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Wisdom has built herself a house,
she has erected her seven pillars,

she has slaughtered her beasts, prepared her wine,
she has laid her table.

She has despatched her maidservants
and proclaimed from the city’s heights:

‘Who is ignorant? Let him step this way.’
To the fool she says,

‘Come and eat my bread,
drink the wine I have prepared!

Leave your folly and you will live,
walk in the ways of perception.’

Prov 9 : 1-6

Sapientia aedificavit sibi domvm, the beginning of Prov 9 : 1, is the motto of Universidad de Valladolid.
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Introduction

Dynamical systems are the mathematical framework used to describe how a phe-
nomenon evolves over time according to certain laws or rules that govern its behavior.
When the laws themselves are explicitly time-dependent, the system is said to be
nonautonomous. The concept of nonautonomous dynamical systems encompasses
a solid mathematical theory developed over the last century, which continues to be
a very active area of research today. This theory requires its own set of tools and
methods, different from those of autonomous dynamics, and includes areas of study
as diverse as stability and attraction, bifurcation theory, control theory, dynamical
complexity and chaos, or multiscale systems. While the results of nonautonomous
dynamics occasionally mirror known scenarios observed in autonomous dynamics,
in other instances, this field unveils novel dynamical scenarios inaccessible within
the purview of autonomous models. These scenarios typically exhibit elements of
high dynamical complexity.

An essential aspect of dynamical systems theory, and consequently of nonau-
tonomous theory, lies in the modeling of real-world events. Endeavors in this di-
rection seek to describe, predict, and/or control the behavior of such phenomena.
The dynamical abundance achievable through nonautonomous models enables the
description of real-world phenomena that autonomous dynamics alone cannot ade-
quately capture. A topic in the applied sciences that has generated growing interest
in recent years is the study of critical transitions [105], which are significant changes
in the dynamics of a complex system that occur as a consequence of small variations
in its inputs. This concept appears repeatedly in the literature in recent years in
areas such as climate [4, 13, 68, 101, 108], ecology [5, 28, 79, 106, 107, 115], biology
[48, 84] or finances [77, 112, 121]. The present PhD dissertation has two main objec-
tives: to obtain new results on nonautonomous dynamics, paying special attention
to nonautonomous bifurcation theory, and to apply the conclusions obtained to the
study of critical transitions in ecology, among other fields of interest.

A commonly used approach to formalizing the theory of critical transitions was
instigated by Ashwin et al. [12]. This approach usually involves a parametric family
of ordinary differential equations as a starting point. Subsequently, the parameter
is replaced by a function, referred to as a parameter shift, which has asymptotically
constant limits γ− and γ+ as t → −∞ and t → ∞ respectively. The system re-
sulting from this substitution is called the transition system (or transition equation
in the scalar case), and it is the one whose dynamics are supposed to describe the
phenomenon to be modeled. The equations obtained by substituting the values of
the parameter γ− and γ+ in the initial parametric family are called past system and
future system (or past equation and future equation in the scalar case) respectively,
and it is often assumed that both exhibit the same type of global dynamics. This
approach is used, for instance, in Alkhayuon and Ashwin [3], Kiers and Jones [61],
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Kuehn and Longo [65], O’Keeffe and Wieczorek [89], Wieczorek and Xie [118], Wiec-
zorek et al. [119] among others, where the past and future systems are autonomous.
In the recent works of Longo et al. [71, 72, 73], the limit equations are inherently
nonautonomous, and the law of the (scalar) differential equation is concave with
respect to the state variable. In any case, the nonautonomous transition system
can be understood as a connection between the past system, which is approached
by the transition system as t decreases, and the future system, which is approached
as t increases. It is thus apparent that this mathematical framework incorporates
key elements from the theory of dynamical systems, and it is logical to anticipate
that the advances in the theory of nonautonomous dynamical systems will facilitate
progress in addressing various types of problems and refining the conclusions drawn
from them.

Throughout the document, we will always restrict ourselves to the study of scalar
equations. If h is regular enough, in order to analyze the nonautonomous scalar
ordinary differential equation

x′ = h(t, x) , (1)

we consider the hull Ωh of h, that is, the closure of the set of time shifts ht(s, x) =
h(s+ t, x) in the compact-open topology of C(R×R,R), and study simultaneously
the family of nonautonomous scalar ordinary differential equations

x′ = ω(t, x) for ω ∈ Ωh . (2)

The properties of the function h that guarantee that Ωh is compact and that the
time-shift global flow σh : R × Ωh → Ωh, (t, ω) 7→ ωt is continuous will be collected
in the definition of admissible function. In all cases, the flow (Ωh, σh) is transitive,
i.e., it has at least one dense orbit: that of h. Particular emphasis will be placed
on scenarios wherein (Ωh, σh) is minimal, meaning that every orbit is dense. Such
circumstance entails a profound relationship between all the orbits in Ωh. Consid-
ering simultaneously all the solutions of all the equations of the family (2) defines
a skewproduct flow; i.e., a continuous and possibly local flow on the product space
Ωh ×R whose action preserves the flow σh on the base Ωh. This framework, known
as the skewproduct formalism, enables the application of tools from topological dy-
namics and ergodic theory to explore the behavior of solutions of these equations.
Within this framework, it becomes feasible to transfer information between differ-
ent orbits and to identify collective properties, which are often easier to recognize
than those that are shown by individual equations. These collective properties will
sometimes be exhibited by all the equations of the hull, while at other times they
will be exhibited only by an invariant set with complete measure or by a residual
invariant set, i.e., by a large invariant set from the point of view of ergodic theory
or topology, respectively. Frequently, the initial differential equation (1) belongs to
these sets where some collective property is present. And, even in instances where
this is not directly applicable, significant aspects of the behavior of the solutions of
(1) may be inferred from these collective properties.

In this document, we focus on a specific type of nonlinearities. A continuous
map h : R×R → R, (t, x) 7→ h(t, x) with continuous derivative hx : R×R → R with
respect to the state variable x is said to be d-concave if hx is concave with respect
to x. These kind of functions appear frequently in the mathematical modeling of
problems in ecology [27], climate [15], optics and electronics [59], biology [82], and
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circuits [47] among many other fields of interest. It is worth noting, furthermore,
that the d-concavity of h is transmitted to all equations (2) of the hull Ωh.

Not only is d-concavity important in the analysis, but most of the main results
also require a second hypothesis, namely the coercivity of h. This property is also
transmitted to the hull and ensures the dissipativity of the skewproduct flow, thus
guaranteeing the existence of a global attractor.

Bifurcation theory addresses relevant changes in the local or global dynamics
generated by the solutions of a differential equation caused by small changes in the
model parameters or coefficients. We remark that the shallow descriptions of critical
transitions and bifurcations given so far closely resemble each other. In fact, it is
noteworthy that bifurcation theory has played a fundamental role in the development
of a mathematical theory of critical transitions since its inception. Autonomous bi-
furcation theory has been studied extensively in both finite and infinite dimension.
Nevertheless, nonautonomous bifurcation theory, which has been subject to inten-
sive investigation in recent years, presents new difficulties and challenges in both
its formulation and development. The works of Alonso and Obaya [6], Anagnos-
topoulou and Jäger [8], Anagnostopoulu et al. [10, 9], Braaksma et al. [17], Fabbri
and Johnson [39], Fuhrmann [42], Johnson and Mantellini [53], Johnson et al. [54],
Jäger [51], Kloeden [62], Langa et al. [67], Núñez and Obaya [86, 87], Pötzsche
[93, 94], Rasmussen [97, 98], Remo et al. [99] and the references therein, offer an
overview of the present state of this theory, focusing on scalar ordinary differential
equations. Since in general a nonautonomous differential equation does not have
constant or periodic solutions, it is not even clear from which class of objects the
bifurcation is to be studied. The skewproduct formulation gives a natural answer
in this context: we will study the variation with the parameter of the global at-
tractor and of the compact invariant sets that it contains; and, in the case that
(Ωh, σ) is minimal, we will study the variation with the parameter of the number
and hyperbolic structure of minimal sets in Ωh × R. For instance, it is well known
that a saddle-node bifurcation substantially changes the size of the global attrac-
tor, potentially leading to transitions from hyperbolic attractors to others that can
be sensitive with respect to the initial conditions or even chaotic; and that, in the
context of multi-scale dynamics, a double saddle-node bifurcation can give rise to
the so-called relaxation oscillations and other solutions with irregular fluctuations
of great importance in applications. This is just a sample of how the development of
bifurcation theory is, in many cases, deeply intertwined with that of its applications.

This work offers a comprehensive analysis of the bifurcation theory concern-
ing dissipative d-concave nonautonomous scalar ordinary differential equations with
minimal base flow. This analysis represents a highly nontrivial extension of pre-
viously known results established for autonomous models. Specifically, as noted
earlier, aspects of dynamical complexity that were absent in the autonomous realm
may emerge. Furthermore, we wish to underscore our discovery of bifurcation pat-
terns that are unattainable in the autonomous scenario: this is the case of the
so-called generalized pitchfork bifurcation, to which considerable effort is devoted
in this document and of which precise examples are constructed. In our results,
the occurrence of this bifurcation stems from the interplay between a topological
property and an ergodic property in the skewproduct base: minimality, a prevalent
attribute in deterministic dynamics, and the presence of multiple ergodic measures,
a widespread characteristic in random dynamical systems.
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With a view to the application of bifurcation theory results in the modeling of
critical transitions in ecological systems, and considering the longstanding tradition
of employing d-concave scalar equations to represent populations exhibiting the
Allee effect [27], we introduce a new dynamical formulation. Let g : R× R → R be
a sufficiently regular, coercive and admissible map defining a dissipative transition
equation

x′ = g(t, x) . (3)

We assume that there exist two sufficiently regular, coercive, admissible, and d-
concave functions g± satisfying limt→±∞(g(t, x)−g±(t, x)) = 0 uniformly on compact
sets of R and defining respectively a past equation x′ = g−(t, x) and a future equation
x′ = g+(t, x). Coercivity and d-concavity properties are inherited by all the elements
of the corresponding hulls. The asymptotic approach provides the relations Ωα

g =
Ωα

g− and Ωω
g = Ωω

g+
between the α-limit sets of g and g− and theω-limit sets of g and

g+. These relations serve as key elements in describing the dynamical possibilities of
the transition equation (3) under the assumption that both the past and the future
equations possess the maximum number of hyperbolic solutions allowed by the strict
d-concavity, which as we previously prove, is three. It is worth noting that we do
not impose d-concavity on the transition equation, i.e., on the function g itself, so
the transition equation may be given by a law of evolution that may be significantly
different, at least at very large time intervals, from the laws of evolution governing
past and future systems. This fact significantly broadens the scope of applications.

The dissertation is organized into four chapters. A brief overview of the contents
of each chapter serves to conclude this introduction.

Chapter 1 provides an introduction to the foundational concepts necessary for
the subsequent discussion. A preliminary section elucidates the basic principles
of both topological dynamics and ergodic dynamics. Following this, the chapter
proceeds to introduce the essential elements of the two formulations to be utilized:
the skewproduct formulation and the processes formulation. Finally, it concludes
with the presentation of definitions and properties of spaces of continuous functions
defined on a compact set.

In Chapter 2, we delineate the fundamental properties of families of d-concave
nonautonomous scalar equations, employing the skewproduct formulation on a com-
pact base Ω. That is, Ω is a compact metric space endowed with a continuous flow
σ : R× Ω → Ω, denoted by ω·t = σ(t, ω), and we consider families

x′ = h(ω·t, x) for ω ∈ Ω , (4)

which induce a local continuous flow τ(t, ω, x) = (ω·t, v(t, ω, x)) on Ω × R. Here,
v(t, ω, x) stands for the maximal solution of (4)ω that satisfies v(0, ω, x) = x, as the
conditions on h guarantee the existence and uniqueness of this solution. The family
(2) is included in this framework by defining h(ω, x) = ω(0, x) (and hence h(ω·t, x) =
ω(t, x)). Invariant and ergodic measures on Ω are of paramount importance in this
discussion. It is assumed that h : Ω× R → R possesses adequate regularity, as well
as the concavity of x 7→ hx(ω, x) over a complete measure subset of Ω for all ergodic
measures, and the strict concavity of x 7→ hx(ω, x) over a positive measure subset of
Ω for all the ergodic measures. Under these conditions, it is demonstrated that at
most three ordered compact invariant sets may exist projecting over the entire base,
and if three such compact sets exist, then they are hyperbolic copies of the base.
Assuming in addition that h satisfies a coercive property ensuring the dissipativity



Introduction 5

of x′ = h(ω·t, x), we delve into properties concerning the global attractor and those
relative to the Lyapunov exponents of compact invariant sets. The findings presented
in this chapter are primarily drawn from [34, 37].

The core of this dissertation is found in Chapters 3 (bifurcation) and 4 (critical
transitions). In Chapter 3, we examine three different bifurcation problems for one-
parameter families of nonautonomous scalar differential equations, employing the
skewproduct formulation on a compact base. Most of the results are stated for
the case of minimal base flow on Ω, so we assume this condition in what follows.
Given a function h : Ω × R → R satisfying the conditions of the previous chapter,
the bifurcation problems x′ = h(t, x) + λ, x′ = h(t, x) + λx and x′ = h(t, x) + λx2

are studied, where in the last two problems it is also assumed that h(·, 0) ≡ 0. In
each problem, our aim is to ascertain the number of minimal sets in Ω×R for each
parameter value, and from there, to infer properties of the global attractor. In the
case of x′ = h(ω·t, x)+λ, two of the possible bifurcation diagrams are described: the
double saddle node bifurcation diagram and the one minimal bifurcation diagram,
which are the nonautonomous analogs of the bifurcation diagrams of x′ = −x3 +
x + λ and of x′ = −x3 + λ, respectively, with the substantial difference that the
dynamics at the bifurcation points may exhibit considerably greater complexity.
Furthermore, it is proved that these are the only two possible diagrams if the flow
on Ω is uniquely ergodic. In the case of x′ = h(ω·t, x) + λx with h(·, 0) ≡ 0, we
encounter three potential bifurcation diagrams: the classical pitchfork bifurcation
diagram, serving as the nonautonomous counterpart to the bifurcation diagram of
x′ = −x3+λx; the local saddle-node and transcritical bifurcation diagram, serving as
the nonautonomous counterpart to the bifurcation diagram of x′ = −x3+2x2+λx;
and the generalized pitchfork bifurcation, for which there exists no nonautonomous
equivalent. These three diagrams exhaust all the possibilities. Besides, three possible
bifurcation diagrams are also described for x′ = h(ω·t, x) + λx2 with h(·, 0) ≡ 0:
the no bifurcation diagram, which is the nonautonomous analog of the bifurcation
diagram of x′ = −x3 + x + λx2; the two saddle-node bifurcation diagram, which is
the nonautonomous analog of the bifurcation diagram of x′ = −x3 − x + λx2; and
the weak generalized transcritical bifurcation diagram, which in some cases is the
nonautonomous analog to the one of x′ = −x3 + λx2. These three diagrams also
exhaust all the possibilities of this bifurcation problem. The findings concerning this
last bifurcation problem offer supplementary insights into the immediately preceding
problem. The theory presented in this chapter reproduces results from [34, 35].

In Chapter 4, we start by introducing models of single species populations subject
to the Allee effect, whose evolution is described by equations defined by d-concave
functions. We recall that these models have served as the impetus for investigating
such equations. Additionally, a nonautonomous perspective on the two types of Allee
effect, strong and weak, is presented. Subsequently, a mathematical framework for
critical transitions in asymptotically d-concave equations, where all components are
intrinsically nonautonomous, is formulated. The dynamical possibilities for a tran-
sition equation of the general form (3) are described, as well as the consequences
of each one of them on the structures of the global attractor and the pullback at-
tractor. Case A, where the transition equation possesses three distinct hyperbolic
solutions, may signify the persistence of a species at risk of extinction or the con-
tinued control of a potential invasive species. This scenario is consistently desired
in many practical applications. Cases C, where all bounded solutions converge to
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the same limit as time increases, may correspond to the catastrophic situations of
extinction or invasion. Of course, there are contexts in which the desired situation
may be one of the Cases C, such as the recovery of an endangered species. Cases
B represent unstable situations that separate the two aforementioned cases. When
rate-induced, phase-induced or size-induced tipping mechanisms are introduced, the
theory illustrates how the transition from Case A to one of the Cases C, namely
the occurrence of a critical transition in the system under study, arises from a saddle-
node bifurcation of hyperbolic solutions. Next, these results are translated into a
specific formulation of the transition equation

x′ = f(t, x,Γ(t, x)) ,

which is more readily employed in numerous applications, where there exist two
maps Γ− and Γ+ such that limt→±∞(Γ(t, x) − Γ±(t, x)) = 0 uniformly on compact
subsets of R and such that the properties of strict d-concavity and maximum hyper-
bolic solutions apply to the past equation x′ = f(t, x,Γ−(t, x)) and future equation
x′ = f(t, x,Γ+(t, x)), respectively. Numerical simulations and examples of critical
transitions in various population models discussed earlier complete the chapter. This
chapter jointly presents the contents of [36, 37].

Finally, we note that each chapter begins with a somewhat more detailed de-
scription of its structure and contents.



Chapter 1

Preliminaries

As explained in the Introduction, nonautonomous modeling of real-world phenom-
ena requires specific techniques and tools, different from those used in autonomous
modeling. This preliminary chapter encompasses the basics of time-dependent scalar
ordinary differential equations and nonautonomous one-dimensional dynamical sys-
tems, as well as several results that will be needed in the following chapters. Some of
them are formulated and proved specifically for this work. Many others are known
to specialists in nonautonomous dynamics. Of these, we include those proofs for
which it is not easy to find a suitable reference.

Section 1.1 summarizes some classical concepts and properties of topological
dynamics and ergodic theory, paying special attention to the definition and main
features of the Lyapunov exponents of a nonautonomous scalar linear ordinary dif-
ferential equation. Its significant relationship with integrals with respect to ergodic
measures is emphasized, and in the case of minimal base flow, with the dynamical
spectrum. Section 1.2 considers a base flow on a compact metric space and a map,
which evaluated on the orbits of the previously fixed base flow defines a family of
nonautonomous scalar ordinary differential equations. The method for defining a
skewproduct flow on the product space of the compact metric space and the real
line, which projects onto the base flow, is explained. It also introduces the concepts
of equilibria, semiequilibria and global upper and lower solutions, and describes the
main properties of these dynamical objects, fundamental in our analysis. The notion
of global attractor, and some characteristics of compact invariant subsets and mini-
mal subsets for the flow, including hyperbolicity and its relation with the Lyapunov
exponents of the variational equations, are also described in this section. In Section
1.3, it is explained how to obtain a skewproduct flow from a suitable single time-
dependent equation, and the relation between this flow and the process defined by
the solutions of the initial equation. Different notions of (local or global) attraction
of the solutions, and their relation with the correspondig properties for the skew-
product flow, complete the section. Finally, the short Section 1.4 describes some
features of sets of continuous functions on a compact metric space. In particular,
the set of continuous maps with continuous primitive will play a remarkable role in
the construction of some examples.

