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Abstract

Schizophrenia is a disease that affects approximately 1% of the population.

Its early accurate diagnosis is of vital importance to apply adequate ther-

apy as soon as possible. We present a Statistical Discriminant Diagnosing

(SDD) system that discriminates between healthy controls and subjects and

that supports diagnosis by a medical professional. The system works with

{feature,electrode} EEG pairs which are selected based on the statistical sig-

nificance of the p-values computed over the brain P3b wave. A bank of

evoked potential pre-processed and filtered EEG signals is recorded during

an auditory odd-ball (AOD) task and serves as input to the SDD system.

These EEG signals comprise 20 features and 17 electrodes, both in time (t)

and frequency (f) domain. The relevance of the Parieto-Temporal region is

shown, allowing us to identify highly discriminant {feature,electrode} pairs in

the detection of schizophrenia, resulting lower p-values in both Right and Left

Hemispheres, as well as in Parieto-Temporal EEG signals. See for instance,

the {PSE,P4} pair, with p-value=0.00003 for (parametric) t Student and p-

∗Corresponding author.
Email address: lsanjose@tel.uva.es (Luis M. San-José-Revuelta)

Preprint submitted to IET Signal Processing April 27, 2023

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina
This is the final manuscript (post-print) accepted and publishedin IET Signal Processing, e12230, vol. 17, Issue 6, pp. 1-20 June 2023. ISSN: 1751-9675, eISSN : 1751-9683. DOI: 10.1049/sil2.12230. (c) John Wiley & Sons Ltd. The Institution of Engineering and Technology.

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina



value=0.00019 for (nonparametric) U Mann-Whitney tests, both under the

15Hz cutoff frequency of a low pass EEG preprocessing filter. The relevance

of this pair is in agreement with previously published related results. The

proposed SDD system may provide the human expert (psychiatrist) with

an objective complimentary information to help in the early diagnosis of

schizophrenia.

Keywords: Statistical Discriminant Diagnosing (SDD), Decision Support

Systems, EEG, evoked related potential (ERP), schizophrenia, statistical

discriminant analysis.

1. Introduction

Schizophrenia is a mental disorder that is present in around 1% of global

population. In accordance to the Diagnostic and Statistical Manual of Mental

Disorders (DSM-5) from the American Psychiatric Association, schizophrenia

subjects show various symptoms like delusions, hallucinations or disorganized

speech [1]. In fact, schizophrenia is one of the most frequent and studied brain

disorders due to its fast spreading [2]. Its diagnosis is a very complex task

since a large number of factors are involved in its cause and prognosis. One

of the current research fields is based on processing electroencephalograms

(EEGs) –EEG signals allow to record the electrical brain activity generated

in brain– in order to determine significant differences among patients (SZ)

and healthy subjects (HC) [3], with the aim of being able to properly dis-

criminate and classify between these two groups of persons [4]. Following

this methodology, we will make a comparison of the EEGs recorded from

an auditory task to perform a hypothesis test [5]. The P3b sub-component
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of the P300 Evoked Related Potential (ERP) brain wave has already been

determined in the past as a reliable tool for the diagnosis of schizophrenia

by various authors, like, for instance, in [6] and [7]. The P3b event-related

electric potential has already been related to working memory and attention

deficits and has been successfully used in many recent works in schizophrenia

diagnosis, like, for instance, in [8, 9, 10, 11, 12]. In these papers it is proved

that schizo patients show an altered response to AOD tasks when the P3b

and/or P3a evoked potentials are analyzed.

Non the less, these previous results mainly perform an statistical analysis

of the P3b signals and parameters without making a proper discrimination

or diagnosis among the various groups of subjects. In addition, the majority

of previous works have used time domain (t) EEG features of the P3b wave

only for their analysis, and, thus, make no use of any frequency (f) domain

features. Only recent works seem to begin to use frequency features. In this

work, we also propose to use statistical significance tests that can help to find

different responses to P300 wave components (P3b) between healthy (HC)

and schizo (SZ) patient groups, so as to determine signs of the disease, and

to do it as soon as possible [13]. Schizophrenia is a difficult disease to treat

and its early diagnosis and treatment is crucial in its favorable prognosis

[14]. In our work, the evoked P3b EEG electromagnetic brain wave has been

analyzed and registered using a seventeen electrode cap while an auditory

odd-ball (AOD) task is performed. This technique has been widely validated

in psychosis and schizophrenia previously.

The statistical significance analysis can be summarized as follows: in

short, in a classification task, p-values account for the amount of over-
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lap of class probability density functions (posterior pdf’s) over the multi-

dimensional input (feature) space once an optimized classification hyperplane

has been fixed. This way, p-values are defined as the class pdf’s overlap over

the input space, which are commonly called pdf tails, in such a way that

two different classes are said to be more statistically different whenever these

overlaps of tails are smaller. This implies that the set of input features in

the multi-dimensional input space is able to limit the pdf’s overlap to one

side and another of the classification hyperplane (classification thresholds).

In general, a hypothesis test is a systematic method of assessing beliefs

about reality. This method requires the confrontation of such beliefs with

real evidence and decide, in light of this evidence, if such beliefs may be

reasonable or should be discarded and considered improbable.

Unfortunately, we have found only a few directly related references in the

literature about the statistical significance analysis during an AOD task in

P3b wave with EEG in schizophrenia. As related studies, we can cite the

recent work by Das and Pachory [15], that uses p-values to validate features

(entropies in this case) capability to detect schizo patients, or the paper by

Siuly et al. (2020) [16], where a design methodology involving an empirical

mode decomposition (EMD) technique is used for the diagnosis of schizo

patients from EEG signals. Last paper also checks the significance of the

extracted features using the well-known Kruskal-Wallis test. These works

show the validity of statistical significance tests to evaluate the discriminant

power of selected features.

On the other hand, our study results are properly aligned, and, at least

consistent in part, with several relevant previously published papers in the

4



field, like, for instance, [17] and [18], which use deep learning algorithms

to automatically extract significant features at the convolution stage and to

classify them. Most significant features are extracted at the max-pooling

stage, and signals are classified later on using a fully connected layer.

Also worth it to mention the paper by Roach et al. [19] regarding the

use of simultaneous time (t) and frequency (f) domain parameters for proper

discrimination, as well as the work by Lundin et al. [20], that studies early

and late ERPs in time and frequency domains in a bipolar sample, with and

without current psychotic features. In addition, Santos-Mayo et al. [21] pro-

posed an automatic sub-optimal estimation of the most significant electrodes

for SZ classification.

