022). Vaquerizo-Villar et al. (2023) interpreted sleep-related EEG patterns using

CNN-derived Grad-CAM heatmaps aimed at classifying sleep stages in children.

This XAI algorithm was also used in other sleep-related studies in adults, encom-

passing EEG-based sleep stages detection (Dutt et al., 2022; Kuo et al., 2021),

and apneic events detection from cardiorespiratory signals (Serrano Alarcón et al.,

2023).

After reviewing the scientific contributions to the topic of pediatric OSA detec-

tion, three key points can be extracted: (i) these approaches typically involved only

one signal (mainly SpO2, AF, PPG, PRV, ECG, and HRV) or combinations of two

different sources such as PPG+PRV, SpO2+PRV, or AF+ODI; (ii) classical ML

models such as LR, LDA, SVM and shallow NNs have been widely assessed, but

the number of studies involving ensemble learning approaches is more reduced; (iii)

there is a scarcity of studies that have implemented and assessed DL algorithms



1.5. State-of-the-art: machine learning approaches to aid in the diagnosis of
pediatric OSA 23

to detect and quantify pediatric OSA, especially those that are interpretable by

human users (e.g., by applying XAI techniques). AF and SpO2 fluctuations define

the presence of apneas or hypopneas, and they have also shown their usefulness

and complementarity in the detection of adult OSA (Álvarez et al., 2010, 2020;

Gutiérrez-Tobal et al., 2013; Marcos et al., 2012). In this context, the AdaBoost

ensemble learning method also has been successfully tested using AF and SpO2

separately (Gutierrez-Tobal et al., 2016; Gutiérrez-Tobal et al., 2019). Regard-

ing the application of DL on physiological signals, there is a continuous and fast

growth of this type of architectures (Faust et al., 2018; Mostafa et al., 2019). Al-

though several approaches have been presented in the last years using different

OSA-related signals and DL architectures (Choi et al., 2018; Erdenebayar et al.,

2019; Leino et al., 2021; Nikkonen et al., 2021), their deployment in the field of

pediatric OSA is still limited. For all these reasons, the approaches covered in

this thesis involved the analysis of AF and SpO2 signals using ensemble learning

methods such as AdaBoost and DL architectures such as CNNs and RNNs com-

bined with XAI algorithms like Grad-CAM. The complementarity of these two

overnight signals was assessed by means of feature engineering and AdaBoost in

the first article of the compendium (Jiménez-Garćıa et al., 2020), whereas the two

subsequent papers focused on evaluating the diagnostic ability of two DL architec-

tures (CNN and CNN+RNN, respectively) trained with raw AF and SpO2 data

(Jiménez-Garćıa et al., 2022, 2024). Finally, the explainability of the CNN+RNN

architecture was addressed in the last article (Jiménez-Garćıa et al., 2024).

The medical and technical context, together with the description of the com-

pendium of publications that constitutes the present doctoral thesis have been

introduced in this chapter. The hypothesis and objectives of this research are

introduced in Chapter 2 and the methodology is described in Chapter 3.





Chapter 2

Hypothesis and objectives

Automatic signal processing together with increasingly popular AI algorithms have

boosted the development of computer aided diagnosis solutions. As mentioned

in Section 1.5, the simplification of PSG for pediatric OSA diagnosis has been

addressed using different ML and DL algorithms that processed the information

of biomedical signals such as AF and SpO2 in order to estimate the presence and

severity of OSA. The works that constitute this doctoral thesis are framed into

this research line, focused on assessing ensemble and DL algorithms together with

XAI to aid in the diagnosis of OSA in children. The hypothesis and objectives

of this thesis are introduced in this chapter. Section 2.1 summarizes the research

hypotheses of this work, and Section 2.2 present the main and specific objectives

of the thesis.

2.1 Hypotheses

The definitions of apnea and hypopnea events direcly involve AF and SpO2 sig-

nals (Berry et al., 2012). Approaches aimed at simplifying PSG such as HSAT or

other Type 4 sleep studies have usually included these two signals, which provide

enough information to score apneas, hypopneas, and their associated desatura-

tions (Alonso-Álvarez et al., 2015; Kaditis et al., 2016a). Thus, ML models could

combine both information sources to maximize their joint diagnostic ability and

also minimize the number of signals to be analyzed. In this sense, it has been

regarded that the information of AF can be complemented with oximetric indices

such as ODI 3% (Barroso-Garćıa et al., 2020). It is assumed in this work that the

complementary information of AF and SpO2 suffices to help detect pediatric OSA

25
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using ML-based approaches.

As mentioned in Section 1.5, ML-based approaches have been proposed in the

literature to deal with the automatic analysis of polysomnographic recordings in

the OSA detection context. However, these studies have been more scarce in the

pediatric population (Gutiérrez-Tobal et al., 2022). In addition, the data-driven

approaches covered classical and widespread ML models such as LDA, LR, SVMs,

and shallow NNs (Barroso-Garćıa et al., 2020; Crespo et al., 2018; Gutiérrez-Tobal

et al., 2015; Hornero et al., 2017; Vaquerizo-Villar et al., 2018c). These ML al-

gorithms usually failed to reach the diagnostic accuracies shown in the case of

adults. Ensemble learning algorithms have not been extensively tested in the

context of childhood OSA, and existing approaches were restricted to assess the

diagnostic value of clinical, oximetry- or actigraphy- derived features (Bertoni

et al., 2020; Calderón et al., 2020). Moreover, ensemble learning models like Ad-

aBoost accomplished high diagnostic ability in adults (Gutierrez-Tobal et al., 2016;

Gutiérrez-Tobal et al., 2019). For these reasons, the research carried out in this

thesis assumed that more advanced ML algorithms, such as those belonging to the

ensemble learning family, can aid to enhance the diagnostic accuracy of the most

widespread ML-based approaches in pediatric OSA.

Notwithstanding the potential shown by the algorithms that combine feature-

engineering and ML techniques, these are obviously limited by the capability of

domain experts to obtain, compute, select and analyze useful descriptors. More-

over, some studies found that an exhaustive signal characterization towards OSA

detection in children did not contribute to find truly relevant and complementary

features (Hornero et al., 2017). DL algorithms can overcome this limitation since

they are capable to learn complex features with a high abstraction level directly

from raw data (Lecun et al., 2015). Thus, this research is carried out under the as-

sumption that DL-based approaches can learn the necessary information to detect

pediatric OSA directly from AF and SpO2 raw data.

An important shortcoming of DL models arises from their lack of interpretabil-

ity. The application of XAI methods is becoming increasingly common in the med-

ical field, mainly aimed at seeking the signs of pathology learned by the models

and interpreting these signals patterns (Loh et al., 2022). This is advantageous

for enhancing the trust of end users in these AI-derived diagnostic aids. The DL

architectures proposed in this thesis were interpreted considering that XAI meth-

ods can aid to identify relevant patterns linked to the presence of OSA in the AF

and SpO2 signals from pediatric patients.

Based on the aforementioned considerations, this doctoral thesis is grounded
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in the following hypothesis:

“The global hypothesis of this research is that the automatic analysis

of overnight AF and SpO2 signals using state-of-the-art data-driven

algorithms together with XAI techniques can help to simplify the di-

agnosis of childhood OSA.”

2.2 Objectives

The main objective of this doctoral thesis is to study, develop and validate ad-

vanced ML and DL methods together with new XAI techniques in the context of

automatic analysis of AF and SpO2 signals, so that these methods can be used to

help diagnose pediatric OSA. To achieve this main objective, the following specific

objectives are proposed:

I. To elaborate and analyze a database of nocturnal AF and SpO2 recordings

from PSG performed on pediatric subjects with suspected OSA, including

their sociodemographic and clinical data related to the presence and severity

of the disease.

II. To evaluate the complementarity of the information extracted from AF and

SpO2 signals using feature-engineering in conjunction with classification- and

regression-aimed pattern recognition methods, in order to leverage their joint

diagnostic performance. Determine if the combination of these two signals

outperforms each of them separately.

III. To evaluate the diagnostic ability of a selection of advanced ML and DL

methods trained with useful and complementary information of AF and SpO2

as well as with raw AF and SpO2 signals, respectively, all of them aimed

at estimating AHI and/or classifying OSA severity from these nighttime

records.

IV. To identify the most relevant AF and SpO2 patterns that DL methods link

to the presence of apneas and/or hypopneas and use to detect OSA by using

XAI techniques.





Chapter 3

Materials and Methods

This chapter describes the databases used in the different studies of the com-

pendium of publications and summarizes the methodology conducted in this doc-

toral thesis. Two different databases, one public and other private, are described in

Section 3.1. Regarding the signal acquisition process, Sections 3.1.1 and 3.1.2 de-

scribe technical considerations about AF and SpO2 recordings of both databases,

respectively. Section 3.2 presents a scheme of the signal processing and analysis

methodology that was implemented in the articles that constitute this research.

Note that the databases utilized in this doctoral thesis, as well as the methodol-

ogy described in the second part of this chapter are thoroughly explained in the

articles that constitute the compendium of publications (see Chapter 7).

3.1 Databases

The first database used in the studies conducted in this thesis was provided by

the Comer Children’s Hospital, University of Chicago (UofC) School of Medicine

(Chicago, IL, USA). This database comprised 974 pediatric subjects with ages

up to 13 years old. The parents or legal caretakers of all children gave their

informed written consent for participating in the study. The research protocols

accomplished the Declaration of Helsinki and were approved by the Ethics Com-

mittee of the Comer Children’s Hospital (#11-0268-AM017, #09-115-B-AM031,

and #IRB14-1241). All children presented common symptoms of the disease such

as snore, respiratory pauses during sleep, awakenings, or daytime hypersomno-

lence (Hornero et al., 2017). They were referred to the hospital’s sleep laboratory

between the years 2012 and 2014. Sleep studies were performed with Type 1 PSG

29



30 Chapter 3. Materials and Methods

equipment (Polysmith®, Nihon Kohden America Inc., Irvine, CA, USA), includ-

ing up to 32 neuronal, cardiorespiratory and other physiological signals. Subjects

were evaluated following the AASM rules to identify apneas and hypopneas and

derive the AHI described in Berry et al. (2012). Accordingly, they were classified in

the four common OSA severity groups: no OSA, mild, moderate, and severe OSA

(see Section 1.4) (Hornero et al., 2017). Of the included subjects, 803 (82.44%)

had any level of OSA (see Table 3.1).

The sociodemographic and clinical data extracted from the UofC database are

shown in Table 3.1. The 974 subjects were randomly split into independent train-

ing (584) and test (390) sets, ensuring that no statistically significant differences

were present between them (p≥0.01, Mann-Whitney U test for numeric variables,

Chi-square test for categorical variables) with regard to age, body mass index

(BMI), sex, AHI and OSA severity. This database was used in the three studies

of the present doctoral thesis (Jiménez-Garćıa et al., 2020, 2022, 2024).

The second source of PSG data used in this thesis is the public database of

the Childhood Adenotonsillectomy Trial (CHAT), provided by the National Sleep

Research Resource (NSRR). This is a multicenter study that involved several sleep

centers across the United States of America (Children’s Hospital of Pennsylvania,

Philadelphia, PA; Cincinnati Children’s Medical Center, Cincinnati, OH; Rain-

bow Babies and Children’s Hospital, Cleveland, OH; Boston Children’s Hospital,

Boston, MA; Cardinal Glennon Children’s Hospital, St. Louis, MI; Montefiore

Medical Center, Bronx, NY) (Marcus et al., 2013; Redline et al., 2011). The

Number of Clinical Trial of this dataset is NCT00560859. The CHAT study was

aimed at assessing the effectiveness of the reference surgical treatment (adeno-

Table 3.1: University of Chicago (UofC) database: sociodemographic and clinical data
obtained from the pediatric sleep studies.

All Training set Test set

Subjects (n) 974 584 (59.96%) 390 (40.04%)
Age (years) 6.0 [3.0; 8.0] 6.0 [3.0; 8.0] 5.5 [3.0; 9.0]
Males (n) 599 (61.50%) 346 (59.25%) 253 (64.87%)
Females (n) 375 (38.50%) 238 (40.75%) 137 (35.13%)
BMI (kg/m2) 18.02 [16.04; 22.04] 17.72 [16.05; 22.65] 18.18 [16.01; 21.06]
BMI z-score -0.22 [-0.60; 0.37] -0.24 [-0.61; 0.43] -0.17 [-0.58; 0.27]
AHI (e/h) 3.80 [1.53; 9.35] 4.08 [1.71; 10.00] 3.30 [1.40; 7.87]
No OSA (n) 171 (17.56%) 96 (16.44%) 75 (19.23%)
Mild OSA (n) 398 (40.86%) 229 (39.21%) 169 (43.33%)
Moderate OSA (n) 176 (18.07%) 113 (19.35%) 63 (16.15%)
Severe OSA (n) 229 (23.51%) 146 (25.00%) 83 (21.28%)

Data are presented as median [interquartile range] or number (%). BMI: body mass index, AHI:
apnea-hypopnea index, OSA: obstructive sleep apnea.
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tonsillectomy) against a strategy of watchful waiting and treatment of symptoms

(Marcus et al., 2013; Redline et al., 2011). The database consists of 1,638 PSG

studies performed to children between 5 and 10 years old who were referred to the

sleep units due to OSA suspicion. The studies were distributed in the groups ac-

cording to their inclusion in the randomization study and the consequent tracking

(Marcus et al., 2013; Redline et al., 2011):

� Baseline (453 subjects): children who met the inclusion criteria and were

included in the randomization study.

� Follow-up (406 subjects): children belonging to the baseline group who were

re-evaluated after 7 months.

� Non-randomized (779): children who were not included in the randomization

study after the first evaluation.

All PSGs were analyzed and apneic events were scored to derive the AHI according

to the same standardized rules (Redline et al., 2011). More details of the protocol

can be found in the supplementary material of Marcus et al. (2013).

The sociodemographic and clinical data extracted from the CHAT database are

shown in Table 3.2. The common thresholds introduced in Section 1.4 were used to

categorize children into the four OSA severity levels (no OSA, mild, moderate, and

severe), with 1,283 out of 1,638 (78,33%) having at least mild OSA (Table 3.2).

Similarly to the UofC database, the subjects were randomly split into training

(1006) validation (326), and test (306) sets, with no statistically significant differ-

ences between groups (p≥0.01, Mann-Whitney U test). The CHAT database was

used in the studies of the present doctoral thesis involving the development of DL

architectures (Jiménez-Garćıa et al., 2022, 2024).

3.1.1 Airflow signals

AF signals were recorded as part of the PSG with an oronasal thermistor in both

databases. The PVDF sensor Dymedix�was used to obtain the AF recordings

included in the CHAT database, whereas the thermal sensor provided with the

Polysmith® PSG equipment was used in the UofC database. The sampling fre-

quencies of overnight AF signals were different for each dataset, being two in the

UofC database (200 and 500 Hz), and ranging between 20 and 512 Hz in the CHAT

database. The duration of overnight recordings was checked in both databases to

ensure that each of them surpassed 3 hours of total recording time.
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Table 3.2: Childhood Adenotonsillectomy Trial (CHAT) database: sociodemographic
and clinical data obtained from the pediatric sleep studies.

All Training set Validation set Test set

Subjects (n) 1,638 1,006 (61.42%) 326 (19.90%) 306 (18.68%)
Age (years) 7.0 [6.0; 8.0] 7.0 [6.0; 8.0] 7.0 [6.0; 8.0] 6.9 [6.0; 8.0]
Males (n) 761 (46.5%) 471 (46.8%) 156 (47.9%) 134 (43.8%)
Females (n) 856 (52.3%) 520 (51.7%) 168 (51.5%) 168 (54.9%)
BMI
(kg/m2)

17.3 [15.5; 21.7] 17.4 [15.6; 21.6] 17.1 [15.4; 21.8] 17.5 [15.7; 21.7]

BMI z-score -0.24 [-0.65; 0.48] -0.21 [-0.66; 0.49] -0.28 [-0.66; 0.46] -0.26 [-0.60; 0.47]
AHI (e/h) 2.53 [1.16; 5.93] 2.62 [1.14; 5.90] 2.41 [1.21; 5.77] 2.32 [1.14; 6.15]
No OSA (n) 355 (21.67%) 219 (21.77%) 69 (21.17%) 67 (21.90%)
Mild OSA
(n)

812 (49.57%) 496 (49.30%) 168 (51.53%) 148 (48.37%)

Moderate
OSA (n)

253 (15.45%) 160 (15.90%) 44 (13.50%) 49 (16.01%)

Severe OSA
(n)

218 (13.31%) 131 (13.02%) 45 (13.80%) 42 (13.73%)

Data are presented as median [interquartile range] or number (%). BMI: body mass index, AHI:
apnea-hypopnea index, OSA: obstructive sleep apnea.

3.1.2 Oximetry signals

SpO2 signals were obtained from the PSG studies and were recorded with pulse

oximeters attached to a finger probe. The built-in pulse oximetry sensor available

in the Polysmith® PSG equipment was used in the UofC database, and the Nonin

3012 pulse oximeter with a Nonin 8000J finger sensor was used to record the signals

of the CHAT database. The overnight recordings were sampled at rates between

1 and 512 Hz in the CHAT database, and 25, 200 or 500 Hz were set in the UofC

database. Similarly to AF, all recordings lasting less than 3 hours were discarded

during the composition of both databases.

3.2 Methodology

The methodology conducted during this doctoral thesis is summarized in this

section. This research was aimed at developing and testing ensemble and DL

algorithms together with XAI capable of detecting pediatric OSA and its severity

from AF and SpO2 signals. The global methodology proposed to achieve the goals

reported in Section 2.2 is composed of five stages:

i) A preprocessing stage to resample the AF and SpO2 signals, reject possible

artifacts and normalize their amplitude.

ii) Characterization of the overnight recordings to obtain feature sets that sum-
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marize the information of AF and SpO2.

iii) Feature selection to identify the most useful parameters extracted from AF

and SpO2, discarding redundant or irrelevant features.

iv) Classification of the patients’ overnight recordings into OSA severity levels

by means of an ensemble learning model.

v) Application of end-to-end DL-based architectures fed with minimally pre-

processed (resampling and filtering) AF and SpO2 signals to derive the AHI

of the pediatric subjects. This approach encompasses three sequential steps:

� Segmentation of signals into epochs or sequences before being presented

to the DL models.

� Automatic OSA detection and AHI estimation from the overnight sig-

nals by means of the DL models.

� Obtaining explanations of the operation of the DL models.

The schematic representation of this global methodology is shown in Figure 3.1.

The signals were preprocessed before applying two different approaches to analyze

them. As can be seen in the schema, two different paths were followed to solve

the problem of detecting pediatric OSA and its severity. The first branch (left)

encompasses the typical steps of a classical pattern recognition approach, which

consists of three phases: (i) feature extraction, (ii) feature selection, and (iii)

feature classification. This approach was deployed in the first article of the com-

pendium (Jiménez-Garćıa et al., 2020). The second branch (right) involves the use

of DL architectures to derive the AHI directly from the minimally preprocessed sig-

nals. Two different DL models were implemented, namely CNN and CNN+RNN.

The latter architecture can be viewed as an extension of the CNN model which

was further analyzed using the Grad-CAM XAI algorithm. Approaches covering

DL models and XAI are described in the second and third articles of the com-

pendium (Jiménez-Garćıa et al., 2022, 2024). All the methodologies proposed in

this doctoral thesis were evaluated by means of their diagnostic ability, that is,

the accuracy and reliability of the automatic models to detect the presence and

severity of pediatric OSA. The rest of this section is organized according to the

methodological steps introduced previously. Overnight AF and SpO2 signals pre-

processing is described in Section 3.2.1. Next, Sections 3.2.2 and 3.2.3 describe

the conventional pipeline developed in the ensemble learning-based approach. The

DL architectures and the XAI methods are introduced in Sections 3.2.4 and 3.2.5,
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Figure 3.1: Summary of the methodology selected for the doctoral thesis.

respectively. Lastly, Section 3.2.6 gathers the methods utilized to quantitatively

assess the results produced by the aforementioned methods.
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3.2.1 Preprocessing

PSG-derived AF and SpO2 signals were minimally preprocessed in order to ho-

mogeneize their sampling frequency (fs), reduce noise, normalize their amplitudes

and remove artifacts. It is noteworthy that the studies involving DL approaches

were conducted using these preprocessed signals, but without performing artifact

removal (Jiménez-Garćıa et al., 2022, 2024).

3.2.1.1 Airflow preprocessing

The AASM guidelines to score sleep studies include recommendations for the sam-

pling frequencies of PSG-derived signals. The recommended AF fs according to

these rules is 100 Hz (Iber et al., 2007). Accordingly, 100 Hz was the fs used in

the first study (Jiménez-Garćıa et al., 2020). On the other hand, fs was lowered

to 10 Hz was used in the studies involving DL-based approaches in order to reduce

the computational load (Jiménez-Garćıa et al., 2022, 2024). After resampling, AF

signals were filtered using a low-pass filter between 0 and 1.5 Hz to reduce noise

while preserving the respiratory oscillations (Jiménez-Garćıa et al., 2020, 2022).