1.1 Some fundamental notions

Suitable references for this section are e.g. [26], [38], [54], [83], [103, 104] and [117].
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1.1.1 Basics of topological dynamics

In the following section we introduce some basic concepts of topological dynamics
that will be used repeatedly throughout the document.

Definition 1.1 (Continuous flow). Let Θ be a metric space. A map ϕ : V ⊆ R×Θ →
Θ, (t, θ) 7→ ϕ(t, θ) is said to be a continuous flow on Θ if

(i) V =
⋃

θ∈R Iθ×{θ}, where Iθ is an open interval which contains 0 for all θ ∈ Θ,

(ii) ϕ(0, θ) = θ for all θ ∈ Θ,

(iii) if (s, θ), (t, ϕ(s, θ)) ∈ V , then (t+ s, θ) ∈ V and ϕ(t+ s, θ) = ϕ(t, ϕ(s, θ)),

(iv) (t, θ) 7→ ϕ(t, θ) is continuous.

A continuous flow ϕ is said to be global if V = R×Θ.

If ϕ is a global continuous flow, then (iii) reads as ϕ(t+s, θ) = ϕ(t, ϕ(s, θ)) for all
t, s ∈ R and θ ∈ Θ. It will be usually said that the pair (Θ, ϕ) is a continuous flow
on a metric space (or simply a continuous flow), meaning that ϕ is a continuous flow
on the metric space Θ. We will frequently denote ϕ(t, θ) = θ·t, and therefore, given
C ⊆ Θ, we will denote C·t = {ϕ(t, θ) | θ ∈ C} whenever it is defined. Sometimes, to
avoid risk of confusion, we will denote ϕ(t, θ) = ϕt(θ) and ϕt(C) = C·t.

The following definitions refer to a continuous flow (Θ, ϕ).

Definition 1.2 (Orbit and semiorbits). Let θ ∈ Θ. The set

(i) {ϕ(t, θ) | t ∈ Iθ} is called the ϕ-orbit of θ,

(ii) {ϕ(t, θ) | t ∈ Iθ ∩ [0,∞)} is called the forward ϕ-semiorbit of θ,

(iii) {ϕ(t, θ) | t ∈ Iθ ∩ (−∞, 0]} is called the backward ϕ-semiorbit of θ.

The ϕ-orbit of θ is said to be globally defined if R = Iθ, the forward ϕ-semiorbit of
θ is said to be globally defined if [0,∞) ⊂ Iθ, and the backward ϕ-semiorbit of θ is
said to be globally defined if (−∞, 0] ⊂ Iθ. The prefix ϕ will be sometimes omitted.

Definition 1.3 (Invariant set). A set C ⊆ Θ is said to be ϕ-invariant if the ϕ-orbit
of θ is globally defined for all θ ∈ C and ϕt(C) = C for all t ∈ R.

Throughout the document, the subscript n ∈ N in sequences will often be omitted
when it does not generate a risk of confusion.

Definition 1.4 (α-limit and ω-limit sets). Let θ ∈ Θ have globally defined forward
(resp. backward) ϕ-orbit. The ω-limit (resp. α-limit) set of θ, or of its orbit, is the
set of all the possible limits of sequences of the form (ϕ(tn, θ)), where the sequence
(tn) has limit ∞ (resp. −∞).

It is known that both the α-limit set and the ω-limit set of any θ ∈ Θ are closed
ϕ-invariant sets and that, if θ has relatively compact forward (resp. backward) ϕ-
semiorbit, then theω-limit set (resp. α-limit set) of θ is also compact and connected.
See e.g. [46, Chapter I, Theorem 8.1].
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Definition 1.5 (Asymptotic pair). A pair of elements θ1, θ2 ∈ Θ is said to be an
asymptotic pair as t → ∞ (resp. as t → −∞) if the forward (resp. backward)
semiorbit of both θ1 and θ2 is globally defined and

lim
t→∞

dΘ
(
ϕ(t, θ1), ϕ(t, θ2)

)
= 0

(
resp. lim

t→−∞
dΘ
(
ϕ(t, θ1), ϕ(t, θ2)

)
= 0
)
,

where dΘ stands for the distance on Θ.

Definition 1.6 (Minimal set). A setM ⊆ Θ is said to be ϕ-minimal if it is compact,
ϕ-invariant and it does not contain any proper, compact and ϕ-invariant subset. The
continuous flow (Θ, ϕ) is said to be minimal if Θ itself is ϕ-minimal.

It is not difficult to check that a compact set M ⊆ Θ is ϕ-minimal if and
only if the ϕ-orbit of every θ ∈ M is dense in M. In particular, a ϕ-minimal set
coincides with the α-limit and ω-limit sets of any of its elements. The following
important result will be used repeatedly: every compact ϕ-invariant set contains
some ϕ-minimal set (see e.g. [83, Chapter V, Theorem 7.02]).

Definition 1.7 (Transitive set). A compact set C ⊆ Θ is said to be ϕ-transitive
if there exists θ ∈ C such that the ϕ-orbit of θ is dense in C. The continuous flow
(Θ, ϕ) is said to be transitive if Θ itself is compact and ϕ-transitive.

The following lemma gives some useful information about a minimal flow on a
compact metric space. Note that BΘ(θ, δ) stands for the open ball of center θ and
radius δ in the metric space Θ.

Lemma 1.8. Let (Θ, ϕ) be a minimal flow on a compact metric space Θ. Given an
open set U ⊆ Θ, there exists sU > 0 such that, for all θ ∈ Θ, there exists sθ ∈ (0, sU ]
such that ϕ(sθ, θ) ∈ U .
Proof. Given any θ ∈ Θ, since its ϕ-orbit is dense in Θ, there exists tθ > 0 such
that ϕ(tθ, θ) ∈ U . Therefore, there exists δθ > 0 such that ϕ(tθ, θ̄) ∈ U for all
θ̄ ∈ BΘ(θ, δθ). Let θ1, θ2, . . . , θn ∈ Θ be such that the balls BΘ(θj, δθj) for 0 ≤ j ≤ n
cover Θ. Then, sU = max{tθj | 0 ≤ j ≤ n} is the looked-for amount.

1.1.2 Basics of ergodic dynamics

In this section, we introduce some basic concepts and results of ergodic dynamics
that will be used repeatedly throughout the document, that is, concepts referring
to invariant and ergodic measures of a continuous flow (Θ, ϕ) on a locally compact
metric space Θ. The measures considered in this document are normalized positive
Borel measures. Unless otherwise indicated, given a positive Borel measure m, we
will use its extension to the m-completion of the Borel σ-algebra, using the same
symbolm to denote it. The sets of them-completion are referred to asm-measurable
sets. In what follows, as usual, the notation “m-a.e.” means almost everywhere with
respect to the measure m. A map b : Θ → R is said to be m-measurable if it is
measurable with respect to the m-completion of the Borel sigma-algebra, and it is
said to be simply measurable if it is measurable with respect to the Borel sigma-
algebra. Recall that every normalized Borel measure m on a locally compact metric
space is regular (see [41, Theorem 7.8]) and that, if Θ is compact, then the set of
normalized Borel measures on Θ is compact in the topology of the weak∗ convergence
of measures, defined by limn→∞ mn = m if limn→∞

∫
Θ
b(θ) dmn =

∫
Θ
b(θ) dm for all

continuous map b : Θ → R (see [117, Theorems 6.4 and 6.5]).



10 Chapter 1. Preliminaries

Definition 1.9 (Invariant and ergodic measures). Let (Θ, ϕ) be a continuous global
flow. A normalized Borel measure m on Θ is said to be

(i) ϕ-invariant if m(ϕt(B)) = m(B) for every t ∈ R and every m-measurable
subset B ⊆ Θ,

(ii) ϕ-ergodic if it is ϕ-invariant and m(B) ∈ {0, 1} for every m-measurable ϕ-
invariant set B ⊆ Θ.

The sets of normalized ϕ-invariant and ϕ-ergodic measures on Θ are represented by
Minv(Θ, ϕ) and Merg(Θ, ϕ), respectively.

If Θ is a compact metric space, then the Kryloff-Bogoliuboff Theorem (see e.g.
[83, Chapter VI, Theorem 9.05]) ensures that there always exists at least one ϕ-
invariant measure. It is also known that Minv(Θ, ϕ) is a compact and convex set
whose set of extreme points is Merg(Θ, ϕ) (a point of a convex set is called extreme
if it does not lie on any open segment joining two points of the convex set), and
that there always exists at least one ϕ-ergodic measure (see [117, Theorem 6.10]
for the case of a transformation and [54, Theorem 1.9] for a flow). That is, both
Minv(Θ, ϕ) and Merg(Θ, ϕ) are nonempty. The flow (Θ, ϕ) is said to be uniquely
ergodic if Minv(Θ, ϕ) reduces to just one element m, in which case m is ergodic;
and it is said to be finitely ergodic if Merg(Θ, ϕ) is a finite set. The support of
m ∈ Minv(Θ, ϕ), Supp(m), is the complement of the largest open set with zero
measure, and it is a compact invariant set. If (Θ, ϕ) is minimal, then Supp(m) = Θ
for every m ∈ Minv(Θ, ϕ) (see [54, Proposition 1.11(iii)]), and hence m(U) > 0 for
every open set U ⊆ Θ.

One of the main results of ergodic dynamics is Birkhoff’s Ergodic Theorem. The
next result, which does not require the compactness of Θ, summarizes part of its
information (see [54, Theorem 1.3 and Proposition 1.4], and the references therein).

Theorem 1.10 (Birkhoff’s Ergodic Theorem). Let (Θ, ϕ) be a global continuous
flow, let m ∈ Merg(Θ, ϕ), and let a ∈ L1(Θ,m) (resp. let a : Θ → [0,∞) be an
m-measurable map). Then, there exists a ϕ-invariant and m-measurable set Θa ⊆ Θ
with m(Θa) = 1 such that, for all θ ∈ Θa, the limits

lim
T→∞

1

T

∫ T

0

a(ϕ(t, θ)) dt = lim
T→∞

1

2T

∫ T

−T

a(ϕ(t, θ)) dt = lim
T→−∞

−1

T

∫ 0

T

a(ϕ(t, θ)) dt

exist, coincide, and take the value
∫
Θ
a(θ) dm ∈ R (resp.

∫
Θ
a(θ) dm ∈ R ∪ {∞}).

1.1.3 Lyapunov exponents

This section deals with Lyapunov exponents of families of scalar linear differential
equations. A detailed account on this topic for non necessarily scalar families can be
found in [55] and [103]. Let (Θ, ϕ) be a continuous global flow on a compact metric
space Θ and let a : Θ → R be a continuous map. Recall the notation θ·t = ϕ(t, θ).
We consider the family of scalar linear ordinary differential equations

z′ = a(θ·t) z , θ ∈ Θ . (1.1)
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Definition 1.11 (Lyapunov exponent). A value γ ∈ R is a Lyapunov exponent of
(1.1), or of the map a, if there exists θ ∈ Θ such that

γ = lim
t→∞

1

t

∫ t

0

a(θ·s) ds = lim
t→−∞

1

t

∫ t

0

a(θ·s) ds .

The set of all the Lyapunov exponents of (1.1) will be denoted by Lyap(a). The val-
ues inf Lyap(a) and supLyap(a) are called the lower and upper Lyapunov exponents
of (1.1).

Note that inf Lyap(a) and supLyap(a) are finite since a is bounded. The next
result shows the relation between Lyapunov exponents and ergodic and invariant
measures. In particular, inf Lyap(a) and supLyap(a) are indeed Lyapunov expo-
nents of (1.1).

Proposition 1.12. Let a : Θ → R be a continuous map. Then,

(i)
∫
Θ
a(θ) dm ∈ Lyap(a) for all m ∈ Merg(Θ, ϕ).

(ii) If γ ∈ Lyap(a), then there exist m ∈ Minv(Θ, ϕ) such that γ =
∫
Θ
a(θ) dm.

(iii) There exist ml,mu ∈ Merg(Θ, ϕ) such that

inf Lyap(a) =

∫
Θ

a(θ) dml and supLyap(a) =

∫
Θ

a(θ) dmu ,

and [inf Lyap(a), supLyap(a)] = {
∫
Θ
a(θ) dm | m ∈ Minv(Θ, ϕ)}.

(iv) If inf Lyap(a) > 0 and γ ∈ (0, inf Lyap(a)), then there exists k ≥ 1 such that

exp

∫ t

0

a(θ·s) ds ≤ k eγ t for all θ ∈ Θ and t ≤ 0 .

If supLyap(a) < 0 and γ ∈ (0,− supLyap(a)), then there exists k ≥ 1 such
that

exp

∫ t

0

a(θ·s) ds ≤ k e−γ t for all θ ∈ Θ and t ≥ 0 .

Proof. (i) Given m ∈ Merg(Θ, ϕ), Birkhoff’s Ergodic Theorem 1.10 ensures that

there exists θ0 ∈ Θ such that
∫
Θ
a(θ) dm = limt→±∞(1/t)

∫ t

0
a(θ0·s) ds ∈ Lyap(a).

(ii) This proof is based on Kryloff–Bogoliuboff Theorem (see [83, Chapter VI,
Theorem 9.05]). Let γ ∈ Lyap(a) and let θ0 ∈ Θ be taken according to the def-
inition of γ, that is, γ = limt→±∞(1/t)

∫ t

0
a(θ0·s) ds. Take (tn) ↑ ∞. According

to Riesz Representation Theorem (see e.g. [117, Theorem 6.3]),
∫
Θ
b(θ) dmn =

(1/tn)
∫ tn
0

b(θ0·s) ds for all continuous map b : Θ → R defines a normalized Borel
measure mn on Θ. The compactness of the set of normalized Borel measures on
the weak∗ topology ensures that there exists a normalized Borel measure m on Ω
and a subsequence (mk) of (mn) such that

∫
Θ
b(θ) dm = limk→∞

∫
Θ
b(θ) dmk =

limk→∞(1/tk)
∫ tk
0

b(θ0·s) ds for all continuous map b : Θ → R. Since, for any t ∈ R,∣∣∣ 1
tk

∫ t

0

b(θ0·s) ds−
1

tk

∫ tk+t

tk

b(θ0·s) ds
∣∣∣ ≤ 2t

tk
max
θ∈Θ

|b(θ)| k→∞−−−−→ 0 ,
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limk→∞(1/tk)
∫ tk
0

b(θ0·s) ds = limk→∞(1/tk)
∫ tk+t

t
b(θ0·s) ds for any t ∈ R, and hence

m ∈ Minv(Θ, ϕ) (see e.g. [54, Proposition 1.7]). Consequently,
∫
Θ
a(θ) dm =

limk→∞(1/tk)
∫ tk
0

a(θ0·s) ds = γ.

(iii) Since Minv(Θ, ϕ) → R, m 7→
∫
Θ
a(θ) dm is continuous in the weak∗ topology,

for which Minv(Θ, ϕ) is a compact set, there exist ml,mu ∈ Minv(Θ, ϕ) such that∫
Θ
a(θ) dml ≤

∫
Θ
a(θ) dm ≤

∫
Θ
a(θ) dmu for all m ∈ Minv(Θ, ϕ). Since Merg(Θ, ϕ) is

the set of extreme points of Minv(Θ, ϕ), [91, Choquet’s Theorem, Lecture 3] ensures
that there exists a normalized measure µl defined on the Borel sigma-algebra of
Merg(Θ, ϕ) such that,∫

Θ

a(θ) dml =

∫
Merg(Θ,ϕ)

(∫
Θ

a(θ) dm

)
dµl(m) ,

so assuming that
∫
Θ
a(θ) dm >

∫
Θ
a(θ) dml for all m ∈ Merg(Θ, ϕ) leads us to a

contradiction. This shows that ml can be taken in Merg(Θ, ϕ). The same argument
works for mu. Properties (i) and (ii) prove the ⊇ part of the last assertion in (iii),
since

∫
Θ
a(θ) dml,

∫
Θ
a(θ) dmu ∈ Lyap(a) ⊆ {

∫
Θ
a(θ) dm | m ∈ Minv(Θ, ϕ)}; and the

convexity of Minv(Θ, ϕ) proves the equality.

(iv) We reason in the case supLyap(a) < 0, which combined with (iii) yields∫
Θ
a(θ) dm < 0 for all m ∈ Minv(Θ, ϕ). Let us take γ ∈ (0,− supLyap(a)). Our

goal is to check that there exist t0 > 0 such that (1/t)
∫ t

0
a(θ·s) ds ≤ −γ for all

t ≥ t0 and θ ∈ Θ. For contradiction, assume that there exist (tn) ↑ ∞ and (θn) in
Θ such that (1/tn)

∫ tn
0

a(θn·s) ds > −γ. Proceeding as in the proof of (ii), we define

normalized Borel measures mn on Θ satisfying
∫
Θ
b(θ) dmn = (1/tn)

∫ tn
0

b(θn·s) ds
for all continuous map b : Θ → R, and prove the existence of m ∈ Minv(Θ, ϕ) such
that

∫
Θ
b(θ) dm = limk→∞(1/tk)

∫ tk
0

b(θk·s) ds for all continuous map b : Θ → R for
some subsequence (tk) of (tn). Hence,

∫
Θ
a(θ) dm ≥ −γ > supLyap(a), which is not

the case. This proves the assertion, which in turn yields exp
∫ t

0
a(θ·s) s ≤ k e−γ t for

all t ≥ 0 and θ ∈ Θ, where k = max{exp(γ t +
∫ t

0
a(θ·s) ds) | t ∈ [0, t0] , θ ∈ Θ}.

The proof is analogous in the other case.

The previous theorem shows that there is a strong connection between the set
of Lyapunov exponents of a : Θ → R and its dynamical spectrum:

Definition 1.13 (Dynamical spectrum). Assume that (Θ, ϕ) is minimal. Given a
continuous map a : Θ → R, we define its dynamical spectrum as

sp(a) =
{∫

Θ

a(θ) dm
∣∣∣ m ∈ Minv(Θ, ϕ)

}
.

We say that a has point spectrum if sp(a) reduces to a point, and band spectrum
otherwise.

Remarks 1.14. 1. Proposition 1.12(iii) shows that

sp(a) = [inf Lyap(a), supLyap(a)] .

2. The results of [55] and [103, 104] ensure that, in this scalar case with minimal
base Θ, the dynamical spectrum of a : Θ → R coincides with its Sacker and Sell
spectrum, which is the set of values of λ such that none of the equations of the
family x′ = (a(θ·t)− λ)x has an exponential dichotomy (see Definition 1.48 below).



1.2. Scalar skewproduct flows defined by differential equations 13

1.2 Scalar skewproduct flows defined by families

of nonautonomous differential equations

Let (Ω, σ) be a global continuous flow on a compact metric space. As in the previous
sections, we will usually denote ω·t = σ(t, ω), and less frequently σt(ω) = σ(t, ω).