Recently, Shalbaf et al. [22] proposed the combination of frontal, central,

parietal, and occipital regions applied to a Convolutional neural Network

(CNN) for improving classification results, and Barros et al. [23] reviewed

several artificial intelligence (AI)-based methods applied to schizophrenia

classifications using EEG data. Among its conclusions is the proved capabil-

ity of these AI systems to identify subjects at high-risk of psychosis conversion

and to differentiate schizophrenia from other disorders. Besides, the recent

work of Góngora-Alonso et al. [24] includes a literature review of Artificial

Intelligence based methods applied to schizophrenia detection, though not

based of statistical significance analysis. In this context, it is worth mention-

ing the recent work by Sairamya et al. [25], where the relaxed local neighbor

difference pattern (RLNDiP) technique is proposed and a combination of

RLNDiP features from both time domain and time−frequency domain is

used. Prominent features describing the effective connectivity are selected
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using the Kruskal-Wallis test and fed into an artificial neural network for

classification.

Our final goal is to analyze to what degree and extent do the various

{feature,electrode} pairs are able or not to discriminate schizophrenia using

the P3b wave evoked potential signals, at an statistical significant level.

The remaining of the paper is organized as follows: first, Section 2.1 de-

scribes the dataset used for numerical simulations and the proposed SDD

system; next, definitions concerning electrodes, electrode groupings and fea-

tures are given in Section 2.2. The main statistical significance tests used in

our work are shown in Section 2.3. Numerical simulations and comparative

results are described in Section 3, whilst a discussion is included in Section

4. Finally, global conclusions and a brief outline of possible future work lines

can be seen on Section 5.

2. Methods

2.1. Dataset acquisition and preprocessing

All EEG signals were registered while participants performed an auditory

odd-ball task (AOD). A total of 47 EEG-ERP were recorded over the same

number of subjects, from which 16 were SZ diagnosed patients (age = 36.3

± 10.5 years) and 31 HC controls (age = 29.9 ± 9.8 years). Explicit written

consent was used for SZ subject inclusion, and volunteer HC subjects received

a small remuneration. Exclusion criteria comprised both subjects under 18

years old and recognition of having had drugs in the previous 48h. To prop-

erly generate and record both the P3a and P3b waves, EEGs were captured

at a sampling rate of 250Hz while subjects went through a 3-stimuli auditory
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odd-ball task, comprising a 500Hz target tone (S3), a 1000Hz distracter tone

(S2) and a frequent 2000Hz standard tone (S1). Participants heard binaural

tone bursts (5 ms rise and fall, 90 dB intensity, 50 ms duration) presented in

a uniform random 1000 and 1500 ms stimuli asynchronous onset.

This AOD task consisted in subjects distinguishing among 3 audio stimuli

randomly played: a target tone with probability 0.20 evoking the P3b brain

wave in subjects; a distracter tone under probability 0.20; and a standard

tone with probability 0.60. Participants were requested to stay calm, relaxed

and with eyes closed, and were told to press a mouse button using index finger

from dominant hand whenever they heard the target tone, discarding non-

attended target tones. Previous advise was given to subjects so as to record

EEG signals in which most of the power would come from true brain signal

and not other noise sources, avoiding this way eye and muscular artifacts

as much as possible. The purpose of the closing eyes instruction was to

limit eye movement noise due to muscular electrical signals (micro-saccadic).

Non the less, if any substantial eye movement artifacts still persist, they will

be removed by the Independent Component Analysis (ICA) filtering phase

and thus limited impact is expected in the results. EGG signals were pre-

processed [26] and low-pass filtered up to 15Hz and 35Hz cutoff frequencies,

as shown in the system block diagram, –see Figure 1. Next, a series of

differentiating (discriminant) features were computed both in the time (t)

and frequency (f) domains. Thus, we have two matrices, one for each filtering

scheme, with 340 rows (17 electrodes × 20 computed features) × 47 columns,

corresponding to the 47 subjects in total. EEGs signals were registered using

a BrainVision equipment (Brain Products GmbH; München, Germany), with
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a 17 tin electrode cap (Electro-Cap International, Inc.; Eaton, Ohio, USA),

in compliance with the 10-20 international standard system [27]. The 17

cap electrode definitions were the following: F3, F4, F7, F8, Fp1, Fp2, Fz,

C3, C4, Cz,O1, O2, P3, P4, Pz, T5 and T6. Electrode electrical impedance

was kept under 5kΩ. Brain signal potentials were measured relative to the

Cz electrode, at a sampling rate of 250Hz, and the EEG recordings were

continuous during all AOD task time duration (no pause and no resume).

2.2. Electrodes, electrode groupings and features

The definition of electrodes, electrode groupings and features (character-

istics) is next described, followed by a brief description of the main discrim-

inant statistical hypothesis tests used in this work.

2.2.1. Feature definitions

For a proper formal definition of both time (t) and frequency (f) domain

features, please see [21].

2.2.2. Electrodes and electrode groupings

A total of 17 electrodes, each one corresponding to a specific position on

the head, are defined. These electrodes are grouped as follows (Figure 2):

• Individual: Each of the 17 electrodes are individually considered.

• Total: grouping formed by the 17 electrodes together.

• Frontal: electrodes of the front of the head: FP1, FP2, F3, F4, F7,

F8 and Fz.

• Central: electrodes of the central part of the head: C3, C4 and CZ.
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Figure 1: Block diagram of proposed Statistical Discriminant Diagnosing (SDD) system

including the process followed during EEG data pre-processing, with either 15Hz or 35Hz

cutoff lowpass filters [21]. A total of 47 subjects, 16 SZ and 31 HC, are volunteer enrolled

(express written consent), and requested to perform a hearing task (AOD). The measure-

ments carried out while in the auditory task, are recorded using a 17 electrode helmet,

distributed over the head. A total of 20 parameters (features) were extracted: 16 in the

time (t) domain and 4 in the frequency (f) domain, from which we carry out hypothesis

tests (both parametric and non-parametric, both univariate and multivariate) in order to

compute statistical significance parameters, including: p-values, p-values topoplots, and

p-values boxplots, for single {feature, electrode} pairs (univariate) and also for various

electrode channel groupings (sets of electrodes, multivariate), both in time (t) and fre-

quency (f) domain.

• Parieto-Temporal: electrodes of the parieto-temporal part of the

head P3, P4, PZ, T5 and T6.

• Occipital: electrodes of the occipital part of the head: O1 and O2.

• Right Hemisphere: FP2, C4, F4, F8, P4, O2 and T6 are the 7 even

electrodes that are located on the right half of the head.
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• Left Hemisphere: FP1, F3, F7, C3, P3, O1 and T5 are the 7 odd

electrodes that are located in the left half of the head.

• Sub-optimal Right Hemisphere: formed by the top 3 electrodes of

the right hemisphere. FP2, F4 and P4.

• Sub-optimal Left Hemisphere: formed by the top 3 electrodes of

the left hemisphere. FP1, P3 and F7.