Lastly, the amplitude of AF was adaptively normalized according to the algorithm

proposed by Várady et al. (2002) in order to obtain preprocessed AF recordings

with an homogeneous range of values.

Artifacts were automatically removed from the AF signal by computing the sta-

tistical moments of preprocessed AF epochs in a 30 s basis (Jiménez-Garćıa et al.,

2020). Concretely, epochs with a standard deviation ≤ 0.026 or ≥ 0.550 or having

a kurtosis ≤ 1.320 were removed from overnight AF recordings (Barroso-Garćıa

et al., 2020). Note that this procedure to remove artifacts from the overnight AF

recordings was conducted in the study involving a feature-engineering approach

exclusively (Jiménez-Garćıa et al., 2020).

3.2.1.2 Oximetry preprocessing

According to the AASM rules, the fs of SpO2 should be at least 10 Hz, being 25

Hz the recommended frequency (Iber et al., 2007). A fs = 25 Hz was used in the

first study to resample the SpO2 signals (Jiménez-Garćıa et al., 2020), whereas 10

Hz was used in subsequent studies (Jiménez-Garćıa et al., 2022, 2024). This way,

both AF and SpO2 signals had equal and reduced fs, which is more suitable to

reduce the computational load of DL algorithms without signal information loss.

SpO2 registers were subsequently normalized by subtracting the mean value and

dividing by the standard deviation of the entire recordings in order to standardize
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them before being presented to the DL algorithms (Jiménez-Garćıa et al., 2022,

2024).

Artifacts in the SpO2 signal were also removed in the first study by removing

samples with very low oxygen saturation values (below 50%) and sudden variations

in the SpO2 (≥ 4%/s) (Magalang et al., 2003). Again, this artifact removal stage

was only conducted in the study that encompassed a feature-engineering work-

flow (Jiménez-Garćıa et al., 2020), and was omitted in the DL-based approaches

(Jiménez-Garćıa et al., 2022, 2024).

3.2.2 Feature engineering approach: extraction and selec-

tion

3.2.2.1 Feature extraction

The feature extraction stage comprised the computation of time-domain statistics,

as well as spectral and nonlinear parameters from the preprocessed AF and SpO2

signals. First-to-fourth statistic moments in the time domain (M1T-M4T), to-

gether with the median (MedT) were the statistical features, while CTM, Lempel-

Ziv Complexity (LZC), and Sample Entropy (SampEn) constituted the nonlinear

parameters (Jiménez-Garćıa et al., 2020). CTM was used as a measure of the

variability of the signals, which is based on first order differences (Cohen et al.,

1996). Given the signal x(n), a 2D plot is constructed with the differences between

consecutive samples (x(n+2)−x(n+1) vs. x(n+1)−x(n)), and CTM is defined

as the rate of points inside a circular region of radius r around the coordinates

origin (i.e., their distance to (0, 0) is lower than r) (Cohen et al., 1996):

CTM =

∑N−2
n=1 δ(n)

N − 2
, (3.1)

δ(n) =

{
1, if

√
(x(n+ 2)− x(n+ 1))2 + (x(n+ 1)− x(n))2 ≤ r

0, otherwise
. (3.2)

The computation of CTM depends on the value of r, which was set for AF and

SpO2 independently. To do so, the r parameter value that maximized the magni-

tude of the Spearman’s correlation coefficient (|ρ|) between CTM and the subjects

AHI was selected (Barroso-Garćıa et al., 2017; Jiménez-Garćıa et al., 2020).

LZC was computed to measure the complexity of AF and SpO2 recordings.

This nonlinear parameter was computed by counting the number of subsequences

contained within the signals (Lempel and Ziv, 1976). Given a time series of length
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n, it was first binarized by using the median value as a threshold. Then, c(n)

accounts the number of different subsequences in the signal and LZC complexity

is the division of c(n) with b(n), which is defined as the theoretical maximum value

of c(n) (Lempel and Ziv, 1976):

LZC =
c(n)

b(n)
, b(n) =

n

log2(n)
(3.3)

SampEn is a nonlinear parameter aimed at measuring time series irregularity,

as it assigns larger values to signals with higher entropy (Richman and Moorman,

2000). SampEn was computed from the conditional probability of two similar

sequences of length m remained at a distance lower than r after the length of that

sequences increase to m+ 1 (Richman and Moorman, 2000):

SampEn = − log
Am(r)

Bm(r)
, (3.4)

in which Bm(r) account the number of similar sequences of length m and Am(r) is

the number of sequences that remained similar after increasing the lenght to m+1

(Richman and Moorman, 2000). Note that m and r values need to be fixed prior

to compute SampEn. Thus, these parameters were optimized by searching m and

r values that maximized the absolute value of Spearman’s |ρ| between SampEn

and AHI (Jiménez-Garćıa et al., 2020).

The spectral analysis of the signals was conducted by computing the Power

Spectral Density (PSD) by means of the Welch’s method (Welch, 1967). Overnight

AF and SpO2 were segmented into epochs of 216 and 214 samples, respectively,

with 50% overlap and using a Hamming window, and the periodogram of each

segment was computed by means of the squared magnitude of the Discrete Fourier

Transform (DFT) (Barroso-Garćıa et al., 2017; Jiménez-Garćıa et al., 2020). The

estimates of AF and SpO2 PSDs were calculated by averaging the DFT-derived

periodograms of all segments in the respective signals (Welch, 1967).

Seven features were extracted from the pediatric OSA-related band of inter-

est of each signal (0.134−0.176 Hz for AF, 0.020−0.044 Hz for SpO2) (Jiménez-

Garćıa et al., 2020). These 7 features in the frequency domain were: first-to-fourth

statistic moments (M1F-M4F), median (MedF), maximum (MaxF), and minimum

(MinF). Furthermore, the median frequency (FreqM) and three spectral entropies

(SpecEn1,2,3) were also computed from the frequency spectrum of both signals.

FreqM is defined as the frequency that splits PSD(f) into two regions with equal

power.
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f=FreqM∑
f=0

PSD(f) =
1

2

f=fs/2∑
f=0

PSD(f). (3.5)

SpecEn is an indirect measure of signals irregularity based on Shannon’s en-

tropy. It quantifies PSD uniformity since signals with a flatter spectrum (i.e.,

without dominant frequencies) are associated to high irregularity. SpecEn was

computed as the Shannon entropy of the frequency distribution derived from the

PSD.

SpecEni = − 1

log(M)

fs/2∑
f=0

PSDi
n(f) · log[PSDi

n(f)], i = 1, 2, 3, (3.6)

where i is the SpecEn order, M is the PSD length, and PSDn is the normalized

PSD (i.e., the PSD divided by the total PSD power) (Jiménez-Garćıa et al., 2020):

PSDi
n(f) =

|PSD(f)|i∑fs/2
f=0 |PSD(f)|i

. (3.7)

The set of extracted features was completed with the computation of ODI

3% from SpO2 (Jiménez-Garćıa et al., 2020). This oximetric index is defined as

the rate of SpO2 drops ≥ 3% with respect to the previous baseline per hour of

recording (Magalang et al., 2003).

3.2.2.2 Feature selection

Up to 39 features from both signals were extracted and distributed according to

the information source to perform feature selection and subsequent classification.

In order to test the complementarity of AF and SpO2 information, as well as the

computed features with ODI 3%, six subsets combining AF, SpO2 and ODI 3% fea-

tures were subsequently evaluated (namely AF, SpO2, AF+SpO2, AF+ODI 3%,

SpO2+ODI 3%, AF+SpO2+ODI 3%) (Jiménez-Garćıa et al., 2020). The com-

plementarity between AF and SpO2, as well as the identification of relevant and

non-redundant features from these signals to detect pediatric OSA were evaluated

by means of the Fast Correlation-Based Filter (FCBF) feature selection algorithm

(Yu and Liu, 2004). This is a filter method (i.e., it does not depend on any

ML algorithm), so it can be combined with any ML model, including ensembles

(Saeys et al., 2007). FCBF utilizes the symmetrical uncertainty (SU), a Shannon

entropy-based measure of correlation between two variables, to compute relevance

and redundancy. It is defined as (Yu and Liu, 2004):
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SU(Xi|Xj) = 2 · H(Xi)−H(Xi|Xj)

H(Xi) +H(Xj)
, (3.8)

where H(Xi) and H(Xj) are the Shannon entropy of the features Xi and Xj :

H(Xi) = −
∑

xi∈Xi

p(xi) · log(p(xi)), (3.9)

H(Xj) = −
∑

xj∈Xj

p(xj) · log(p(xj)); (3.10)

H(Xi|Xj) is the Shannon entropy of feature Xi after the observation of Xj :

H(Xi|Xj) = −
∑

xj∈Xj

p(xj) ·
∑

xi∈Xi

p(xi|xj) · log(p(xi|xj)). (3.11)

This way, relevance and redundancy are defined as the SU between a

feature and the AHI (SU(Xi|AHI)), and the SU between two different

features(SU(Xi|Xj)), respectively. The FCBF algorithm consists of two steps:

first, it ranks the features according to their relevance from highest to lowest

SU(Xi|AHI); then, it discards features Xi that have a greater SU with a more

relevant feature (SU(Xi|Xj)) than their own relevance (SU(Xi|AHI)):

SU(Xj |AHI) ≥ SU(Xi|AHI), and SU(Xi|Xj) ≥ SU(Xi|AHI). (3.12)

In order to increase the robustness of the feature selection stage, a bootstrap-

ing procedure was implemented in conjunction with FCBF (Guyon and Elisseeff,

2003). A total of 1000 bootstrap-derived datasets were obtained by randomly

sampling the training data with replacement (i.e., some examples may be picked

more than once in a bootstrap replicate, while others are not selected). This way,

all bootstrap replicates have the same size as the training set, but each of them

contain diverse subsets of the original data (Witten et al., 2011). FCBF was ap-

plied to 1000 bootstraps, and features selected at least in 500 iterations (50% of

total) formed the subset of selected features (Barroso-Garćıa et al., 2021a; Hornero

et al., 2017; Jiménez-Garćıa et al., 2020; Vaquerizo-Villar et al., 2018a).

3.2.3 Feature classification: AdaBoost ensemble learning

The feature classification stage was aimed at classifying the features selected by

the FCBF algorithm in the four levels of childhood OSA. This is the final stage of

the feature-based pattern recognition approach presented in the first article of the

compendium (Jiménez-Garćıa et al., 2020). This study was focused on comparing
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the information of AF and SpO2, and assessing their diagnostic ability, both sep-

arately and jointly. The latter goal was addressed deploying AdaBoost classifiers.

These models are based on boosting, a branch of ensemble learning characterized

by training simple base classifiers sequentially with differently weighted versions of

the dataset examples (Freund and Schapire, 1997; Kuncheva, 2014). In this work,

the AdaBoost.M2 variant was implemented since it allows multi-class classification

of OSA severity.

AdaBoost training is an iterative process in which, at each iteration, the boost-

ing algorithm gives more importance to the examples that previous base classifiers

failed, and a new base classifier is trained according to the updated, importance-

weighted data (Freund and Schapire, 1997; Kuncheva, 2014). LDA classifiers were

used in this work as weak, base learners, like in previous studies (Gutiérrez-Tobal

et al., 2019). The number of iterations (L) is a hyperparameter to be set in order

to maximize model’s performance. Given a training dataset of N labeled exam-

ples (xi, yi), (i = 1, ..., N), and the distribution at iteration t (t = 1, ..., L) Dt(i)

(Freund and Schapire, 1997):

Dt(i) =
W t

i∑N
i=1 W

t
i

, (3.13)

with W t
i :

W t
i =

∑
y ̸=yi

wt
i,y. (3.14)

The weights wt
i,y are equal in all examples in the first iteration. Then, a LDA clas-

sifier is trained using the calculated distribution Dt(i) and subsequently evaluated.

The pseudo-loss ϵt associated to the LDA-derived prediction ht(x, y) is calculated

as (Freund and Schapire, 1997):

ϵt =
1

2

N∑
i=1

Dt(i)[1− ht(xi, yi) +
∑
y ̸=yi

wt
i,y

W t
i

ht(x, y)]. (3.15)

From this pseudo-loss, the modified weight update coefficient at iteration t is

defined as βt. This coefficient includes a regularization term by means of a learning

rate hyperparameter ν (0 < ν ≤ 1), with ν = 1 meaning no regularization:

βt =

(
εt

1− εt

)ν

. (3.16)
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The weights for iteration t+ 1 are calculated as (Freund and Schapire, 1997):

wt+1
i,y = wt

i,y · β
1
2 (1+ht(xi,yi)−ht(xi,y))
t (3.17)

AdaBoost algorithm generates a prediction by calculating the weighted vote (Fre-

und and Schapire, 1997):

H(x) = argmax
y

∑L

t=1
log(

1

βt
) · ht(x, y) (3.18)

This way, AdaBoost model assigns each subject’s descriptive pattern to a level

of OSA severity by means of the weighted majority vote of a large population of

sequentially trained weak LDA classifiers (Freund and Schapire, 1997).

3.2.4 Deep learning: convolutional and recurrent neural

networks

Two end-to-end approaches based on DL to analyze AF and SpO2 were proposed

in the second and third articles of the compendium (Jiménez-Garćıa et al., 2022,

2024). As in many other applications, DL approaches have outperformed classic

ML paradigms, especially in the contexts of biomedical signal analysis and OSA

detection (Faust et al., 2018; Lecun et al., 2015; Mostafa et al., 2019). A pre-

vious 1D CNN architecture showed its suitability to detect pediatic OSA from

single-channel SpO2 (Vaquerizo-Villar et al., 2021). In this work, dual-channel

approaches were implemented to allow the joint analysis of AF and SpO2 and

derive the AHI. First, a 2D CNN architecture was deployed to process 5-min

(300 s) epochs of these two signals jointly (sampled at 10 Hz, 3,000x2 samples)

(Jiménez-Garćıa et al., 2022). It consisted of a stack of convolutional blocks of

five layers: 2D convolution, Batch normalization, Rectified Linear Unit (ReLU),

Max pooling, and Dropout (Jiménez-Garćıa et al., 2022; Vaquerizo-Villar et al.,

2021). Each 2D convolutional layer (i = 1, ..., NL) generates NF feature maps

xj
i (m,n) (j = 1, ..., NF ) by applying convolution operations to the input signal

epochs (first layer, a1(m,n)), or the output feature maps generated in previous

layers (ai(m,n), i = 2, ..., NL) (Goodfellow et al., 2016):

xj
i (m,n) =

K∑
k=1

2∑
l=1

wj
i (k, l) · ai(m− k + 1, n− l + 1) + bji , (3.19)
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where K is the length of the 2D filters of kernel size (K, 2), with learned weights

wj
i and bias bji . Then, the feature maps are normalized, and the ReLU activation

function is applied (Goodfellow et al., 2016):

ReLU(xj
i ) = max(0, xj

i ). (3.20)

After this activation, feature maps size is reduced in the Max pooling layer by

retaining the local maximum responses (Goodfellow et al., 2016). The final step of

each block is a dropout operation that randomly sets to zero a percentage of the

feature map’s samples during training (Goodfellow et al., 2016). In this work, the

dropout rate was fixed to 0.1 heuristically. After the convolutional blocks, a flatten-

ing layer reshapes the multidimensional feature maps to one-dimensional vectors,

and a fully connected layer derive a prediction of the number of apnea/hypopnea

events per epoch (Jiménez-Garćıa et al., 2022).

The second dual-channel approach combined the aforementioned CNN with a

RNN (CNN+RNN) to process 30-min sequences of AF and SpO2 data split into

six 5-min epochs (Jiménez-Garćıa et al., 2024). Figure 3.2 shows the developed

CNN+RNN architecture, in which the aforementioned CNN layers were inserted

into consecutive time distributed (TD) layers that process the 5-min epochs. This

way, the stack of TD layers produced a sequence of feature maps, similarly to the
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Figure 3.2: Convolutional and recurrent neural network (CNN+RNN) architecture.
Adapted from Jiménez-Garćıa et al. (2024) with permission (CC-BY-NC-ND 4.0).
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previous CNN approach, which is processed in the RNN (Jiménez-Garćıa et al.,

2024; Korkalainen et al., 2020a). A bidirectional gated recurrent unit (Bi-GRU)

layer of size NG (NG = 1, 2, 4, ..., 64) was implemented to analyze the temporal

dependencies of the generated sequences and derive an estimate of the number

of events per segment (Jiménez-Garćıa et al., 2024). The number of units in the

Bi-GRU layer was a hyperparameter to be optimized, while recurrent dropout

and dropout rates were fixed heuristically to 0.1 after preliminary assessments

(Jiménez-Garćıa et al., 2024).

3.2.5 Explainable artificial intelligence: Gradient-weighted

Class Activation Mapping (Grad-CAM)

The Grad-CAM XAI method algorithm was implemented to address the explain-

ability of the developed CNN+RNN architecture, as well as to analyze the behavior

of this DL architecture (Jiménez-Garćıa et al., 2024). Grad-CAM was used to ob-

tain visual post hoc explanations of the model output that indicate zones in the

input signals that the model identifies as relevant to make their predictions (Sel-

varaju et al., 2017). These visual explanations highlight parts of the input signals

and are interpreted as heatmaps. In order to obtain explanations from an input

example and its corresponding output, Grad-CAM computes the gradient of the

model output (ŷ) with respect to the feature maps xj(m,n) generated in the last

convolutional layer (Selvaraju et al., 2017):

g(m,n) =
1

NF

NF∑
j=1

∂ŷ

∂xj
NL

(3.21)

Then, it derives an explanatory heatmap through a ReLU activation applied to

the dot product of the gradient and the feature map generated in the last layer

(Selvaraju et al., 2017):

LGradCAM (m,n) = ReLU(g · xNL). (3.22)

In this work, the gradients and feature maps were computed in all convolutional

layers to derive heatmaps from each of them. Since the generated heatmaps have

different length in each convolutional layer, they were all resized to the input

segment size and averaged. This way, the obtained heatmaps highlight both coarse

and fine grained patterns that the model links to the presence of apneic events

and/or their corresponding desaturations, since they have a large influence in the
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model’s prediction. This procedure to consider coarse and fine grained explanatory

heatmaps was heuristically compared with the Guided Grad-CAM approach, which

produced poorer results. Therefore, the user is able to understand what parts

of the signal are important to detect apneas/hypopneas according to the model

(Jiménez-Garćıa et al., 2024). When the automatic method accurately detects

apneas in the input pattern, the heatmaps can be useful to identify them and verify

that the model is correctly detecting OSA. On the contrary, when the prediction is

inaccurate, Grad-CAM can highlight irrelevant patterns or miss the apneic events.

In the first case, the trustworthiness of the model increases because the user can

verify that the model is detecting apneas/hypopneas as expected and discover the

useful patterns detected by the DL model. On the other hand, the user can discard

patterns not linked to apneic events but highlighted as important by the model in

order to supervise the algorithm’s behavior.

3.2.6 Statistical analyses

3.2.6.1 Statistical tests and correlation

As described in Section 3.1, statistical tests were employed to ensure the absence of

statistically significant differences in sociodemographical and clinical data between

training, validation, and test datasets. Mann-Whitney U test and Chi-Square

test were used to evaluate these differences according to the variable type to be

assessed (numerical or categorical, respectively). Regarding the analysis of feature

extraction techniques (Section 3.2.2.1), the extracted descriptors were assessed

by means of the Kruskal-Wallis test in order to identify statistically significant

differences among the 4 OSA severity groups. This non-parametric test was used

because not all extracted features passed the Lilliefors normality test (Jiménez-

Garćıa et al., 2020).

Further analysis of the features extracted in the first study was conducted by

means of the Spearman’s correlation (see Section 3.2.2.1) (Jiménez-Garćıa et al.,

2020). This analysis was applied in the training set to find the optimum parameters

of CTM (r) and SampEn (m, r), as well as to assess the positive or negative

relationship of each extracted feature with AHI (Jiménez-Garćıa et al., 2020).

3.2.6.2 Validation strategies

Different validation strategies were used in this research to check the validity of

the methods and the results obtained. As mentioned in Section 3.1, the databases

included in this study were split whether into training and test sets (UofC), or
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into training, validation and test sets (CHAT). This way, the training stage of all

ensemble and DL algorithms deployed in this doctoral thesis was conducted in the

training set of these databases. Once the final, optimized models were obtained,

they were evaluated in the test sets of both databases. The approaches introduced

below have been used in this doctoral thesis to validate the different architectures.

� Hold-out. As mentioned above, UofC and CHAT databases were split into

two or three independent sets (training/test or training/validation/test).