Throughout the document, C0,1(Ω×R,R) represents the set of continuous func-
tions h : Ω×R → R for which the derivative hx with respect to the second variable
exists and is continuous, and C0,2(Ω × R,R) is the subset of C0,1(Ω × R,R) of
maps h for which the second derivative hxx exists and is continuous. Analogously,
C0,3(Ω×R,R) is the subset of C0,2(Ω×R,R) of maps h for which the third derivative
hxxx exists and is continuous.

We take h ∈ C0,1(Ω × R,R) and consider the family of nonautonomous scalar
differential equations

x′ = h(ω·t, x) , ω ∈ Ω . (1.2)

Throughout the document, t stands for the independent variable, that is, x′ = dx/dt.
For each fixed ω ∈ Ω, a nonautonomous scalar ordinary differential equation is
obtained from the family (1.2), which will be denoted by (1.2)ω. For each ω ∈ Ω
and x ∈ R, let Iω,x = (αω,x, βω,x) → R, t 7→ v(t, ω, x) denote the maximal solution
of (1.2)ω satisfying v(0, ω, x) = x with −∞ ≤ αω,x < 0 < βω,x ≤ ∞. Let

V =
⋃

(ω,x)∈Ω×R

(
(αω,x, βω,x)× {(ω, x)}

)
be the domain of v, that is, v : V ⊆ R × Ω × R → R. The standard properties
of existence, uniqueness and continuous dependence of the solutions of ordinary
differential equations ensure that:

� (cocycle property) if (s, ω, x), (t, ω·s, v(s, ω, x)) ∈ V , then (t+ s, ω, x) ∈ V and

v(t+ s, ω, x) = v(t, ω·s, v(s, ω, x)) ,

� (t, ω, x) 7→ v(t, ω, x) is continuous.

We will often refer to v : V → R
as the cocycle of solutions of (1.2).
A remarkable property of v, which
follows from its continuity, is its fiber
monotonicity (or simply monotonic-
ity), that is, v(t, ω, x) < v(t, ω, y)
for all x < y, ω ∈ Ω, and t ∈ R
for which both solutions are defined.
This property will play a key role in
many proofs. Figure 1.1: Sketch of a skewproduct flow.

Definition 1.15 (Scalar skewproduct flow associated to (1.2)). Let (Ω, σ) be a
global continuous flow on a compact metric space and let v be the cocycle of solutions
of (1.2). Then, the map

τ : V ⊆ R× Ω× R → Ω× R , (t, ω, x) 7→ (ω·t, v(t, ω, x)) (1.3)

is called the scalar skewproduct flow on Ω× R induced by the family (1.2).
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Figure 1.2: Sketch of a τ -equilibrium, a τ -superequilibrium and a τ -subequilibrium.

It is easy to deduce from the previous properties that τ is a continuous flow, local
in general, and global if all the solutions of all the equations are globally defined.
The space Ω and the flow σ will be called base and base flow of the skewproduct,
respectively. Fugure 1.1 depicts a sketch of a skewproduct flow.

In the following subsections, some important elements, tools and properties of
the skewproduct formalism will be described in some detail.

1.2.1 Equilibria, superequilibria and subequilibria

The main concept of this section, equilibrium, allows us to work simultaneously with
solutions of all the equations of the family (1.2). As we will see later, equilibria will
play a significant role in explaining properties which refer to the whole skewproduct.

Given a map b : Ω → R, the graph of b will be usually denoted by

{b} = {(ω, b(ω)) | ω ∈ Ω} .

Definition 1.16 (Equilibrium). A map b : Ω → R such that t 7→ v(t, ω, b(ω)) is
defined for all t ∈ R and ω ∈ Ω is said to be a τ -equilibrium if b(ω·t) = v(t, ω, b(ω))
for all ω ∈ Ω and t ∈ R, that is, if the graph of b is τ -invariant.

All the equilibria we will handle will be either continuous, semicontinuous (see
Defintion 1.19 below) or m-measurable with respect to some m ∈ Minv(Ω, σ), al-
though this is not required in all the definitions and results of the present section.

Definition 1.17 (Copy of the base). A subset of Ω × R is said to be a τ -copy of
the base if it is the graph {b} of a continuous τ -equilibrium b : Ω → R.

Definition 1.18 (Semiequilibria). A map b : Ω → R such that t 7→ v(t, ω, b(ω)) is
defined for all t ≥ 0 and ω ∈ Ω is said to be

(i) a τ -subequilibrium if b(ω·t) ≤ v(t, ω, b(ω)) for all ω ∈ Ω and t ≥ 0,

(ii) a τ -superequilibrium if b(ω·t) ≥ v(t, ω, b(ω)) for all ω ∈ Ω and t ≥ 0.

In both cases b is said to be a τ -semiquilibrium. Figure 1.2 shows a local depiction
of these dynamical objects.
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The reference to the flow τ in all the previous definitions will be frequently
omitted if there is no risk of confusion. For the sake of clarity, at other times, it will
be said that b : Ω → R is an equilibrium or semiequilibrium for (1.2).

We say that an equilibrium (resp. semiequilibrium) b : Ω → R is a semicontinu-
ous equilibrium (resp. semiequilibrium) if b is a bounded semicontinuous map. For
the convenience of the reader, we recall here some equivalent definitions of semicon-
tinuity which will prove useful later.

Definition 1.19 (Semicontinuity). A map b : Ω → R is upper (resp. lower) semi-
continuous at ω0 ∈ Ω if for every x > b(ω0) (resp. x < b(ω0)) there exists δ > 0
such that x > b(ω) (resp. x < b(ω)) for all ω ∈ BΩ(ω0, δ). Equivalently, b is upper
(resp. lower) semicontinuous at ω0 ∈ Ω if and only if lim supω→ω0

b(ω) ≤ b(ω0)
(resp. lim infω→ω0 b(ω) ≥ b(ω0)).

A map b : Ω → R is upper (resp. lower) semicontinuous if it is upper (resp.
lower) semicontinuous at every ω ∈ Ω or, equivalently, if {(ω, x) | x ≤ b(ω)} (resp.
{(ω, x) | x ≥ b(ω)}) is closed.

In particular, a semicontinuous map is m-measurable for any measure m. The
set of continuity points of a semicontinuous map b : Ω → R is a residual set Ω0 ⊆ Ω
(see [23, Corollary 7.6]), that is, its complement Ω \ Ω0 is a Baire first category set
(i.e. Ω \Ω0 is a countable union of sets whose closure has empty interior). It can be
easily checked that Ω0 is σ-invariant if b is a semicontinuous τ -equilibrium. Another
property which will be repeatedly used, which can be directly deduced from the
definitions, is that the limit of a nonincreasing (resp. nondecreasing) sequence of
upper (resp. lower) semicontinuous maps is upper (resp. lower) semicontinuous.

The proof of the following proposition, which constructs a monotonic family of
semiequilibria, can be found in [24, Proposition 3.4.1] and [85, Theorem 3.6].

Proposition 1.20. Let b : Ω → R be a τ -superequilibrium (resp. τ -subequilibrium).
Then,

bs : Ω → R , ω 7→ v(s, ω·(−s), b(ω·(−s))) (1.4)

is a τ -superequilibrium (resp. τ -subequilibrium) for all s ≥ 0, and bs2(ω) ≤ bs1(ω) ≤
b(ω) (resp. b(ω) ≤ bs1(ω) ≤ bs2(ω)) for all ω ∈ Ω and 0 ≤ s1 ≤ s2. If, in addition, b
is upper (resp. lower) semicontinuous and {v(t, ω, b(ω)) | t ≥ 0, ω ∈ Ω} is bounded,
then b∞(ω) = lims→∞ bs(ω) is an upper (resp. lower) semicontinuous τ -equilibrium.

Definition 1.21 (Strong semiequilibrium). A τ -superequilibrium (resp. τ -sub-
equilibrium) b : Ω → R is said to be strong if there exists a time s∗ > 0 such
that b(ω·s∗) > v(s∗, ω, b(ω)) (resp. b(ω·s∗) < v(s∗, ω, b(ω))) for all ω ∈ Ω.

In the previous definition, note that the nonincreasing (resp. nondecreasing)
monotonicity of the family {bs}s≥0 given by Proposition 1.20 ensures that, if b is
a strong τ -superequilibrium (resp. τ -subequilibrium), then b(ω·s) > v(s, ω, b(ω))
(resp. b(ω·s) < v(s, ω, b(ω))) for all s ≥ s∗.

The next result, which corresponds to [85, Proposition 4.3], gives a useful uniform
property of semicontinuous strong semiequilibria if (Ω, σ) is minimal.

Proposition 1.22. Let (Ω, σ) be minimal and let b : Ω → R be a semicontinuous
strong τ -superequilibrium (resp. τ -subequilibrium). Then, there exist e0 > 0 and a
time s∗ > 0 such that b(ω) ≥ bs∗(ω)+e0 (resp. b(ω) ≤ bs∗(ω)−e0) for every ω ∈ Ω,
where bs∗ is defined by (1.4).
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We highlight that the proof of the previous result in [85, Proposition 4.3] does not
depend on the type of semicontinuity of b. Note that the nonincreasing (resp. non-
decreasing) monotonicity of the family {bs}s≥0 given by Proposition 1.20 ensures
that b(ω) ≥ bs(ω) + e0 (resp. b(ω) ≤ bs(ω)− e0) for every ω ∈ Ω and all s ≥ s∗.

The concepts of superequilibria and subequilibria are strongly related to those
of global upper and lower solutions. A map b : Ω → R will be said to be C1 along
the base orbits if, for any ω ∈ Ω, the map t 7→ bω(t) = b(ω·t) is C1 on R. In this
case, we represent b′(ω) = b′ω(0). It is clear by definition that every equilibrium is
C1 along the base orbits.

Definition 1.23 (Global upper and lower solutions). A map b : Ω → R which
is C1 along the base orbits is a global upper (resp. lower) solution for (1.2) if
b′(ω) ≥ h(ω, b(ω)) (resp. b′(ω) ≤ h(ω, b(ω))) for every ω ∈ Ω, and it is strict if
the inequalities are strict for every ω ∈ Ω.

Constant maps b(ω) = ρ ∈ R will be often used as global upper (resp. lower)
solutions. Note that ρ is a global upper (resp. lower) solution for (1.2) if 0 ≥ h(ω, ρ)
(resp. 0 ≤ h(ω, ρ)) for every ω ∈ Ω, and they are strict if they are so the inequalities.

The following proposition establishes relations between semiequilibria and upper
and lower global solutions. Recall that a forward (resp. backward) τ -semiorbit
of (ω, x) ∈ Ω × R is globally defined if [0,∞) ⊆ Iω,x (resp. (−∞, 0] ⊆ Iω,x).
The arguments of the proof of the next proposition are what we will hereafter call
standard comparison arguments , and from now on they will often be used without
further explanation.

Proposition 1.24. Let b : Ω → R be C1 along the base orbits. Then,

(i) if the forward τ -semiorbit of (ω, b(ω)) is globally defined for all ω ∈ Ω and
b is a strict global upper (resp. lower) solution for (1.2), then it is a strong
τ -superequilibrium (resp. τ -subequilibrium).

(ii) If the forward τ -semiorbit of (ω, b(ω)) is globally defined for all ω ∈ Ω, then b
is a τ -superequilibrium (resp. subequilibrium) if and only if it is a global upper
(resp. lower) solution for (1.2).

Proof. We work only with global upper solutions and superequilibria. The proofs
for the global lower solutions and subequilibria are analogous.

(i) Let b be a strict global upper solution for (1.2). Let us check that, if there
exist t ∈ R and ω ∈ Ω such that b(ω·t) = v(t, ω, b(ω)), then there exists ε > 0 such
that b(ω·s) > v(s, ω, b(ω)) for s ∈ (t, t+ε] and b(ω·s) < v(s, ω, b(ω)) for s ∈ [t−ε, t).
The continuity of s 7→ b′(ω·s)− h(ω·s, v(s, ω, b(ω))) and its strictly positive sign for
s = t ensure that there exists ε > 0 such that b′(ω·s) > h(ω·s, v(s, ω, b(ω))) for all
s ∈ [t− ε, t+ ε]. Hence, for all s ∈ (t, t+ ε],

b(ω·s) = b(ω·t) +
∫ s

t

b′(ω·r) dr > b(ω·t) +
∫ s

t

h(ω·r, v(r, ω, b(ω))) dr = v(s, ω, b(ω)) ,

and the sign of the inequality is reverted for s ∈ [t − ε, t). Let us deduce that
b(ω·t) > v(t, ω, b(ω)) for all t > 0 and all ω ∈ Ω. The previous property applied to
t = 0 shows that I = {s > 0 such that b(ω·s) > v(s, ω, b(ω))} is nonempty, and
precludes the possibility of sup I ∈ R. This shows the assertion.
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(ii) Assume that b is a superequilibrium and, for contradiction, assume that
there exists ω ∈ Ω such that b′(ω) < h(ω, b(ω)). Then, by continuity, there exists
t > 0 such that b′(ω·s) < h(ω·s, v(s, ω, b(ω))) for all s ∈ [0, t]. So,

b(ω·t) = b(ω) +

∫ t

0

b′(ω·s) ds < b(ω) +

∫ t

0

h(ω·s, v(s, ω, b(ω))) ds = v(t, ω, b(ω)) ,

which contradicts the fact that b is a superequilibrium.

Now, assume that b is a global upper solution, that is, b′(ω) ≥ h(ω, b(ω)) for all
ω ∈ Ω. Then, b′(ω) > h(ω, b(ω)) − ε for all ω ∈ Ω and ε > 0, that is, b is a strict
global upper solution for x′ = h(ω·t, x) − ε for all ε > 0. Let vε be the cocycle of
solutions of x′ = h(ω·t, x) − ε. Then, (i) ensures that b(ω·t) ≥ vε(t, ω, b(ω)) for all
ω ∈ Ω and t ≥ 0, so the continuous dependence of solutions as ε ↓ 0 ensures that
b(ω·t) ≥ v(t, ω, b(ω)) for all ω ∈ Ω and t ≥ 0, as it was looked for.

The following two useful propositions, which are quite of technical nature, explore
the relations between different semiequilibria which are somehow connected. In the
first one, it is proved that, if two semicontinuous semiequilibria coincide on a residual
set of continuity points of both maps and one of them is strong, then the τ -orbits
starting on a point of the graph of the strong semiequibrium “strongly go through”
the graph of the other semiequilibrium. The second proposition shows that, if a
region is filled by a continuous parametric family of strong semiequilibria, then the
τ -orbits completely traverse that region in a limited amount of time.

Proposition 1.25. Let (Ω, σ) be minimal. Let b1 : Ω → R be a semicontinuous
strong superequilibrium (resp. subequilibrium), let b2 : Ω → R be a semicontinuous
superequilibrium (resp. subequilibrium) and let us assume that there exists a residual
set R of continuity points of both maps such that b1(ω) = b2(ω) for all ω ∈ R. Then,
there exist e > 0 and s∗ > 0 such that b2(ω·s)−e > v(s, ω, b1(ω)) (resp. b2(ω·s)+e <
v(s, ω, b1(ω))) for all s ≥ s∗ and ω ∈ Ω.

Proof. Let us work in the case of superequilibria. Note that the nonincreasing
monotonicity of s 7→ v(s, ω·(−s), b1(ω·(−s))) for any ω ∈ Ω given by Propo-
sition 1.20 ensures that it suffices to prove the inequality of the statement for
s = s∗. Proposition 1.22 ensures that there exist s0 > 0 and e0 > 0 such that
v(s0, ω, b1(ω)) < b1(ω·s0) − e0 for all ω ∈ Ω. Let ω0 ∈ R ∩ σ−s0(R). Then, ω0 is a
continuity point of b1, b2, b1◦σs0 and b2◦σs0 and, in addition, b1(ω0·s0) = b2(ω0·s0).
Consequently, v(s0, ω0, b1(ω0)) < b1(ω0·s0)− e0 = b2(ω0·s0)− e0.

By the continuity of the involved semiequilibria at ω0 and the continuous de-
pendence of solutions on initial data, there exists ρ > 0 such that v(s0, ω, b1(ω)) <
b2(ω·s0) − e0 for all ω ∈ BΩ(ω0, ρ). Lemma 1.8 ensures that there exists s1 > 0
such that for all ω ∈ Ω there exists 0 < sω ≤ s1 such that ω·sω ∈ BΩ(ω0, ρ).
Therefore, using the cocycle property, the fiber-monotonicity with the definition of
superequilibrium and the previous inequality, we have, for all ω ∈ Ω,

v(s0 + sω, ω, b1(ω)) = v(s0, ω·sω, v(sω, ω, b1(ω)))
≤ v(s0, ω·sω, b1(ω·sω)) < b2(ω·(s0 + sω))− e0 .

By fiber-monotonicity, evolving both sides s1 − sω > 0 we obtain

v(s0 + s1, ω, b1(ω)) < v(s1 − sω, ω·(s0 + sω), b2(ω·(s0 + sω))− e0) . (1.5)
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Since v(t, ω, x) − v(t, ω, x − e0) > 0 for all (t, ω, x) ∈ [0, s1] × Ω × closureR(b2(Ω)),
which is a compact set, there exists e > 0 such that v(t, ω, x − e0) < v(t, ω, x) − e
for all (t, ω, x) ∈ [0, s1]× Ω× closureR(b2(Ω)). Then, (1.5) yields

v(s0+ s1, ω, b1(ω)) < v(s1− sω, ω·(s0+ sω), b2(ω·(s0+ sω)))− e ≤ b2(ω·(s0+ s1))− e

for all ω ∈ Ω, since b2 is a also a superequilibrium. Rewriting s∗ = s0 + s1, we
obtain v(s∗, ω, b1(ω)) < b2(ω·s∗) − e for all ω ∈ Ω, as we wanted to show. The
subequilibrium case is proved analogously.

Proposition 1.26. Let (Ω, σ) be minimal. Let b : [0, 1]×Ω → R, (λ, ω) 7→ bλ(ω) be
a continuous map such that bλ is a strong superequilibrium (resp. subequilibrium) for
every λ ∈ [0, 1] and bλ(ω) ≤ bξ(ω) for all ω ∈ Ω if λ ≤ ξ. Then, there exist e0 > 0
and s0 ≥ 0 such that v(s, ω, b1(ω)) ≤ b0(ω·s)−e0 (resp. b1(ω·s)+e0 ≤ v(s, ω, b0(ω)))
for all s ≥ s0 and ω ∈ Ω.

Proof. We work in the superequilibrium case. Note again that the nonincreasing
monotonicity of s 7→ v(s, ω·(−s), b1(ω·(−s))) for any ω ∈ Ω given by Proposi-
tion 1.20 ensures that it suffices to prove the inequality of the statement for s = s0.
We denote (bλ)s(ω) = v(s, ω·(−s), bλ(ω·(−s))). Let us define C = {λ ∈ [0, 1] | there
exist eλ > 0 and sλ ≥ 0 such that (b1)sλ(ω) ≤ bλ(ω)− eλ for all ω ∈ Ω}. Since b1 is
a continuous strong superequilibrium, Proposition 1.22 ensures that C is nonempty,
so let us define λ0 = inf C. As (λ, ω) 7→ bλ(ω) is continuous, for each λ ∈ [0, 1], there
exists a neighborhood Vλ ⊆ [0, 1] of λ such that |bλ(ω) − bξ(ω)| < eλ/2 for every
ξ ∈ Vλ and ω ∈ Ω. This shows that C is open in [0, 1].