2.3. Description of the performed hypothesis tests

Parametric hypothesis tests methods (MANOVA, t-Student) make as-

sumptions about data distribution, while non-parametric tests (R statistic,

U -Mann/Whitney, and Anosim) are more general, making no assumptions

about a specific source data distribution. Whenever needed, we have per-

formed a non-parametric approach. In addition, one can compute univariate

(single {feature, electrode} pair) or multi-variate (several {feature, electrode}

pairs) estimations, the later implying several independent variables under

analysis.

First, univariate tests for each {electrode-feature} pair, individually con-

sidered, were performed. The first step of these univariate tests consisted in

determining the distribution of samples [28], in order to check the suitability

of a parametric hypotheses test. However, due to the non-Gaussian distribu-

tion of the variables found –this fact has been proved in several papers, for

instance in [29]– it was decided to carry out a non-parametric test [30]. The

non-parametric test chosen was the Mann-Whitney test, which is based on

comparing the medians of two populations along the independent variable.
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FP1 FP2

F7 F8
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(a) Frontal: FP1,

FP2 , F3 , F4 , F7
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Central

C3 C4Cz

(b) Central: C3,

C4 , Cz

Parieto-Temporal

T5 T6P4P3 PZ

(c) Parieto Tem-

poral: P3, P4 ,

PZ , T5 ,T6

Occipital

O1 O2

(d) Occipital: O1,

O2

Right Hemisphere

FP2

F4

T6

C4

F8

P4

O2

(e) Right Hemi-

sphere: FP2, F4,

F8, C4, P4, O2,

T6

Left Hemisphere

T5

C3

O1

P3

F7

F3

FP1

(f) Left Hemi-

sphere: FP1, F3,

F7, C3, P3, O1,

T5

Figure 2: Electrode loci belonging to the main electrode grouping definitions: a) Frontal, b)

Central, c) Parieto-Temporal, d) Occipital, e) Right Hemisphere, and f) Left Hemisphere

electrode groupings.

After obtaining these results, MatLab R© numerical computation software was

used for data visualization in order to obtain meaningful conclusions.

After this phase, a set of electrodes and sub-optimal (discriminant) fea-

tures were found. Here we also noted that data with discriminant power

increased, so performing a multivariate test was needed. Accordingly, we

first performed a discriminant analysis to obtain those pairs with higher dis-
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criminant power. Then, the MANOVA test was implemented to quantify the

discriminatory capacity of each of the pairs. Finally, the statistical analysis

software R and the Anosim function were used to obtain more reliable results

without assuming a normal distribution of the data [31].

2.3.1. Non-parametric Mann-Whitney test

Mann-Whitney non-parametric test makes assumptions about the simi-

larities between equality of the populations’ medians. We consider as the

null hypothesis (H0) that the two populations have the same median, and as

the alternative hypothesis, that the medians are different [13]:

H0 : m1 −m2 = 0

HA : m1 −m2 6= 0
(1)

where parametersm1 andm2 are the medians of population-1 and population-

2, respectively. Our goal will be to reject the null hypothesis so as to be able

to say that the two populations have different middle values and, hence, we

can say that population medians are different. The test is defined as

T = S − n(n+ 1)
2

(2)

where n is the number of observations in sample X, and S is the sum of

the assigned hierarchies to the sample observations of X. The hierarchies

are assigned as follows: data is sorted from lowest to highest values, and the

lowest value is assigned number 1. Remaining values are assigned a higher

hierarchy whose value depends on the increase over the minor value.

This statistical test is not distributed according to any known function.

This distribution is tabulated and its values are known as quantiles of the

non-parametric Mann-Whitney statistical test [32].
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The null hypothesis (H0) is rejected if the calculated T value is under

Wα, being Wα a critical value of T computed from the quantiles table of the

Mann-Whitney statistical test.

2.3.2. Discriminant Analysis (DA)

The main aim of DA is to analyze whether differences between different

groups exist, in our case between the SZ and HC groups, regarding the

variables considered, and find out the ways these differences are [33]. DA

offers a discriminant function of the type

D = αX + βY (3)

where α and β are the weights of independent variables that make the func-

tion reach its highest value in one group, and its lowest one in the others.

Discriminant analysis gives us a discriminant function, which is able to

classify a sample into one of the groups, but classification is not our goal. Our

main purpose is to see to what extent each of the variables affects that func-

tion, and select those variables that have the most discriminatory power, i.e.

to obtain a sorted array of the variables based on their discriminant capac-

ity, and then use that information to compute a p-value using the MANOVA

multivariate method.

Previous assumptions required to apply this method follow next: (i) data

are distributed as a multivariate normal (Gaussian) pdf for each population,

and (ii) covariance matrices are equal. These conditions are not verified in

all cases of our problem in hand, but this does not constitute a limitation

since this discriminant analysis technique is very robust and works well in

practice although these restrictions are not met. For this reason, we believe
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DA can be applied as a prior step to the MANOVA test execution.

2.3.3. MANOVA test

MANOVA test is a multivariate statistical method used to detect dif-

ferences between groups of two populations. This method is based on the

computation of the variance so as to detect whether populations are equal or

not [34]. It consists in a test of multivariate hypotheses, where the following

parameters are defined:

H0 : µ1 = µ2 = ... = µn

HA : µ1 6= µ2 6= ... 6= µn
(4)

with µi being the median of the i−th population.

There exist several different models of MANOVA, each of them using

a different statistic parameter. Next, four types of contrast statistics are

defined [35]:

• Trace of Pillai:

V =
s∏
i=1

λi
1 + λi

(5)

where λi stands for the eigenvalues of the data matrix.

• Lambda of Wilks:

Λ =
s∏
i=1

1
1 + λi

(6)

where λi denotes the eigenvalues of the data matrix.
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• Trace of Hotelling:

T =
s∑
i=1
λi (7)

where λi stands for the eigenvalues of the data matrix.

• Roy’s largest root:

Θ = max{λi} (8)

where max{λi} is the largest eigenvalue of the data matrix.

2.3.4. Anosim test

The Anosim function belongs to the vegan package of the R statistical

software. This package was created for ecological studies of discrimination of

natural species, hence it has high discriminatory power even in the absence

of normality distribution of the independent variables [36]. In our analysis,

the Anosim function of this package was used. This function allows us to

check whether there are differences between two or more groups of data

samples. These differences are quantified by providing a p-value [31] about

data distributions. In order to apply the Anosim function, groups of samples

on which we are interested in determining their dependence, are defined. It is

assumed that distances between elements of different groups are larger than

those between elements of the same group [37]. To check the significance of

data, a permutation-based method in which samples are randomly changed

from one group to another, is used. The R statistical is used in the analysis.