This way, the training set was used to deploy the models, the validation

set was used to optimize them (e.g., by finding the optimum model config-

urations and/or hyperparameters), and the test set was used to assess their

performance in unseen data (Witten et al., 2011). This validation approach is

the most straightforward, but requires large databases to ensure a minimum

amount of training data, which usually comprises a large proportion of the

entire dataset (Witten et al., 2011). Moreover, the division should be con-

ducted ensuring the similarity of data among the sets. The subjects of both

databases were randomly split into these 2 or 3 groups, and statistical tests

were used to evaluate possible differences in sociodemographic and clinical

variables (see Section 3.1). In this research, model deployment encompassed

parameters optimization within feature extraction techniques, feature selec-

tion, and ensemble and DL models training and optimization. When the

database size is not large enough to make up to three partitions, other cross

validation methods may be used to validate data-driven algorithms.

� Bootstrapping. A bootstrap method can be useful when the dataset size

is small (Witten et al., 2011). As mentioned in Section 3.2.2.2, bootstrap-

ping was implemented to increase the robustness of the FCBF-based feature

extraction stage (Guyon and Elisseeff, 2003). Bootstrap uses random sam-

pling with replacement and equal selection probability of the original set

instances (N examples) to create bootstrap replicates of size N , in which

some instances can be repeated whereas others are not included (Witten

et al., 2011). The procedure is repeated M times in order to obtain M di-

verse bootstrap replicates and use them to train the models independently.

Then, these trained algorithms are evaluated using both the samples in-

cluded in the training replicate and those which were not selected in that

iteration as a test set. The 0.632 bootstrap procedure then estimates the

model performance (S) by means of the training and test figures of merit

obtained in each bootstrap iteration (Si
train and Si

test, respectively) (Witten
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et al., 2011):

S =
1

M

∑M

i=1
0.368 · Straini + 0.632 · Stesti . (3.23)

This validation method has been used in the first study of this doctoral

thesis to optimize AdaBoost model’s hyperparameters (L, ν) with M = 1000

iterations (Jiménez-Garćıa et al., 2020).

� Stratified K-fold cross validation. This is one of the most common

validation methods (Witten et al., 2011). This procedure randomly splits

the dataset into K partitions (folds) of equal size while maintaining the

proportion of instances that belong to each class or group (e.g., healthy

and diseased, different severity levels, etc.) (Witten et al., 2011). Once the

database is split, K − 1 folds are used to train the model and the remaining

one is reserved to test it. Model performance is then evaluated in this test set.

This process is conducted K times, each of them with a different fold to test

the model. The estimated performance is finally calculated by averaging

the performances obtained across the folds (Witten et al., 2011). In this

research, the number of folds was set to K = 10, which is the most common

choice. This validation method was used in the second and third articles of

the compendium of publications to fix the optimum values of the CNN and

CNN+RNN architectures (Jiménez-Garćıa et al., 2022, 2024).

3.2.6.3 Measures of agreement

The agreement between actual and estimated diagnosis of pediatric OSA, either by

means of AHI or severity levels, was assessed in this research. As mentioned in the

previous sections, AdaBoost models of the first article were aimed at classifying

OSA severity in 4 levels: no OSA, mild, moderate, and severe OSA (Jiménez-

Garćıa et al., 2020). Regarding the DL architectures, these were focused on esti-

mating the total AHI from the overnight signals and categorizing the AHI estimates

into the 4 severity levels (Jiménez-Garćıa et al., 2022, 2024). Bland-Altman plots

were used to graphically represent the difference between actual and predicted

AHI against the mean of these two observations (Bland and Altman, 1986). The

agreement between actual and estimated AHI the Intraclass Correlation Coefficient

(ICC) (Chen and Barnhart, 2008). The OSA severity was derived by thresholding

the AHI estimates with the cutoffs introduced in Section 1.4 (1, 5, and 10 e/h).

Confusion matrices were computed from the actual and estimated OSA severity,
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and the classification into these four levels of the disease was evaluated using the 4-

class accuracy (Acc4) and the Cohen’s kappa coefficient (k) (Cohen, 1960; Witten

et al., 2011).

3.2.6.4 Diagnostic performance

The approaches covered in this doctoral thesis were analyzed in terms of their diag-

nostic performance, which was assessed in the three AHI cutoffs. All metrics were

derived from the computation of correctly and incorrectly classified subjects. De-

pending on the actual and predicted diagnosis, 4 possible cases can occur (Fawcett,

2006):

� True negative (TN): when a subject with actual AHI<cutoff is correctly

diagnosed as not having a certain degree of OSA (AHI<cutoff).

� False negative (FN): when a diseased subject (AHI≥cutoff) is incorrectly

diagnosed as not having a certain degree of OSA (AHI<cutoff).

� True positive (TP): when a diseased subject (AHI≥cutoff) is correctly diag-

nosed as having a certain degree of OSA (AHI≥cutoff).

� False positive (FP): when a subject with actual AHI<cutoff is incorrectly

diagnosed as having a certain degree of OSA (AHI≥cutoff).

According to the number of TN, FN, TP and FP, the following rates were

calculated to assess diagnostic performance (Deeks and Altman, 2004; Fawcett,

2006; Witten et al., 2011):

� Sensitivity (Se) is the rate of diseased subjects correctly classified:

Se =
TP

TP + FN
. (3.24)

� Specificity (Sp) is the rate of control subjects correctly classified:

Sp =
TN

TN + FP
. (3.25)

� Accuracy (Acc) is the rate of subjects (diseased or not) correctly classified:

Acc =
TP + TN

TP + TN + FP + FN
. (3.26)
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� Positive predictive value (PPV ) is the rate of subjects classified as having a

certain degree of OSA correctly classified:

PPV =
TP

TP + FP
. (3.27)

� Negative predictive value (NPV ) is the rate of subjects classified as not

having at least a certain degree of OSA correctly classified:

NPV =
TN

TN + FN
. (3.28)

� Positive likelihood ratio (LR+) is the ratio of probability of a positive test

result (Se vs. the opposite of Sp):

LR+ =
Se

1− Sp
. (3.29)

� Negative likelihood ratio (LR−) is the ratio of probability of a negative test

result (the opposite of Se vs. Sp):

LR− =
1− Se

Sp
. (3.30)



Chapter 4

Results

This chapter summarizes the results obtained with the different methods devel-

oped in this doctoral thesis, which covered from a feature engineering approach

using ensemble learning to DL architectures combined with XAI. The results pre-

sented in this chapter are organized according to the methodological approaches

followed in this work to deploy the predictive models (feature engineering, ensemble

learning and DL), the XAI-derived explanatory information and their diagnostic

performance. Results of feature extraction and selection stages are presented in

Section 4.1, and the optimization results of ensemble and DL models are summa-

rized in Section 4.2. The outcomes of the Grad-CAM XAI algorithm are evaluated

in Section 4.3. Since the goal of all methods proposed in this research is to serve

as an automatic tool to aid in the diagnosis of pediatric OSA, their diagnostic

ability is the most common and important indicator of their usefulness. Conse-

quently, the agreement between PSG-derived and model-estimated OSA severity,

as well as the diagnostic performances reached by the models are summarized in

Section 4.4. Note that the results introduced in this chapter are directly related

to those published in the articles that constitute the compendium of publications

(see Chapter 7).

4.1 Feature engineering: extraction and selection

4.1.1 Feature extraction

Among the feature extraction techniques used in this research, CTM and SampEn

required parameters optimization. This procedure was aimed at maximizing the

49
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absolute value of Spearman’s |ρ| between each feature and AHI for both signals

independently, using the training set data from UofC database (Jiménez-Garćıa

et al., 2020). The optimum r values of CTM were r = 0.0004 and r = 0.0250 in AF

and SpO2 signals, respectively. Likewise, the maximum |ρ| reached by SampEn

was obtained using m = 2, r = 0.05σ in the AF, and m = 3, r = 0.05σ in the SpO2

(Jiménez-Garćıa et al., 2020). It is noteworthy that CTM obtained the maximum

ρ = 0.3979 among all AF-derived features, and other time-domain and spectral

parameters such as M4T (ρ = 0.3580), M1F (ρ = 0.3492), MedF (ρ = 0.3591),

MinF (ρ = 0.3588), and SpecEn (ρ = 0.3464) reached significant but slightly lower

correlations with the AHI as well. In all these cases, the Kruskal-Wallis test showed

statistically significant differences(p ≪ 0.01) among severity groups in the UofC

training set (Jiménez-Garćıa et al., 2020). ODI 3% was the feature that obtained

the highest ρ = 0.6918, followed by other nonlinear and spectral parameters such

as CTM (ρ = −0.6187), M1F (ρ = 0.6773), M2F (ρ = 0.6352), MedF (ρ = 0.6753),

MaxF (ρ = 0.6646), and MinF (ρ = 0.6504). Again, the results of the Kruskal-

Wallis test to examine statistically significant differences among severity groups in

the UofC training set showed p ≪ 0.01 in all mentioned SpO2-derived features.

4.1.2 Feature selection

The feature selection stage conducted in the first study of this doctoral thesis

combined FCBF with bootstrap to identify the most useful features (Jiménez-

Garćıa et al., 2020). These formed the final subset of selected features if they

were individually selected by FCBF at least 500 times (50% of total bootstrap

iterations). Figure 4.1 shows the features that surpasses this threshold and were

finally selected. It is worth to mention that CTM and quadratic SpecEn from

the AF signal, as well as CTM and M4F from SpO2 data were considered rel-

evant and non-redundant by the FCBF-based approach in absence of ODI 3%.

However, after including ODI 3% in the analyses, only CTM from AF and M4F

from SpO2 were complementary to it. ODI 3% emerged as the most relevant fea-

ture since it improved the diagnostic ability of AdaBoost when this variable was

included in the feature sets. Indeed, the combination of all information sources

(AF+SpO2+ODI 3%) reached the highest diagnostic ability in terms of Cohen’s

kappa and 4-class accuracy (Jiménez-Garćıa et al., 2020).
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Figure 4.1: Results of the feature selection stage by means of FCBF with bootstrapping:
without ODI 3% (top) and with ODI 3% (bottom) (Jiménez-Garćıa et al., 2020).

4.2 Ensemble and deep learning models hyperpa-

rameter optimization

AdaBoost models training required hyperparameters L and ν selection. As men-

tioned in Section 3.2.3, L and ν optimization was aimed at maximizing Cohen’s

k in the UofC training set using 0.632 bootstrap validation. Moreover, the proce-

dure was conducted for each feature subset independently (AF, SpO2, AF+SpO2,

AF+ODI 3%, SpO2+ODI 3%, AF+SpO2+ODI 3%). Models trained without ODI

3% generally obtained lower k agreement (k = 0.1453 with L = 3, ν = 0.2 for AF,

k = 0.2327 with L = 700, ν = 0.5 for SpO2, k = 0.2228 with L = 8000, ν = 0.1 for

AF+SpO2) than those including this oximetic variable (k = 0.2926 with L = 500,

ν = 0.3 for AF+ODI 3%, k = 0.2918 with L = 700, ν = 0.2 for SpO2+ODI 3%,

k = 0.2909 with L = 500, ν = 0.3 for AF+SpO2+ODI 3%). It is noteworthy the

great similarity between the maximum k values reached by the AdaBoost models
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that included ODI 3% among the selected features. In addition, the AF subset

reached the lowest maximum k with a small number of base classifiers, while the

rest of optimum AdaBoost models were obtained using larger values of L.

Two different DL architectures were developed and tested in this research, a

CNN and a combination of CNN+RNN (Jiménez-Garćıa et al., 2022, 2024). The

optimum CNN architecture consisted of NL = 8 convolutional layers with NF =

64 2D filters, each of them with an optimum kernel size (K = 17, 2) (Jiménez-

Garćıa et al., 2022). It is important to note that this optimal set of structural

hyperparameteres outperformed all other CNN configurations, reaching k = 0.4807

in a validation set formed by data from both UofC and CHAT data. It was also

observed that larger values of NL, NF andK resulted in overfitting (i.e., increased

performance decay from training to validation sets). This CNN model was reused

to implement the CNN+RNN architecture by combining the CNN layers with

a sequence analysis framework formed by TD and RNN layers, and following a

transfer learning approach. This way, the CNN architecture hyperparameters

remained unchanged while the optimization of the CNN+RNN was focused on

the RNN. The optimum configuration of the Bi-GRU layer was accomplished by

setting NG = 4 units, reaching the highest k = 0.5077 in the joint validation set

using stratified 10-fold cross-validation (Jiménez-Garćıa et al., 2024).

4.3 Model-derived explanations using Grad-

CAM

The Grad-CAM algorithm was applied to the CNN+RNN architecture to obtain

explanatory heatmaps about the model predictions. Figure 4.2 shows some ex-

amples of accurate predictions and their corresponding heatmaps. A zoom on

relevant zones in the included segments is also provided to help in the visualiza-

tion of highlighted patterns. As can be seen, the localization maps show a more

reddish color in zones where the DL model detected signs of apneas, hypopneas

or desaturations. The heatmap of Figure 4.2(a) point to possibly missed breaths,

but the prediction was close to 0. The SpO2 signal showed constant oxygenation

and the heatmap did not highlight specific patterns. The apnea event shown in

Figure 4.2(b) (indicated with A) was correctly detected and highlighted both in

the AF and the SpO2 patterns, in which the scored desaturations (D) coincide

with stronger Grad-CAM heatmaps. Two consecutive events are correctly local-

ized in Figure 4.2(c), in which two consecutive desaturations and the normal AF
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Interpretation: missed breaths within 
normal respiration, no desaturation.

Interpretation: airflow interruption 
followed by a desaturation ≥ 3%.

(c)

Interpretation: normal breathing after 
apnea and hypopnea; desaturations ≥ 3%.

Interpretation: irregular AF (hypopneas 
and arousal *), and mild desaturations.

(d)

(a)

(b)

A

D
D

A H

D D

D D D D D

HH

*

H

Figure 4.2: Grad-CAM heatmaps obtained from segments accurately predicted by the
CNN+RNN architecture (Jiménez-Garćıa et al., 2024).
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amplitude recovery after an hypopnea (scored with H) are highlighted. In this

case, the strong heatmap highlights these desaturations in the SpO2, while the AF

heatmaps also point to this zone, but with lower intensity. Lastly, a segment with

recurrent hypopneas and associated desaturations is represented in Figure 4.2(d).

SpO2 drops and recoveries, as well as zones around the hypopneas are indicative

of a irregular AF pattern in which hypopneas and arousals (scored with an as-

terisk) are present. Concretely, the AF heatmap highlights with a stronger color

some sudden changes in the respiratory pattern after several breaths with low AF

amplitude.

Conversely, heatmaps corresponding to segments in which the CNN+RNN

model failed to estimate the amount of apneic events were also observed. Fig-

ure 4.3(a) correctly point to several consecutive desaturations, but some hypop-

neas were not properly highlighted and probably not considered too. In this case,

some hypopneas linked to arousals could have been missed by the algorithm, thus

explaining why the amount of apneic events was clearly underestimated in this

segment. A similar behavior was also observed in Figure 4.3(b), in which the AF

heatmap did not highlight several hypopneas associated to arousals again. The

fact that the model was unable to detect these consecutive AF cessations, together

with the absence of SpO2 drops in these hypopneas associated to arousals, led to

underestimation of the number of apneic events in this segment. The highlighted,

flat SpO2 may suggest that the model did not detect the hypopneas because there

were no associated desaturations, like it was observed in the previous example.

Strong heatmaps were also observed in Figure 4.3(c), pointing to a zone without

any scored apnea or hypopnea. However, the heatmap highlighted artifacts in

both signals, and a noisy interval in the AF, and a clear desaturation. Lastly, a

noisy interval of the AF signal was highlighted together with various desatura-

tions in Figure 4.3(d). In this case, the DL model detected some apneic events

that probably were not scored due to the low quality of the AF signal.

4.4 Diagnostic performance in the test set

The diagnostic performance of the approaches addressed in this thesis was assessed

in the test sets of both databases. It is necessary to note that different subgroups of

the UofC database were used to extract, analyze and select AF and SpO2 features,

as well as to develop and test the AdaBoost models. On the other hand, different

subgroups of both CHAT and UofC databases were involved in the deployment

and testing of the DL architectures. The results obtained in the UofC test set
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Interpretation: detected hypopneas with 
desat., missed hypopneas with arousals *. 

(a)

Interpretation: undetected hypopneas
without desaturation linked to arousals *.

(b)

(d)

Interpretation: detected desaturations, 
possibly unscored apneas/hypopneas.

D D D D

H HHH

* *

(c)

Interpretation: artifacts (X) in AF and SpO2, 
possibly hiding an apnea/hypopnea.

X X

X

D

H H H H

* * * *

D D D

Figure 4.3: Grad-CAM heatmaps obtained from segments accurately predicted by the
CNN+RNN architecture (Jiménez-Garćıa et al., 2024).



56 Chapter 4. Results

using the proposed ensemble and DL models can therefore be directly compared,

and the results obtained in the CHAT test set are restricted to the DL models

comparison.

4.4.1 Ensemble learning: AdaBoost

As mentioned in Section 4.2, 6 independent AdaBoost models were trained with

subsets of relevant and non-redundant AF- and SpO2-derived features (with and

without ODI 3%). Among them, the AdaBoost model trained with AF and

SpO2 features, including ODI 3% (AF+SpO2+ODI 3%), reached the highest

Acc4 = 57.95% and k = 0.3984 in the 4-class OSA severity classification. Never-

theless, it was also observed that the combination of AF features with ODI 3%

(AF+ODI 3%) reached the same Acc4 = 57.95% with slightly lower k = 0.3930

(Jiménez-Garćıa et al., 2020). The confusion matrices obtained in the UofC test

set from both combinations are shown in Figure 4.4. It can be observed that

both models overestimated OSA severity in a great proportion of children with

no OSA according to the gold standard. Nevertheless, differences in the propor-

tion of underestimated and overestimated subjects were not high in both models

(Jiménez-Garćıa et al., 2020).

The minimal differences between the confusion matrices AF+ODI 3% and

AF+SpO2+ODI 3% were also noticeable when assessing the diagnostic ability

Figure 4.4: Confusion matrices obtained in the test set of the UofC database using the
AdaBoost models (Jiménez-Garćıa et al., 2020). Results obtained in the AF+ODI 3%
subset (left) and the AF+SpO2+ODI 3% (right).
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Table 4.1: Diagnostic performance obtained with the AdaBoost models in the AHI
cutoffs 1, 5, and 10 e/h (Jiménez-Garćıa et al., 2020).

Subset Cutoff Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR–

1 92.06 36.00 81.28 85.80 51.92 1.4385 0.2205
AF+ODI 5 76.03 85.66 82.05 76.03 85.66 5.3002 0.2799

10 62.65 97.72 90.26 88.14 90.63 27.4768 0.3822

1 89.21 37.33 79.23 85.67 45.16 1.4235 0.2891
AF+SpO2

+ODI 3%
5 76.03 85.66 82.05 76.03 85.66 5.3002 0.2799

10 62.65 97.72 90.26 88.14 90.63 27.4768 0.3822

Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative
predictive value, LR+: positive likelihood ratio, LR−: negative likelihood ratio.

of the respective models in the common AHI cutoffs (1, 5, and 10 e/h). Table 4.1

shows the diagnostic ability of AdaBoost models in terms of the figures introduced

in Section 3.2.6.4. In this case, it can be highlighted that the AF+ODI 3% subset

reached slightly higher Acc = 81.28% than AF+SpO2+ODI 3% in the lowest cutoff

(1 e/h), as well as the highest NPV = 51.92%. Se = 92.06% and PPV = 85.80%

were also slightly higher in comparison with AF+SpO2+ODI 3%, but it was also

accompanied by a slightly lower Sp = 36.00% (Jiménez-Garćıa et al., 2020). The

diagnostic performance of both AdaBoost models was exactly the same in 5 and

10 e/h, which also highlights the similarities between these two AdaBoost models.

4.4.2 Deep learning: CNN and CNN+RNN

The diagnostic ability of DL-based algorithms was tested in the two databases

described in Section 3.1 (CHAT and UofC). The agreement between actual and

predicted AHI was high, since the ICCs reached in the test sets by both models

ranged between ICC = 0.8821 and ICC = 0.9546 and were higher in the CHAT

test set (Jiménez-Garćıa et al., 2022, 2024). Bland-Altman plots are shown in

Figures 4.5 (CHAT test set) and 4.6 (UofC test set), in which it can be observed

that the standard deviation of the error is greater in the UofC test set. The

limits of agreement were noticeably smaller in this dataset using CNN+RNN,

which is also consequent with a slightly higher ICC = 0.9004 (vs. ICC = 0.8821

using CNN). However, this was not observed in the CHAT test set, since these

limits were marginally lower using CNN. It is also noteworthy the slight AHI

underestimation observed in CHAT, and the AHI overestimation in UofC data

(Jiménez-Garćıa et al., 2022, 2024). Moreover, this estimation bias was lower in

both test datasets using the CNN+RNN architecture, resulting in a more accurate
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Figure 4.5: Bland-Altman plots of the AHI estimates obtained in the test set of the
CHAT database using the DL models (Jiménez-Garćıa et al., 2022, 2024). Results ob-
tained using the CNN (left) and the CNN+RNN models (right).