Now, let us prove that λ0 ∈ C. Since bλ0 is a continuous strong superequilibrium,
Proposition 1.22 ensures that there exist e > 0 and s∗ > 0 such that (bλ0)s∗(ω·s∗) =
v(s∗, ω, bλ0(ω)) ≤ bλ0(ω·s∗) − e for all ω ∈ Ω. Fixed 0 < e0 < e, we deduce from
the uniform continuity of the cocycle of solutions v on a compact neighborhood of
bλ0(Ω) the existence of δ0 > 0 such that

v(s∗, ω, x) ≤ bλ0(ω·s∗)− e0 (1.6)

for every ω ∈ Ω and x ∈ BR(bλ0(ω), δ0). Now, let us take λ1 ∈ C with |bλ1(ω) −
bλ0(ω)| < δ0 for all ω ∈ Ω. Then, by definition of C, there exists sλ1 ≥ 0 such that

v(sλ1 , ω, b1(ω)) < bλ1(ω·sλ1)

for every ω ∈ Ω. Evolving the last inequality by monotonicity a time step s∗ > 0
and applying (1.6), we obtain

(b1)s∗+sλ1
(ω·(s∗ + sλ1)) = v(s∗ + sλ1 , ω, b1(ω))

< v(s∗, ω·sλ1 , bλ1(ω·sλ1)) ≤ bλ0(ω·(s∗ + sλ1))− e0

for all ω ∈ Ω. Changing ω by ω·(−s∗ − sλ1) shows that λ0 ∈ C. Hence, since
C is open, 0 ∈ C, which means the existence of e0 > 0 and s0 ≥ 0 such that
v(s0, ω, b1(ω)) = (b1)s0(ω·s0) ≤ b0(ω·s0)− e0, as asserted. The subequilibrium case
is proved analogously.
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1.2.2 Compact invariant sets and global attractor

In this section, some of the main features of compact invariant sets and minimal
sets for the skewproduct flow τ induced by (1.2) are described.

Definition 1.27 (Section of a set). Let ω ∈ Ω. The ω-section of a set K ⊆ Ω× R
is defined as

(K)ω = {x ∈ R | (ω, x) ∈ K} .

A compact τ -invariant set K ⊂ Ω × R is said to be pinched if there exists ω ∈ Ω
such that the section (K)ω is a singleton.

Definition 1.28 (Ordered invariant sets). A compact set K ⊂ Ω × R is said to
project onto Ω if the continuous map π : K → Ω, (ω, x) 7→ ω is surjective, that is, if
(K)ω is nonempty for all ω ∈ Ω.

Two disjoint compact sets K1,K2 ⊂ Ω× R which project onto Ω are said to be
fiber-ordered (or simply ordered), and this is denoted by K1 < K2, if x < y for every
(ω, x) ∈ K1 and (ω, y) ∈ K2.

Notice that, if K is a compact τ -invariant set, then π maps orbits onto orbits
preserving its direction (i.e., it is a flow epimorphism). Consequently, if (Ω, σ) is
minimal, then any τ -invariant compact set projects onto Ω.

Lemma 1.29. Let K ⊂ Ω×R be a bounded τ -invariant set projecting onto Ω. Then,

lK(ω) = inf{x ∈ R | (ω, x) ∈ K} and uK(ω) = sup{x ∈ R | (ω, x) ∈ K} (1.7)

are τ -equilibria. Moreover, if K is compact, then uK is upper semicontinuous and lK
is lower semicontinuous. In this case, if Kω is a singleton for all ω ∈ Ω, then K is
a τ -copy of the base.

Proof. We will proceed with lK. First, let check that t 7→ v(t, ω, lK(ω)) is bounded
and hence globally defined for any ω ∈ Ω. If (ω, lK(ω)) ∈ K, then it is obvious. If
(ω, lK(ω)) ̸∈ K, then there exists a sequence (xn) such that lK(ω) = limn→∞ xn

with (ω, xn) ∈ K for all n ∈ N. Hence, v(t, ω, lK(ω)) = limn→∞ v(t, ω, xn) ∈
closureΩ×R(K), so it is bounded for all t ∈ R, as we wanted to see. Now, let us check
that v(t, ω, lK(ω)) ≤ y for all (ω·t, y) ∈ K, which means that v(t, ω, lK(ω)) ≤ lK(ω·t)
for all ω ∈ Ω and t ∈ R. If (ω·t, y) ∈ K, then (ω, v(−t, ω·t, y)) ∈ K, so v(−t, ω·t, y) ≥
lK(ω) and hence y ≥ v(t, ω, lK(ω)), as we wanted to see. Finally, assume for contra-
diction that there exist ω̄ ∈ Ω, t̄ ∈ R and ε > 0 such that v(t̄, ω̄, lK(ω̄)) ≤ lK(ω̄·t̄)−ε.
Then, lK(ω̄) ≤ v(−t̄, ω̄·t̄, lK(ω̄·t̄) − ε) < v(−t̄, ω̄·t̄, lK(ω̄·t̄)) ≤ lK(ω̄), a contradiction
(in the last inequality it has been used the just previously proved assertion). Hence,
lK is a τ -equilibrium. The case of uK is analogous.

To end the proof, let us assume that K is compact and check the lower semi-
continuity of lK. First note that {lK} ⊆ K since K is closed. Take ωn → ω0 and
assume without loss of generality that lK(ωn) converges to x ∈ R. By compactness,
(ω0, x) ∈ K, so x ≥ lK(ω0). Thus lim infω→ω0 lK(ω) ≥ lK(ω0) for any ω0 ∈ Ω, that is,
lK is lower semicontinuous. The case of uK is analogous. If Kω is a singleton for all
ω ∈ Ω, then lK = uK, so it is continuous and K = {lK} = {uK}.

Definition 1.30. Let K ⊂ Ω × R be a bounded τ -invariant set. The maps lK and
uK defined by (1.7) are called the lower and upper equilibria of K, respectively.
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In particular, lK and uK are m-measurable for all m ∈ Minv(Ω, σ), which we will
often use. Observe that although

K ⊆
⋃
ω∈Ω

(
{ω} × [lK(ω), uK(ω)]

)
,

K does not necessarily fill all the space between lK and uK, not even if (Ω, σ) is
minimal and K is a τ -minimal set.

The following definition provides the concept of the global attractor of a flow.
This concept, fundamental throughout the document, corresponds to an object
which captures the forward dynamics of the flow τ . In Chapter 3 it will be one
of the elements for which bifurcations are studied when considering parametric vari-
ations of the families of equations that generate the skewproduct flow.

Definition 1.31 (Global attractor). Assume that all the forward τ -semiorbits are
globally defined. A compact τ -invariant set A ⊂ Ω × R is said to be the global
attractor for τ if

lim
t→∞

dist(τt(C),A) = 0

for every bounded set C ⊂ Ω × R, where τt(C) = {(ω·t, v(t, ω, x)) | (ω, x) ∈ C} and
dist(C1, C2) stands for the Hausdorff semidistance from C1 to C2:

dist(C1, C2) = sup
(ω1,x1)∈C1

(
inf

(ω2,x2)∈C2

(
distΩ×R

(
(ω1, x1), (ω2, x2)

)))
. (1.8)

It is well known that the global attractor for τ , if it exists, is unique. To prove it,
it suffices to note that, if both A,B ⊂ Ω×R are global attractors, then dist(A,B)+
dist(B,A) = 0, and hence A = B since dist(A,B) + dist(B,A) is the Hausdorff
distance between A and B. Morevoer, [21, Theorem 1.7] ensures that, if the global
attractor exists, it is the union of all the globally defined and bounded τ -orbits.

1.2.3 Minimal sets in the case of minimal base flow

In this section, let (Ω, σ) be minimal. The following results give a way to con-
struct τ -minimal sets departing from semicontinuous τ -equilibria and provide some
properties about the set of continuity points of semicontinuous τ -equilibria in this
framework. Recall (see the paragraph after Definition 1.19) that semicontinuous
maps have a residual set of continuity points.

Proposition 1.32. Let (Ω, σ) be minimal, let b : Ω → R be a semicontinuous equi-
librium and let ω0 be any continuity point of b. Then,

M = closureΩ×R{(ω0·t, b(ω0·t)) | t ∈ R} (1.9)

is a τ -minimal set, it is independent of the choice of ω0, and (M)ω = {b(ω)} for
any continuity point ω of b. Moreover, the sections (N )ω of any τ -minimal set
N ⊂ Ω×R are singletons for all the points ω in a residual σ-invariant subset of Ω.

Proof. Since M is the closure of a τ -invariant set (an orbit), M is τ -invariant,
and it is compact since b is bounded. Let us deduce from the minimality of (Ω, σ)
that (M)ω = {b(ω)} for any continuity point ω of b. Given x ∈ (M)ω, we write
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(ω, x) = limn→∞(ω0·tn, b(ω0·tn)) for a suitable sequence (tn). Since b is continuous
at ω, then x = b(ω), as asserted. In particular, if N ⊆ M is minimal, then
(N )ω0 = {b(ω0)} and hence, since N must contain the adherence of the τ -orbit of
(ω0, b(ω0)), M ⊆ N , which shows the minimality. The independence of the choice
of ω0 follows from closureΩ×R{(ω·t, b(ω·t)) | t ∈ R} ⊆ M for every continuity point
ω of b. Finally, the last assertion is deduced by applying the previous properties to
the lower or upper equilibrium of any τ -minimal set N .

Corollary 1.33. Let (Ω, σ) be minimal. Then, two different τ -minimal sets M and
N are always fiber-ordered.

Proof. Proposition 1.32 ensures that there exists ω0 ∈ Ω such that (M)ω0 = {x0}
and (N )ω0 = {y0}, assume with no loss of generality that x0 < y0, and take
(ω, x) ∈ M and (ω, y) ∈ N . The minimal character provides a sequence (tn)
such that (ω, x) = limn→∞ τ(tn, ω0, x0) and there is no restriction in assuming
that (ω, y) = limn→∞ τ(tn, ω0, y0), so by monotonicity x = limn→∞ v(tn, ω0, x0) ≤
limn→∞ v(tn, ω0, y0) = y. Since any τ -minimal set is the closure of the τ -orbit of any
of its points, x < y is needed to ensure that M and N are distinct.

Proposition 1.32 also leads to prove the following proposition, which, if (Ω, σ)
is minimal, explains that two ordered semicontinuous equilibria with the suitable
semicontinuity can only be equal at the continuity points of both maps.

Proposition 1.34. Let (Ω, σ) be minimal and let b1, b2 : Ω → R be, respectively,
lower and upper semicontinuous equilibria such that b1(ω) ≤ b2(ω) for every ω ∈ Ω.
If there exists ω0 ∈ Ω such that b1(ω0) = b2(ω0), then ω0 is a continuity point of both
maps. In particular, b1 and b2 give rise to the same τ -minimal set through (1.9).

Proof. If ωn → ω0 as n → ∞, then

b1(ω0) ≤ lim inf
n→∞

b1(ωn) ≤ lim sup
n→∞

b1(ωn) ≤ lim sup
n→∞

b2(ωn) ≤ b2(ω0) = b1(ω0) .

The third term can be replaced by lim infn→∞ b2(ωn). This shows the assertion.

1.2.4 Variational equations and hyperbolicity

In this section, we use the tools and definitions of Section 1.1.3 in the framework
defined by the skewproduct flow τ induced by (1.2), with h ∈ C0,1(Ω×R,R). Given
a fixed globally defined solution t 7→ v(t, ω, x) of (1.2), we consider its variational
equation

z′ = hx
(
ω·t, v(t, ω, x)

)
z = hx

(
τt(ω, x)

)
z .

So, when we consider a compact τ -invariant set K ⊂ Ω×R and the restriction of τ
to K, we get a family of variational equations

z′ = hx
(
ω·t, v(t, ω, x)

)
z = hx

(
τt(ω, x)

)
z , (ω, x) ∈ K ,

which plays the role of (1.1) when applying the definitions of Section 1.1.3. In
what follows, we will be simultaneously interested both in the invariant and ergodic
measures of (Ω, σ) and those of (K, τ).
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Definition 1.35 (Lyapunov exponent of a compact invariant set). The value γ ∈ R
is a Lyapunov exponent of a compact τ -invariant set K ⊂ Ω×R if it is a Lyapunov
exponent of the restriction hx : K → R, that is, if there exists (ω, x) ∈ K such that

γ = lim
t→∞

1

t

∫ t

0

hx
(
ω·s, v(s, ω, x)

)
ds = lim

t→−∞

1

t

∫ t

0

hx
(
ω·s, v(s, ω, x)

)
ds .

The set of all the Lyapunov exponents of K will be denoted by Lyap(K). The values
inf Lyap(K) and supLyap(K) are the lower and upper Lyapunov exponents of K.

Given a compact τ -invariant set K ⊂ Ω × R and a Borel measure ν on K, the
marginal measure m of ν on Ω is defined as m(B) = ν((B×R)∩K) for every Borel
set B ⊆ Ω. It is easy to check that, if ν ∈ Minv(K, τ), then m ∈ Minv(Ω, σ) and, if
ν ∈ Merg(K, τ), then m ∈ Merg(Ω, σ). A measure ν ∈ Merg(K, τ) is said to project
onto a measure m ∈ Merg(Ω, σ), if m is the marginal measure of ν on Ω.

Theorem 1.36. Let K ⊂ Ω× R be a compact τ -invariant set projecting onto Ω.

(i) Let ν ∈ Merg(K, τ) project onto m ∈ Merg(Ω, σ). Then, there exists an m-
measurable equilibrium b : Ω → R with {b} ⊆ K such that, for every continuous
function g : Ω× R → R,∫

K
g(ω, x) dν =

∫
Ω

g(ω, b(ω)) dm . (1.10)

(ii) Let m ∈ Merg(Ω, σ) and let b : Ω → R be an m-measurable τ -equilibrium with
{b} ⊆ K. Then, (1.10) defines ν ∈ Merg(K, τ) projecting on m. In particular,∫
K hx(ω, b(ω)) dm is a Lyapunov exponent of K.

(iii) There exist ml,mu ∈ Merg(Ω, σ), an ml-measurable equilibrium bl : Ω → R
and an mu-measurable equilibrium bu : Ω → R such that

inf Lyap(K) =

∫
Ω

hx(ω, b
l(ω)) dml and supLyap(K) =

∫
Ω

hx(ω, b
u(ω)) dmu .

Besides, [inf Lyap(K), supLyap(K)] = {
∫
K hx(ω, x) dν | ν ∈ Minv(K, τ)}.

Proof. (i) It can be found in [43, Theorem 4.1] and [11, Theorem 1.8.4].

(ii) Riesz Representation Theorem (see [117, Theorem 6.3]) ensures that (1.10)
defines a normalized Borel measure ν on K. Since (ω, b(ω)) ∈ (B × R) ∩ K if and
only if ω ∈ B, µ projects on m. To prove that ν is ergodic, it is enough to check
that, if f ∈ L1(K, ν) satisfies f(ω, x) = f(ω·t, v(t, ω, x)) for all (ω, x) ∈ K and
t ∈ R, then f is ν-a.e. constant (see [54, Proposition 1.2 and Theorem 1.6]). Since
f(ω, b(ω)) = f(ω·t, b(ω·t)) and m is ergodic, the map f(ω, b(ω)) is m-a.e. constant
(see again [54, Theorem 1.6]). And this ensures that f(ω, x) is ν-a.e. constant, since
ν({b}) = inf{ν(V) | {b} ⊂ V open} = inf{

∫
Ω
χV(ω, b(ω)) dm | {b} ⊂ V open} = 1,

where χV(ω, x) = 1 if (ω, x) ∈ V and χV(ω, x) = 0 otherwise. The last assertion in
(ii) follows from the first one and Proposition 1.12(i).

(iii) According to Proposition 1.12(iii), the upper and lower Lyapunov exponents
of K are supLyap(K) =

∫
K hx(ω, x) dν

l and inf Lyap(K) =
∫
K hx(ω, x) dν

u for some
νl, νu ∈ Merg(K, τ). Hence, (i) ensures the existence of ml, mu, bl and bu as in the
statement. The last assertion follows from Proposition 1.12(iii).
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Now, the definitions of hyperbolic τ -copy of the base and hyperbolic τ -minimal
set are introduced. To this end, the classical definition of uniformly exponentially
stable set at +∞ or −∞ (on the fiber) is introduced.

Definition 1.37 (Uniformly exponentially stable). A compact τ -invariant set K ⊂
Ω×R which projects on Ω is said to be uniformly exponentially stable at +∞ (resp.
at −∞) if there exist a radius of uniform stability ρ > 0, and a dichotomy constant
pair (k, γ) with k ≥ 1 and γ > 0 such that, if (ω, x) ∈ K and (ω, y) ∈ Ω×R satisfy
|x− y| < δ, then v(t, ω, y) is defined for all t ≥ 0 (resp. t ≤ 0) and

|v(t, ω, x)− v(t, ω, y)| ≤ k e−γ t|x− y| , for all t ≥ 0 ,

(resp. |v(t, ω, x)− v(t, ω, y)| ≤ k e γ t |x− y| , for all t ≤ 0) .

Definition 1.38 (Hyperbolic copy of the base). A τ -copy of the base is said to
be hyperbolic attractive (resp. hyperbolic repulsive) if it is uniformly exponentially
stable at +∞ (resp. −∞). It is said to be nonhyperbolic if it is neither hyperbolic
attractive nor hyperbolic repulsive.

The following theorem, whose proof is postponed until Section 1.3.2, shows the
persistence of hyperbolic copies of the base. To this end, given m > 0 and h ∈
C0,1(Ω× R,R), we define the seminorm

∥h∥1,m = sup
(ω,x)∈Ω×[−m,m]

|h(ω, x)|+ sup
(ω,x)∈Ω×[−m,m]

|hx(ω, x)| ,

and, given b ∈ C(Ω,R), we define ∥b∥∞ = supω∈Ω |b(ω)|.

Theorem 1.39 (Persistence of hyperbolic copies of the base). Let h ∈ C0,1(Ω ×
R,R), let bh : Ω → R be a continuous equilibrium for (1.2) such that {bh} is an
attractive (resp. repulsive) hyperbolic copy of the base for (1.2) with dichotomy
constant pair (k0, γ0), and take m > ∥bh∥∞. Then, for every γ ∈ (0, γ0) and ε > 0,
there exists ρε > 0 and δε > 0 such that, if g ∈ C0,1(Ω×R,R) and ∥h− g∥1,m < δε,
then there exists a continuous equilibrium bg : Ω → R for x′ = g(ω·t, x) such that
{bg} is an attractive (resp. repulsive) hyperbolic copy of the base for x′ = g(ω·t, x)
with radius of uniform stability ρε and dichotomy constant pair (k0, γ), and which
satisfies ∥bh − bg∥∞ < ε.