This statistical parameter is based on the measured difference between data

belonging to different groups (classes), rB, and data into the same group rW .
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The following formula is applied to both data:

R = 4 rB − rW
N(N − 1)

(9)

where rB is the average of all between-groups distances, rW is the average of

all within-group distances and N stands for the total number of samples.

The main advantage of Anosim with respect to other parametric tech-

niques, such as MANOVA, is that it is not necessary to make assumptions

about data distributions. It is also robust and works well for small data sam-

ples, being often used in the analysis of biodiversity, a field of study where

much accuracy is needed due to the variety of species found in this area.

Finally, another advantage of this test over other non-parametric methods

is that it does not need to compute any matrix inversion, which could pose

a problem in those methods that need to compute the determinant for the

p-value. In these cases, if matrices are singular, such techniques could be

applied (for instance, in those cases where data are linear combinations of

each other). Despite the good performance of MANOVA, and thanks to all

these advantages, the Anosim test can be considered as an improved version

of the MANOVA test, and may even be considered as a non-parametric

MANOVA version.

3. Results

In this section, univariate (single electrode) results are first shown, fol-

lowed by multivariate results (electrode groupings), both in visual and numer-

ical form and both at feature and electrode level, including the computation

of p-values, p-value topoplots [38], and p-value boxplots, as outcomes.
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3.1. Univariate results

Two hypothesis tests are included: the t Student and the Mann-Whitney

U tests are here used to evaluate univariate (single variable) results.

3.1.1. t Student’s test

First, the t of Student test has been carried out. It is therefore necessary

to check whether the condition of data being normally distributed is fulfilled

or not [39]. This test was performed with the goodness of fit test of Shapiro-

Wilk.

Next, it is necessary to check whether the variances of the two populations

(SZ and HC) are identical or different, and depending on this, a type of SPSS

t of Student test will be selected. This check is performed using the Levene

test, and results are shown in Table A.3 of Appendix A for the 15Hz pre-

processing filter and in Table A.4 of Appendix A for the 35Hz case. For the

sake of simplicity, only data corresponding to significant pairs are shown in

both tables.

Once this test is performed, it was found that of the 720 {feature, electrode}

pairs of the two filters, only about 100 can be considered to be normally dis-

tributed, and, of these, only 13 (8 for the 15Hz filter and 5 for the 35Hz one)

have a p-value ≤ 0.05. These pairs are shown in Appendix A Table A.5 for

the 15Hz filter and in Appendix A Table A.6 for the 35Hz filter. In these two

tables, the p-value of the Student’s t test and the p-value of non-parametric

Mann-Whitney test (which will be later explained) are compared.

The following conclusions can be drawn after this test is performed:

• Since normally distributed populations are only a very few compared
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to the total, it was decided that a non-parametric test should be per-

formed to obtain relevant results, since it does not need to meet any

requirement.

• In the comparison made between significant p-values, it has been ob-

served that p-values of the Student’s t test are consistent with those

p-values of the Mann-Whitney test, i.e. when some pairs show a p-value

≤ 0.05, the other test leads to similar results.

3.1.2. Mann-Whitney non-parametric U test

After the failed result from the Student’s t test, the Mann-Whitney non-

parametric U test [40] is performed. Figure 3 shows the four pairs that

have proved to be more discriminant since they exhibit the less overlapping

boxplots among the two classes. Notice that these boxplots do not show p-

values; they show the difference of the measured data for each pair comparing

both populations, SZ and HC.

Raw data from the measurement of each pair are related to the p-value of

the Mann-Whitney test by a certain number of asterisk symbols (*), which

are shown at the top of the boxplots. The relationship between the number

of asterisk symbols (*) and the p-values upper bounds is next shown:

p ≤ 0.0001 =⇒ 10∗

p ≤ 0.0005 =⇒ 9∗

p ≤ 0.001 =⇒ 8∗

p ≤ 0.0025 =⇒ 7∗

p ≤ 0.005 =⇒ 6∗

p ≤ 0.01 =⇒ 5∗
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8*SZ
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(a) {MeanFrequency, P4}− 15Hz (b) {PSE,P4}−15Hz

(c) {P300Lat, F7}−35Hz (d) {PSE,P4}−35Hz

Figure 3: Comparison of measured data from electrode for what can be considered as

the four best { feature-electrode} pairs. In these figures, we can highlight how medians

of both subject groups, SZ and HC, are well apart one from the other with almost no

overlap between the boxes. (a) {meanFreqency, P4}−15Hz, (b) {PSE,P4}−15Hz, (c)

{P300Lat, F7}−35Hz, and (d) {PSE,P4}−35Hz (red: SZ, blue: HC).

p ≤ 0.02 =⇒ 4∗

p ≤ 0.03 =⇒ ∗ ∗ ∗

p ≤ 0.04 =⇒ ∗∗

p ≤ 0.05 =⇒ ∗
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Next, results reached using the Mann-Whitney U test for electrocar-

diograms are shown using boxplots, and for features with boxplots and

topoplots, the latter being an interpolated graphical option of the EEGLab

MatLab R© Toolbox [38].

3.1.3. Features

We believe that topoplot figure plot type [38] is a fast, simple, intuitive

and visual way to observe direct conclusions regarding represented p-values.

In Section Appendix B.1, topoplots of frequency (f) features are shown (Fig-

ure B.13 and Figure B.14), while in Sections Appendix B.2 and Appendix B.3

topoplots of time-domain (t) features for 15Hz, and 35Hz, Figures B.15 and

B.16, respectively, are shown. Analyzing these topoplots, the following con-

clusions concerning p-values of the Mann-Whitney test can be highlighted:

• For the 15Hz filter, a larger amount of lower p-values (blue tone colors)

are observed, in contrast to those obtained with the 35Hz filter.

• For the 15Hz filter, features with more blue area are: mean frequency,

ZC, P300LatAbs, and, especially, PSE. See Appendix B, Figures B.13

and B.15.

• For the 35Hz filter, features with more blue area are: mean frequency,

PSE, and variance. See Appendix B, Figures B.14 and B.16.

• For both filters, the most relevant electrodes found are: P4, Pz, Fp1,

and F7.

• Considering the interpolated topoplot of the Mann Whitney non-parametric

U test that averages feature p-values (both f and t domains) for both
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preprocessing filters (either 15Hz or 35Hz) –Figure 4–, it can be seen

that the 15Hz case has less red colors (higher p-values) than when the

35Hz filter is used. It is also observed that the blue colored electrodes

are those previously described as showing a better performance in most

topoplots (P4, Pz, Fp1, and F7 ). Note that for each of the 17 elec-

trodes (channels), we are simply averaging the p-values resulting for

each of the 20 features under consideration (4 in f domain and 16

in t domain). The aim is to have an idea of what regions of the head

may have a higher discriminant power when discriminating between SZ

and HC subjects, considering each feature individually (univariate) and

then computing the average of all 20 resulting p-values, using only a

single feature at the same time for discriminating SZ and HC subjects.