Figure 4.6: Bland-Altman plots of the AHI estimates obtained in the test set of the
UofC database using the DL models (Jiménez-Garćıa et al., 2022, 2024). Results obtained
using the CNN (left) and the CNN+RNN models (right).

algorithm (Jiménez-Garćıa et al., 2024).

Regarding the diagnostic agreement of CNN and CNN+RNN algorithms, the 4-

class OSA severity classification was evaluated after deriving the four OSA severity

levels by using the common AHI thresholds (1, 5, and 10 e/h). Figure 4.7 shows the

confusion matrices obtained in the CHAT test set with the two DL architectures
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Figure 4.7: Confusion matrices obtained in the test set of the CHAT database using
the DL models (Jiménez-Garćıa et al., 2022, 2024). Results obtained using the CNN
(left) and the CNN+RNN models (right).

(Jiménez-Garćıa et al., 2022, 2024). The evolution from a simple CNN approach

to a more sophisticated CNN+RNN slightly enhanced the diagnostic ability, ob-

taining higher Acc4 = 74.51% and k = 0.6231 in the CHAT test set in comparison

with CNN (Acc4 = 72.55% and k = 0.6011). It can also be seen that the pro-

portion of mild OSA subjects correctly classified improved sensibly. On the other

hand, both DL models showed an OSA underestimation tendency given that the

proportion of subjects that were classified at least one severity level behind their

actual diagnosis is also noticeable. The same enhancement in terms of agreement

was observed in the test set of the UofC database (Figure 4.8), where improved

Acc4 = 62.31% and k = 0.4495 were obtained using the CNN+RNN in compari-

son with the CNN architecture (Acc4 = 61.79%, and k = 0.4469) (Jiménez-Garćıa

et al., 2022, 2024). Contrarily to what was observed in the CHAT test set, the DL

algorithms frequently overestimated OSA severity, especially in subjects without

OSA classified as having mild OSA.

The ability of CNN and CNN+RNN architectures to diagnose pediatric OSA in

the three children-specific cutoffs is shown in Tables 4.2 (CHAT test set) and 4.3

(UofC test set). Regarding the results in the CHAT test set, the CNN+RNN

outperformed the CNN in 1 e/h by reaching Acc = 87.25%, Se = 87.03%, and

NPV = 65.56%. However, the CNN model reached higher Sp = 92.54%. In-

terestingly, both DL models obtained identical diagnostic performance in 5 e/h

using the CHAT test dataset. On the other hand, the CNN showed slightly higher
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Figure 4.8: Confusion matrices obtained in the test set of the UofC database using the
DL models (Jiménez-Garćıa et al., 2022, 2024). Results obtained using the CNN (left)
and the CNN+RNN models (right).

Acc = 94.44%, Sp = 98.11%, and PPV = 85.71% in comparison with CNN+RNN

in 10 e/h for CHAT data.

The comparison of CNN and CNN+RNN also showed very similar diagnostic

metrics in the UofC test set (see Table 4.3), but the CNN+RNN architecture

surpassed the CNN in most of them. Both models reached the same Acc = 84.10%

in 1 e/h, but the CNN obtained higher Sp = 37.33% and PPV = 86.46%, and the

CNN+RNN surpassed it in terms of Se = 96.83% and NPV = 69.70%. In 5 e/h,

the CNN+RNN model marginally surpassed the CNN in all considered rates when

they were evaluated in UofC test data. Finally, both models reached the same

Se = 78.31% in 10 e/h, but the rest of diagnostic metrics favored the CNN+RNN

architecture. However, these differences were not high. It is also worth to mention

that the CNN+RNN algorithm reached the lowest LR− = 0.1035 in 1 e/h while

also showed LR+ = 12.6538 in 10 e/h, indicating that this method shows high

reliability to: (i) discard any level of OSA, and (ii) to establish a positive diagnosis

of severe OSA. As stated at the beginning of this section, AdaBoost and both DL

models can be directly compared in the same test set from the UofC database.

In this sense, the CNN+RNN algorithm maximized Acc, Se, NPV , and LR−
in all cutoffs, while both AdaBoost models reached the highest Sp in 5 and 10

e/h. The most remarkable Sp = 37.33% in 1 e/h was simultaneously reached

by the AdaBoost model trained with AF+SpO2+ODI 3% and the CNN, but the

latter model also obtained nearly optimal Se = 95.24% and the highest overall
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Table 4.2: Diagnostic performance obtained in the CHAT database with the DL archi-
tectures for the AHI cutoffs 1, 5, and 10 e/h (Jiménez-Garćıa et al., 2022, 2024).

Model Cutoff Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR–

1 82.43 92.54 84.64 97.52 59.62 11.0452 0.1899
CNN 5 80.22 99.07 93.46 97.33 92.21 86.2363 0.1997

10 71.43 98.11 94.44 85.71 95.57 37.7143 0.2912

1 87.03 88.06 87.25 96.30 65.56 7.2887 0.1473
CNN+RNN 5 80.22 99.07 93.46 97.33 92.21 86.2363 0.1997

10 71.43 96.97 93.46 78.95 95.52 23.5714 0.2946

Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative
predictive value, LR+: positive likelihood ratio, LR–: negative likelihood ratio.

Table 4.3: Diagnostic performance obtained in the UofC database with the DL archi-
tectures for the AHI cutoffs 1, 5, and 10 e/h (Jiménez-Garćıa et al., 2022, 2024).

Model Cutoff Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR–

1 95.24 37.33 84.10 86.46 65.12 1.5198 0.1276
CNN 5 82.19 85.25 84.10 76.92 88.89 5.5708 0.2089

10 78.31 93.49 90.26 76.47 94.10 12.0211 0.2320

1 96.83 30.67 84.10 85.43 69.70 1.3965 0.1035
CNN+RNN 5 82.88 85.66 84.62 77.56 89.32 5.7777 0.1999

10 78.31 93.81 90.51 77.38 94.12 12.6538 0.2312

Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative
predictive value, LR+: positive likelihood ratio, LR–: negative likelihood ratio.

PPV = 86.46% in 1 e/h.





Chapter 5

Discussion

This doctoral thesis was aimed at deploying novel data-driven approaches to aid

in the diagnosis of pediatric OSA using the information of AF and SpO2 such as

ensemble and DL models combined with XAI. Therefore, the diagnostic usefulness

of the automatic analysis of AF and SpO2 was assessed using three different ap-

proaches: a comparison of several AF- and SpO2-derived combinations of features

(with and without ODI 3%) using a multi-class AdaBoost classifier, a 2D CNN

fed with epochs of both signals aimed at predicting the AHI, and an explainable

CNN+RNN that not only estimates the presence and severity of OSA, but also

provides explanatory localization maps by means of Grad-CAM. Each of these

approaches revealed the complementarity of AF and SpO2 to diagnose pediatric

OSA by means of ensemble and DL. The combination of both signals performed

better than any of them alone using AdaBoost, and DL methods outperformed

other ML and DL methodologies regarded in similar previous studies. Further-

more, the CNN+RNN architecture provided a localization of the most relevant

OSA-related patterns found in these signals by including a XAI algorithm. The

most important findings of the research works carried out in this doctoral thesis,

covering from feature-engineering to explainable DL, are outlined in this chapter.

The diagnostic ability of these algorithms is analyzed and subsequently compared

with similar studies in the next sections. The last part of this chapter takes into

account the main limitations of this thesis. Note that the contents of this chapter

outline the findings published in the studies that constitute the compendium of

publications, so they have a close relationship with these articles (see Chapter 7).
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5.1 Feature engineering: complementarity be-

tween AF and SpO2 information

AF and SpO2 signals were characterized by extracting temporal, spectral, and non-

linear features together with ODI 3% (Jiménez-Garćıa et al., 2020). This implied

the definition of a band of interest in the AF signal (0.134−0.176 Hz). This band

was directly related with the presence and recurrence of apneic events since it cov-

ered frequencies around and below the half of the respiratory frequency (0.25−0.35

Hz). The OSA-characteristic AF pauses and cessations have a duration of at least

2 respiratory cycles, which is consistent with an increase of the spectral power in

the band found in this study and also in other previous studies (Gutiérrez-Tobal

et al., 2015; Jiménez-Garćıa et al., 2020). Some features extracted from this pe-

diatric OSA-specific band showed significant correlation with the AHI (e.g, M1F,

M2F, MedF, MinF, and MaxF), as well as other spectral features (SpecEn and

SpecEn2). Regarding the nonlinear analysis of AF, CTM showed the stongest

correlation with AHI among AF-derived features. The utility of some of these

features was also observed in a previous study aimed at evaluating the irregularity

and variability of AF recordings in pediatric OSA (Barroso-Garćıa et al., 2017).

With respect to the SpO2 signal, ODI 3% showed the highest correlation with

AHI, and many others were strongly related with the latter. The usefulness of

this oximetric variable has been highly reported in previous research involving ML

approaches in childhood OSA (Barroso-Garćıa et al., 2021a,b; Hornero et al., 2017;

Vaquerizo-Villar et al., 2018a). Nevertheless, some studies reported high redun-

dancy among these features (Hornero et al., 2017; Vaquerizo-Villar et al., 2018a).

Novel AF and SpO2 characterization methods have been also proposed, but all of

them show a strong dependency of ODI 3% to slightly increase their diagnostic

performance (Barroso-Garćıa et al., 2020; Vaquerizo-Villar et al., 2018a), which

reinforced the aforementioned considerations about the usefulness of ODI 3%. In

summary, potentially useful OSA-related information may be extracted from both

signals by means of spectral and nonlinear analyses with the objective of deploying

a feature-based classifier to detect pediatric OSA.

The results of the feature selection stage showed that the same descriptors se-

lected separately from AF and SpO2 were considered complementary within each

other when these sources were joined (AF+SpO2 set). This was also observed

when the ODI 3% was added to the selection phase (AF+ODI 3%, SpO2+ODI 3%

AF+SpO2+ODI 3% subsets) (Jiménez-Garćıa et al., 2020). This oximetric index

was the most dominant variable of the study with regard to the FCBF selection
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stage, suggesting that ODI 3% is definitely the most useful variable extracted

from SpO2 among feature-engineering approaches (Barroso-Garćıa et al., 2020;

Gutiérrez-Tobal et al., 2015; Hornero et al., 2017; Jiménez-Garćıa et al., 2020;

Vaquerizo-Villar et al., 2018a). In addition, CTM was the only AF-derived fea-

ture complementary with SpO2-derived features and ODI 3% simultaneously. This

suggests that AF variability, computed by means of CTM, might be complemen-

tary to the information of SpO2, highly summarized in ODI 3% (Jiménez-Garćıa

et al., 2020). Other studies also supported this finding using other AF descriptors,

which reinforces the idea of completing the SpO2 OSA-related information with

AF parameters (Barroso-Garćıa et al., 2020, 2021a,b). Accordingly, FCBF-based

feature selection indicated the most useful and complementary information jointly

from AF and SpO2, and thus susceptible of pattern recognition tasks.

AdaBoost models were trained with different combinations of relevant and non-

redundant features according to the signals from which they were computed, which

were evaluated in the test set. This ensemble learning algorithm was also evalu-

ated in the context of adult OSA using AF and SpO2 separately (Gutierrez-Tobal

et al., 2016; Gutiérrez-Tobal et al., 2019). Other studies focused on pediatric

OSA also implemented an AdaBoost classifier for pattern recognition (Barroso-

Garćıa et al., 2021b; Calderón et al., 2020). The top-performing combinations

were AF+ODI 3% and AF+SpO2+ODI 3% (see Figure 4.4), which obtained the

same Acc4 = 57.95% (k = 0.3930 and k = 0.3984, respectively). Minimal differ-

ences in the confusion matrices revealed slightly higher Acc = 81.28% in 1 e/h

due to increased NPV = 51.92% and Se = 92.06% when the AF+ODI 3% set

was used, with equal diagnostic performances in 5 and 10 e/h (Table 4.1). This

confirms that the highest diagnostic ability is reached by combining ODI 3% with

AF-derived CTM. As mentioned in the previous paragraph, the approaches that

combined AF with ODI 3% also showed this behavior (Barroso-Garćıa et al., 2020,

2021a,b). Similar results were observed in studies regarding adult OSA, in which

the combination of both signals outperformed each of them alone (Álvarez et al.,

2020). Thus, the contribution of AF information to detect pediatric OSA in com-

bination with SpO2 was proven useful and demonstrates the complementarity of

both signals to aid in the diagnosis of this disease.
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5.2 Deep learning approaches: optimum architec-

tures

Two different DL architectures were proposed in this doctoral thesis to detect

pediatric OSA from overnight AF and SpO2. First, a 2D CNN was deployed

to process these two signals (Jiménez-Garćıa et al., 2022), and then this model

was extended to obtain a second CNN+RNN architecture (Jiménez-Garćıa et al.,

2024). To date, only Vaquerizo-Villar et al. (2021) proposed a CNN to quantify

OSA in children through the SpO2 signal. Another recent approach from our

group also assessed a DL architecture based on CNN to analyze ECG signals in

the context of pediatric OSA (Garćıa-Vicente et al., 2023). The studies covered

in the present research switched from single- to double-channel approaches by

including the AF signal to the analysis, assuming that AF and SpO2 channels are

the most appropriate to detect apneic events and derive the AHI (Jiménez-Garćıa

et al., 2022, 2024).

The first approach relied on a relatively simple stack of CNN blocks which core

is a 2D convolutional layer, an architecture that has been successfully assessed in

the context of OSA using the SpO2 signal only (Mostafa et al., 2020; Vaquerizo-

Villar et al., 2021). It was observed that the CNN performed better when 5-min

epochs were used in comparison with 1-min inputs, suggesting that the model

is capable of detecting groups of consecutive apneas and desaturations (clusters)

that can last several minutes (Brouillette et al., 2000). The optimal performance

in the validation set was obtained with a CNN of NL = 8 blocks, each of them

including a 2D convolutional layer of NF = 64 filters with size (K = 17, 2). An

increased number of layers and filters failed to generalize since the performance in

the validation set decayed beyond the reported hyperparameters (Jiménez-Garćıa

et al., 2022). Compared to the previous single-channel approach, the 2D CNN

showed higher diagnostic ability by incorporating AF to the processing pipeline

(Jiménez-Garćıa et al., 2022; Vaquerizo-Villar et al., 2021). This result suggests

that incorporating AF together with SpO2 can be advantageous, especially to

discriminate between the mildest cases (AHI< 5 e/h) (Jiménez-Garćıa et al., 2022).

The second DL approach completed the previously proposed CNN with a RNN

able to model the temporal structure of the input data (Jiménez-Garćıa et al.,

2024). Although CNN+RNN architectures have been proposed in the context of

sleep analysis (Biswal et al., 2018; Korkalainen et al., 2020a,b), this novel approach

was never tested in pediatric OSA detection. Another novelty of this approach

was the deployment of a CNN+RNN from the previous CNN by means of trans-
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fer learning, allowing the development of a more sophisticated architecture that

leverages the pattern recognition ability of a simpler model. This simplifies the

training and validation of the CNN+RNN model and also allows to estimate the

AHI from larger segments. The RNN part was optimized by using a Bi-GRU

layer of NG = 4 units that analyzed the sequences of CNN-derived feature maps.

Although this value can be low, it may suffice to model the recurrence of ap-

neic events distributed in large clusters throughout the 30-min input sequences

(Jiménez-Garćıa et al., 2024). In addition, the results shown by this approach

reinforces the choice of analyzing large time intervals that may contain clusters of

repetitive OSA-related patterns (Brouillette et al., 2000; Vaquerizo-Villar et al.,

2021). Finally, since this model was combined with a XAI algorithm, users can

identify relevant patterns related to OSA detection highlighted by the network

and trust in the automated decision-making process.

5.3 Explainable artificial intelligence: Grad-

CAM heatmaps

As far as we know, the research done in this doctoral thesis includes the only

study that proposes a XAI algorithm to interpret a DL model aimed at detecting

pediatric OSA (Jiménez-Garćıa et al., 2024). Consequently, this is the first time

that Grad-CAM is applied to explain a DL model aimed at detecting pediatric OSA

using AF and/or SpO2. Only one recent study focused on adult OSA addressed

the explainability of a 1D CNN aimed at detecting apneic events from SpO2,

heart rate, thoracic and abdominal respiratory signals using Grad-CAM (Serrano

Alarcón et al., 2023). Similar recent approaches using Grad-CAM were restricted

to sleep staging, both in adults (Dutt et al., 2022), and also in children (Vaquerizo-

Villar et al., 2023). Another study centered in pediatric OSA applied SHAP to

explain a feature-based boosting model (Ye et al., 2022).

The Grad-CAM algorithm allowed us to visualize relevant patterns in AF and

SpO2 signals that DL models link to the presence of apneic events. As can be seen

in Figures 4.2 and 4.3, sudden variations of the AF signal, as well as SpO2 drops

and recoveries are the main OSA-related patterns that the CNN+RNN model is

able to associate with the presence of apneic events. For example, the heatmaps

highlight zones in which the AF suddenly changes its normal oscillatory behavior,

or present high-amplitude peaks that may be associated to an arousal. However,

some highlighted AF patterns like isolated missed breaths are not accompanied by
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a desaturation. Consequently, these explanatory heatmaps allow us to interpret

irregular breathing patterns that the model can associate to apneas or hypopneas.

Some examples are shown in Figure 4.2(a,b), in which regular and periodic breath-

ing is interrupted, or when AF amplitude increases after some respiratory cycles

(Figure 4.2(c,d)). However, it was also observed that SpO2 heatmaps are stronger

in case of desaturations, which is an important pointer of apneic events in children.

Regions with recurrent and strong SpO2 fluctuations were easily highlighted and

can be interpreted as SpO2 drops associated to apneas or hyponeas, even though

the AF signal does not show a clear respiratory cessation (see Figure 4.3(a,d)).

This can aid sleep technicians to check carefully the AF signal in order to ac-

count for recurrent hypopneas that are not easily detected by either a human

scorer or the CNN+RNN architecture. Another interesting pattern highlighted

by Grad-CAM correspond to regions with constant SpO2 values. In these cases,

the user can interpret that the absence of desaturations contributes to predict no

apneas/hypopneas even though the AF pattern suggests the presence of one or

more events Some examples can be seen in Figure 4.2(a) and Figure 4.3(b). If

desaturations were present in these examples, the model probably would have de-

tected these OSA-related events. Finally, it can be seen that some artifacts are also

highlighted in the heatmaps, suggesting that the CNN+RNN model is sometimes

prone to misinterpret them. The example shown in Figure 4.3(c) shows a strong

heatmap in the AF signal during an artifact that could have been interpreted by

the network as an apnea. Moreover, noise and low AF signal quality could be

possibly hiding apneic events linked to a clear desaturation in Figure 4.3(d).

In general, it has been observed that Grad-CAM highlighted relevant patterns

from both signals, which can contribute to understand the behavior of these two

signals in presence of apneic events and how the model works. Moreover, these

heatmaps can aid to discover hidden information about OSA particularities beyond

AF cessations and SpO2 fluctuations. In addition, the Grad-CAM heatmaps can

aid the user to identify what patterns led the algorithm to incorrectly detect an

apneic event, such as noise, signal loss, or movement artifacts.
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5.4 Diagnostic performance of the proposed ap-

proaches

5.4.1 Comparison between ensemble and deep learning

models

In this section, the algorithms proposed in this doctoral thesis to aid in the diag-

nosis of OSA in children are compared. As introduced in Sections 4.4 and 5.1, the

most accurate ensemble learning models emerged from the combination of AF with

SpO2, especially including ODI 3% among the features. As can be seen in Fig-

ure 4.4 and Table 4.1, their diagnostic performance is very similar, being identical

for the AHI cutoffs of 5 and 10 e/h. Only a slight difference favors the combination

AF+ODI 3%, which reached the highest Acc = 81.28% and Se = 92.06%, as well

as the highest NPV = 51.92% in 1 e/h. This was also observed in the PPV -NPV

and LR−-LR+ pairs (Jiménez-Garćıa et al., 2020). Sp = 36.00% is the weakest

diagnostic metric, but was only slightly lower than the other configuration (Ta-

ble 4.1). This result suggests that these models tend to estimate at least mild OSA

in control subjects, which should be taken into account if a screening protocol is

to be implemented. In this sense, a high rate of children should be re-evaluated to

confirm if they are affected by OSA or not. With regard to the results reached in

5 e/h, the models showed moderate diagnostic ability as shown by Acc = 82.05%,

Sp = 85.66%, and NPV = 85.66%. This could be advantageous to discard surgi-

cal treatment in the case of getting a negative result in 5 e/h, because both Sp and

NPV are high. The diagnostic ability in 10 e/h stands out by means of the high

Acc = 90.26% and PPV = 88.14%, as well as very high LR+ = 27.4768. These

results are useful to directly derive children predicted as having severe OSA to

surgical treatment, given that most of them would be confirmed in a hypothetical

PSG-based assessment.

Notwithstanding the promising results of the AdaBoost models, their diag-

nostic performances were clearly surpassed by both DL architectures in all AHI

cutoffs. The Bland-Altman plots shown in Figure 4.6 show high agreement be-

tween actual and estimated AHI, also reflected by the high ICCs. Nevertheless,

the agreement was slightly lower in the UofC test database. In order to compare

ensemble and DL algorithms, the results reached in the UofC database should

be used for the comparison because this dataset was used in both approaches.