The following theorem states that a τ -copy of the base or a τ -minimal set project-
ing on Ω is hyperbolic attractive (resp. repulsive) if and only if all their Lyapunov
exponents are strictly negative (resp. positive). Its proof is also postponed until
Section 1.3.2.

Theorem 1.40. Let h ∈ C0,1(Ω× R,R). Let K ⊂ Ω× R be a compact τ -invariant
set projecting onto Ω. Assume that its upper and lower equilibria coincide (at least)
on a point of each minimal subset M ⊆ Ω. Then, the upper (resp. lower) Lyapunov
exponent of K is strictly negative (resp. positive) if and only if K is an attractive
(resp. repulsive) hyperbolic copy of the base.

In addition, if either K (and hence Ω) is minimal or its upper and lower equilibria
coincide on a τ -invariant subset Ω0 ⊆ Ω with m(Ω0) = 1 for all m ∈ Merg(Ω, σ),
then the condition on its upper and lower equilibria holds.
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In Section 4.3.4 we will construct an example of a uniformly exponentially sta-
ble (with strictly negative upper Lyapunov exponent), pinched, compact (and con-
nected), and τ -invariant set which projects onto the whole base and which is not a
τ -copy of the base. That is, the hypotheses of Theorem 1.40 are not redundant.

Remark 1.41. Assume that (Ω, σ) is minimal, and let M ⊂ Ω×R be a τ -minimal
set. Then all its Lyapunov exponents are strictly negative (resp. positive) if and
only if M is an attractive (resp. repulsive) hyperbolic τ -copy of the base. In this
case, we talk about a hyperbolic minimal set. Otherwise, M is nonhyperbolic. Note
also that, if (Ω, σ) is minimal, then any τ -copy of the base is a τ -minimal set.

The hyperbolic character of a τ -minimal set M ⊂ Ω × R admits a useful char-
acterization in terms of the dynamical spectrum of the map hx : M → R, which we
represent by spM(hx):

Proposition 1.42. Let (Ω, σ) be minimal. Let h ∈ C0,1(Ω × R,R) and let M ⊂
Ω× R be a τ -minimal set. Then, spM(hx) = [inf Lyap(M), supLyap(M)], and M
is hyperbolic attractive (resp. repulsive) if and only if spM(hx) ⊂ (−∞, 0) (resp.
spM(hx) ⊂ (0,∞)); and it is nonhyperbolic if and only if 0 ∈ spM(hx).

Proof. Theorem 1.36(iii) (for hx : M → R instead of a : Θ → R) and Remark 1.14.1
prove the first equality, and the remaining assertions follow from Theorem 1.40.

1.3 Admissible processes and hull extensions

In this section, the processes formulation is introduced and its hull extension is
described. A detailed account on this formulation and its relation with the skew-
product formulation can be found in [63, Chapter 2]. The processes formulation and
related concepts deal with individual equations instead of with a family of them.
Conversely, suitable ordinary differential equations give rise to families of them and
to a skewproduct flow by means of the hull construction.

Definition 1.43 (Admissible map). Let U ⊆ Rn be an open set. A continuous
map h : R × U → R is admissible, h ∈ C0,0(R × U ,R), if the restriction of h to
R × J is bounded and uniformly continuous for any compact set J ⊂ U . A map
h : R × R → R is C1-admissible (resp. C2-admissible), h ∈ C0,1(R × R,R) (resp.
h ∈ C0,2(R×R,R)), if h is admissible, there exists its derivative hx with respect to
the second variable and hx is admissible (resp. there exist hx and hxx and they are
admissible).

In most of the cases, we will work with U = R. Given h ∈ C0,1(R × R,R), we
consider the scalar differential equation

x′ = h(t, x) (1.11)

and represent by t 7→ xh(t, s, x) the maximal solution of (1.11) with xh(s, s, x) = x,
defined on the interval Is,x = (αs,x, βs,x). By uniqueness of solutions, the expression
xh(t, r, x) = xh(t, s, xh(s, r, x)) holds whenever the right-hand term is defined. Then,
the map (t, s, x) 7→ xh(t, s, x) is a process, and is said to be an admissible process
because h is C1-admissible. We will also refer to (1.11) as an admissible ordinary
differential equation.
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We define two concepts which we will frequently manage. Two solutions b1(t) and
b2(t) of (1.11) are uniformly separated if they are bounded and inft∈R |b2(t)−b1(t)| >
0. The solutions b1(t), b2(t), . . . , bn(t) are uniformly separated if any pair of them is
uniformly separated.

1.3.1 The hull construction

Let us describe the already mentioned hull construction. The proof of the basic
properties stated just below can be found in [111, Part I, Theorem 3.1] and [110,
Theorem IV.3]. Admissible processes give rise to families of scalar differential equa-
tions which can be treated using the tools of Section 1.2.

Given an admissible map h : R × R → R, we define h·t(s, x) = h(t + s, x). The
hull Ωh of h is the closure of the set {h·t | t ∈ R} on the set C(R× R,R),

Ωh = closureC(R×R,R){h·t | t ∈ R} ,

provided with the compact-open topology. The set Ωh is a compact metric space,
the time-shift map

σh : R× Ωh → Ωh , (t, ω) 7→ ω·t
defines a global continuous flow, and the map

h : Ωh × R → R , (ω, x) 7→ h(ω, x) = ω(0, x) (1.12)

is continuous, and will be usually called the extension to the hull of h. In addition,
if h is C1-admissible, then Ωh ⊂ C0,1(R×R,R), and the continuous map hx(ω, x) =
ωx(0, x) is the derivative of h with respect to x; and, if h is C2-admissible, then
Ωh ⊂ C0,2(R × R,R), and the continuous map hxx(ω, x) = ωxx(0, x) is the second
derivative of h with respect to x.

In what follows, we will consider both processes and skewproduct flows. Observe
that (t, x) 7→ h(ω·t, x) is C1-admissible for all ω ∈ Ω if h ∈ C0,1(Ω× R,R).

Note that (Ωh, σh) is a transitive flow (see Definition 1.7), i.e., there exists a
dense σh-orbit: that of the point h ∈ Ωh. More precisely, if Ωα

h and Ωω
h are the

α-limit set and ω-limit set for σh of the element h ∈ Ωh, then

Lemma 1.44. Ωh = Ωα
h ∪ {h·t | t ∈ R} ∪ Ωω

h .

Proof. We can write any ω ∈ Ωh as ω = limn→∞ h·tn in the compact-open topology
for a suitable sequence (tn). If a subsequence (tk) has limit −∞ or +∞, then ω
belongs to Ωα

h or Ωω
h , respectively. Otherwise, there exists a subsequence (tk) with

limit t0 ∈ R, so ω = limn→∞ h·tn = h·t0 ∈ {h·t | t ∈ R}.

In large parts of this document, we deal with minimal flows (Ω, σ). When coming
from a single equation x′ = h(t, x), this property is known as recurrency of h:

Definition 1.45 (Recurrent map). An admissible map h : R× R → R is recurrent
if (Ωh, σh) is a minimal flow, i.e., if every σh-orbit is dense in Ωh.

The functions which are almost periodic uniformly on compact sets, defined
below, are admissible functions and provide a broad class of recurrent maps (see
e.g. [76, Theorems 2.43 and 2.44]). Periodic, quasiperiodic and almost periodic
functions fulfill Definition 1.46, as well as, for instance, polynomials with periodic,
quasiperiodic or almost periodic coefficients.
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Definition 1.46 (Almost periodic function uniformly on compact sets). Let U ⊆ Rn

be an open set. The map h : R × R → R is almost periodic uniformly on compact
subsets of R if, for any ε > 0 and any compact K ⊂ R, the set {T ∈ R such that
|h(t+ T, x)− h(t, x)| ≤ ε for all t ∈ R and x ∈ K} is relatively dense in R.

Assume that h is (at least) C1-admissible, and let us call τh the skewproduct flow
defined on Ωh × R by the family of equations (1.2) corresponding to the extension
to the hull h introduced in (1.12). Note that this family includes (1.11): it is
given by the element ω = h ∈ Ωh. In addition, it is not hard to check that, if
τh(t, ω, x) = (ω·t, vh(t, ω, x)), then xh(t, s, x) = vh(t − s, h·s, x). This is the skew-
product flow induced by h on its hull.

Proposition 1.47. Let h ∈ C0,1(R×R,R) and let Ωh be its hull. If x′ = h(t, x) has
a bounded solution b : R → R (resp. n uniformly separated solutions b1 < b2 < . . . <
bn), then x′ = ω(t, x) has a bounded solution (resp. n uniformly separated solutions)
for all ω ∈ Ωh.

Proof. We write ω = limn→∞ h·tn in the compact-open topology for a sequence (tn).
Let x0 be the limit of a suitable subsequence (b(tk)) of (b(tn)). Then, the solution
vh(t, ω, x0) of x

′ = ω(t, x) (with value x0 at 0) is bounded, since by continuity of the
map vh, we get vh(t, ω, x0) = limk→∞ vh(t, ωk, b(tk)) = limk→∞ b(t + tk). The same
argument proves the other assertion.

1.3.2 Hyperbolic solutions

In this section, we consider the linearized equation around a solution of an ordinary
differential equation: its exponential dichotomy characterizes the hyperbolicity of the
solution. The persistence of such solutions under small perturbations and some
useful related properties are proved, and the proofs of Theorems 1.39 and 1.40 are
provided.

Definition 1.48 (Exponential dichotomy on R). Let a : R → R be a continuous
map. The linear system

z′ = a(t) z (1.13)

has an exponential dichotomy on R if there exist k ≥ 1 and γ > 0

exp

∫ t

s

a(r) dr ≤ k e−γ (t−s) whenever t ≥ s (1.14)

or

exp

∫ t

s

a(r) dr ≤ k e γ (t−s) whenever t ≤ s . (1.15)

The (non unique) pair (k, γ) is called a dichotomy constant pair . If (1.14) holds,
then (1.13) is said to be Hurwitz at ∞, while if (1.15) holds, then (1.13) is said to
be Hurwitz at −∞.

Remark 1.49. It is known that, if the equation (1.13) has an exponential dichotomy
on R, then there are no other bounded solutions of (1.13) apart from the trivial one:
see e.g. [54, Proposition 1.56].
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Given a bounded solution b : R → R of (1.11), we consider its variational or
linearized equation

z′ = hx(t, b(t)) z . (1.16)

Definition 1.50 (Hyperbolic solution). A bounded solution b̃ : R → R of (1.11) is
hyperbolic attractive (resp. repulsive) if there exists k ≥ 1 and γ > 0 such that

exp

∫ t

s

hx(r, b̃(r)) dr ≤ k e−γ (t−s) whenever t ≥ s (1.17)(
resp. exp

∫ t

s

hx(r, b̃(r)) dr ≤ k e γ (t−s) whenever t ≤ s
)
. (1.18)

that is, if its variational equation (1.16) is of Hurwitz type at ∞ (resp. −∞). A
dichotomy constant pair of the exponential dichtomy is called a dichotomy constant
pair for b̃. If (1.17) (resp. (1.18)) holds, then b̃ is said to be attractive (resp.
repulsive).

Remark 1.51. Notice that b̃(t) cannot be at the same time hyperbolic attractive
and repulsive: if this were the case, we would have exp

∫ t

0
hx(r, b̃(r)) dr ≤ k1 e

−γ1 t

and exp
∫ 0

t
hx(r, b̃(r)) dr ≤ k2 e

−γ2 t for all t > 0, with positive constants k1, k2, γ1
and γ2. Hence, 1 ≤ k1 k2 e

−(γ1+γ2) t for all t ≥ 0, which is impossible.

Theorem 1.52 shows the persistence of the existence of hyperbolic solutions under
small variations on the coefficient function h. It is a classical result (see e.g. [7,
Lemma 3.3] or [95, Theorem 3.8]), but we include a proof in our particular setting.

Given m > 0 and h ∈ C0,1(R× R,R), we define the seminorm

∥h∥1,m = sup
(t,x)∈R×[−m,m]

|h(t, x)|+ sup
(t,x)∈R×[−m,m]

|hx(t, x)| ,

and, given b ∈ C(R,R) we define ∥b∥∞ = supt∈R |b(t)|.

Theorem 1.52 (Persistence of hyperbolic solutions). Let h ∈ C0,1(R × R,R), let
b̃h be an attractive (resp. repulsive) hyperbolic solution of (1.11) with dichotomy
constant pair (k0, γ0), and take m > ∥b̃h∥∞. Then, for every γ ∈ (0, γ0) and ε > 0,
there exists a constant δε > 0 and a radius of uniform stability ρε > 0 such that, if
g ∈ C0,1(R× R,R) and ∥h− g∥1,m < δε, then

(i) there exists an attractive (resp. repulsive) hyperbolic solution b̃g of x′ = g(t, x)
with dichotomy constant pair (k0, γ) which satisfies

∥∥b̃h − b̃g
∥∥
∞ < ε, and it is

the unique bounded solution satisfying
∥∥b̃h − b̃g

∥∥
∞ < ε;

(ii) if |b̃g(t0)− x| ≤ ρε, then

|b̃g(t)− xg(t, t0, x)| ≤ k0 e
−γ (t−t0)|b̃g(t0)− x| for all t ≥ t0 ,

(resp. |b̃g(t)− xg(t, t0, x)| ≤ k0 e
γ (t−t0) |b̃g(t0)− x| for all t ≤ t0) .

Proof. Let us define δ0 = (γ0− γ)/k0. Recall that [25, Lecture 3] ensures that every
continuous map a : R → R with ∥hx(·, b̃h(·))−a(·)∥∞ < δ0 determines a new Hurwitz
equation, being (k0, γ) a dichotomy constant pair for its hyperbolic solution 0. This
fact will be used at the end of the proof.
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We will work in the case in which b̃h is hyperbolic attractive. The change of
variables x = b̃h(t) + y takes the equation x′ = g(t, x) to

y′ = hx(t, b̃h(t)) y + rg(t, y) ,

where
rg(t, y) = g(t, b̃h(t) + y)− hx(t, b̃h(t)) y − h(t, b̃h(t)) .

Let ε0 ∈ (0,m] satisfy ∥b̃h∥∞ ≤ m − ε0. Since h ∈ C0,1(R × R,R), there exists
ε ∈ (0,min{1, ε0}) such that |hx(t, b̃h(t)+y)−hx(t, b̃h(t))| ≤ δ0/4 for every y ∈ [−ϵ, ε]
and t ∈ R. Consequently, for any g ∈ C0,1(R× R,R) such that ∥h− g∥1,m ≤ δ0/4,

|gx(t, b̃h(t) + y)− hx(t, b̃h(t))|
≤ |gx(t, b̃h(t) + y)− hx(t, b̃h(t) + y)|+ |hx(t, b̃h(t) + y)− hx(t, b̃h(t))|

≤ ∥h− g∥1,m +
δ0
4

≤ δ0
2

(1.19)

for every y ∈ [−ε, ε] and t ∈ R, since ∥b̃h+y∥∞ ≤ m. Notice that rg can be rewritten
by means of the Fundamental Theorem of Calculus

rg(t, y) = y

∫ 1

0

(
gx(t, b̃h(t) + s y)− hx(t, b̃h(t))

)
ds+ g(t, b̃h(t))− h(t, b̃h(t)) ,

so (1.19) ensures that |rg(t, y)| ≤ δ0 ε/2 + ∥h− g∥1,m ≤ 3 δ0 ε/4 for every y ∈ [−ε, ε]
and t ∈ R, if ∥h− g∥1,m ≤ δ0 ε/4. Since

rg(t, y1)− rg(t, y2) = (y1 − y2)

∫ 1

0

(
gx(t, b̃h(t) + s y1 + (1− s) y2)− hx(t, b̃h(t))

)
ds ,

(1.19) also ensures that |rg(t, y1)−rg(t, y2)| ≤ (δ0/2) |y1−y2| for every y1, y2 ∈ [−ε, ε]
and t ∈ R, if ∥h− g∥1,m ≤ δ0/4. Let us take g ∈ C0,1(R× R,R) with ∥h− g∥1,m ≤
δ0 ε/4 ≤ δ0/4. The results of [25, Lecture 3] ensure that, for any y0 ∈ C(R,R), there
is a unique bounded solution Ty0 of y′ = hx(t, b̃h(t)) y + rg(t, y0(t)), given by

Ty0(t) =

∫ t

−∞
exp

(∫ t

s

hx(r, b̃h(r)) dr

)
rg(s, y0(s)) ds .

We take y0 with ∥y0∥∞ ≤ ε. Since (k0, γ) is a dichotomy constant pair for b̃h, we get
∥Ty0∥∞ ≤ (3ε/4)(δ0k0/γ) < 3ε/4 and ∥Ty1 − Ty2∥∞ ≤ (1/2)(δ0 k0/γ) ∥y1 − y2∥∞ <
(1/2) ∥y1 − y2∥∞. The map T : C(R, [−ε, ε]) → C(R, [−ε, ε]) is a contraction and
thus it has a unique fixed point yg. It follows easily that b̃g = b̃h + yg is a bounded
solution of x′ = g(t, x), and it satisfies ∥b̃h − b̃g∥∞ ≤ ε. The uniqueness of the
fixed point ensures that this is the unique bounded solution with this property. The
bound (1.19) and the choice of δ0 at the beginning of the proof ensure that b̃g is an
attractive hyperbolic solution of x′ = g(t, x) with dichotomy constant pair (k0, γ),
from where (i) follows.

To check (ii), we use again the change the change of variables x = b̃g(t) + y to
rewrite x′ = g(t, x) and use the Fundamental Theorem of Calculus to obtain:

y′ = gx(t, b̃g(t)) y + y

∫ 1

0

(
gx(t, b̃g(t) + s y)− gx(t, b̃g(t))

)
ds .
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Given ν ∈ (0, k0/γ), since

|gx(t, b̃g(t) + s y)− gx(t, b̃g(t))|
≤ |gx(t, b̃g(t) + s y)− hx(t, b̃g(t) + s y)|+ |hx(t, b̃g(t) + s y)− hx(t, b̃g(t))|

+ |hx(t, b̃g(t))− gx(t, b̃g(t))| ,

there exist δ̄ ∈ (0, δ0/4) and ε̄ ∈ (0, ε) such that |gx(t, b̃g(t) + s y)− gx(t, b̃g(t))| ≤ ν
for every y ∈ [−ε̄, ε̄] and t ∈ R if ∥h − g∥1,m ≤ δ̄. Since (k0, γ) is a common
dichotomy constant pair for the hyperbolic solution b̃g of x′ = g(t, x) for all these
maps g, the First Approximation Theorem (see [46, Chapter III, Theorem 2.4] and
its proof) provides ρε > 0 satisfying the statement. The proof is analogous in the
repulsive case.