Next, boxplots for each of the 20 features computed from EEG data are

shown in Figure 5. Most of them have a low p-value (upper limits are quite

low in all of them). However, we can highlight the behavior of some of

them, such as: PSE, mean frequency, median frequency, and mean, because

all of them offer low p-values for most of the electrodes (the upper limit is

not very large); besides, the median p-value is quite low in the four cases.

Table 1 summarizes the best p-values found for the features of the 15Hz

filter. For the 35Hz filter case, the best mean p-values were obtained by the

PSE, Mean Frequency and Median Frequency features, while the best median

values corresponded to PSE, ATAR and Mean Frequency features.
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topoplot p-values: P4, Pz, Fp1, and F7.

Figure 4: Topoplot of p-values from the Mann-Whitney non-parametric U test for the

averaged feature p-value of each of the 17 electrodes. a) 15Hz pre-processing filter, b)

35Hz pre-processing filter. Please note that we are simply averaging resulting p-values

over all 20 features in each of the 17 electrode loci, but each feature is used alone when

discriminating between SZ and HC subjects (univariate).

Table 1: Features with best mean and median p-values in the Mann-Whitney non-

parametric U test. Preprocessing with 15Hz filter.

mean p-value median p-value

Feature p-value Feature p-value

PSE 0.29426 Mean 0.15723

Mean freq. 0.29471 PSE 0.20064

Mean 0.31649 Mean freq. 0.31234
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Figure 5: p-values boxplots from the Mann-Whitney non-parametric U test. Boxplots

are shown for p-values of each pair, fixing, in each one, the corresponding feature. Every

boxplot is constructed using the p-values of the 17 pairs of each feature with every single

electrode (channel) (red: 35Hz filter, blue: 15Hz filter).

3.1.4. Electrodes

Figure 6 shows p-value boxplots corresponding to the 17 electrodes. It is

worth noting that the best electrodes are P4 and Pz, which obtain small val-

ues for most features. We can also highlight that F3, F7, and Fp1 electrodes

attain low p-values in some pairs.
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We can also draw conclusions for the electrodes taking into account those

topoplots outlined in previous section, though not so directly. For instance,

referring to Figure 4, we can see that, for both heads, the above described

electrodes have low p-values, specifically P4 and Pz.

Table 2 contains a summary with those electrodes with the best p-values

for the 15Hz filter. In case the 35Hz filter is used, both the best mean and

median p-values were obtained by the P4, F7 and Pz features.
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Figure 6: Boxplots of Mann-Whitney U test p-values. Figure shows p-values boxplots for

each pair considering the corresponding electrode is fixed (red: 35Hz filter, blue: 15Hz

filter).
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Table 2: Electrodes with best mean and median p-values in the Mann-Whitney non-

parametric U test, for 15Hz preprocessing filter.

mean p-value median p-value

Electrode p-value Electrode p-value

Pz 0.12180 P4 0.05131

P4 0.08071 Pz 0.06007

F7 0.26177 F7 0.16121

3.2. Multivariate results

In this section, a multivariate analysis is performed by implementing two

different multivariate tests. On the one hand, we have considered the para-

metric MANOVA test, and, on the other hand, the Anosim test has been

performed. Anosim is a version of the non-parametric MANOVA test based

on permutations. Both tests were carried out in two ways: first, adding the

electrodes/features randomly and obtaining the resulting p-values, and, sec-

ond, adding the electrodes/features following Fisher’s Linear Discriminant

Analysis (FLDA) criterion, which is known to be sub-optimal for p-values

[41].

First, in Section 3.2.1, this analysis is performed for every feature, next, in

Section 3.2.2, for every electrode, and finally, in Section 3.2.3, for different

electrode groupings –electrodes belonging to each group can be found in Sec-

tion 2.2.2, Figure 2.
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Figure 7: p-values boxplots from MANOVA test for each feature (red: 35Hz filter, blue:

15Hz filter).

3.2.1. Features

Analyzing p-values for each feature, a good performance is observed for

the following frequency-domain features (both for the 15 and 35Hz cases):

mean frequency, median and PSE. Besides, features ATAR, P300LatAbs and

ZC also attain low p-values with the 15Hz filtering, while frequency mode

leads to a low p-value under the 35Hz filtering. Analyzing figures, it is noted

that, in general, the 15Hz filter gets lower p-values, and, therefore, better

discriminatory capability than the 35Hz filter.

When both MANOVA (Figure 7) and Anosim (Figure 8) are compared, it
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can be seen that features show a very similar behavior, since features with

low p-value using one method, usually have also this tendency with the other.

Only small not relevant differences are appreciated. Finally, notice that if

an ordering is carried out following the FLDA criterion, lower p-values are

reached with respect to a random ordering.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
T

A
R

en
er

gy

LA
R

LA
R

A
bs

m
ea

n

M
ea

n 
F

re
q.

M
ed

ia
n 

F
re

q.

M
od

e 
F

re
q.

N
A

R

P
30

0L
at

P
30

0L
at

A
bs

P
30

0M
ea

n

P
30

0P
ea

k

P
30

0P
ea

kA
bs

P
A

R

P
S

E

T
A

A
R

T
A

R

va
ria

nc
e

Z
C

p−
va

lu
e

 

 
35Hz
15Hz

Figure 8: p-values boxplots from Anosim test for each feature (red: 35Hz filter, blue: 15Hz

filter).
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Figure 9: p-values boxplots from MANOVA test for each electrode (red: 35Hz filter, blue:

15Hz filter).

3.2.2. Electrodes

Analyzing these boxplots, electrodes that lead to lower p-values when the

15Hz filtering is used, are: F4, C3, P4, O1, F7 and Fz. On the other hand,

electrodes with lowest p-values when the 35Hz filtering is used, are: C4, O2

and F7. It is also noted that 15Hz filtering leads to lower electrode p-values

than those achieved with the 35Hz filter.

Making a comparison between MANOVA (Figure 9) and Anosim (Figure

10), it can be seen that the Anosim method leads to lower p-values than the

MANOVA test for most of the electrodes. However, electrodes having low p-

values for the MANOVA test, remain low for the Anosim function, matching

those that have been the most discriminant ones, as found in previous tests.

Whenever the FLDA criterion is used to sort electrodes, smaller p-values are
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reached than when a random electrodes ordering is used.
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Figure 10: p-values boxplots from Anosim test for each electrode (red: 35Hz filter, blue:

15Hz filter).