With regard to 4-class classification of OSA severity, both DL models are one step

ahead of AdaBoost in terms of accuracy (Acc4 = 62.31% and Acc4 = 61.79% vs.
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Acc4 = 57.95%, respectively) and Cohen’s Kappa (k = 0.4495 and k = 0.4469

vs. k = 0.3930 and k = 0.3984, respectively). This is also reflected in the diag-

nostic performance in all cutoffs (Tables 4.1 and 4.3), which was higher using the

CNN and CNN+RNN models. The same Acc = 84.10% in 1 e/h was reported

in both DL approaches in comparison with Acc = 81.28% using AdaBoost. A

better balance between Sp and NPV was observed in the CNN model, which may

be advantageous to primarily discard subjects without OSA who were referred to

PSG. This is also supported by LR− = 0.1276 and LR− = 0.1035, both in 1 e/h

using the CNN and CNN+RNN models, respectively. These two rates are very

close to 0.1, which would mean a strong evidence when the model discards OSA

(Deeks and Altman, 2004). The CNN+RNN architecture was the best overall

model in 5 e/h since it surpassed both CNN and AdaBoost in all the performance

rates (Table 4.3). The moderate-to-high rates of correctly classified patients in 5

e/h encourage to use this model to deploy a screening protocol. The CNN+RNN

model seems to be the ideal choice to primarily decide whether or not deriving

children to further diagnosis by means of PSG or directly to surgical treatment.

Lastly, the DL models also have high diagnostic value to directly derive children

to surgical treatment due to their high Acc and Se while maintaining also high

Sp, which is crucial to minimize possible false positives. The LR+ = 12.6538 was

much lower compared to AdaBoost but it remained above 10, which could estab-

lish a great evidence when the model predicts severe OSA (Deeks and Altman,

2004).

The diagnostic ability of DL models was also assessed in the CHAT test set.

In this case, ICC, k, and Acc4 were higher than those obtained in the UofC

dataset (Jiménez-Garćıa et al., 2022, 2024). For example, the Bland-Altman plots

(Figures 4.5 and 4.6) show that the confidence interval of the AHI estimation error

is much narrower in the CHAT database, which is consequent with the higher

ICC obtained in this dataset. As a result, the OSA severity estimation results

summarized in the confusion matrices of Figure 4.7 also show high agreement in

the 4-class classification task. The CNN+RNN show slightly better agreement

compared to CNN (Acc4 = 74.51%, k = 0.6231 vs. Acc4 = 72.55%, k = 0.6011,

respectively), which confirms that the CNN+RNN resulted in a improved version

of the CNN. With respect to the diagnostic performance in 1, 5, and 10 e/h,

Table 4.2, the CNN+RNN show some advantages in comparison with CNN. In

1 e/h, the CNN+RNN reached an Acc = 87.25% with a balanced Se-Sp pair,

along with high NPV = 65.56%. Again, these results suggest the usefulness of

this proposal to discard the presence of OSA due to the high rate of patients that
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were correctly classified as no OSA subjects (LR− = 0.1473 was low but slightly

higher than the same rate observed in the UofC database). Both DL models

obtained exactly the same diagnostic performance in the intermediate cutoff, with

high Acc = 93.46% and near to excellent Sp = 99.07% and PPV = 97.33%. This

relevant result may allow to directly refer surgical treatment to those patients who

tested positive using this automatic method, since the number of false positives

(i.e., those who tested positive but do not need surgical treatment because their

actual AHI<5 e/h) is very reduced. With respect to the diagnostic ability in 10

e/h, the CNN model was slightly more accurate (Acc = 94.44% vs. Acc = 93.46%),

but both Se and Sp were very similar within each other. These results indicate that

the proposed DL models can also be used to directly recommend surgical treatment

to those patients who receive a severe OSA diagnosis using the proposed models,

because LR+ > 10 indicate strong evidence when the model detects severe OSA

(Deeks and Altman, 2004).

The differences in the diagnostic ability across databases may be motivated by

the discrepancies between scorers and the study design. PSG data corresponding

to the CHAT database was scored using a more normalized research protocol in

a common PSG reading center (Marcus et al., 2013), whereas the UofC database

was obtained in a more clinical setting in which various scorers may have derived

different interpretation of the signals (Collop, 2002). Moreover, only CHAT data

could be used to train the DL models at a epoch/segment level (i.e., to detect the

number of apneas/hypopneas) since only this database contained the annotations

of apneic events. Nevertheless, both CHAT and UofC databases were used to

validate the algorithms and optimize hyperparameters, so the chances of overfitting

were reduced (Jiménez-Garćıa et al., 2022, 2024).

5.4.2 Clinical usefulness of CNN+RNN: screening protocol

According to these results, a screening protocol can be derived following the most

accurate model (CNN+RNN) AHI estimates. This protocol might be implemented

in low-resource settings that do not allow a proper PSG-based examination for

children. This way, by recording only AF and SpO2 with a portable Type 3 or

4 device and analyzing the overnight recording with the proposed CNN+RNN,

a primary diagnosis can be obtained. The following medical decisions can be

determined in view of the result provided by the algorithm:

1. The CNN+RNN algorithm predicts AHI<1 e/h: children may not need

further diagnostic tests such as PSG, and surgery can also be discarded be-
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cause only 1.63% of children who tested negative with this model actually

had AHI≥5 e/h, which is the threshold to refer surgical treatment. Nev-

ertheless, caregivers should watch out the chidren’s symptoms and report

them for further assessment.

2. The CNN+RNN algorithm predicts 1≤AHI<5 e/h: start non-surgical treat-

ment of pediatric OSA symptoms (weight loss, anti-inflammatory drugs,

etc.). In addition, patients should be followed up to re-evaluate their symp-

toms. Surgery should be initially discarded because only 11.99% of children

with predicted 1≤AHI<5 e/h actually had moderate-to-severe OSA. If the

symptoms persist, derive to PSG in order to confirm surgical treatment.

3. The CNN+RNN algorithm predicts 5≤AHI<10 e/h: derive children to PSG

to confirm preliminary OSA diagnosis. Depending on PSG result, consider

surgical treatment because 69.72% of children with this preliminary result

had at least moderate-to-severe OSA.

4. The CNN+RNN algorithm predicts AHI≥10 e/h: recommend surgical treat-

ment evaluation without performing PSG because only 3.28% of children

with preliminary AHI≥10 e/h according to the model actually had AHI<5

e/h. If surgeons do not consider it appropriate to operate, propose pharma-

cological treatment.

Using this protocol, up to 78.45% of pediatric PSGs could potentially be avoided,

drastically reducing the workload of sleep technicians and the waiting lists of the

laboratories. This way, PSG could be inmediately available for those children

that initially obtained 1≤AHI<5 with the automatic method and have persistent

symptoms, as well as those who initially had 5≤AHI<10 regardless the symptoms.

5.5 Comparison with previous studies

As mentioned in Section 1.5, several ML methodologies have been proposed in the

past to overcome the simplification of OSA diagnosis in children. These approaches

combine signal processing algorithms with pattern recognition models to automat-

ically detect pediatric OSA from a variety of biomedical recordings (Bertoni and

Isaiah, 2019; Gutiérrez-Tobal et al., 2022). A meta-analysis involving the use of

these pattern recognition methods to diagnose pediatric OSA has been recently

carried out, which estimates the diagnostic performance of these ML-based ap-

proaches as: Se = 84.9%, Sp = 49.9% (1 e/h), Se = 71.4%, Sp = 83.2% (5 e/h),
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and Se = 65.2%, Sp = 93.1% (10 e/h) (Gutiérrez-Tobal et al., 2022). Regard-

ing the use of AF and SpO2 data, it was observed that several characterizations

have been addressed and different ML approaches have been tested. Table 5.1

summarizes the most recent studies that have applied pattern recognition to AF

and/or SpO2 to aid in the diagnosis of pediatric OSA. The diagnostic performance

of these methods is also reported in Table 5.2.

As shown in Table 5.1, SpO2 is the most used signal, either alone or com-

bined with other sources such as PRV or AF. The most common features involved

in these approaches were temporal, spectral and nonlinear parameters, but some

studies also addressed bispectrum or wavelets. A large portion of these studies also

included ODI 3% among other oximetric indices. Regarding pattern recognition

methods, the most common were LR or shallow NNs. It is necessary to note that

other studies also used ensemble learning methods such as AdaBoost or XGBoost,

and very few implemented a DL architecture (CNN, RNN, etc.). The diagnostic

performances reached by all these feature-based methods was very similar, with

Acc =75.0%–83.2% in 1 e/h, Acc =78.5%–84.9% in 5 e/h, and Acc =89.0%–

91.1% in 10 e/h. In comparison with these studies, the study elaborated within

this doctoral thesis combining AF with ODI 3% showed a diagnostic ability sim-

ilar to other approaches that combined ODI 3% with AF or other SpO2 features

(Barroso-Garćıa et al., 2021a,b; Vaquerizo-Villar et al., 2018a,c). This suggests

that the investigation of novel approaches to characterize AF and/or SpO2 is now

mature, and is progressively moving forward to DL approaches that assume the

task of learning their own representations of input data. Only four DL-based

approaches were proposed in the context of pediatric OSA diagnosis, being two

part of this doctoral thesis (Jiménez-Garćıa et al., 2022, 2024). It can be seen that

these novel methods reached higher diagnostic performance than the previous ones:

Acc =75.9%–84.1% in 1 e/h, Acc =83.9%–87.0% in 5 e/h, and Acc=90.3%–92.3%

in 10 e/h. To note, the results reached in the study of (Garćıa-Vicente et al.,

2023) were obtained using the CHAT database instead of UofC, which was used

to elaborate this comparative table.

With regard to the DL approaches presented in this doctoral thesis, it can be

seen that the models combining AF and SpO2 surpassed the diagnostic ability of

the only previous approach based on SpO2 alone (see the last rows of Table 5.2).

The CNN and CNN+RNN approaches accomplished the OSA detection with the

highest Acc=84.1% in 1 e/h, and also reached remarkable Se, PPV and NPV

in this cutoff in comparison with other approaches. The CNN+RNN was more

accurate than the previous approaches, with remarkable Se, PPV and Sp. How-
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Table 5.1: Summary of previous methodologies focused on the automatic OSA diagnosis
in children using AF and/or SpO2.

Study Signal Extraction Selection
Pattern

recognition
Validation

#Total/
#Test

Garde et al.
(2014)

SpO2,
PRV

Temporal,
Non-linear,
Spectral

AUC
optimiza-
tion

LDA
Loo-cv / 4-
fold-cv

146/146

Garde et al.
(2019)

SpO2,
PRV

Temporal,
Spectral,
ODI 3%

Stepwise
LR

LR Loo-cv 207/207

Calderón
et al. (2020)

SpO2
Oximetric
indices

– LR,AdaBoost 10-fold-cv 453/453

Ye et al.
(2022)

SpO2,
HR

ODI, HR
statistics

XGBoost 3139/628

Hornero et al.
(2017)

SpO2

Temporal,
Spectral,
Non-linear,
ODI 3%

FCBF NN Holdout 4191/3602

Álvarez et al.
(2018)

SpO2

Anthropometrics,
Temporal,
Symbolic
dynamics,
ODI 3%

FSLR LR Bootstrap 142/142

Vaquerizo-
Villar et al.
(2018a)

SpO2
ODI 3%,
DFA

FCBF NN Holdout 981/392

Vaquerizo-
Villar et al.
(2018c)

SpO2

Temporal,
Spectral,
Wavelet,
ODI 3%

FCBF SVM, LR Holdout 981/392

Barroso-
Garćıa et al.
(2020)

AF,
SpO2

Recurrence
Plots, ODI
3%

FCBF NN Holdout 946/376

Barroso-
Garćıa et al.
(2021a)

AF,
SpO2

Bispectrum,
ODI 3%

FCBF NN Holdout 946/376

Barroso-
Garćıa et al.
(2021b)

AF,
SpO2

Wavelet,
ODI 3%

FCBF MLP,AdaBoost Holdout 946/376

Jiménez-
Garćıa
et al. (2020)

AF,
SpO2

Temporal,
Spectral,
Non-linear,
ODI 3%

FCBF AdaBoost.M2 Holdout 974/390

Vaquerizo-
Villar et al.
(2021)

SpO2 − − CNN Holdout 3196/935

Garćıa-
Vicente et al.
(2023)

ECG − − CNN Holdout 1610/299

Jiménez-
Garćıa
et al. (2022)

AF,
SpO2

− − 2D CNN Holdout 2612/696

Jiménez-
Garćıa
et al. (2024)

AF,
SpO2

− − CNN+RNN Holdout 2612/696

ECG: electrocardiogram, SpO2: blood oxygen saturation signal, AF: airflow signal, PRV: pulse rate
variability signal, ODI 3%: 3% oxygen desaturation index, DFA: Detrended Fluctuation Analysis, AUC:
area under the receiver operating characteristic curves, FSLR: forward stepwise logistic regression,
FCBF: fast correlation based filter, LDA: linear discriminant analysis, LR: logistic regression, NN:
neural network, SVM: support vector machine, AdaBoost: adaptive boosting, Loo-cv: leave-one-out
cross validation.



5.5. Comparison with previous studies 75

Table 5.2: Comparison of the diagnostic performance obtained in other previous studies
focused on the automatic OSA diagnosis in children.

Study AHI Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR–

Garde et al. (2014) 5 88.4 83.6 84.9 76.9 92.6 5.4 0.1

Garde et al. (2019)
1 80.0 65.0 75.0 – – 2.3 0.3
5 85.0 79.0 82.0 – – 4.1 0.2
10 82.0 91.0 89.0 – – 9.1 0.2

Calderón et al.
(2020)

5 62.0 96.0 79.0 94.3 – 15.5 0.4

Ye et al. (2022)
1 90.3 100 90.5 100 16.7
5 82.0 93.8 85.7 96.7 69.9
10 84.8 92.1 89.8 83.1 93.0

Hornero et al. (2017)
1 84.0 53.2 75.2 81.6 53.7 1.8 0.3
5 68.2 87.2 81.7 68.6 87.0 5.3 0.4
10 68.7 94.1 90.2 67.7 94.3 11.6 0.3

Álvarez et al. (2018) 5 73.5 89.5 83.3 82.0 84.3 10.4 0.3

Vaquerizo-Villar

et al. (2018a)(1)

1 97.1 23.3 82.7 83.9 66.7 1.3 0.12
5 78.8 83.7 81.9 74.2 86.9 4.8 0.25
10 77.1 94.8 91.1 80.0 93.9 14.9 0.24

Vaquerizo-Villar

et al. (2018c)(1)
5 71.9 91.1 84.0 83.8 84.5 14.6 0.3

Barroso-Garćıa et al.

(2020)(1)

1 97.7 22.2 83.2 84.1 69.6 1.3 0.1
5 78.7 78.3 78.5 68.5 86.0 3.6 0.2
10 78.8 94.3 91.0 78.8 94.3 13.7 0.2

Barroso-Garćıa et al.

(2021a)(1)

1 98.0 15.3 82.2 83.0 65.0 1.2 0.1
5 81.6 83.0 82.5 74.2 88.3 4.9 0.2
10 72.3 95.0 90.2 79.6 92.7 15.0 0.3

Barroso-Garćıa et al.

(2021b)(1)

1 80.3 68.1 78.0 91.5 44.9 2.6 0.3
5 68.0 90.3 81.9 80.8 82.5 7.2 0.4
10 72.4 96.0 91.0 83.0 92.8 19.0 0.3

Jiménez-Garćıa et al.

(2020)(1)

1 92.1 36.0 81.3 85.8 51.9 1.4 0.2
5 76.0 85.7 82.1 76.0 85.7 5.3 0.3
10 62.7 97.7 90.3 88.1 90.6 27.5 0.4

Vaquerizo-Villar

et al. (2021)(1)

1 90.8 36.4 80.1 85.4 49.1 1.4 0.25
5 76.0 88.6 83.9 79.8 86.2 6.7 0.3
10 79.5 95.8 92.3 83.5 94.6 18.9 0.2

Garćıa-Vicente et al.

(2023)(2)

1 84.2 46.2 75.9 84.9 44.8 1.6 0.3
5 76.7 91.4 87.0 79.3 90.1 8.9 0.3
10 53.7 98.1 92.0 81.5 93.0 27.7 0.5

Jiménez-Garćıa et al.

(2022)(1)

1 95.2 37.3 84.1 86.5 65.1 1.5 0.1
5 82.2 85.3 84.1 76.9 88.9 5.6 0.2
10 78.3 93.5 90.3 76.5 94.1 12.0 0.2

Jiménez-Garćıa et al.

(2024)(1)

1 96.8 30.7 84.1 85.4 69.7 1.4 0.1
5 82.9 85.7 84.6 77.6 89.3 5.8 0.2
10 78.3 93.8 90.5 77.4 94.1 12.7 0.2

AHI: apnea-hypopnea index, Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive pre-
dictive value, NPV: negative predictive value, LR+: positive likelihood ratio, LR–: negative
likelihood ratio. (1): Results on UofC test set. (2): Results on CHAT test set.

ever, the diagnostic ability of the SpO2-based CNN surpassed both dual-channel

approaches, suggesting that SpO2 only would suffice to detect the most severe
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cases (Jiménez-Garćıa et al., 2022; Vaquerizo-Villar et al., 2021). This is also sup-

ported by other studies that assessed the role of oximetry as an abbreviated test

for pediatric OSA (Kaditis et al., 2016a).

Overall, the results presented in this doctoral thesis confirm that DL archi-

tectures have a strong capability to automatically detect the patterns of AF and

SpO2 related to apneas, hypopneas, and their corresponding desaturations, and

use them to estimate the presence of OSA and its severity. Furthermore, these DL

models can be visually assessed with XAI methods to obtain explanations of their

functioning and discover these possibly hidden patterns that the deep networks

associate with signs of pathology.

5.6 Limitations of the study

Notwithstanding the usefulness of the research conducted in this doctoral thesis,

it is necessary to note some limitations that could be addressed in the future.

Although the studies that constitute this doctoral thesis were conducted using

two different databases covering a total of 2,612 pediatric patients, these can be

complemented by adding more subjects. The first study of this thesis comprised

a total of 974 subjects and the two subsequent works were conducted using an

additional public database of 1,638 pediatric patients. Nevertheless, the differences

in age, sex, or AHI between children recruited to form each database should be

taken into account to analyze the results. Validation techniques such as bootstrap

or 10-fold cross validation have been used to minimize the chances of overfitting

in the the developed algorithms, improving their generalizability. Furthermore, a

portion of our databases was always preserved to test the different deployments in

a common set of unseen data. However, larger and more heterogeneous databases

would represent the particularities of pediatric OSA and can further enhance the

generalizability of the proposed automatic methods.

This study could also benefit from a more exhaustive analysis of the diagnostic

performance in specific subgroups of the population that formed our database.

Although sociodemographic and anthropometric variables were taken into account

to divide equally the databases into training, validation, and test sets, as well as

to avoid a lack of generalization, a stratification of the conducted tests was not

assessed.

The disease covered in this doctoral thesis is also a frequent condition in adults.

This study was exclusively focused on pediatric OSA, and the validity of the

results are thus restricted to the pediatric population. Although pediatric OSA
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specificities have motivated the development of this study, the broad similarity

with adult OSA can make the algorithms presented in thesis a feasible starting

point to propose similar solutions for adults.

All sleep studies utilized in this research were derived from Type 1 PSGs per-

formed in sleep laboratories. These are attended settings with the supervision of

experienced and skilled medical staff. Therefore, the validation of our methods

in AF and SpO2 signals recorded from an unattended and/or domiciliary setting

would be desirable.

Regarding the recording of AF signals, the oronasal thermistor was selected

to perform the present study instead of the pressure sensor. Notwithstanding

the preference of thermistors to detect apneas, the AASM recommends using also

the nasal pressure sensor to detect hypopneas. However, the thermistor is also

considered an alternative to the pressure sensor when this is not available (Berry

et al., 2012). Similarly, pulse oximeters are not able to detect hypopnea events

associated to arousals. Therefore, a more exhaustive analysis of the detection

this type of events should be taken into account. Overall, this study is naturally

limited by the choice of AF and SpO2 signals as data sources. Other overnight

recordings such as PRV are also easy to obtain and could potentially complement

those signals.

AF and SpO2 signals were used to detect apneic events, but the AHI estimation

also comprises the computation of the total sleep time (TST). In a PSG setting,

TST is derived from the time spent in each of the sleep stages (Berry et al.,

2012), but these states are determined by means of EEG/EOG analysis. The

linear regression implemented in the DL-based architectures to perform the AHI

estimation can partially overcome this issue, but an assessment of the informa-

tion about wakefulness/sleep states to accurately compute TST from a convenient

sensor needs to be addressed.

The feature engineering approaches covered in this doctoral thesis are naturally

limited by the type of extracted features and the algorithms used to compute them.