Theorem 1.52 allows us to identify hyperbolic solutions of (1.11) with uniformly
exponentially stable solutions. Recall that a solution b̃h of (1.11) is uniformly expo-
nentially stable as time increases (resp. decreases) if there exists a radius of uniform
stability ρ > 0 and a dichotomy constant pair (k, γ) with k ≥ 1 and γ > 0 such that,
if |b̃h(s)− x| ≤ ρ, then

|b̃h(t)− xh(t, s, x)| ≤ k0 e
−γ (t−s)|b̃h(s)− x| for all t ≥ s ,

(resp. |b̃h(t)− xh(t, s, x)| ≤ k0 e
γ (t−s) |b̃h(s)− x| for all t ≤ s) .

The following proposition provides uniform separation of any other solution from
hyperbolic solutions in halflines.

Corollary 1.53. Let h ∈ C0,1(R×R,R). A bounded solution b̃h of (1.11) is hyper-
bolic attractive (resp. repulsive) if and only if it is uniformly exponentially stable as
time increases (resp. decreases).

Proof. Theorem 1.52(ii) shows that an attractive (resp. repulsive) hyperbolic solu-
tion of (1.11) is uniformly exponentially stable as time increases (resp. decreases).

Conversely, let b̃h be uniformly exponentially stable as time increases. Let ρ be
a radius of uniform stability and (k, γ) be a dichotomy constant pair. Hence,

∂

∂x
xh(t, s, x)

∣∣∣
x=b̃h(s)

= lim
ε→0

xh(t, s, b̃h(s) + ε)− xh(t, s, b̃h(s))

ε
≤ k e−γ (t−s)

for t ≥ s. This derivative solves the variational equation z′ = hx(t, b̃ω(t)) z and has
value 1 at t = s, so (∂/∂x)xh(t, s, x)|x=b̃h(s)

= exp
∫ t

s
hx(r, b̃ω(r)) dr from where the

assertion follows. If b̃h is uniformly exponentially stable as time decreases, the proof
is analogous.

The next useful result will be combined with the previous one in the proofs of
some of the main results.

Proposition 1.54. Let h ∈ C0,1(Ω × R,R), let b̃ : R → R be an attractive (resp.
repulsive) hyperbolic solution of x′ = h(ω0·t, x) for a point ω0 ∈ Ω, and let

K = closureΩ×R{(ω0·t, b̃(t)) | t ∈ R} .
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(i) If (ω̄, x̄) ∈ K, then c̃(t) = v(t, ω̄, x̄) is an attractive (resp. repulsive) hyperbolic
solution of x′ = h(ω̄·t, x), with the same dichotomy constant pairs as b̃.

(ii) sup Lyap(K) < 0 (resp. inf Lyap(K) > 0) and K is uniformly exponentially
stable at +∞ (resp. −∞).

(iii) Let O ⊆ K be the α-limit set (resp. ω-limit set) for τ of (ω0, b̃(0)). If there
exists ω1 ∈ Ω such that Oω1 = Kω1, then Kω0·s is a singleton for all s ∈ R.

(iv) If (Ω, σ) is minimal, then K is a hyperbolic τ -copy of the base.

Proof. (i)-(ii) Let (ω̄, x̄) ∈ K and let (tn) be such that (ω̄, x̄) = limn→∞(ω·tn, b̃(tn)).
Notice that we have c̃(t) = v(t, ω̄, x̄) = limn→∞ v(t, ω0·tn, b̃(tn)) = limn→∞ v(t +
tn, ω0, b̃(0)) = limn→∞ b̃(t + tn) for all t ∈ R. In particular, c̃ is bounded. Let
us reason in the attractive case. Lebesgue’s Dominated Convergence Theorem
shows that exp

∫ t

s
hx(ω̄·r, c̃(r)) dr = limn→∞ exp

∫ t

s
hx(ω0·(tn + r), b̃(tn + r)) dr =

limn→∞ exp
∫ t−tn
s−tn

hx(ω0·r, b̃(r)) dr ≤ k e−γ (t−s) if t ≥ s, where (k, γ) is a dichotomy

constant pair for b̃. This proves (i). In particular, for all (ω, x) ∈ K, we have
limt→∞ exp

∫ t

0
hx(τ(r, ω, x)) dr ≤ −γ, and hence supLyap(K) ≤ −γ. The First Ap-

proximation Theorem (see [46, Chapter III, Theorem 2.4] and its proof) used as at
the end of the proof of Theorem 1.52 shows (ii). The arguments are the same in the
repulsive case.

(iii) Since y ∈ Kω0·s if and only if y = v(s, ω0, x) for an x ∈ Kω0 , it suffices to check
that Kω0 is a singleton. Let us work in the attractive case, as the repulsive one is
analogous. Let l and u be the lower and upper τ -equilibria of K, let ρ > 0 and (k, γ)
be a radius of uniform stability and a dichotomy constant pair forK (provided by (ii):
see Definition 1.37). The hypothesisOω1 = Kω1 guarantees that (ω1, u(ω1)) ∈ O. Let
(tn) ↓ −∞ be such that (ω1, u(ω1)) = limn→∞(ω0·tn, b̃(tn)). Since b̃(tn) ≤ u(ω0·tn),
and since we can assume without restriction that (ω0·tn, u(ω0·tn)) converges to an
element of K, u(ω1) = limn→∞ b̃(tn) ≤ limn→∞ u(ω0·tn) ≤ u(ω1). Then, there exists
n0 ∈ N such that |u(ω0·tn) − b̃(tn)| < ρ for all n ≥ n0, so taking n → ∞ in
|u(ω0) − b̃(0)| = |v(−tn, ω0·tn, u(ω0·tn)) − v(−tn, ω0·tn, b̃(tn))| ≤ k eγ tn|u(ω0·tn) −
b̃(tn)| < k ρ eγ tn provides u(ω0) = b̃(0). Analogously, l(ω0) = b̃(0), so Kω0 = {b̃(0)}.

(iv) Let us work in the attractive case. Let M ⊂ Ω × R be a τ -minimal set
contained in the α-limit set for τ of (ω0, b̃(0)). ThenM ⊆ K, so that supLyap(M) ≤
supLyap(K) < 0. Proposition 1.42 ensures that M is an attractive hyperbolic τ -
minimal set. Corollary 1.58, which will be proved without using this result, ensures
that (ω0, b̃(0)) ∈ M. Therefore, K = M, that is, K is a hyperbolic τ -copy of the
base.

The following proposition relates the concept of hyperbolic copy of the base with
that of hyperbolic solution.

Proposition 1.55. Let h ∈ C0,1(Ω × R,R), and let b : Ω → R determine an at-
tractive (resp. repulsive) copy of the base for (1.2) with dichotomy constant pair
(k, γ). For any ω ∈ Ω, the function b̃ω defined by b̃ω(t) = b(ω·t) is an attractive
(resp. repulsive) hyperbolic solution of (1.2)ω with dichotomy constant pair (k, γ).

Proof. Let us reason in the attractive case, fixing ω ∈ Ω. Let us define ω∗(t, x) =
h(ω·t, x) and v as in (1.3). Then, the solution xω(t, s, x) of x′ = ω∗(t, x) (i.e., of
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(1.2)ω), coincides with v(t − s, ω·s, x), and b̃ω(t) = v(t − s, ω·s, b̃ω(s)). Let ρ > 0
be a radius of uniform stability for b. Hence, the hyperbolicity of b ensures that,
if |x − b̃ω(s)| ≤ ρ for an s ∈ R, then xω(t, s, x) exists for all t ≥ s and it satisfies
|xω(t, s, x) − b̃ω(t)| ≤ k e−γ (t−s) |x − b̃ω(s)|. Therefore, Corollary 1.53 proves the
assertion.

The following proposition provides uniform separation as time decreases (resp.
increases) of any solution from an attractive (resp. repulsive) hyperbolic solution.

Proposition 1.56. Let b̃(t) be an attractive (resp. repulsive) hyperbolic solution of
(1.11) for h ∈ C0,1(R × R,R). Then, inft<t0 |b̃(t) − x̄(t)| > 0 (resp. inft>t0 |b̃(t) −
x̄(t)| > 0) for any t0 ∈ R and any solution x̄(t) ̸= b̃(t) defined on (−∞, t0] (resp on
[t0,∞)).

Proof. We reason in the attractive case, assuming for contradiction the existence of
(tn) ↓ −∞ such that limn→∞ |b̃(tn)− x̄(tn)| = 0. Corollary 1.53 provides k ≥ 1 and
γ > 0 such that, for large enough n,

|b̃(t0)− x̄(t0)| = |xh(t0, tn, b̃(tn))− xh(t0, tn, x̄(tn))| ≤ k e−γ (t0−tn)|b̃(tn)− x̄(tn)| .

The contradiction follows, since the last term tends to 0 as n → ∞.

We complete this section with a skewproduct version of Proposition 1.56 and a
useful corollary about the τ -minimal sets generated by (1.9) when the base flow is
minimal.

Proposition 1.57. Let the family (1.2) be given by h ∈ C0,1(Ω×R,R), and assume
that the α-limit set (resp. ω-limit set) of (ω̄, b0) for τ is an attractive (resp. repulsive)
hyperbolic τ -copy of the α-limit set Ωα

ω̄ (resp. ω-limit set Ωω
ω̄ ) of ω̄, say {b}. Then,

{b} does not intersect the α-limit set (resp. ω-limit set) of any (ω̄, x) with x ̸= b0
and bounded backward semiorbit (resp. bounded forward semiorbit).

Proof. We reason in the attractive case. Assume the existence of the α-limit set K
of a point (ω̄, x) with x ̸= b0, and, for contradiction, the existence of (ω, b(ω)) ∈ K.
We write (ω, b(ω)) = limn→∞(ω̄·tn, v(tn, ω̄, x)) for a suitable sequence (tn) ↓ −∞,
assume without restriction the existence of limn→∞ v(tn, ω̄, b0), observe that this
limit is also b(ω), and note that this contradicts Proposition 1.56.

Corollary 1.58. Let (Ω, σ) be minimal, and let h ∈ C0,1(Ω× R,R). Then,

(i) an attractive (resp. repulsive) hyperbolic τ -minimal set does not intersect the
α-limit (resp. ω-limit set) of any orbit outside itself.

(ii) Let b : Ω → R be a semicontinuous τ -equilibrium and let M be the τ -minimal
set given by (1.9). If M is hyperbolic, then b is continuous and M = {b}.

(iii) If there exists the global attractor A for τ and there exists a unique τ -minimal
set M, which is a hyperbolic attractive copy of the base, then A = M.

Proof. (i) The assertions follow from Proposition 1.57, since a hyperbolic minimal
set is always a copy of the base (see Remark 1.41), and it is the α-limit and ω-limit
set of any of its orbits.
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(ii) We assume that M is attractive (resp. repulsive), and, for contradiction,
the existence of (ω1, b(ω1)) ̸∈ M. Let K be the α-limit set (resp. ω-limit set) of
(ω1, b(ω1)) for τ . It is easy to check that that (ω, b(ω)) ∈ K for any continuity point
ω of b. Proposition 1.32 shows that M∩K is nonempty. This contradicts (i). So,
the graph of b is contained in M, which is the graph of a continuous τ -equilibrium.

(iii) If there exists (ω, x) ∈ A\M, then its α-limit set for τ contains the unique
τ -minimal set M, which contradicts (i).

The proofs of the two Theorems 1.39 and 1.40 of Section 1.2.4 that had been
postponed complete this section.

Proof of Theorem 1.39. In the attractive case, we repeat step by step the proof of
Theorem 1.52, using the uniform properties on Ω to replace those for t ∈ R. For
any continuous b : Ω → R, let Tb : Ω → Ω be the map defined by

Tb(ω) =

∫ 0

−∞
exp

(∫ 0

s

hx(ω·r, bh(ω·r)) dr
)
rg(ω·s, b(ω·s)) ds

where
rg(ω, y) = g(ω, bh(ω) + y)− hx(ω, bh(ω)) y − h(ω, bh(ω)) .

Since the integrand can be bounded by k0 e
γ0 s maxω∈Ω rg(ω, b(ω)) for s ≤ 0, the

map Tb is continuous on Ω. Hence T : C(Ω, [−ε, ε]) 7→ C(Ω, [−ε, ε]) is a well defined
operator, which turns out to be a contraction. In this case, the unique fixed point
bg of T is a continuous equilibrium for x′ = g(ω·t, x). It is easy to check that
t 7→ bg(ω·t) is an attractive hyperbolic solution for each ω ∈ Ω.

Finally, given ν ∈ (0, k0/γ), there exist δ̄ ∈ (0, δ0/4) and ε̄ ∈ (0, ε) such that
|gx(ω, bg(ω) + s y) − gx(ω, bg(ω))| ≤ ν for every y ∈ [−ε̄, ε̄], s ∈ [0, 1] and ω ∈ Ω
if ∥h − g∥1,m ≤ δ̄, from where the existence of a radius of uniform stability ρε
follows.

Proof of Theorem 1.40. The proof relies on that of [18, Proposition 2.8]. We reason
in the attractive case. Let lK and uK be the lower and upper equilibria of K (given
by (1.7)), respectively. Theorem 1.36(ii) and (iii) and Proposition 1.12(iv) show the
existence of k ≥ 1 and γ > 0 such that

exp

∫ t

0

hx(ω·r, lK(ω·r)) dr ≤ k e−γ t , for all ω ∈ Ω and t ≥ 0 ,

which ensures that

exp

∫ t

s

hx(ω·r, lK(ω·r)) dr = exp

∫ t−s

0

hx(ω·s·r, lK(ω·s·r)) dr ≤ k e−γ (t−s)

for ω ∈ Ω and t ≥ s. That is, for all ω ∈ Ω, the map t 7→ lK(ω·t) is an attractive
hyperbolic solution of x′ = h(ω·t, x).

We take ω̄ ∈ Ω, a point ω0 in a minimal subset of the α-limit set of ω̄ for σ
with lK(ω0) = uK(ω0), and a sequence (tn) ↓ −∞ such that there exist (ω0, x0) =
limn→∞ τ(tn, ω̄, lK(ω̄)) and (ω0, y0) = limn→∞ τ(tn, ω̄, uK(ω̄)). Then, we get lK(ω0) ≤
x0, y0 ≤ uK(ω0) = lK(ω0); i.e., x0 = y0 = uK(ω0) = lK(ω0). Let us check that
lK(ω̄) = uK(ω̄). Let ρ > 0 be a radius of uniform stability and (k, γ̄) a dichotomy
constant pair of t 7→ lK(ω̄·t) (recall Corollary 1.53 and Theorem 1.52(ii)). Since, as
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checked above, limn→∞(uK(ω̄·tn)− lK(ω̄·tn)) = y0 − x0 = 0, there exists j ∈ N such
that |uK(ω̄·tn)− lK(ω̄·tn)| ≤ ρ for all n ≥ j. Hence,

|uK(ω̄)− lK(ω̄)| ≤ k e−γ̄ tn|uK(ω̄·tn)− lK(ω̄·tn)| ≤ k e−γ̄ tnρ .

Taking n → ∞ gives uK(ω̄) = lK(ω̄), as asserted. Hence, Lemma 1.29 ensures that
K is a copy of the base. Since h ∈ C0,1(Ω × R,R), given ν ∈ (0, k/γ̄), there exists
a sufficiently small ε > 0 such that |hx(ω·t, lK(ω·t) + sy) − hx(ω·t, lK(ω·t))| ≤ ν for
all y ∈ [−ε, ε], s ∈ [0, 1], ω ∈ Ω and t ∈ R, and hence a careful revision of the proof
of Theorem 1.52(ii) ensures that a common radius of uniform stability ρ > 0 and
dichotomy constant pair (k, γ̄) can be taken for t 7→ lK(ω·t) for all ω ∈ Ω. So, K is
hyperbolic attractive.

Now, assume that K is an attractive hyperbolic copy of the base K = {b}
for a continuous map b : Ω → R. Since t 7→ b(ω·t) is a hyperbolic solution of
x′ = h(ω·t, x) (see Proposition 1.55), there exists (kω, γω) with kω ≥ 1 and γω >
0 such that exp

∫ t

0
hx(ω·r, b(ω·r)) dr ≤ kω e

−γω t for all t ≥ 0. Hence, we get

lim supt→∞(1/t)
∫ t

0
hx(ω·r, b(ω·r)) dr ≤ −γω < 0 for all ω ∈ Ω, and Birkhoff’s Er-

godic Theorem 1.10 ensures that
∫
Ω
hx(ω, b(ω)) dm < 0 for all m ∈ Merg(Ω, σ).

Theorem 1.36(iii) ensures that Lyap(K) ⊂ (−∞, 0).
The proofs are analogous in the repulsive case. The unique meaningful change

is taking (tn) ↑ ∞ instead of (tn) ↓ −∞.
The last assertion about the minimal case follows from Proposition 1.32. In the

other one, given any σ-minimal set M ⊆ Ω, there exists m ∈ Merg(Ω, σ) such that
m(M) = 1, so m(M∩ Ω0) = 1, and hence M∩ Ω0 is nonempty.

1.3.3 Pullback attractive and repulsive properties

The concepts of pullback attraction and repulsion play a fundamental role in the
description of the dynamics induced by a process. In fact, the existence of a (local
or global) pullback attractor is, in general, quite less demanding than the existence
of a global attractor for the induced skewproduct flow.

Definition 1.59 (Locally pullback attractive or repulsive solution). A solution
b : (−∞, β) → R of (1.11) is locally pullback attractive if there exists s0 < β and
δ > 0 such that, if s ≤ s0 and |x− b(s)| < δ, then xh(t, s, x) is defined for t ∈ [s, s0]
and

lim
s→−∞

max
x∈[b(s)−δ,b(s)+δ]

|b(t)− xh(t, s, x)| = 0 for all t ≤ s0 .

A solution b : (α,∞) → R of (1.11) is locally pullback repulsive if and only if the
solution b̄(t) = b(−t) of y′ = −h(−t, y) is locally pullback attractive.

In the scalar case in which this document is developed, the definition of locally
pullback attractive solution is equivalent to the existence of s0 < β and δ > 0 such
that, if s ≤ s0, then xh(t, s, b(s)± δ) is defined for t ∈ [s, s0], and

lim
s→−∞

|b(t)− xh(t, s, b(s)± δ)| = 0 for all t ≤ s0 .

Analogously, the definition of locally pullback repulsive solution is equivalent to the
existence of s0 > α and δ > 0 such that, if s0 ≤ s, then xh(t, s, b(s) ± δ) is defined
for t ∈ [s0, s] and

lim
s→∞

|b(t)− xh(t, s, b(s)± δ)| = 0 for all t ≥ s0 .
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The next definition requires the notion of Hausdorff semidistance (which was
already introduced in Definition 1.31 for subsets of Ω× R) between subsets C1 and
C2 of R,

dist(C1, C2) = sup
x1∈C1

(
inf

x2∈C2
|x1 − x2|

)
.