3.2.3. Groups of electrodes

Analyzing the electrode groupings boxplots, the following conclusions can

be drawn: those groupings with the lowest p-values are the Frontal and

Parieto-Temporal groups. This performance is reasonable since front group

includes F4, F7 and Fz electrodes, and, as we have seen in previous sec-

tions, these electrodes have high discriminatory power. On the other hand,

the Parieto-Temporal grouping includes electrode P4, which has very low

p-values, as well as being located in the part of the head where the event

related potentials of p300 (P3b) wave is believed to be generated, and also

in accordance with results recently published in [22], reached after using

convolutional Neural Networks (CNN) and Support Vector Machine (SVM)
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Figure 11: Boxplots of p-values for MANOVA test for different electrode groupings (red:

35Hz filter, blue: 15Hz filter).
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Figure 12: p-values boxplots from Anosim test for different electrode groupings (red: 35Hz

filter, blue: 15Hz filter).
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techniques.

Boxplots show how results improve as the number of electrodes belong-

ing to the grouping is increased. The results of the hemispheres and the

total head improve the results of the other groups. If we compare the two

hemispheres, it can be seen that the left hemisphere reaches lower p-values,

although it is true that the right hemisphere has more low p-values (besides,

RH has the lowest average). The 15Hz filter led to lower p-values, accordingly

with previous simulations where this specific filtering led to better results,

[21]. Regarding the boxplots of sub-hemispheres –whose definition can be

seen in Section 2.2.2– it can be seen that they have lower p-values than those

obtained for the right and left hemispheres, though not lower than those

reached with the Total grouping. This behavior is common for both tests,

MANOVA (Figure 11) and Anosim (Figure 12). In relation to the organi-

zation in which pairs of clusters are caught, we see that lower p-values are

reached if FLDA is used instead of the uniform random selection scheme.

4. Discussion

In our work, a univariate analysis of the input samples has been first car-

ried out, followed by a non-parametric hypothesis test (the Mann-Whitney

U test). Results from both parametric and non-parametric approaches were

conveniently compared. Second, a multivariate analysis was performed; a

discriminant analysis was run in order to find the optimal –in terms of bet-

ter discriminatory capabilities– pairs of features and electrodes. Third, a

MANOVA test was performed so as to compute p-values and compare groups
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of pairs of features and electrodes. Last, a non-parametric Anosim test based

on permutations was carried out and compared with the MANOVA test.

Optimal combinations of electrode grouping, filtering, and feature selec-

tion based on computed p-values have been provided. Electrode groupings

boxplots lead to the following results: Frontal and Parieto-Temporal group-

ings get lower p-values. This is reasonable since Frontal grouping includes

F4, F7, and Fz electrodes, which have, as we have seen in other tests, good

discriminatory properties. On the other hand, the Parieto-Temporal group-

ing includes electrode P4, which leads to very low p-values, as well as being

located in an area of the skull where the P3b wave is believed to be gener-

ated, being in accordance with previous results shown in [21] as well as with

those recently reported by Shalbaf et al. in [22].

Boxplots show that results improve as the number of electrodes in the

group becomes higher. Results of both right and left hemispheres and the

Total grouping are better than those obtained with the other electrode group-

ings. On the other hand, Left Hemisphere attains lower p-values, although

Right Hemisphere gets a higher number of low p-values (and also has the

lowest average p-value). As previously proved with other tests, the 15Hz

pre-processing filter led to lower p-values. Boxplots of sub-hemispheres have

inferior p-values than those corresponding to the left and right hemispheres,

but higher than those of the Total grouping. This behavior is general for

both MANOVA and Anosim tests. Besides, we have seen that lower p-values

are reached if FLDA ordering is used instead of the uniform random selection

scheme.

These results, regarding electrode groupings multivariate analysis, are
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consistent with those observed by Palaniyappan et al. in [17], where schizophre-

nia is discriminated from bipolar disorders at the single subject level. In fact,

[17] concludes that "even though certain features were themselves not sig-

nificantly different between the groups, they increased separability between

the groups when used in combination with other features, emphasizing the

strength of the multivariate nature of classifiers". Nevertheless, it must be

noted that the inclusion of too many non discriminant features may also re-

duce the final discriminatory power of the classifier for detecting schizophre-

nia. Thus, a trade-off is needed when selecting the number of features and

the particular {feature, electrode} pairs, in the problem of discriminating

between healthy controls (HC) and schizophrenia (SZ) patients. In our work,

optimized sets of electrode grouping, filtering, and feature selection based on

computed p-values have been provided.

This use of statistical significance tests to validate the discriminant capa-

bility of features is in accordance with recently published works such as [15],

[16], [42], and several of those cited in the review paper by C. Barros et al.

[23], all of them describing AI-based schizophrenia detection systems.

5. Conclusion and future work

In this paper, a novel Statistical Discriminant Diagnosing (SDD) system

that discriminates between healthy controls and subjects with schizophrenia

has been presented. The proposed system works with {feature, electrode}

EEG pairs which are selected based on the statistical significance of the p-

values computed over the brain P3b wave. EEG signals comprise 20 features

and 17 electrodes, both in time (t) and frequency (f) domain. Obtained
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results have been proved to be in agreement with previous hypothesis re-

garding the relevance of the Parieto-Temporal region, allowing us to identify

highly discriminant {feature, electrode} pairs in the detection of schizophre-

nia, resulting lower p-values in both Right and Left Hemispheres, as well as in

Parieto-Temporal EEG signals. For instance, the {PSE, P4} pair has been

found to be highly discriminant. Consequently, the proposed SDD system

may provide the human expert (psychiatrist) with an objective complimen-

tary information to help in the early diagnosis of schizophrenia.

As future work, we plan to apply multi-dimensional (17-D) array process-

ing at electrode skull surface loci with the purpose of identifying the multiple

simultaneous electromagnetic brain waves and their originating volume. In

addition, we expect to extend the database used regarding the number of

patients, seeking higher statistical power tests combined with the use of ma-

chine learning in the automatic diagnose of schizophrenia.
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Appendix A. t Student Tabular values

Table A.3: p-values for W statistic in Levene quality of variance test. Levene test tells us

whether we can assume equal variance or not among both classes. This say, if probability

associated to Levene statistic parameter is W > 0.05, then equal variance hypothesis can

be assumed, vice versa not equal variance counterpart (15Hz filter).

{feature, electrode} W (p-value) Equal variance assumed?

{PSE, P4} 0.51869 Yes

{MeanFrequency, P4} 0.00311 No

{PSE, F3} 0.24185 Yes

{P300Peak, FP1} 0.52289 Yes

{PSE, F7} 0.33899 Yes

{PSE, FP1} 0.20555 Yes

{LAR_Abs, P4} 0.06813 Yes

{PSE, Pz} 0.94265 Yes
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Table A.4: p-values for W statistic in Levene quality of variance test. Levene test tells us

whether we can assume equal variance or not among both classes. This say, if probability

associated to Levene statistic parameter is W > 0.05, then equal variance hypothesis can

be assumed, viceversa not equal variance counterpart (35Hz filter).