The natural way to overcome this limitation would be to investigate alternative

signal processing and analysis methodologies. However, it can be seen in 5.2

that DL approaches have the potential to outperform most of the current feature

extraction and selection methodologies.

With respect to the deployment of DL architectures, only two models have

been assessed. Being DL a field in continuous expansion, the number of available

architectures and algorithms is increasing. Therefore, the investigation of DL

approaches in the context of pediatric OSA is far from being mature.
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Finally, the explainability of the proposed DL models has been addressed by

deploying an implementation of the Grad-CAM algorithm. Although this method

has shown its usefulness in the detection of OSA-related patterns, complementary

XAI methods need to be assessed, paying special attention to algorithms aimed at

explaining time series classification (Theissler et al., 2022).



Chapter 6

Conclusions

As mentioned in the previous chapters, the ensemble learning, DL, and XAI ap-

proaches covered in the doctoral thesis allowed us to provide accurate and trust-

worthy automated diagnostic methods that can serve as an aid in the diagnosis of

pediatric OSA by means of only AF and SpO2 biomedical signals.

This chapter summarizes the contributions of this thesis, the main conclusions,

and future research lines derived from these studies. The novel contributions of the

research works conducted in this doctoral thesis are indicated in Section 6.1. The

conclusions drawn from the research works of this compendium are listed in Sec-

tion 6.2. Lastly, the possible future research lines that can continue and complete

the investigations initiated in this doctoral thesis are introduced in Section 6.3.

6.1 Contributions

The research works conducted in this doctoral thesis represent a number of break-

throughs in the investigation of alternatives to diagnose pediatric OSA. These are

the most important contributions of this doctoral thesis:

1) A direct comparison of AF and SpO2 signals to automatically de-

tect pediatric OSA. Previous studies in the context of childhood OSA

diagnosis assessed the usefulness of the automatic analysis of single-channel

AF or SpO2 alone, but none of them proposed a comparison of the diag-

nostic ability of these signals, either alone or combined. In order to cover

this gap, a database of overnight AF and SpO2 signals from pediatric pa-

tients was elaborated and a exhaustive characterization of both signals was

79



80 Chapter 6. Conclusions

performed. As a result, several features from AF and SpO2 were obtained

and evaluated. Moreover, a feature selection algorithm was used to identify

the most relevant and complementary ones. The main discovery was that

the CTM computed from AF was complementary with ODI 3%, the most

discriminative feature of SpO2. Thus, these two features have potential to

detect OSA jointly with enhanced diagnostic performance.

2) Assessment of ensemble learning methods using information from

AF and SpO2. To date, only classic and widespread ML algorithms such

as LDA, LR, SVM, etc. were proposed to automatically detect childhood

OSA. However, ensemble learning algorithms such as AdaBoost were not

considered even though these methods showed state-of-the-art performance

in a variety of contexts. This drawback was overcome by deploying multi-

class AdaBoost models trained with the previously mentioned features of AF

and/or SpO2 to classify OSA severity into 4 levels: no OSA, mild, moder-

ate, and severe OSA. As a result, an accurate and generalizable ensemble

learning model was proposed as a diagnostic aid of pediatric OSA using the

information of AF and SpO2.

3) A novel 2D CNN to process AF and SpO2 jointly aimed at estimat-

ing the AHI. To the best of our knowledge, only one previous study was

aimed at detecting pediatric OSA using DL. This DL model was restricted to

analyze SpO2, thus not being able to simultaneously process 2 signals. The

development of a new 2D CNN architecture aimed at analyzing overnight

AF and SpO2 enabled the analysis of these 2 signals jointly by means of a

CNN. As a result, an accurate model was deployed and further evaluated in

two pediatric OSA databases. The diagnostic ability of this model surpassed

that showed by the SpO2-based CNN, especially in 1 e/h and 5 e/h.

4) A state-of-the-art CNN+RNN architecture. In order to exploit the

benefits of both CNNs and RNNs, a natural extension of the 2D CNN pro-

posed in the previous study was developed. The combination of a CNN able

to process AF and SpO2 simultaneously with a RNN that analyzes the tem-

poral dependencies of these signals in large segments was deployed. As a

result, the diagnostic performance of this novel architecture surpassed those

reached by previous approaches.

5) A transfer learning approach to optimize the training and perfor-

mance of the CNN+RNN. Since the CNN+RNN algorithm optimization
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is a cumbersome process, a transfer learning approach was implemented in

order to reduce training time and focus on the optimization of the RNN part

of the architecture. Therefore, the previously optimized CNN layers were

transferred to the CNN+RNN model. As a result, the CNN+RNN model

not only was faster to train, but also gained generalization ability.

6) Explanatory heatmaps of the predictions derived from the

CNN+RNN model using Grad-CAM. An important breakthrough in

the research on automatic diagnostic aid methods for OSA quantification

was to add interpretability to the CNN+RNN model. This was done by

generating Grad-CAM heatmaps that highlight the patterns this network

associates to the presence of OSA-related abnormalities. As a result, users

can trust in the decisions made by automatic diagnostic methods.

6.2 Main conclusions

The following conclusions can be drawn from the research conducted throughout

this doctoral thesis:

1) The joint analysis of AF and SpO2 signals is useful to automatically de-

tect pediatric OSA. In this sense, relevant and complementary features from

both signals were useful to derive automatic classification models. AF-

derived CTM and SpO2-derived ODI 3% were the most useful features from

these signals, which showed their relevance to detect pediatric OSA and

non-redundancy within each other.

2) Multi-class AdaBoost classifiers are able to accurately detect pediatric OSA

severity from AF and SpO2. The classifiers achieved remarkable diagnostic

performance from a set of complementary features derived from AF and

SpO2 signals.

3) In the feature engineering approach, CTM and ODI 3% are the most useful

features from AF and SpO2, respectively. The combination of these features

by means of AdaBoost enhanced and maximized the diagnostic ability of this

classification algorithm in comparison with other combinations involving the

use of only one signal alone.

4) A dual-channel approach to detect pediatric OSA involving AF and SpO2

signals is advantageous against single-channel approaches. Both ensemble
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and DL models achieved higher diagnostic performance in comparison with

other approaches that only comprised one signal.

5) A 2D CNN architecture was useful to process and analyze AF and SpO2

signals and to estimate the AHI from these overnight recordings. The pro-

posed CNN-based approach achieved a remarkable diagnostic performance

to detect pediatric OSA, especially when differentiating between control and

mild OSA subjects, as well as discriminating mild and moderate OSA pa-

tients. The proposed AF and SpO2-based CNN surpassed the diagnostic

performance of previous DL models aimed at analyzing SpO2 signals alone.

6) The combination of CNN with RNN was useful to detect pediatric OSA

from AF and SpO2. In this sense, the use of a transfer learning approach to

develop a more sophisticated CNN+RNN model demonstrated its usefulness.

This novel architecture outperformed previous CNN-based models as well.

7) The CNN+RNN architecture aimed at analyzing AF and SpO2 was the most

accurate DL model to estimate OSA severity by means of the AHI. To date,

the performance of this algorithm is the state-of-the-art among automatic

pediatric OSA detection using a reduced set of biomedical signals since it

reached the highest diagnostic ability in comparison with similar approaches

aimed at the same population.

8) The use of XAI methods such as Grad-CAM enabled the exploration of OSA-

related patterns in AF and SpO2 signals. Explanatory heatmaps highlighted

specific parts of the input data which were relevant for the CNN+RNNmodel

to make their predictions, and allowed us to interpret the functioning of this

complex architecture.

9) The Grad-CAM heatmaps obtained from the CNN+RNN had the ability to

justify why the CNN+RNN model predicted the presence of apneas or hy-

popneas in the input signals. Therefore, Grad-CAM contributed to enhance

its diagnostic trustworthiness.

10) Explanatory heatmaps revealed relevant OSA-related patterns learned by

the CNN+RNN algortithm. The patterns highlighted in the AF and SpO2

signals by means of Grad-CAM were mainly related to desaturations and

sudden changes in the amplitude of respiratory waves. These explanatory

heatmaps might be useful for sleep technicians to analyze and interpret these

signals with the objective of simplifying the diagnosis of pediatric OSA.
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Based on the aforementioned statements, the global conclusion of this doctoral

thesis is that the automatic signal processing and analysis of AF and SpO2 based on

ensemble learning and DL methods combined with XAI proposed in this research

has a great diagnostic usefulness, and can be used to deploy alternative, simple,

reliable and trustworthy screening methods to serve as an aid in the diagnosis of

OSA in children.

6.3 Future research lines

At the same time that the present research was being developed, some interesting

ideas were moved aside in order to be addressed in the future. The following

research ideas could compensate the limitations exposed in Section 5.6:

1) Expanding our databases to cover a greater and more diverse population of

children with suspicion of suffering OSA would be an interesting future goal.

In this sense, the application of the proposed models in a wider population

including children with a high risk of developing OSA in the future can be

addressed.

2) It would also be desirable to identify subgroups of children at risk of OSA

and assess the proposed methods specifically in these populations (e.g., obese

children, with down syndrome, other malformations, etc.).

3) It would be feasible to propose, optimize and prospectively validate the al-

gorithms presented in this thesis in a population of adults with suspicion of

OSA with the objective of reaching a greater number of affected people.

4) In order to ensure the utility of deployed methods outside the hospital fa-

cilities, it would be desirable to include AF and SpO2 signals from portable

Type 3 or 4 devices recorded at the patient’s home in our analyses. This

can be useful to identify possible differences between in-lab and at-home

recordings.

5) It would be desirable to assess other cardiorespiratory signals apart from

AF and SpO2 in order to enhance the detection of pediatric OSA. Including

other useful cardiac signals such as ECG or HRV -or pulse oximetry-derived

PRV- could be a future research line. In this sense, cardiac and/or pulse

information can be incorporated to assess their response to apneas and/or

hypopneas or obtain other useful sleep parameters (Garćıa-Vicente et al.,

2023; Garde et al., 2019; Mart́ın-Montero et al., 2021b, 2023).
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6) More advanced ML and DL methodologies such as hybrid models, transform-

ers, etc. could be considered to expand and optimize the use of automatic

methods as an aid in the diagnosis of pediatric OSA.

7) Complementary XAI methods could be applied to increase the quality and

quantity of the explanations about models’ outcomes. In this regard, at-

tention mechanisms or other model-agnostic XAI algorithms optimized to

explain time series can be taken into consideration.



Chapter 7

Papers included in the

compendium
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7.1 Contribution 1: Jiménez-Garćıa et al. (2020)

Assessment of Airflow and Oximetry Signals to Detect Pediatric Sleep

Apnea-Hypopnea Syndrome Using AdaBoost

Jorge Jiménez-Garćıa, Gonzalo C. Gutiérrez-Tobal, Maŕıa Garćıa, Leila

Kheirandish-Gozal, Adrián Mart́ın-Montero, Daniel Álvarez, Félix del Campo,

David Gozal, and Roberto Hornero. Entropy, vol. 22 (6), pp. 670, 2020. Impact

factor in 2020: 2.524, Q2 in “Physics, Multidisciplinary” (JCR-WOS).

DOI: https://doi.org/10.3390/e22060670.

Abstract: The reference standard to diagnose pediatric Obstructive Sleep Apnea

(OSA) syndrome is an overnight polysomnographic evaluation. When polysomnog-

raphy is either unavailable or has limited availability, OSA screening may comprise

the automatic analysis of a minimum number of signals. The primary objective

of this study was to evaluate the complementarity of airflow (AF) and oximetry

(SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary

goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA

severity in children. We extracted the same features from AF and SpO2 signals

from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index

(ODI) as a common clinically used variable. Then, feature selection was con-

ducted using the Fast Correlation-Based Filter method and AdaBoost classifiers

were evaluated. Models combining ODI 3% and AF features outperformed the

diagnostic performance of each signal alone, reaching 0.39 Cohens’s kappa in the

four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05%

and 90.26% in the apnea–hypopnea index cutoffs 1, 5 and 10 events/h, respectively.

The most relevant information from SpO2 was redundant with ODI 3%, and AF

was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced

the diagnostic performance of each signal alone using AdaBoost, thereby enabling

a potential screening alternative for OSA in children.

https://doi.org/10.3390/e22060670
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7.2 Contribution 2: Jiménez-Garćıa et al. (2022)

A 2D convolutional neural network to detect sleep apnea in children

using airflow and oximetry

Jorge Jiménez-Garćıa, Maŕıa Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila

Kheirandish-Gozal, Fernando Vaquerizo-Villar, Daniel Álvarez, Félix del Campo,

David Gozal, and Roberto Hornero. Computers in Biology and Medicine, vol.

147, pp. 105784, 2022. Impact factor in 2022: 7.7, Q1 in “Mathematical &

Computational Biology” (JCR-WOS).

DOI: https://doi.org/10.1016/j.compbiomed.2022.105784.

Abstract: The gold standard approach to diagnose obstructive sleep apnea (OSA)

in children is overnight in-lab polysomnography (PSG), which is labor-intensive

for clinicians and onerous to healthcare systems and families. Simplification of

PSG should enhance availability and comfort, and reduce complexity and wait-

lists. Airflow (AF) and oximetry (SpO2) signals summarize most of the infor-

mation needed to detect apneas and hypopneas, but automatic analysis of these

signals using deep-learning algorithms has not been extensively investigated in the

pediatric context. The aim of this study was to evaluate a convolutional neural

network (CNN) architecture based on these two signals to estimate the severity

of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adeno-

tonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical

database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2

signals was implemented to estimate the number of apneic events, and the total

apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy

was used to train the CNN, adjust the hyperparameters, and assess the diagnostic

ability of the algorithm, respectively. Classification into four OSA severity levels

(no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen’s Kappa

of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical

dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10

events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%–90.26% in the

clinical database. The proposed CNN-based architecture achieved high diagnos-

tic ability in two independent databases, outperforming previous approaches that

employed SpO2 signals alone, or other classical feature-engineering approaches.

Therefore, analysis of AF and SpO2 signals using deep learning can be useful to

deploy reliable computer-aided diagnostic tools for childhood OSA.

https://doi.org/10.1016/j.compbiomed.2022.105784
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7.3 Contribution 3: Jiménez-Garćıa et al. (2024)

An explainable deep-learning architecture for pediatric sleep apnea

identification from overnight airflow and oximetry signals

Jorge Jiménez-Garćıa, , Maŕıa Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila

Kheirandish-Gozal, Fernando Vaquerizo-Villar, Daniel Álvarez, Félix del Campo,

David Gozal, and Roberto Hornero. Biomedical Signal Processing and Control,

vol. 87, part B, pp. 105490, 2024. Impact factor in 2022: 5.1, Q2 in “Engineer-

ing, Biomedical” (JCR-WOS).

DOI: https://doi.org/10.1016/j.bspc.2023.105490.

Abstract: Deep-learning algorithms have been proposed to analyze overnight air-

flow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric ob-

structive sleep apnea (OSA), but current algorithms are hardly interpretable. Ex-

plainable artificial intelligence (XAI) algorithms can clarify the models-derived

predictions on these signals, enhancing their diagnostic trustworthiness. Here, we

assess an explainable architecture that combines convolutional and recurrent neu-

ral networks (CNN + RNN) to detect pediatric OSA and its severity. AF and

SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) pub-

lic database (n = 1,638) and a proprietary database (n = 974). These signals

were arranged in 30-min segments and processed by the CNN + RNN architec-

ture to derive the number of apneic events per segment. The apnea-hypopnea

index (AHI) was computed from the CNN + RNN-derived estimates and grouped

into four OSA severity levels. The Gradient-weighted Class Activation Mapping

(Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related

patterns of interest. The AHI regression reached very high agreement (intraclass

correlation coefficient > 0.9), while OSA severity classification achieved 4-class

accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in

CHAT and the private datasets, respectively. All diagnostic accuracies on increas-

ing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps

revealed that the model focuses on sudden AF cessations and SpO2 drops to detect

apneas and hypopneas with desaturations, and often discards patterns of hypop-

neas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze

AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children

at risk of OSA.

https://doi.org/10.1016/j.bspc.2023.105490
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Kheirandish-Gozal, Adrián Mart́ın-Montero, Daniel Álvarez, Félix del
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(CASEIB 2018), ISBN: 978-84-09-06253-9, pp. 29–32, Ciudad Real (Spain),

November 21 - November 23, 2018.
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Álvarez, Adrián Mart́ın-Montero, Félix del Campo, Leila Kheirandish-Gozal,

David Gozal, Roberto Hornero, “Análisis de flujo aéreo y saturación de
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Sociedad Española de Ingenieŕıa Biomédica (CASEIB 2021), ISBN: 978-84-

09-36054-3, pp. 63–66, Madrid (Spain), November 25 - November 26, 2021.
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A.2 International internship

Three-month research internship at the Biomedical Data Processing research team

(BIOMED), STADIUS Center for Dynamical Systems, Signal Processing, and

Data Analytics, Department of Electrical Engineering (ESAT-STADIUS), KU

Leuven, Leuven, Belgium.

i. Purpose of the internship

The doctoral student conducted formative and research activities closely re-

lated to his Doctoral Thesis’ topic, focused on detecting pediatric obstructive

sleep apnea (OSA) using biomedical signals such as respiratory airflow and

oximetry. These activities addressed the research, development and appli-

cation of advanced deep learning (DL) and explainable artificial intelligence

(XAI) techniques in the context of pediatric OSA detection. In this sense,

the student worked on the application of DL techniques such as convolu-

tional neural networks (CNN) and recurrent neural networks (RNN), as well

as their combination with XAI algorithms derived from the Shapley Additive

Explanations (SHAP) technique. During the internship, the student collab-

orated with the research team members in the host institution on the design

and implementation of a KernelSHAP-based XAI algorithm applicable to

DL models such as CNN and the combination CNN+RNN developed during

the thesis. The goal of this research is to dive into the explainability of these

models and enhance the interpretation of the airflow and oximetry signals’

patterns relevant for the automatic detection of OSA in children.

ii. Methodological summary

The study conducted during the research stay addressed the development of

advanced XAI techniques applicable to biomedical time series data such as
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airflow and oximetry signals. A review of the state-of-the-art focused on the

previous works that have designed, developed, and applied XAI algorithms in

the context of time series data classification, and with a particular applicabil-

ity on the analysis of biomedical signals, was performed. Then, a novel XAI

methodology aimed at computing Shapley values derived from the SHAP

technique was developed. XAI techniques based on SHAP/Shapley values

estimate which part of a model’s output (a prediction) is attributable to each

part of the input (in our case, the signals). In order to address this computa-

tion, some SHAP implementations were reviewed. KernelSHAP is a SHAP

implementation aimed at estimating Shapley values specifically designed to

handle high dimensional data such as those used by DL models (images,

text, time series, etc.). Specifically, our developed DL models were aimed

at processing and analyzing raw airflow and oximetry recordings. There-

fore, KernelSHAP was specifically adapted to obtain SHAP-based explana-

tory attributions from short segments of the input signals that clarify their

contribution to OSA detection. A public database composed of biomedical

signals from children with suspicion of OSA, the Childhood Adenotonsillec-

tomy Trial (CHAT) database, was used during the development and analysis

of our proposal.

iii. Quality indicators of the institution

KU Leuven is a leading university in Belgium, and one of the most rele-

vant and prestigious European universities. According to the ”Times Higher

Education World University Ranking” and ”Shanghai Academic Ranking

of World Universities”, KU Leuven is ranked 42nd and 95th respectively,

standing out in relevant areas in the field of doctoral thesis research, such

as ”Biomedical Engineering”, ”Medical Technology”, ”Biotechnology” or

”Computer Science & Engineering”. In the academic year 2021-2022 it had

65,100 students, of which 7,173 were PhD students and 21% came from out-

side Belgium. In addition, it has a total of 14,789 employees, of whom 1,876

are full professors or professors and 2,017 are postdoctoral researchers. Its

scientific output amounted to 10,425 peer-reviewed publications (incl. jour-

nal articles, book chapters and conference papers). Finally, KU Leuven has

109 ERC projects (FP7 and H2020) and 11 ERC Horizon Europe projects.

The BIOMED group belongs to the Department of Electrical Engineering

(ESAT), where the STADIUS center is located. This center currently has

37 active research projects, of which 15 are funded by the European Union.
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Led by Professors Dr. Alexander Bertrand and Dr. Maarten de Vos, the

BIOMED group currently includes 2 postdoctoral researchers and about 25

PhD students. Its research lines are developed in close collaboration with

the UZ Leuven University Hospital, and are mainly divided into 6 thematic

areas: portable health monitoring, sleep monitoring, neonatal monitoring,

signal processing for next generation neural implants, electroencephalogra-

phy in daily life, and cancer diagnosis, all of them oriented towards medi-

cal monitoring and diagnostic support. Prof. Dr. Maarten de Vos is the

co-director of the BIOMED group. He is currently Full Professor at the

departments of Electrical Engineering (ESAT) and Medicine at KU Leuven,

has lectured at the universities of Oxford (UK) and Oldenburg (Germany).