Definition 1.60 (Pullback attractor). A family A = {A (t) | t ∈ R} is the pullback
attractor of (1.11) if

(i) A (t) is a compact subset of R for each t ∈ R;

(ii) A is invariant for (1.11), i.e., A (t) = xh(t, s,A (s)) for all s, t ∈ R;

(iii) A pullback attracts bounded subsets of R, that is, for any bounded C ⊂ R
and any t ∈ R,

lim
s→−∞

dist(xh(t, s, C),A (t)) = 0 ;

(iv) A is the minimal family of closed sets with property (iii).

Property (iv) in the definition ensures the uniqueness of the pullback attrac-
tor. The pullback attractor A is said to be globally forward attractive if, for every
bounded subset C ⊂ R and every s ∈ R,

lim
t→∞

dist(xh(t, s, C),A (t)) = 0 , (1.20)

and it is said to be locally forward attractive if there exists δ > 0 such that (1.20)
holds for every s ∈ R and every bounded subset C ⊆ {x1 + x2 | exists s ∈ R
such that x1 ∈ A (s) and x2 ∈ [−δ, δ]}. We recall that, in general, the pullback
attraction property of Definition 1.60 does not imply local forward attraction (see
e.g. [66]). However, sometimes, pullback attractors will also be locally or globally
forward attractive.

The following proposition describes a hypothesis on coercivity which ensures that
all the solutions of the equation are globally forward defined and bounded, as well
as the existence of the pullback attractor.

Proposition 1.61. Let h ∈ C0,1(R× R,R) satisfy lim supx→±∞(±h(t, x)) < 0 uni-
formly in t ∈ R, and take δ1, δ2 > 0 and m1,m2 ∈ R with h(t, x) ≥ δ1 if x ≤ m1

and h(t, x) ≤ −δ2 if x ≥ m2. Then, all the maximal solutions of (1.11) are glob-
ally forward defined and bounded, and the equation has a bounded pullback attractor
A = {A (t) | t ∈ R}, with A (t) ⊆ [m1,m2] composed by the values at t of all the
globally bounded solutions for any t ∈ R.

Proof. If y(t) solves (1.11), then y′(t) ≤ −δ2 < 0 if y(t) ≥ m2 and y′(t) ≥ δ1 > 0
if y(t) ≤ m1. Hence, first, xh(t, s, [m1,m2]) ⊆ [m1,m2] for all t ≥ s; second, if
x > m2, then xh(t, s, x) = x +

∫ t

s
h(l, xh(l, s, x)) dl ≤ x − δ2(t − s) for those values

of t ≥ s for which xh(t, s, x) > m2 (note that, since xh(t, s, [m1,m2]) ⊆ [m1,m2]
for all t ≥ s, xh(t, s, x) > m2 if and only if xh(l, s, x) > m2 for all l ∈ [s, t]),
which ensures the existence of ts ≤ s + (x − m2)/δ2 such that xh(ts, s, x) = m2;
and third, analogously, if x < m1, then there exists ts ≤ s − (x − m1)/δ1 such
that xh(ts, s, x) = m1. This yields lims→−∞ dist(xh(t, s,D), [m1,m2]) = 0 for all
bounded set D ⊂ R: B(t) = [m1,m2] pullback attracts bounded sets in time t
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(see Definition 1.60(ii)). Therefore, [21, Theorem 2.12] ensures the existence of the
pullback attractor A = {A (t) | t ∈ R} with A (t) ⊆ [m1,m2] for all t ∈ R.
The last assertion follows from [21, Corollary 1.18], since the pullback attractor is
bounded.

1.4 Functions of bounded primitive

Let (Ω, σ) be a continuous flow on a compact metric space.

Definition 1.62. Let us consider

� C(Ω,R), the space of continuous functions a : Ω → R,

� C0(Ω,R), the subspace of functions a ∈ C(Ω,R) such that
∫
Ω
a(ω) dm = 0 for

all m ∈ Merg(Ω, σ),

� C1(Ω,R), the subspace of functions a ∈ C(Ω,R) such that t 7→ aω(t) = a(ω·t)
is continuously differentiable on R, where we represent a′(ω) = a′ω(0),

� CP (Ω,R), the subspace of functions a ∈ CP (Ω,R) with continuous primitive,
that is, such that there exists b ∈ C1(Ω,R) with b′ = a.

It is clear that any a ∈ C1(Ω,R) is C1 along the base orbits (see Section 1.2.1).
It is frequent to refer to a function a ∈ CP (Ω) as “with bounded primitive”. This
terminology is supported by the following classical proposition, whose proof can be
found e.g. in [52, Lemma 2.7] or [57, Proposition A.1].

Proposition 1.63. Let (Ω, σ) be minimal and let a ∈ C(Ω,R). The following
assertions are equivalent:

(a) there exists ω0 ∈ Ω such that
∫ t

0
a(ω0·s) ds is bounded either for all t ≥ 0 or

for all t ≤ 0,

(b) a ∈ CP (Ω,R).
The following proposition compiles some classical results concerning the function

spaces presented in Definition 1.62. We say that a flow (Ω, σ) is periodic if there
exists T > 0 such that ω·T = ω for all ω ∈ Ω. Otherwise, we say that (Ω, σ) is
nonperiodic.

Proposition 1.64. The following statements hold:

(i) CP (Ω) ⊆ C0(Ω),

(ii) if (Ω, σ) is periodic, then CP (Ω) = C0(Ω),

(iii) if (Ω, σ) is a minimal nonperiodic flow, then CP (Ω) is a dense subset of C0(Ω)
of first category in C0(Ω),

(iv) C1(Ω) is dense in C(Ω).

Proof. The application of Birkhoff’s Ergodic Theorem to both sides of b′ = a gives
(i). To prove (ii), notice that if (Ω, σ) has period T > 0, then it is uniquely ergodic

and 0 =
∫
Ω
a(ω) dm =

∫ T

0
a(ω·s) ds for any ω ∈ Ω. Once fixed ω0 ∈ Ω, let tω ∈ [0, T ]

be such that ω = ω0·tω. It is not hard to check that b(ω) =
∫ tω
0

a(ω0·s) ds is in
C1(Ω,R) and b′ = a. The proof of (iii) can be found in [19, Lemma 5.1] and the
proof of (iv) can be found in [109, Section 2, Kakutani Theorem].





Chapter 2

D-concave nonautonomous
differential equations

In [114], Tineo considered scalar differential equations

x′ = h(t, x) , (2.1)

where h(t, ·) admits derivative with respect the state variable x for every t ∈ R, the
maps h, hx : R×R → R are continuous and h satisfies a certain condition related to
the concavity of x 7→ hx(t, x), and it was shown that there can exist at most three
bounded and uniformly separated solutions of (2.1).

In this chapter, we consider a continuous flow on a compact metric space (Ω, σ)
and a family of scalar differential equations of the form

x′ = h(ω·t, x) , ω ∈ Ω , (2.2)

where h ∈ C0,2(Ω×R,R) (see Section 1.2). We will prove that, if the set of all ω ∈ Ω
for which x 7→ hx(ω, x) is concave has full measure for each ergodic measure on (Ω, σ)
and that the set of all ω ∈ Ω for which x 7→ hx(ω, x) is strictly concave has positive
measure for each ergodic measure on (Ω, σ), then the skewproduct flow induced
by (2.2) on Ω × R can have at most three ordered disjoint compact invariant sets
and at most three ordered bounded measurable equilibria for each ergodic measure
on (Ω, σ). Moreover, if there exist three ordered disjoint compact invariant sets,
then they are hyperbolic copies of the base and the dynamics of the solutions is
completely determined.

The natural framework for the application of these skewproduct flow results is
when Ω is the hull of an admissible function (see Section 1.3.1). In this case, the
upper bound on the number of ordered disjoint compact invariant sets for (2.2)
(at most three) implies an upper bound on the number of bounded and uniformly
separated solutions for x′ = h(t, x) (at most three).

The approach of this chapter improves some of the results reported in the lit-
erature. For instance, in Chapter 4, we will deal with certain families of functions
h ∈ C0,2(R,R) which do not necessarily have concave derivative x 7→ hx(t, x) for
any t ∈ R but which satisfy the hypotheses on the concavity of the derivative of its
hull extension h required for the analysis.

This chapter is divided into three sections. In Section 2.1, we sum up the basic
properties about concavity and divided differences needed in the rest of the chapter.
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In Section 2.2, which contains the main results, some dynamical features of a d-
concave family of ordinary differential equations are described in the skewproduct
formulation. In particular, we discuss the existence of the mentioned upper bound
on the number of ordered bounded measurable equilibria and of ordered disjoint
compact invariant sets which project onto the whole base (which is three), the
shape and properties of the global attractor of the associated skewproduct flow, and
the complete dynamical picture in the case of existence of three hyperbolic copies of
the base. Finally, in Section 2.3, we relate the property of having concave derivative
of scalar equations x′ = h(ω·t, x) with the property of having negative Schwarzian
derivative of scalar discrete dynamical systems. The dynamical features described
in this chapter will be the foundation on which to build the bifurcation results of
Chapter 3 and the mathematical theory of critical transitions of Chapter 4.

2.1 D-concave functions and divided differences

The definitions and results of this section refer to functions h : R → R. In the
following sections they will be applied to the maps x 7→ h(ω, x) for each fixed
ω ∈ Ω.

Definition 2.1. A map h ∈ C1(R,R) is d-concave if it has concave derivative h′,
that is, if

h′(αx1 + (1− α)x2

)
≥ αh′(x1) + (1− α)h′(x2) (2.3)

for all x1, x2 ∈ R and α ∈ [0, 1], and it is strictly d-concave if it has strictly concave
derivative h′, that is, if the inequality (2.3) is strict for all x1, x2 ∈ R and α ∈ (0, 1).

In other words, h is (strictly) d-concave if the convex combinations of any pair
of points of the graph of h′ lie (strictly) below the graph of h′. If h ∈ C2(R,R), then
h is (strictly) d-concave if and only if its derivative h′′ is (strictly) decreasing.

The next result explains how to characterize d-concavity in terms of divided
differences of second order of h, defined for three different real values x1, x2, x3 by

h[x1, x2, x3] =
h[x2, x3]− h[x1, x2]

x3 − x1

, where h[x1, x2] =
h(x2)− h(x1)

x2 − x1

.

We recall that h[x1, x2, x3] is the leading coefficient of the unique quadratic polyno-
mial which interpolates the data (x1, h(x1)), (x2, h(x2)) and (x3, h(x3)). In partic-
ular, divided differences are invariant under any permutation of their nodes. The
following identities for h ∈ C1(R,R) will prove useful later. The first one is trivial
and the second one follows from the Fundamental Theorem of Calculus and the
expression of (∂/∂s)h(s x1 + (1− s)x2):

lim
x2→x1

h[x1, x2] = h′(x1) , (2.4)

h[x1, x2] =

∫ 1

0

h′(s x1 + (1− s)x2

)
ds . (2.5)

Proposition 2.2. A map h ∈ C1(R,R) is d-concave if and only if h[x1, x0, x2] ≥
h[x1, x0, x3] whenever x1 < x2 < x3 and x0 ̸= xi for i ∈ {1, 2, 3}.
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Proof. For completeness, we include the proof, which can be basically found in
[114, Lemma 2.1 and the remark after it]. Assume that h[x1, x0, x2] ≥ h[x1, x0, x3]
whenever x1 < x2 < x3 and x0 ̸= xi for i ∈ {1, 2, 3}. Rewriting h[x1, x0, x2] ≥
h[x1, x0, x3] in terms of first order divided differences gives

(x3 − x1)h[x0, x2] ≥ (x3 − x2)h[x1, x0] + (x2 − x1)h[x0, x3] . (2.6)

Taking x0 → x1, x0 → x2 and x0 → x3 in (2.6) and using (2.4), we get

(x3 − x1) h[x1, x2] ≥ (x3 − x2) h′(x1) + (x2 − x1) h[x1, x3] ,

(x3 − x1) h′(x2) ≥ (x3 − x2) h[x1, x2] + (x2 − x1) h[x2, x3] ,

(x3 − x1) h[x3, x2] ≥ (x3 − x2) h[x1, x3] + (x2 − x1) h′(x3) .

Since (x2 − x1)h[x1, x2] + (x3 − x2)h[x2, x3] = (x3 − x1)h[x1, x3], adding the three
previous inequalities yields

(x3 − x1)h
′(x2) ≥ (x3 − x2)h

′(x1) + (x2 − x1)h
′(x3) .

Since (2.3) is obvious when α ∈ {0, 1} or when y1 = y2, we take y1 ̸= y2 and
α ∈ (0, 1). Let x1 = min{y1, y2}, x3 = max{y1, y2}, β = α if y1 < y2 or β =
1 − α if y1 > y2, and x2 = β x1 + (1 − β)x3. Then, (x3 − x2)/(x3 − x1) = β,
(x2 − x1)/(x3 − x1) = 1− β and the previous inequality yields

h′(β x1 + (1− β)x3

)
≥ β h′(x1) + (1− β)h′(x3) ,

which corresponds to (2.3) in any case.
Conversely, we assume that h is d-concave. Let us take y1 < y2 < y3 and y0 ̸= yi

for i ∈ {1, 2, 3}, and define β = (y3−y2)/(y3−y1) ∈ (0, 1) and xi(s) = s y0+(1−s) yi
for i ∈ {1, 2, 3} and s ∈ [0, 1]. We write (2.3) for h′ with α = β, x1 = x1(s) and
x2 = x3(s), and get

(y3 − y1)h
′(s y0 + (1− s) y2

)
≥ (y3 − y2)h

′(s y0 + (1− s) y1
)
+ (y2 − y1)h

′(s y0 + (1− s) y3
)
.

Integrating s from 0 to 1 in the previous inequality and using (2.5) gives

(y3 − y1)h[y0, y2] ≥ (y3 − y2)h[y1, y0] + (y2 − y1)h[y0, y3] ,

which is equivalent to h[y1, y0, y2] ≥ h[y1, y0, y3]. The proof is complete.

In the previous proposition, it has been proved that the nonnegative character
of the differences h[x1, x0, x2] − h[x1, x0, x3] for x1 < x2 < x3 and x0 ̸= xi for i ∈
{1, 2, 3} is equivalent to the d-concavity of h. Since d-concavity is not a sufficiently
demanding condition for stating the subsequent theory, a relation between strict
concavity on an interval and the positivity of divided differences is sought.

To this end, for h ∈ C1(R,R), x1 < x2 < x3 and x0 ̸= xi for i ∈ {1, 2, 3}, we
define

b(x0, x1, x2, x3) = h[x1, x0, x2]− h[x1, x0, x3] .

bi(x1, x2, x3) = lim
x0→xi

b(x0, x1, x2, x3) (2.7)

for i ∈ {1, 2, 3}. The existence of the limits bi follow from (2.4). The next result
establishes an equivalence between the sign of bi and the decreasing character of h′′.
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Theorem 2.3. Let h ∈ C2(R,R) be d-concave and x1 < x2 < x3. Then, for
i ∈ {1, 2, 3}, bi(x1, x2, x3) ≥ 0, and bi(x1, x2, x3) > 0 if and only if h′′(x1) > h′′(x3).

Proof. The first assertion follows from Proposition 2.2. For the second one, we work
in the case i = 2. According to (2.4) and (2.7)

b2(x1, x2, x3) = lim
x0→x2

(
h[x0, x2]− h[x1, x0]

x2 − x1

− h[x0, x3]− h[x1, x0]

x3 − x1

)
=

1

x2 − x1

(
h′(x2)−

x3 − x2

x3 − x1

h[x1, x2]−
x2 − x1

x3 − x1

h[x2, x3]

)
.

Using the previous equality, (2.5) and Fundamental Theorem of Calculus, we obtain

b2(x1, x2, x3) =
1

x2 − x1

(
x3 − x2

x3 − x1

∫ 1

0

(
h′(x2)− h′(s x1 + (1− s)x2)

)
ds

+
x2 − x1

x3 − x1

∫ 1

0

(
h′(x2)− h′(s x3 + (1− s)x2)

)
ds

)
=

x3 − x2

x3 − x1

∫ 1

0

∫ 1

0

s
(
h′′(s x1 + (1− s)x2 + t s (x2 − x1)

)
− h′′(s x3 + (1− s)x2 − t s (x3 − x2)

))
dt ds .

(2.8)

Since h ∈ C2(R,R), the integrand is continuous on s, t. It can be checked that
s x1 + (1 − s)x2 + t s (x2 − x1) ≤ s x3 + (1 − s)x2 − t s (x3 − x2) is equivalent to
s (1− t)(x3−x1) ≥ 0. So, since the C2 and d-concave character of h ensures that h′′

is nonincreasing, the integrand is nonnegative for all s, t ∈ [0, 1]. If h′′(x1) > h′′(x3),
then the integrand is strictly positive at (t, s) = (0, 1), and hence b2(x1, x2, x3) >
0. Conversely, if h′′(x1) = h′′(x3), then h′′ is constant on [x1, x3], and hence the
integrand is identically zero. We proceed analogously with b1 and b3.

In short, the previous theorem states that, given a d-concave function h ∈
C2(R,R), the function bi(x1, x2, x3) for x1 < x2 < x3 and i ∈ {1, 2, 3} is strictly
positive if and only if h′′ is nonconstant on the interval [x1, x3], that is, if h is not a
quadratic polynomial on [x1, x3]. In Section 2.2.1, this will be used to find the sign
of the Lyapunov exponents of compact invariant sets of the skewproduct flow.

The following result shows that, if a function with a concave derivative satisfies
a certain coercivity condition, then it is a concave-convex function.

Proposition 2.4. Let h ∈ C2(R,R) be d-concave. Assume limx→±∞ h(x)/x = −∞.
Then, there exists x0 ≤ x1 such that h′′(x) > 0 for all x < x0, h

′′(x) = 0 for all
x ∈ [x0, x1] and h′′(x) < 0 for all x > x1.

Proof. Since h is C2 and d-concave, h′′ is nondecreasing. If h′′(x) = 0 on a halfline,
then h is linear on that halfline, so limx→±∞ h(x)/x = −∞ is not fulfilled. So, if
h′′ vanishes on [x0, x1], the situation is that of the statement. For contradiction,
assume that h′′(x) > 0 for all x ∈ R. Then, h′ is nondecreasing. This fact and the
Mean Value Theorem ensure the existence of ξx ∈ (0, x) such that for any x > 0

h(x)− h(0)

x
= h′(ξx) ≥ h′(0) ,

which contradicts limx→∞ h(x)/x = −∞. An analogous argument shows that h′′ < 0
is neither possible.
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2.2 Nonautonomous d-concave dynamics

Let (Ω, σ) be a continuous flow on a compact metric space. The family of nonau-
tonomous scalar ordinary differential equations

x′ = h(ω·t, x) , ω ∈ Ω , (2.9)

is considered. Let τ be the scalar skewproduct flow associated to (2.9) (see Definition
1.15). That is, τ(t, ω, x) = (ω·t, v(t, ω, x)), where t 7→ v(t, ω, x) stands for the
solution of (2.9)ω satisfying v(0, ω, x) = x. In the following sections, it will be
assumed that h : Ω× R → R satisfies (all or part of) the next conditions:

d1 h ∈ C0,2(Ω× R,R),

d2 lim supx→±∞
(
± h(ω, x)

)
< 0 uniformly on Ω,

d3 m
(
{ω ∈ Ω | x 7→ hx(ω, x) is concave}

)
= 1 for all m ∈ Merg(Ω, σ),

d4 m
(
{ω ∈ Ω | x 7→ hx(ω, x) is strictly concave on J }

)
> 0 for all compact

interval J ⊂ R and all m ∈ Merg(Ω, σ).