{feature, electrode} W (p-value) Equal variance assumed?

{mean, F3} 0.36710 Yes

{P300Mean, F7} 0.11109 Yes

{TAR,F7} 0.11109 Yes

{MeanFrequency, F3} 0.00802 No

{MeanFrequency, F8} 0.11346 Yes

Table A.5: Comparison between t Student (parametric) and U Mann-Whitney (non-

parametric) tests for data fulfilling normality condition. Whenever p < 0.05 we can reject

the null hypothesis about equal means (15Hz filter).

{feature, electrode} t Student U Mann-Whitney

p-value p-value

{PSE, P4} 0.00003 0.00019

{MeanFrequency, P4} 0.00708 0.00089

{PSE, F3} 0.00860 0.01269

{P300Peak, FP1} 0.01120 0.01118

{PSE, F7} 0.02419 0.03113

{PSE, FP1} 0.02590 0.05634

{LARAbs, P4} 0.03606 0.05930

{PSE, Pz} 0.04387 0.03887
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Table A.6: Comparison between t Student (parametric) and U Mann-Whitney (non-

parametric) tests for data fulfilling normality condition. Whenever p < 0.05 we can reject

the null hypothesis regarding equal means (35Hz filter)

{feature, electrode} t Student U Mann-Whitney

p-value p-value

{mean, F3} 0.04365 0.025

{P300Mean, F7} 0.03118 0.062

{TAR,F7} 0.03118 0.062

{MeanFrequency, F3} 0.04426 0.076

{MeanFrequency, F8} 0.00947 0.010

Appendix B. Mann-Whitney U test topoplots: univariate

In this appendix, we show the non-parametric Mann-Whitney U p-values

topoplots interpolated graphs for each of the 4 frequency (f) and 16 time

(t) features extracted from each of the EEG channels (electrodes) considered

individually so as to compare the discriminant power in discriminating SZ

from HC of each individual feature along head skull in a univariate way.

Both 15Hz and 35Hz preprocessing filters have been considered. Thus, lower

p-values in interpolated head graphs (blue tones) indicate a higher discrimi-

native power of a particular feature (either frequency (f) or time (t) domains)

in distinguishing between SZ and HC subjects.

Appendix B.1. U Mann-Whitney frequency (f) feature topoplots: 15Hz and

35Hz

Figures B.13 and B.14 depict the U Mann-Whitney frequency domain (f)

feature topoplots for both 15Hz and 35Hz pre-processing filters, respectively.
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Figure B.13: U Mann-Whitney frequency (f) feature topoplots for the 15Hz filter. Blue

tones indicate lower p-values (highly discriminant) while on the contrary red tones indicate

higher (closer to 1) p-values (less discriminant). Topoplots shown are: (a) Mean frequency

15Hz, (b) Median frequency 15Hz, (c) Mode frequency 15Hz, and (d) PSE 15Hz. Please

note univariate (single feature) results are shown here.
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Figure B.14: U Mann-Whitney test frequency (f) feature topoplots for the 35Hz filter.

Blue tones indicate lower p-values (highly discriminant) while on the contrary red tones

indicate higher (closer to 1) p-values (less discriminant). Topoplots shown are: (a) Mean

frequency 35Hz, (b) Median frequency 35Hz, (c) Mode frequency 35Hz, and (d) PSE 35Hz.

Please note univariate (single feature) results are shown here.
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Appendix B.2. U Mann-Whitney time feature topoplots: 15Hz

Figure B.15 depicts the U Mann-Whitney time domain (t) feature topoplots

for the 15Hz pre-processing filter.

Appendix B.3. U Mann-Whitney time feature topoplots: 35Hz

Figure B.16 depicts the U Mann-Whitney time domain (t) feature topoplots

for the 35Hz pre-processing filter.
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Figure B.15: U Mann-Whitney test time (t) feature topoplots for the 15Hz filter: (a)

ATAR, (b) energy, (c) LAR, (d) LARAbs, (e) mean, (f) NAR, (g) P300Lat, (h) P300LatAbs,

(i) P300Mean, (j) P300Peak, (k) P300PeakAbs, (l) PAR, (m) TAAR, (n) TAR, (o) variance,

and (p) ZC. Blue tones indicate lower p-values (highly discriminant) while on the contrary

red tones indicate higher (closer to 1) p-values (less discriminant). Please note univariate

(single feature) results are shown here.
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Figure B.16: U Mann-Whitney test time (t) feature topoplots for the 35Hz filte: (a) ATAR,

(b) energy, (c) LAR, (d) LARAbs, (e) mean, (f) NAR, (g) P300Lat, (h) P300LatAbs, (i)

P300Mean, (j) P300Peak, (k) P300PeakAbs, (l) PAR, (m) TAAR, (n) TAR, (o) variance,

and (p) ZC. Blue tones indicate lower p-values (highly discriminant) while on the contrary

red tones indicate higher (closer to 1) p-values (less discriminant). Please note univariate

(single feature) results are shown here.

43



[6] A. Pfefferbaum, B. G. Wenegrat, J. M. Ford, W. T. Roth, B. S. Kopell,

Clinical application of the P3 component of event-related potentials. II.

dementia, depression and schizophrenia, Electroencephalography and

Clinical Neurophysiology/Evoked Potentials Section 59 (2) (1984) 104–

124.

[7] V. Souza, W. Muir, M. Walker, M. Glabus, H. Roxborough, C. Sharp,

J. Dunan, D. Blackwood, Auditory P300 event-related potentials and

neuropsychological performance in schizophrenia and bipolar affective

disorder, Biological Psychiatry 37 (5) (1995) 300–310.

[8] C. Kruiper, B. Fagerlund, M. Ø. Nielsen, S. Düring, M. H. Jensen,

B. H. Ebdrup, B. Y. Glenthøj, B. Oranje, Associations between P3a

and P3b amplitudes and cognition in antipsychotic-naïve first-episode

schizophrenia patients, Psychological medicine 49 (5) (2019) 868–875.

[9] M. Devrim-Üçok, H. Y. Keskin-Ergen, A. Üçok, Novelty P3 and P3b in

first-episode schizophrenia and chronic schizophrenia, Progress in Neuro-

Psychopharmacology and Biological Psychiatry 30 (8) (2006) 1426–1434.

[10] A. McCathern, Emitted P3a and P3b in chronic schizophrenia and

in first-episode schizophrenia, Ph.D. thesis, University of Pittsburgh

(2017).

[11] H. K. Hamilton, S. W. Woods, B. J. Roach, K. Llerena, T. H. Mc-

Glashan, V. H. Srihari, J. M. Ford, D. H. Mathalon, Auditory and visual

oddball stimulus processing deficits in schizophrenia and the psychosis

44



risk syndrome: forecasting psychosis risk with P300, Schizophrenia bul-

letin 45 (5) (2019) 1068–1080.