He has supervised 10 PhD theses to date, and is currently director of more

than 10 PhD theses within the group related to the application of artificial

intelligence techniques in medicine. He has published 137 articles in journals

indexed in Journal Citation Reports, 50 communications in congresses and

3 book chapters (Scopus), obtaining 7,509/11,890 citations and an h-index

of 43/53 according to Scopus/Google Scholar. During his academic career

he has obtained several awards related to research projects and scientific

publications.

A.3 Grants

09/2020: “Convocatoria 2019 de contratos predoctorales de la Univer-

sidad de Valladolid”, grant from the Universidad de Valladolid and

funded by the Banco Santander. Destination place: Grupo de Ingenieŕıa

Biomédica, Universidad de Valladolid, Valladolid, Spain. Duration: Oc-

tober 01, 2020 – September 30, 2024.

07/2023: “Movilidad de Doctorandos. Ayudas para estancias breves en

el desarrollo de tesis doctorales (convocatoria 2023)”, grant from

the University of Valladolid. Destination place: Biomedical Data Pro-

cessing research team, KU Leuven, Leuven, Belgium. Duration: Septem-

ber 01, 2023 – December 01, 2023.

09/2023: “Ayudas financieras destinadas a estudiantes o recién titulados

de la Universidad de Valladolid para la realización de prácticas

Erasmus+ en empresas extranjeras con sede en el espacio eu-

ropeo de educación superior (EEES) y páıses asociados del pro-
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grama durante el curso académico 2023/2024”, grant from the

University of Valladolid and cofunded by European Funds. Destination

place: Biomedical Data Processing research team, KU Leuven, Leuven,

Belgium. Duration: September 01, 2023 – December 01, 2023.

09/2023: “Acciones de Movilidad para estancias del personal CIBER-

BBN en grupos externos. Año 2023”, “Centro de Investigación
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Apéndice B

Resumen en castellano

B.1 Introducción

La apnea obstructiva del sueño (AOS) es un trastorno del sueño causado por

obstrucciones o estrechamientos recurrentes y/o intermitentes de la v́ıa aérea su-

perior, y que provocan pausas totales y reducciones parciales de la respiración

(apneas e hipopneas, respectivamente) durante el sueño (Dehlink and Tan, 2016;

Moffa et al., 2020). Estas obstrucciones interrumpen la actividad respiratoria nor-

mal, se relacionan con un mayor esfuerzo respiratorio, interrumpen el desarrollo

de las diferentes fases del sueño y provocan episodios de hipoxemia (Bitners and

Arens, 2020; DelRosso, 2016). Los śıntomas más frecuentes de AOS en niños son

ronquidos, respiración dificultosa o pausas respiratorias e hipersomnolencia diurna.

Sin embargo, estos śıntomas pueden ser sutiles y no detectarse fácilmente (Tau-

man and Gozal, 2011). Las causas más frecuentes que predisponen a la aparición

del śındrome de la AOS son la hipertrofia adenoamigdalar, la obesidad, anomaĺıas

craneofaciales y trastornos neuromusculares (Moffa et al., 2020).

La AOS pediátrica afecta a entre el 1% y el 5% de los niños, aunque algunos

estudios han estimado una prevalencia del 5,7% (DelRosso, 2016; Marcus et al.,

2012). Sin embargo, la tasa real de niños que padecen AOS puede ser mayor debido

en gran medida a la dificultad para identificar y diagnosticar a los niños que la pa-

decen (Brockmann et al., 2018; Joosten et al., 2017). Asimismo, la AOS se asocia

con diversas consecuencias negativas que van desde comorbilidades cardiometabóli-

cas, como hipertensión y dislipidemia, hasta trastornos neuroconductuales, como

déficits neurocognitivos y de atención, y también hiperactividad (Marcus et al.,

2012; Tauman and Gozal, 2011). El diagnóstico precoz de los niños con riesgo

97
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de AOS es importante para poder derivar a un posible tratamiento quirúrgico o

iniciar tratamiento farmacológico, evitando las posibles consecuencias negativas y

otras comorbilidades graves.

El diagnóstico de la AOS infantil se ve afectado por las complicaciones de los

procedimientos diagnósticos más aceptados. El gold standard para diagnosticar

la AOS es la polisomnograf́ıa nocturna (PSG) realizada en una unidad del sueño

especializada. Esta prueba consiste en el registro de señales cardiorrespiratorias,

neuronales, musculares, de posición y movimiento durante la noche mientras el

paciente duerme (Berry et al., 2020; Jon, 2009). Después, las señales de la PSG

se analizan para localizar y cuantificar los episodios de apnea o hipopnea (Berry

et al., 2020). La Academia Americana de Medicina del Sueño (American Academy

of Sleep Medicine, AASM) define las apneas como una reducción ≥ 90% de la señal

de flujo aéreo (FA) durante al menos dos periodos respiratorios. Asimismo, las hi-

popneas se definen como una reducción del FA ≥ 30% durante al menos dos ciclos

respiratorios asociada a una cáıda de la señal de saturación de ox́ıgeno (SpO2)

≥ 3% (desaturación) o a un microdespertar o arousal en la señal de electroence-

falograma. El ı́ndice de apnea-hipopnea (IAH) se define como la tasa de eventos

de apnea o hipopnea por hora (e/h) de sueño, y es el principal indicador para

diagnosticar la AOS pediátrica (Bitners and Arens, 2020; Moffa et al., 2020). La

gravedad de la AOS se define en función del IAH: sin AOS (IAH<1 e/h), AOS leve

(1≤IAH<5 e/h), AOS moderada (5≤IAH<10 e/h) y AOS grave (IAH≥10 e/h).

A pesar de que la PSG es el estándar diagnóstico de la AOS en niños, su

disponibilidad es baja debido a la escasez de unidades de sueño especializadas,

su alta complejidad y los costes asociados (Dehlink and Tan, 2016; Stowe and

Afolabi-Brown, 2020). Estas razones dan lugar a largas listas de espera que re-

trasan el diagnóstico de los niños afectados por la enfermedad. Por lo tanto, es

necesario simplificar el diagnóstico de la AOS para mejorar el acceso de los niños

afectados a un diagnóstico temprano y a un posible tratamiento (Brockmann et al.,

2018). Algunas alternativas a la PSG comprenden el análisis de menos señales, que

también pueden registrarse fuera de los laboratorios de sueño (Tan et al., 2015).

De este modo, la simplificación de la PSG permitiŕıa reducir costes, aumentar la

disponibilidad y la comodidad del paciente.

Esta tesis doctoral se ha enfocado hacia la simplificación del diagnóstico de la

AOS pediátrica reduciendo el número de señales necesarias. La definición de los

eventos de apnea e hipopnea según las reglas de la AASM recae sobre las señales

de FA y SpO2, por lo que su análisis permite obtener la información necesaria para

detectar la AOS y evaluar su severidad (Berry et al., 2012). Este análisis de las
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señales de FA y SpO2 puede simplificarse aún más mediante algoritmos automáti-

cos de procesamiento de señales (Bertoni and Isaiah, 2019; Mazzotti et al., 2018).

Estos métodos pueden también añadir una etapa de reconocimiento de patrones

para detectar automáticamente signos de patoloǵıa y proporcionar un diagnóstico

automático y simplificado (Gutiérrez-Tobal et al., 2022; Uddin et al., 2018). En

esta tesis doctoral se han utilizado diferentes algoritmos avanzados de aprendizaje

automático (machine learning, ML) como ensemble learning y deep learning (DL)

combinados con métodos de inteligencia artificial explicable (eXplainable artificial

intelligence, XAI).

Esta tesis doctoral se centró en el análisis automático de las señales de FA y

SpO2 para facilitar el diagnóstico de la AOS pediátrica. Se investigaron, desarrolla-

ron y aplicaron varios algoritmos para procesar y caracterizar estas señales, extraer

información útil relacionada con la enfermedad y por último detectar la AOS y

estimar su severidad. Se abordaron diferentes enfoques, que cubrieron diversas

técnicas de ML como ensemble learning, DL y XAI. Los resultados obtenidos en

los diferentes estudios dieron lugar a la publicación de tres art́ıculos en revistas, to-

das ellas indexadas en Journal Citation Reports (JCR) de Web of Science�(WOS).

Aśı, esta tesis doctoral se presenta como un compendio de publicaciones.

B.2 Hipótesis y objetivos

Las alternativas a la PSG destinadas a diagnosticar la AOS mediante un número

reducido de señales han incluido habitualmente el FA y la SpO2, ya que proporcio-

nan información suficiente para localizar las apneas, hipopneas y desaturaciones

asociadas a las mismas (Alonso-Álvarez et al., 2015; Kaditis et al., 2016a). Los

modelos de ML podŕıan por lo tanto combinar ambas fuentes de información para

mejorar su capacidad diagnóstica y además reducir el número de señales a analizar.

Se ha considerado en estudios previos que la información del FA puede comple-

mentarse con el ODI 3% (Barroso-Garćıa et al., 2020). En este trabajo se asumió

que la información complementaria del FA y la SpO2 es suficiente para desarrollar

soluciones basadas en ML para ayudar a diagnosticar la AOS pediátrica.

Los métodos de ensemble learning no se han probado ampliamente en el con-

texto de la AOS infantil, y los enfoques existentes están limitados al análisis de

caracteŕısticas cĺınicas, derivadas de la oximetŕıa, o de la actigraf́ıa (Bertoni et al.,

2020; Calderón et al., 2020). Además, modelos de ensemble learning como Ada-

Boost se probaron con éxito en adultos (Gutierrez-Tobal et al., 2016; Gutiérrez-

Tobal et al., 2019). La investigación llevada a cabo en esta tesis asumió que los
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algoritmos de ensemble learning pueden ayudar a mejorar la precisión diagnóstica

de los enfoques actuales basados en ML en la AOS pediátrica.

A pesar del potencial mostrado por los modelos de ML basados en carac-

teŕısticas, están limitados por la capacidad de los expertos para obtener y analizar

descriptores útiles. Los algoritmos de DL pueden superar esta limitación, ya que

aprenden caracteŕısticas complejas con un alto nivel de abstracción directamente

a partir de los datos en crudo (Lecun et al., 2015). Esta investigación se llevó a

cabo asumiendo que los enfoques basados en DL pueden aprender la información

necesaria para detectar AOS pediátrica directamente a partir de las señales de FA

y SpO2 en crudo.

El uso de métodos de XAI es cada vez más común en el ámbito médico para

encontrar los signos de patoloǵıa aprendidos por los modelos e interpretar estos

patrones de las señales (Loh et al., 2022). Esto contribuye a aumentar la confian-

za de los usuarios en estas ayudas diagnósticas basadas en inteligencia artificial

(artificial intelligence, AI). Las arquitecturas de DL propuestas en esta tesis se

interpretaron considerando que los métodos de XAI pueden ayudar a identificar

patrones relevantes vinculados a la presencia de AOS en las señales de FA y SpO2

de pacientes pediátricos.

La investigación llevada a cabo a lo largo de esta tesis doctoral se realizó asu-

miendo la hipótesis general de que el análisis automático de las señales nocturnas

de FA y SpO2 mediante técnicas avanzadas de ML como ensemble learning, DL y

XAI puede ayudar a simplificar el diagnóstico de la AOS infantil.

El objetivo principal de esta tesis doctoral fue estudiar, desarrollar y validar

métodos avanzados de ML como ensemble learning o DL junto con nuevas técni-

cas de XAI en el contexto del análisis automático de señales de FA y SpO2, de

forma que estos métodos puedan ser utilizados para ayudar al diagnóstico de la

AOS pediátrica. Para alcanzar este objetivo principal, se plantearon los siguientes

objetivos espećıficos:

I. Elaborar y analizar una base de datos de registros nocturnos de FA y SpO2

procedentes de PSG realizadas a sujetos pediátricos con sospecha de AOS,

incluyendo sus datos sociodemográficos y cĺınicos relacionados con la presen-

cia y severidad de la enfermedad.

II. Evaluar la complementariedad de la información extráıda de las señales de FA

y SpO2 mediante métodos de feature engineering, aśı como DL para mejorar

su rendimiento diagnóstico individual, utilizando métodos de reconocimiento
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de patrones de clasificación y regresión.

III. Evaluar la capacidad diagnóstica de los métodos de ensemble y DL entre-

nados con información relevante y no redundante de FA y SpO2, aśı como

con señales de FA y SpO2 en crudo, respectivamente, todos ellos dirigidos a

estimar el IAH y clasificar la gravedad de la AOS a partir de estos registros

nocturnos.

IV. Identificar los patrones de FA y SpO2 más relevantes que los métodos de DL

relacionan con la presencia de apneas y/o hipopneas, y utilizan para detectar

la AOS, mediante técnicas de XAI.

B.3 Materiales y métodos

B.3.1 Bases de datos

Para llevar a cabo esta investigación, se han utilizado dos bases de datos de señales

nocturnas de FA y SpO2 procedentes de un total de 2.612 estudios del sueño. La

primera de ellas fue proporcionada por el Comer Children’s Hospital, University

of Chicago (UofC) School of Medicine (Chicago, IL, EE.UU.). Esta base de da-

tos conteńıa las PSGs de 974 sujetos de hasta 13 años con śıntomas de la AOS

(ronquidos, pausas respiratorias durante el sueño, despertares durante la noche,

hipersomnolencia, etc.) que fueron derivados a la unidad del sueño de este hospital

(Hornero et al., 2017). Los estudios de sueño se realizaron con un equipo de PSG

Polysmith® (Nihon Kohden America Inc., Irvine, CA, USA) y fueron analizados

de acuerdo con las reglas establecidas por la AASM para diagnosticar los sujetos

(Berry et al., 2012). Los 974 registros fueron separados de manera aleatoria en dos

conjuntos independientes de entrenamiento (584) y test (390). Esta base de datos

se utilizó en los tres art́ıculos que componen esta tesis doctoral.

La segunda base de datos empleada en esta tesis doctoral se obtuvo del

Childhood Adenotonsillectomy Trial (CHAT). Esta base de datos pública y mul-

ticéntrica proporcionada por el National Sleep Research Resource conteńıa un to-

tal de 1.638 estudios del sueño realizados a niños entre 5 y 10 años de edad con

śıntomas de AOS. Estos estudios fueron utilizados para llevar a cabo un estudio

aleatorizado para comprobar la efectividad de la adenoamigdalectomı́a frente a

un tratamiento conservador (Marcus et al., 2013; Redline et al., 2011). Seis cen-

tros hospitalarios distintos en EE.UU. estuvieron involucrados en la obtención de

datos, y las PSG fueron analizadas de acuerdo al protocolo descrito por Marcus
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et al. (2013). De los 453 sujetos incluidos inicialmente en el estudio aleatorizado

(baseline), 406 fueron evaluados de nuevo 7 meses después para comprobar su evo-

lución (follow-up). Otros 779 sujetos fueron evaluados, pero no formaron parte del

estudio aleatorizado (non randomized). Los sujetos de esta base de datos fueron

distribuidos aleatoriamente en grupos de entrenamiento (1006), validación (326) y

test (306). Esta base de datos se utilizó en el segundo y tercer art́ıculo del com-

pendio de publicaciones, los que presentan las dos arquitecturas de DL empleadas

en esta tesis doctoral.

Las señales de FA se registraron como parte de las señales que compońıan las

PSGs por medio de un termistor, con frecuencias de muestreo entre 20 y 512 Hz.

Por otra parte, las señales de SpO2 también formaban parte de las PSGs y fueron

registradas mediante un pulsiox́ımetro colocado en un dedo del paciente a tasas

de muestreo entre 1 y 512 Hz.

B.3.2 Metodoloǵıa

La metodoloǵıa global aplicada en esta tesis doctoral se compońıa de 5 etapas:

(i) preprocesado de las señales, (ii) caracterización, (iii) selección de caracteŕısti-

cas, (iv) clasificación de caracteŕısticas y (v) aplicación de modelos de DL y XAI

sobre las señales mı́nimamente preprocesadas. La etapa de preprocesado (i) se

implementó como paso previo al análisis de las señales. Después, la metodoloǵıa

desplegada se dividió en dos ramas principales: feature engineering (ii, iii) junto a

ensemble learning (iv), y DL con XAI (v). Todas las metodoloǵıas propuestas en

esta tesis doctoral fueron evaluadas mediante su capacidad diagnóstica, es decir,

la precisión y fiabilidad de los modelos automáticos de ensemble learning y DL

para detectar la presencia y la severidad de la AOS pediátrica.

Las señales de FA y SpO2 se preprocesaron mı́nimamente para remuestrear

cada registro nocturno a una frecuencia de muestreo común, reducir ruido mediante

filtrado, normalizar su amplitud y eliminar artefactos. Este ultimo paso no fue

aplicado en los estudios abarcan técnicas de DL. Concretamente, las señales de

FA fueron filtradas con un filtro paso bajo entre 0 y 1.5 Hz y después se aplicó

un método de normalización adaptativa de la amplitud (Várady et al., 2002).

Con respecto a las señales de SpO2, sus valores de amplitud fueron normalizados

sustrayendo la media y dividiendo el resultado por la desviación estándar como

paso previo a la aplicación de métodos de DL.

La rama de la metodoloǵıa referente al enfoque de feature engineering abarcó

etapas de extracción, selección y clasificación de caracteŕısticas para estimar la
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presencia de AOS y su gravedad a partir de la información más relevante y com-

plementaria extráıda del FA y la SpO2 (Jiménez-Garćıa et al., 2020). Se calcularon

parámetros de las señales como los momentos estad́ısticos en el dominio temporal,

aśı como caracteŕısticas espectrales a partir de la densidad espectral de potencia

de las mismas. Aśı mismo, se extrajeron caracteŕısticas de las bandas de interés de

cada señal (0.134–0.176 Hz en el FA y 0.020–0.044 Hz en la SpO2) (Jiménez-Garćıa

et al., 2020). También se calcularon parámetros no lineales como la medida de ten-

dencia central (central tendency measure, CTM), la complejidad de Lempel-Ziv

(Lempel-Ziv complexity, LZC) y la entroṕıa muestral (sample entropy, SampEn) a

partir del FA y la SpO2, y finalmente se incluyó en los análisis el ı́ndice de des-

aturaciones del 3% (oxygen desaturation index, ODI 3%) (Jiménez-Garćıa et al.,

2020). A continuación, la fase de selección de caracteŕısticas estaba orientada a

obtener subconjuntos de caracteŕısticas relevantes y no redundantes de cada una

de las señales y de manera conjunta (Jiménez-Garćıa et al., 2020). Para lograrlo

se aplicó el algoritmo Fast Correlation-Based Filter (FCBF) a las caracteŕısticas

extráıdas del FA y la SpO2 por separado y de manera conjunta, diferenciando

también entre incluir el ODI 3% y excluirlo como predictor.

La etapa de clasificación se basó en la implementación de modelos de ensemble

learning para estimar el nivel de severidad de la AOS a partir de los subconjuntos

caracteŕısticas relevantes y complementarias de las diferentes señales (Jiménez-

Garćıa et al., 2020). Para ello se empleó AdaBoost, un algoritmo de clasificación

de tipo boosting (Freund and Schapire, 1997). AdaBoost asigna al patrón descripti-

vo de cada sujeto a un nivel de severidad de la AOS mediante el voto por mayoŕıa

ponderado de una gran cantidad de clasificadores de tipo Linear Discriminant

Analysis (LDA). Cada uno de estos sencillos modelos fueron ajustados secuencial-

mente con distintas representaciones de los datos de entrenamiento, dando mayor

importancia a las instancias falladas en iteraciones pasadas (Freund and Schapire,

1997).

La otra rama en la que se dividió la metodoloǵıa propuesta en esta tesis docto-

ral inclúıa el desarrollo de diferentes arquitecturas de DL destinadas a detectar y

categorizar la severidad de la AOS mediante la estimación del IAH. Los algoritmos

de DL son capaces de aprender representaciones con un elevado nivel de abstrac-

ción directamente sobre datos en crudo, prescindiendo aśı del enfoque basado en

la caracterización t́ıpico de los métodos clásicos de ML (Lecun et al., 2015). Es-

te tipo de arquitecturas han superado la capacidad diagnóstica mostrada por los

algoritmos clásicos de ML en contextos como el análisis de señales biomédicas, y

más concretamente, la detección de la AOS (Faust et al., 2018; Mostafa et al.,
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2019). En esta investigación, se han propuesto dos arquitecturas de DL para ana-

lizar las señales de FA y SpO2 simultáneamente y estimar el IAH (Jiménez-Garćıa

et al., 2022, 2024). La primera de ellas consistió en una red neuronal convolucional

(convolutional neural network, CNN), formada por sucesivas capas de convolución

2D, normalización, activación, reducción de dimensionalidad (pooling) y regulari-

zación mediante dropout (Goodfellow et al., 2016). La estimación final se obtuvo

por medio de una capa de tipo fully-connected, que proporciona una estimación

del número total de episodios de apnea detectados por cada época de 5 minutos

de ambas señales (Jiménez-Garćıa et al., 2022). El segundo modelo surgió de la

combinación del modelo CNN propuesto anteriormente con una red neuronal re-

currente (recurrent neural network, RNN), destinado también a detectar la AOS

y estimar su severidad por medio del IAH (Jiménez-Garćıa et al., 2024). Las ca-

pas del modelo CNN original fueron trasladadas al modelo CNN+RNN mediante

un enfoque de transfer learning (Jiménez-Garćıa et al., 2024). Después, una RNN

fue implementada mediante una capa de tipo Bidirectional Gated Recurrent Unit

(Bi-GRU) para analizar la estructura temporal de la información de las señales

procesada en las capas de la CNN y estimar el IAH a partir del total de eventos

detectados por cada segmento de 30 minutos de las señales de FA y SpO2.