[12] A. G. McCathern, B. A. Coffman, T. K. Murphy, K. L. Ward, S. Haigh,

D. Salisbury, Emitted P3a and P3b in chronic schizophrenia and in first-

episode schizophrenia-spectrum psychosis, Biological Psychiatry 81 (10)

(2017) S80.

[13] E. Niedermeyer, F. L. da Silva, Electroencephalography: basic princi-

ples, clinical applications, and related fields, Lippincott Williams and

Wilkins, 2005.

[14] J. R. Stevens, L. Bigelow, D. Denney, J. Lipkin, A. H. Livermore,

F. Rauscher, R. J. Wyatt, Telemetered EEG-EOG during psychotic be-

haviors of schizophrenia, Archives of General Psychiatry 36 (3) (1979)

251–262.

[15] K. Das, R. B. Pachori, Schizophrenia detection technique using mul-

tivariate iterative filtering and multichannel EEG signals, Biomedical

Signal Processing and Control 67 (2021) 102525.

[16] S. Siuly, S. K. Khare, V. Bajaj, H. Wang, Y. Zhang, A computerized

method for automatic detection of schizophrenia using EEG signals,

IEEE Transactions on Neural Systems and Rehabilitation Engineering

28 (11) (2020) 2390–2400.

[17] L. Palaniyappan, G. Deshpande, P. Lanka, D. Rangaprakash,

S. Iwabuchi, S. Francis, P. F. Liddle, Effective connectivity within

a triple network brain system discriminates schizophrenia spectrum

45



disorders from psychotic bipolar disorder at the single-subject level,

Schizophrenia Research 214 (2019) 24 – 33.

[18] S. L. Oh, J. Vicnesh, E. J. Ciaccio, R. Yuvaraj, U. R. Acharya, Deep con-

volutional neural network model for automated diagnosis of schizophre-

nia using EEG signals, Applied Sciences 9 (14) (2019) 2870.

[19] B. J. Roach, D. H. Mathalon, Event-Related EEG Time-Frequency

Analysis: An Overview of Measures and An Analysis of Early Gamma

Band Phase Locking in Schizophrenia, Schizophrenia Bulletin 34 (5)

(2008) 907–926.

[20] N. B. Lundin, L. A. Bartolomeo, B. F. O’Donnell, W. P. Hetrick, Re-

duced electroencephalogram responses to standard and target auditory

stimuli in bipolar disorder and the impact of psychotic features: Analy-

sis of event-related potentials, spectral power, and inter-trial coherence,

Bipolar Disorders 20 (1) (2018) 49–59.

[21] L. Santos-Mayo, L. M. San-Jose-Revuelta, J. I. Arribas, A computer-

aided diagnosis system with EEG based on the P3b wave during an

auditory odd-ball task in schizophrenia, IEEE Transactions on Biomed-

ical Engineering 64 (2) (2017) 395–407.

[22] A. Shalbaf, S. Bagherzadeh, A. Maghsoudi, Transfer learning with deep

convolutional neural network for automated detection of schizophrenia

from EEG signals, Physical and Engineering Sciences in Medicine 43 (4)

(2020) 1229–1239.

46



[23] C. Barros, C. A. Silva, A. P. Pinheiro, Advanced EEG-based learning

approaches to predict schizophrenia: Promises and pitfalls, Artificial

Intelligence in Medicine (2021) 102039.

[24] S. Góngora Alonso, G. Marques, D. Agarwal, I. De la Torre Díez,

M. Franco-Martín, Comparison of machine learning algorithms in

the prediction of hospitalized patients with schizophrenia, Sensors 22

(2022) (7).

[25] N. Sairamya, M. Subathra, S. Thomas George, Automatic identification

of schizophrenia using EEG signals based on discrete wavelet transform

and rlndip technique with ann, Expert Systems with Applications 192

(2022) 116230.

[26] L. Santos-Mayo, L. M. San-Jose-Revuelta, J. I. Arribas, Diagnóstico au-

tomático de la esquizofrenia basado en el estudio de señales EEG de

actividad cortical en el cerebro, Master Science Degree. ETSIT, Univer-

sity of Valladolid, Spain, 2015.

[27] N. E. Anderson, R. M. Baldridge, M. S. Stanford, P3a amplitude pre-

dicts successful treatment program completion in substance-dependent

individuals, Substance Use and Misuse 46 (5) (2011) 669–677.

[28] P. Armitage, G. Berry, J. N. S. Matthews, Statistical methods in medical

research, John Wiley and Sons, 2008.

[29] S. K. Prabhakar, H. Rajaguru, S.-W. Lee, A framework for schizophrenia

EEG signal classification with nature inspired optimization algorithms,

IEEE Access 8 (2020) 39875–39897.

47



[30] W. W. Daniel, C. L. Cross, Bioestatistics, Wiley, 2013.

[31] R. R. Wilcox, Introduction to robust estimation and hypothesis testing,

Academic Press, 2012.

[32] D. B. Owen, Handbook of statistical tables, Addison-Wesley Publishing

Company, 1962.

[33] T. Cacoullos, Discriminant analysis and applications, Academic Press,

2014.

[34] R. A. Johnson, D. W. Wichern, Applied multivariate statistical analysis,

Prentice hall, 2002.

[35] J. P. Stevens, Applied multivariate statistics for the social sciences,

Routledge, 2012.

[36] M. J. Anderson, D. C. Walsh, Permanova, anosim, and the mantel test

in the face of heterogeneous dispersions: what null hypothesis are you

testing?, Ecological Monographs 83 (4) (2013) 557–574.

[37] G. M. Gaddis, M. L. Gaddis, Introduction to biostatistics: Part 5, sta-

tistical inference techniques for hypothesis testing with nonparametric

data, Annals of Emergency Medicine 19 (9) (1990) 1054–1059.

[38] A. Delorme, S. Makeig, EEGLab: an open source toolbox for analysis of

single-trial EEG dynamics including independent component analysis,

Journal of Neuroscience Methods 134 (1) (2004) 9–21.

[39] S. Zacks, Parametric statistical inference: Basic theory and modern

approaches, Elsevier, 2014.

48



[40] M. Hollander, D. A. Wolfe, E. Chicken, Nonparametric statistical meth-

ods, John Wiley and Sons, 2013.

[41] K. McGarigal, S. A. Cushman, S. Stafford, Multivariate statistics for

wildlife and ecology research, Springer Science and Business Media,

2013.

[42] V. Jahmunah, S. L. Oh, V. Rajinikanth, E. J. Ciaccio, K. H. Cheong,

N. Arunkumar, U. R. Acharya, Automated detection of schizophre-

nia using nonlinear signal processing methods, Artificial intelligence in

medicine 100 (2019) 101698.

49