Además, la explicabilidad del modelo CNN+RNN desarrollado se abordó con

el algoritmo Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju

et al., 2017). Este es un método de XAI destinado a obtener explicaciones sobre

las predicciones de los modelos de DL en forma de mapas de calor (o heatmaps)

asociados a las predicciones del modelo, señalando los patrones más relevantes

de las señales según el modelo para detectar signos de la AOS (Jiménez-Garćıa

et al., 2024). De esta forma se interpretaron las estimaciones, tanto correctas como

erróneas, que el modelo CNN+RNN proporciona sobre de la cantidad de eventos

de apnea/hipopnea presentes en las señales y se identificaron los patrones más

relevantes del FA y la SpO2 relacionados con la AOS (Jiménez-Garćıa et al., 2024).

Por último, se aplicaron diversas técnicas y análisis estad́ısticos para evaluar los

resultados producidos en cada una de estas etapas. Se emplearon tests estad́ısticos

para evaluar diferencias entre poblaciones de sujetos, y coeficientes de correlación

para evaluar la asociación de las caracteŕısticas extráıdas con el IAH. Se usaron

métricas de concordancia, aśı como diferentes medidas de rendimiento diagnóstico

para evaluar el desempeño de los métodos propuestos para detectar la AOS y

establecer su severidad, empleando para ello diferentes estrategias de validación.
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B.4 Resultados y discusión

Los resultados obtenidos empleando las diferentes metodoloǵıas presentadas en es-

ta tesis doctoral permitieron evaluar de manera precisa la presencia y severidad de

la AOS infantil. Mediante el enfoque de feature engineering se reveló que las señales

de FA y SpO2 presentaban caracteŕısticas relevantes y complementarias según los

resultados obtenidos utilizando el algoritmo de selección de caracteŕısticas FCBF.

El ODI 3% obtenido de la SpO2 fue la caracteŕıstica más relevante y dominante,

mientras que la CTM calculada a partir del FA también resultó relevante y no re-

dundante con el ODI 3% (Jiménez-Garćıa et al., 2020). Estos resultados sugieren

que las señales de FA y SpO2 son complementarias y podŕıan ayudar a diagnosti-

car la AOS pediátrica de manera conjunta mediante reconocimiento de patrones.

De hecho, esta combinación de señales, junto al clasificador AdaBoost, obtuvieron

la mayor concordancia al estimar la severidad de la AOS en términos de precisión

de 4 clases (Acc4 = 57, 95%) y kappa de Cohen (k = 0, 3984) (Jiménez-Garćıa

et al., 2020). La combinación del FA con el ODI 3% obtuvo resultados muy simi-

lares (Acc4 = 57, 95%, k = 0, 3930). Estas métricas logradas de manera conjunta

fueron superiores a las obtenidas con los enfoques que solo inclúıan la informa-

ción de una de estas señales. No obstante, el ODI 3% fue la caracteŕıstica que

más contribuyó a mejorar la detección de la AOS mediante AdaBoost. La com-

binación de FA con ODI 3% alcanzó el máximo rendimiento para diagnosticar

la AOS pediátrica en términos de exactitud (Acc), sensibilidad (Se) y especifi-

cidad (Sp) en los umbrales de IAH de 1 e/h (Acc = 81, 28%, Se = 92, 06%,

Sp = 36, 00%), 5e/h (Acc = 82, 05%, Se = 76, 03%, Sp = 85, 66%) y 10e/h

(Acc = 90, 26%, Se = 62, 65%, Sp = 97, 72%) (Jiménez-Garćıa et al., 2020). En

general, los modelos AdaBoost multiclase alcanzaron un rendimiento diagnóstico

notable en comparación con otros enfoques que también combinaban FA con ODI

3% (Barroso-Garćıa et al., 2020, 2021a,b). Estos resultados refuerzan la idea de

que las señales de FA y SpO2 son complementarias y útiles para detectar la AOS

pediátrica.

En lo que respecta a los enfoques basados en DL, estas arquitecturas superaron

a los métodos clásicos de ML que se hab́ıan aplicado previamente. Además, el uso

de las dos señales también mejoró el rendimiento diagnóstico con respecto a un

modelo de CNN que solo empleaba la señal de SpO2 (Vaquerizo-Villar et al., 2021).

De esta forma, se confirma que un enfoque CNN de doble canal usando el FA y

la SpO2 puede ser ventajoso frente a utilizar solo una de ellas (Jiménez-Garćıa

et al., 2022). Además, este modelo CNN de doble canal se completó con una
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RNN que permitió obtener una arquitectura CNN+RNN más sofisticada gracias

al enfoque de transfer learning. El modelo CNN+RNN resultante ha permitido

aprovechar la capacidad de reconocimiento de patrones de la CNN anterior y la

capacidad de modelar la estructura temporal de los datos de entrada, formados por

largas secuencias de 30 minutos de ambas señales (Jiménez-Garćıa et al., 2024).

Además, gracias al uso de transfer learning se optimizó el proceso de entrenamiento

y validación del modelo CNN+RNN. Hasta donde tenemos conocimiento, este tipo

de arquitectura no se hab́ıa propuesto hasta ahora en el contexto de la AOS infantil.

El modelo CNN+RNN se combinó con un algoritmo de XAI basado en Grad-

CAM que permitió resaltar los patrones más relevantes de ambas señales relacio-

nados con la detección de la AOS (Jiménez-Garćıa et al., 2024). Esto contribuyó

a aumentar la explicabilidad de las predicciones realizadas por este modelo, aśı

como a descubrir e interpretar dichos patrones en las señales. Los cambios ins-

tantáneos en la amplitud de la señal de FA y las interrupciones del patrón ćıclico

de la respiración son algunas de las caracteŕısticas señaladas por el método de

Grad-CAM, aśı como variaciones repentinas que podŕıan coincidir con arousals.

Con respecto a la señal de SpO2, las cáıdas de los niveles de saturación como

consecuencia de los eventos apneicos, aśı como las posteriores recuperaciones son

los patrones que el modelo CNN+RNN más frecuentemente asocia a la presencia

de apneas/hipopneas. Todos estos patrones son útiles para comprender y verificar

el funcionamiento de los modelos de DL, aśı como reforzar la confianza de los

usuarios en este tipo de algoritmos. Sin embargo, también se ha observado que a

menudo no se señalan hipopneas no asociadas a desaturaciones, sino a arousals,

lo que podŕıa explicar la infraestimación del modelo CNN+RNN de este tipo de

eventos respiratorios (Jiménez-Garćıa et al., 2024). También se ha observado que

a veces Grad-CAM señala ciertos artefactos en ambas señales como patrones que

el modelo CNN+RNN identificó como un signo de la AOS. Finalmente, también

se identificaron mediante Grad-CAM algunas desaturaciones que no se asociaron a

eventos de apnea por la eventual falta de calidad de la señal de FA. En estos casos,

los heatmaps explicativos pueden ayudar a los especialistas a revisar las señales

para confirmar la presencia de signos de patoloǵıa (Jiménez-Garćıa et al., 2024).

El análisis de estos heatmaps además puede ayudar a descubrir información nueva

sobre la AOS más allá de las reducciones del FA y las desaturaciones. Hasta donde

sabemos, este enfoque de XAI no se hab́ıa aplicado hasta ahora en el contexto de

la AOS infantil.

Con respecto a la concordancia y el rendimiento diagnóstico de los modelos

de DL, estas arquitecturas superaron claramente a los anteriores enfoques de
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feature engineering (Jiménez-Garćıa et al., 2022, 2024). La concordancia entre

el IAH real y estimado, calculada mediante el coeficiente de correlación intra-

clase (ICC), resultó ser muy elevada en los conjuntos de test de ambas bases

de datos. Se alcanzaron ICC más altos en los datos de CHAT (ICC = 0, 9546

con CNN; ICC = 0, 9465 con CNN+RNN) que en los UofC (ICC = 0, 8821

con CNN; ICC = 0, 9004 con CNN+RNN). Estos elevados resultados también

se vieron reflejados en los valores de Acc4 y k. La concordancia fue mayor en

CHAT (Acc4 = 72, 55%, k = 0, 6011 con CNN; Acc4 = 74, 51%, k = 0, 6231

con CNN+RNN), mientras que estos resultados superaron a los alcanzados con

los modelos AdaBoost al compararlos en la base de datos UofC (Acc4 = 61, 79%,

k = 0, 4469 con CNN; Acc4 = 62, 31%, k = 0, 4495 con CNN+RNN). Comparando

estos modelos, se comprobó que CNN+RNN superó a CNN tanto en concordancia

como en rendimiento diagnóstico. Se obtuvo una capacidad superior para diag-

nosticar la AOS en todos los puntos de corte del IAH usando CNN+RNN, con

unos resultados diagnósticos muy altos en 1 e/h (Acc = 87, 25%, Se = 87, 03%,

Sp = 88, 06%), 5 e/h (Acc = 93, 46%, Se = 80, 22%, Sp = 99, 07%) y 10

e/h (Acc = 93, 46%, Se = 71, 43%, Sp = 96, 97%) en el conjunto de test de

CHAT. Por otra parte, estas métricas también fueron elevadas en el conjun-

to de test UofC en 1 e/h (Acc = 84, 10%, Se = 96, 83%, Sp = 30, 67%), 5

e/h (Acc = 84, 62%, Se = 82, 88%, Sp = 85, 66%) y 10 e/h (Acc = 90, 51%,

Se = 78, 31%, Sp = 93, 81%).

Estos resultados indican que el modelo CNN+RNN es el más preciso entre

todos los enfoques abordados en esta tesis doctoral. Por su parte, el modelo CNN

entrenado con ambas señales superó a un enfoque anterior muy similar empleando

únicamente la SpO2 como fuente de datos (Jiménez-Garćıa et al., 2022; Vaquerizo-

Villar et al., 2021). Al compararlos, se observó que este enfoque de doble canal

obtuvo mejores resultados al diagnosticar la AOS en los umbrales de 1 y 5 e/h, lo

que indicaŕıa que el FA contribuye de forma notable a mejorar la utilidad de un

modelo basado en CNN. Por su parte, la arquitectura CNN+RNN no solo superó

al modelo CNN del que deriva, sino a todos los enfoques anteriores centrados en

la detección de la AOS pediátrica (Jiménez-Garćıa et al., 2024). Esto pone de

manifiesto la utilidad de una arquitectura de DL que combina diferentes técnicas

de análisis para aprender automáticamente las particularidades de la AOS infantil

a través de señales de FA y SpO2 y que además es interpretable. A la vista de estos

resultados, los métodos propuestos en esta tesis doctoral podŕıan utilizarse para

desarrollar un protocolo de cribado de la AOS pediátrica en entornos en los que

la PSG hospitalaria no tiene una alta disponibilidad. Este protocolo consistiŕıa en
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analizar únicamente los registros nocturnos de FA y SpO2 registradas en la casa del

paciente por medio de la arquitectura CNN+RNN. Dependiendo del diagnóstico

preliminar proporcionado por el modelo, se podŕıa:

1. Si el modelo predice IAH<1 e/h: no se necesitaŕıa realizar una PSG para con-

firmar el diagnóstico, y se podŕıa descartar la ciruǵıa. Solo el 1,63% de niños

que obtuvieron IAH<1 e/h según el modelo automático realmente teńıan

IAH≥5 e/h, que es el umbral para considerar un tratamiento quirúrgico. No

obstante, se recomendaŕıa a los padres o tutores legales vigilar los śıntomas y

ponerlos en conocimiento del personal médico para una posible revaluación.

2. Si el modelo predice 1≤IAH<5 e/h: iniciar un tratamiento no quirúrgico de

los śıntomas de la AOS infantil (p.ej., reducción de peso, tratamiento antiin-

flamatorio, etc.). Además, realizar un seguimiento de los pacientes y revaluar

los śıntomas periódicamente. La ciruǵıa se podŕıa descartar inicialmente, ya

que solo el 11,99% de los niños con 1≤IAH<5 según el modelo realmente

teńıan AOS moderada o severa. Si los śıntomas persistieran, recomendar la

realización de una PSG en el hospital para confirmar la necesidad de trata-

miento quirúrgico.

3. Si el modelo predice 5≤IAH<10: recomendar la realización de una PSG para

confirmar el diagnóstico preliminar de AOS moderada, ya que el 69,72% de

los pacientes con este diagnóstico preliminar realmente teńıan AOS moderada

o severa. Dependiendo del resultado de la PSG, considerar el tratamiento

quirúrgico.

4. Si el algoritmo predice IAH≥10 e/h: considerar la posibilidad de tratamiento

quirúrgico directamente sin realizar la PSG, ya que solo el 3,28% de los

pacientes que obtuvieron IAH≥10 e/h según el modelo en realidad teńıan

IAH<5 e/h. Si los cirujanos no consideran el caso como adecuado operar,

proponer un tratamiento farmacológico.

Según los resultados diagnósticos del modelo CNN+RNN, el uso de este proto-

colo de cribado evitaŕıa la realización de hasta el 78,45% de las PSG realizadas a

pacientes con śıntomas de AOS infantil. De esta manera se reduciŕıa drásticamente

la carga de trabajo de los médicos a la hora de analizar las señales, aśı como las

listas de espera de las unidades del sueño pediátricas.



B.5. Conclusiones 109

B.5 Conclusiones

A la vista de los resultados obtenidos en la investigación llevada a cabo, se pueden

extraer las siguientes conclusiones:

1) El análisis conjunto de las señales de FA y SpO2 es útil para detectar au-

tomáticamente la AOS pediátrica. En este sentido, las caracteŕısticas rele-

vantes y complementarias de ambas señales resultaron útiles para obtener

modelos de clasificación automática. El CTM obtenido del FA y el ODI 3%

de la SpO2 fueron las caracteŕısticas más útiles de estas señales, que demos-

traron su relevancia para detectar la AOS pediátrica y su no redundancia

entre śı.

2) Los clasificadores multiclase AdaBoost fueron capaces de detectar con pre-

cisión la gravedad de la AOS pediátrica a partir del FA y la SpO2. Los

clasificadores lograron un notable rendimiento diagnóstico a partir de un

conjunto de caracteŕısticas complementarias de las señales de FA y SpO2.

3) CTM y ODI 3% son las caracteŕısticas más útiles de FA y SpO2, respectiva-

mente. La combinación de estas caracteŕısticas mediante AdaBoost mejoró y

maximizó la capacidad diagnóstica de este algoritmo de clasificación en com-

paración con otras combinaciones que implicaban el uso de una sola señal.

4) Un enfoque de doble canal para detectar la AOS pediátrica que incluya

señales de FA y SpO2 resulta ventajoso frente a otros enfoques de un solo

canal. Tanto los modelos de ensemble learning como de DL lograron un mayor

rendimiento diagnóstico con 2 señales en comparación con otros enfoques que

sólo inclúıan una señal.

5) Una arquitectura CNN 2D fue útil para procesar y analizar las señales de

FA y SpO2 y para estimar el IAH a partir de estos registros nocturnos. El

enfoque propuesto basado en CNN logró un notable rendimiento diagnóstico

para detectar la AOS pediátrica, especialmente al diferenciar entre sujetos

de control y sujetos con AOS leve, aśı como al discriminar entre pacientes

con AOS leve y moderada. La CNN propuesta basada en FA y SpO2 superó

el rendimiento diagnóstico de los modelos de DL anteriores, orientados a

analizar las señales de SpO2 únicamente.

6) La combinación de CNN con RNN fue útil para detectar la AOS pediátrica

a partir del FA y la SpO2. En este sentido, el uso de un enfoque de transfer
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learning para desarrollar un modelo CNN+RNN más sofisticado demostró

su utilidad. Esta novedosa arquitectura superó también a modelos anteriores

basados en CNN.

7) La arquitectura CNN+RNN orientada a analizar el FA y la SpO2 es el mo-

delo de DL más preciso para estimar la severidad de la AOS mediante el

IAH. Hasta la fecha, el rendimiento de este algoritmo es el más avanzado

entre los métodos de detección automática de la AOS pediátrica mediante

un conjunto reducido de señales biomédicas, ya que alcanzó la mayor capaci-

dad diagnóstica en comparación con enfoques similares dirigidos a la misma

población.

8) El uso de métodos XAI como Grad-CAM permitió explorar patrones rela-

cionados con la AOS en las señales de FA y SpO2. Los heatmaps explicativos

resaltaron partes espećıficas de las señales de entrada que fueron relevan-

tes para que el modelo CNN+RNN realizara sus predicciones, y permitieron

interpretar el funcionamiento de esta compleja arquitectura.

9) Los heatmaps sobre las señales obtenidos de la CNN+RNN mediante Grad-

CAM mostraron la capacidad de justificar por qué el modelo CNN+RNN

predećıa la presencia de apneas o hipopneas en las señales de entrada. Por

lo tanto, Grad-CAM contribuyó a mejorar su veracidad diagnóstica.

10) Los heatmaps explicativos revelaron patrones relevantes relacionados con la

AOS aprendidos por el algoritmo CNN+RNN. Los patrones destacados en

las señales de FA y SpO2 mediante Grad-CAM estaban relacionados prin-

cipalmente con desaturaciones y cambios repentinos en la amplitud de las

ondas respiratorias. Estos heatmaps explicativos podŕıan ser útiles para que

los médicos analicen e interpreten estas señales con el objetivo de simplificar

el diagnóstico de la AOS pediátrica.

La conclusión global de esta tesis doctoral es que el procesamiento y análisis

automático de señales de FA y SpO2 basado en métodos de ensemble learning y

DL combinados con XAI propuesto en esta investigación tiene una gran utilidad

diagnóstica, y pueden utilizarse para implementar métodos de cribado alternativos,

sencillos, fiables y veraces que sirvan de ayuda en el diagnóstico de la AOS en niños.
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Oceja, E., Rodŕıguez, P., Jurado, M. J., Alonso, M. L., Del Ŕıo, G., Villar, M. Á., Mediano, O.,

Mart́ınez, M., Juarros, S., Merino, M., Corral, J., Luna, C., Kheirandish-Gozal, L., Gozal,

D., Durán-Cantolla, J., 2021. Validity and cost-effectiveness of pediatric home respiratory

polygraphy for the diagnosis of obstructive sleep apnea in children: Rationale, study design,

and methodology. Methods and Protocols 4 (1), 1–14.

Rangayyan, R. M., 2015. Biomedical signal analysis, 2nd Edition. IEEE, Hoboken, New Jersey.

Redline, S., Amin, R., Beebe, D., Chervin, R. D., Garetz, S. L., Giordani, B., Marcus, C. L.,

Moore, R. H., Rosen, C. L., Arens, R., Gozal, D., Katz, E. S., Mitchell, R. B., Muzum-

dar, H., Taylor, H. G., Thomas, N., Ellenberg, S., 2011. The Childhood Adenotonsillectomy

Trial (CHAT): Rationale, design, and challenges of a randomized controlled trial evaluating a

standard surgical procedure in a pediatric population. Sleep 34 (11), 1509–1517.

Richman, J. S., Moorman, J. R., jun 2000. Physiological time-series analysis using approximate

entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiol-

ogy 278 (6), H2039–H2049.

Riha, R. L., Celmina, M., Cooper, B., Hamutcu-Ersu, R., Kaditis, A., Morley, A., Pataka,

A., Penzel, T., Roberti, L., Ruehland, W., Testelmans, D., van Eyck, A., Grundström, G.,

Verbraecken, J., Randerath, W., jan 2023. ERS technical standards for using type III devices

(limited channel studies) in the diagnosis of sleep disordered breathing in adults and children.

European Respiratory Journal 61 (1), 2200422.



Bibliography 119

Roebuck, A., Monasterio, V., Gederi, E., Osipov, M., Behar, J., Malhotra, A., Penzel, T.,

Clifford, G. D., 2014. A review of signals used in sleep analysis. Physiological Measurement

35 (1).

Rosen, C. L., D’andrea, L., Haddad, G. G., nov 1992. Adult Criteria for Obstructive Sleep Apnea

Do Not Identify Children with Serious Obstruction. American Review of Respiratory Disease

146 (5 pt 1), 1231–1234.
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V., Crespo, A., del Campo, F., Gozal, D., Hornero, R., mar 2018b. Utility of bispectrum in the

screening of pediatric sleep apnea-hypopnea syndrome using oximetry recordings. Computer

Methods and Programs in Biomedicine 156, 141–149.
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