In Section 2.2.1, the conditions about d-concavity d3 and d4, together with d1, will
play a key role in finding the upper bound on the number of ordered bounded m-
measurable τ -equilibria (for any m ∈ Merg(Ω, σ)) and, as a consequence, the upper
bound on the number of ordered disjoint compact τ -invariant subsets of Ω × R
which project onto Ω. The coercivity property d2, together with d1, will ensure the
existence of a τ -global attractor (see Section 2.2.3).

Remark 2.5. Let Ω0 ⊂ Ω be a nonempty compact σ-invariant set. Then, any
m0 ∈ Merg(Ω0, σ) can be extended to m ∈ Merg(Ω, σ) by m(U) = m0(U ∩ Ω0). So,
if h satisfies dj for j ∈ {1, 2, 3, 4}, also the restriction h : Ω0 × R → R satisfies dj.

The following lemma helps to understand property d3 whenever h satisfies d1,
and will prove useful later. In particular, it will be used in the next chapter to delve
into the relations between different coercivity hypotheses.

Lemma 2.6. Let h : Ω× R → R satisfy d1 and let us fix m ∈ Merg(Ω, σ). Assume
that m({ω ∈ Ω | x 7→ hx(ω, x) is concave}) = 1. Then, there exists a σ-invariant
compact set Ωd ⊆ Ω with m(Ωd) = 1 such that x 7→ hx(ω, x) is concave for all
ω ∈ Ωd.

Proof. Define A = {ω ∈ Ω | x 7→ hx(ω, x) is concave}, and Ωd = ∩s∈QA·s. Let us
check that Ωd satisfies the desired properties. Given x1, x2 ∈ R, s ∈ [0, 1] and (ωn) in
A with ωn → ω as n → ∞, we get that hx(ωn, α x1+(1−α)x2) ≥ α hx(ωn, x1)+(1−
α)hx(ωn, x2), so d1 ensures that taking limits, hx(ω, α x1+(1−α)x2) ≥ α hx(ω, x1)+
(1 − α)hx(ω, x2), that is, ω ∈ A. So, A is closed, and hence Ωd is a compact set.
For any m ∈ Merg(Ω, σ), since m is invariant and d3 ensures that m(A) = 1, it
is satisfied that m(A·s) = 1 for all s ∈ R. Since Ωd is a countable intersection of
full m-measure sets, m(Ωd) = 1. As ω ∈ Ωd if and only if ω·s ∈ A for all s ∈ Q,
the closedness of A ensures that ω ∈ Ωd if and only if ω·s ∈ A for all s ∈ R, from
where it follows that Ωd is σ-invariant. The last assertion follows from the fact that
Ωd ⊆ A.
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Remark 2.7. Since the definition of Ωd in the proof of Lemma 2.6 is independent
of m, we deduce that, if d1 holds, then d3 is equivalent to the existence of a σ-
invariant closed set Ωd ⊆ Ω such that m(Ωd) = 1 for all m ∈ Merg(Ω, σ) and such
that x 7→ hx(ω, x) is concave for all ω ∈ Ωd. Moreover, if (Ω, σ) is minimal, then
Ωd = Ω, so assuming that d1 holds, d3 is equivalent to x 7→ hx(ω, x) being concave
for all ω ∈ Ω.

Therefore, if (Ω, σ) is minimal, a map h satisfying d1 and d3 fulfills the hy-
potheses of the next lemma, which asks for a coercivity hypothesis stronger than
d2, under which the concave-convex character of h provided by Proposition 2.4 is
uniform on Ω.

Lemma 2.8. Let h : Ω×R → R satisfy d1 with x 7→ hx(ω, x) concave for all ω ∈ Ω.
Assume that limx→±∞ h(ω, x)/x = −∞ for all ω ∈ Ω. Then, there exist xl ≤ xu

such that hxx(ω, x) > 0 for all x < xl and all ω ∈ Ω, and hxx(ω, x) < 0 for all x > xu

and all ω ∈ Ω.

Proof. Proposition 2.4 ensures that, for each ω ∈ Ω, there exists xω
1 ∈ R such that

(xω
1 ,∞) = {x ∈ R | hxx(ω, x) < 0}. Let us check that xu = supω∈Ω xω

1 is finite. For
each ω0 ∈ Ω, we take y0 > xω0

1 , so hxx(ω0, y0) < 0. The continuity of hxx provides
hxx(ω, y0) < 0 and hence y0 > xω

1 for all ω in an open neighborhood of ω0. The
compactness of Ω proves that xu ∈ R. If x > xu, then x > xω

1 for all ω ∈ Ω, and
hence hxx(ω, x) < 0 for all ω ∈ Ω, as asserted. We define xl analogously.

2.2.1 An upper bound on the number of equilibria
and compact invariant sets

The two theorems of this section establish conditions under which the maximum
number of ordered boundedm-measurable τ -equilibria (for any fixedm ∈ Merg(Ω, σ))
and of ordered disjoint compact τ -invariant subsets of Ω× R is three.

Theorem 2.9. Let h : Ω × R → R satisfy d1, let us fix m ∈ Merg(Ω, σ), and let
b1, b2, b3 : Ω → R be bounded m-measurable τ -equilibria with b1(ω) < b2(ω) < b3(ω)
for m-a.e. ω ∈ Ω. Assume that m({ω ∈ Ω | x 7→ hx(ω, x) is concave}) = 1 and
m({ω ∈ Ω | hxx(ω, b1(ω)) > hxx(ω, b3(ω))}) > 0. Then,∫

Ω

hx(ω, b2(ω)) dm > 0 and

∫
Ω

hx(ω, bi(ω)) dm < 0 for i = 1, 3 .

In particular, if h satisfies d1, d3 and d4, then the previous result holds for any
m ∈ Merg(Ω, σ) and any triad of bounded m-measurable τ -equilibria which are
strictly ordered m-a.e. Consequently, there are at most three bounded m-measurable
τ -equilibria which are strictly ordered m-a.e.

Proof. Some steps of the following proof are based on the algebraic methods of [114,
Part II, Theorem 3.2]. Let us define

Ω0 = Ωd ∩ {ω ∈ Ω | b1(ω) < b2(ω) < b3(ω)} ,

where Ωd stands for the σ-invariant set of points ω ∈ Ω for which x 7→ hx(ω, x)
is concave given by Lemma 2.6. Since {ω ∈ Ω | b1(ω) < b2(ω) < b3(ω)} is σ-
invariant (recall that v(t, ω, bi(ω)) = bi(ω·t) for i ∈ {1, 2, 3} and t ∈ R) and has full
m-measure, it follows that Ω0 is σ-invariant and m(Ω0) = 1.
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For each ω ∈ Ω0, we represent by bi(ω, x1, x2, x3) for i ∈ {1, 2, 3} the expression
bi(ω, x1, x2, x3) of (2.7) associated to the d-concave map x 7→ h(ω, x) and observe
that (x1, x2, x3) 7→ bi(x1, x2, x3) is continuous on {(x1, x2, x3) | x1 < x2 < x3} for
every ω ∈ Ω0: see (2.8) for i = 2. For i ∈ {1, 2, 3}, we define b∗i : Ω → R by

b∗i (ω) = bi
(
ω, b1(ω), b2(ω), b3(ω)

)
(2.10)

for ω ∈ Ω0 and b∗i (ω) = 0 if ω /∈ Ω0, and observe that b∗i is m-measurable and that
b∗i ≥ 0 (see Theorem 2.3). Let us take i = 1 and rewrite (2.10),

b∗1(ω)−
(
h(ω, b2(ω))− h(ω, b1(ω))

(b2(ω)− b1(ω))2
− h(ω, b3(ω))− h(ω, b1(ω))

(b3(ω)− b1(ω))2

)
= −

(
1

b2(ω)− b1(ω)
− 1

b3(ω)− b1(ω)

)
hx(ω, b1(ω)) ,

(2.11)

for ω ∈ Ω0. Let us define

v1(ω) =
1

b2(ω)− b1(ω)
− 1

b3(ω)− b1(ω)

for ω ∈ Ω0, and note that v1(ω) > 0 for all ω ∈ Ω0. Writing (2.11) for ω·t and using
h(ω·t, bi(ω·t)) = b′i(ω·t), where b′i(ω·t) is the derivative of t 7→ bi(ω·t), it is obtained

hx
(
ω·t, b1(ω·t)

)
= −v′1(ω·t)

v1(ω·t)
− b∗1(ω·t)

v1(ω·t)

for all ω ∈ Ω0 and t ∈ R. This yields

1

t

∫ t

0

hx
(
ω·s, b1(ω·s)

)
ds = −1

t
log

(
v1(ω·t)
v1(ω)

)
− 1

t

∫ t

0

b∗1(ω·s)
v1(ω·s)

ds (2.12)

for ω ∈ Ω0 and t > 0. Lusin’s Theorem provides a compact subset ∆ ⊆ Ω0 with
m(∆) > 0 such that v1|∆ : ∆ → R is continuous. Since hx(·, b1(·)) is bounded and
b∗1(·)/v1(·) is nonnegative, Birkhoff’s Ergodic Theorem 1.10 ensures the existence of
a σ-invariant subset Ω∗

0 ⊆ Ω0 with m(Ω∗
0) = 1 such that, for every ω ∈ Ω∗

0,

lim
t→∞

1

t

∫ t

0

hx
(
ω·s, b1(ω·s)

)
ds =

∫
Ω

hx
(
ω, b1(ω)

)
dm ∈ R , (2.13)

lim
t→∞

1

t

∫ t

0

b∗1(ω·s)
v1(ω·s)

ds =

∫
Ω

b∗1(ω)

v1(ω)
dm ∈ [0,∞] , (2.14)

lim
t→∞

1

t

∫ t

0

χ∆(ω·s) ds = m(∆) > 0 . (2.15)

Property (2.15) ensures that, if ω ∈ Ω∗
0, then there exists a sequence (tn) ↑ ∞ such

that ω·tn ∈ ∆. Hence, the sequence (log(v1(ω·tn)/v1(ω)) is bounded. We write
(2.12) for t = tn and take limit as n → ∞ to deduce from (2.13) and (2.14) that∫

Ω

hx(ω, b1(ω)) dm = −
∫
Ω

b∗1(ω)

v1(ω)
dm .

So,
∫
Ω
hx(ω, b1(ω)) dm < 0 follows from

∫
Ω
b∗1(ω)/v1(ω) dm > 0. To prove this last

inequality, we deduce from Theorem 2.3 that b∗1(ω) > 0 if and only if hxx(ω, b1(ω)) >
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hxx(ω, b2(ω)). Hence, the last hypothesis on hx in the statement combined with
m(Ω∗

0) = 1 and the positiveness of v1 yields m({ω ∈ Ωc | b∗1(ω)/v1(ω) > 0}) > 0, as
asserted.

In the case of i = 2, the definition of v2(ω) = 1/(b2(ω)−b1(ω))+1/(b3(ω)−b2(ω))
for ω ∈ Ω0, leads to

hx(ω·t, b2(ω·t)) =
(
b2(ω·t)− b1(ω·t)

)
b∗2(ω·t) +

v′2(ω·t)
v2(ω·t)

.

Arguments analogous to those used with i = 1 show that
∫
Ω
hx(ω, b2(ω)) dm > 0.

In the case of i = 3, we define v3(ω) = 1/(b3(ω) − b2(ω)) − 1/(b3(ω) − b1(ω)) and
deduce

∫
Ω
hx(ω, b3(ω)) dm < 0 from

hx(ω·t, b3(ω·t)) = −
(
b3(ω·t)− b1(ω·t)

)
b∗3(ω·t) +

v′3(ω·t)
v3(ω·t)

.

Now, assume that d1, d3 and d4 hold, and let us check the last assertions. Note that
hypothesis d4, together with d1, ensures that, given any m ∈ Merg(Ω, σ) and any
pair of bounded m-measurable τ -equilibria bi, bj : Ω → R satisfying bi(ω) < bj(ω)
for m-a.e. ω ∈ Ω,

m({ω ∈ Ω | hxx(ω, bi(ω)) > hxx(ω, bj(ω))}) > 0 .

Consequently, if d1, d3 and d4 hold, then all the conclusions of previous part
of the theorem hold for any m ∈ Merg(Ω, σ) and any triad of ordered bounded
m-measurable τ -equilibria. Therefore, if there exist four bounded m-measurable
τ -equilibria b1, b2, b3, b4 : Ω → R such that b1(ω) < b2(ω) < b3(ω) < b4(ω) for
m-a.e. ω ∈ Ω, then we can apply the previous result to the triads b1, b2, b3 and
b2, b3, b4 to reach a contradiction about the sign of

∫
Ω
hx(ω, b2(ω)) dm (and that of∫

Ω
hx(ω, b3(ω)) dm).

Remark 2.10. Note that, given m ∈ Merg(Ω, σ) and two bounded m-measurable
equilibria b1, b2 : Ω → R, the subsets {ω ∈ Ω | b1(ω) > b2(ω)}, {ω ∈ Ω | b1(ω) <
b2(ω)} and {ω ∈ Ω | b1(ω) = b2(ω)} of Ω are σ-invariant, so they have m-measure
0 or 1. Since Ω is the disjoint union of these three sets, one of these sets has m-
measure 1 and the other two havem-measure 0. That is, two boundedm-measurable
equilibria are distinct m-a.e. if and only if they are ordered m-a.e.

The following theorem achieves the target of giving an upper bound on the
number of ordered disjoint compact τ -invariant sets on Ω×R which project onto Ω,
as announced at the beginning of the chapter.

Theorem 2.11. Let h satisfy d1, d3 and d4. Then, there exist three ordered
disjoint τ -invariant compact sets K1 < K2 < K3 projecting onto Ω if and only if
there exist three hyperbolic copies of the base {l}, {m} and {u} with l < m < u.
In this case, K1 = {l} and K3 = {u} and they are attractive; K2 = {m} and it is
repulsive; and B = {(ω, x) ∈ Ω×R | l(ω) ≤ x ≤ u(ω)} is the set of globally bounded
orbits. In particular, there are at most three disjoint and ordered τ -invariant compact
sets projecting onto Ω.
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Proof. Sufficiency is obvious. To check necessity, assume that there exist three
disjoint and ordered τ -invariant compact sets K1 < K2 < K3 projecting onto Ω.
Theorem 1.36(iii) ensures that there exist mu

K1
∈ Merg(Ω, σ) and a τ -equilibrium

buK1
: Ω → R such that supLyap(K1) =

∫
Ω
hx(ω, b

u
K1
(ω)) dmu

K1
, where inf Lyap(Ki)

and supLyap(Ki) are the lower and upper Lyapunov exponents of Ki for i ∈ {1, 2, 3}
(see Definition 1.35). Let lKi

and uKi
be the lower and upper τ -equilibria of Ki given

by Lemma 1.29 for i ∈ {1, 2, 3}, respectively. Recall that they are mu
K1
-measurable,

since they are semicontinuous. Theorem 2.9 applied to buK1
< uK2 < uK3 allows us to

conclude that supLyap(K1) < 0. Analogous arguments show that inf Lyap(K2) > 0
and supLyap(K3) < 0. Moreover, for any m ∈ Merg(Ω, σ), since lK1 ≤ uK1 <
lK2 ≤ uK2 < lK3 ≤ uK3 are at least three different m-measurable τ -equilibria, the
last assertion in Theorem 2.9 ensures that lKi

(ω) = uKi
(ω) for m-a.e. ω ∈ Ω, and

hence Theorem 1.40 ensures that K1 and that K3 are attractive hyperbolic copies of
Ω and K2 is a repulsive hyperbolic copy of Ω. This fact precludes the existence of
more than three disjoint and ordered τ -invariant compact sets projecting onto Ω: a
contradiction analogous to the one at the end of the proof of Theorem 2.9 would be
found, changing the role of the sign of the integrals by the attractive or repulsive
character of the copy of the base.

Let us write K1 = {l} and K3 = {u} for continuous maps l, u : Ω → R. Clearly,⋃
ω∈Ω({ω} × [l(ω), u(ω)]) ⊆ B. To prove the converse inclusion, we assume for

contradiction the existence of (ω0, x0) with x0 > u(ω0) and with globally defined
and bounded τ -orbit. Then, the α-limit set K of this orbit exists and is a compact
τ -invariant set projecting onto a compact set ΩK ⊆ Ω. Since {u} is attractive,
Proposition 1.57 restricted to ΩK (see Remark 2.5) ensures that K > K3|ΩK >
K2|ΩK > K1|ΩK , which contradicts the last assertion of the previous paragraph. A
similar argument with ω-limit sets shows that x0 ≥ l(ω0) for all (ω0, x0) ∈ B.

Remark 2.12. Theorem 2.11 shows that, if there exist three ordered disjoint copies
of the base, then the set B of bounded τ -orbits is nonempty, bounded, and the
upper and lower equilibria of B give the pair of attractive hyperbolic copies of the
base. Assume now that we previously know that B is nonempty and bounded (as
it will be the case when d2 is imposed, see Section 2.2.2), with B ⊆ Ω × JB for a
compact interval JB = [a, b] ⊂ R. Then, all the conclusions of Theorem 2.11 apply
if, for all m ∈ Merg(Ω, σ), m({ω ∈ Ω | x 7→ hx(ω, x) is concave on JB}) = 1 and
m({ω ∈ Ω | x 7→ hx(ω, x) is strictly concave on JB}) > 0. To check this claim, it

suffices to consider the d-concave extension h̃ of h outside JB,

h̃(ω, x) =


h(ω, a) + hx(ω, a)(x− a) +

hxx(ω, a)

2
(x− a)2 − (x− a)3, x < a ,

h(ω, x) , a ≤ x ≤ b,

h(ω, b) + hx(ω, b)(x− b) +
hxx(ω, b)

2
(x− b)2 − (x− b)3, b < x ,

apply Theorem 2.11 to h̃, which satisfies d1, d3 and d4, and deduce the conclusions
for h.
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2.2.2 The existence and properties of the global attractor

Now, the coercivity property d2 comes into play. Recall that, if all the forward
τ -semiorbits are globally defined, then a compact τ -invariant set A ⊂ Ω × R is
the global attractor of τ if it attracts every bounded set C ⊂ Ω × R; that is, if
limt→∞ dist(τt(C),A) = 0, where dist(C1, C2) is the Hausdorff semidistance from C1
to C2 and τt(C) = {τ(t, ω, x) | (ω, x) ∈ C} (see Definition 1.31).

Theorem 2.13. Let h ∈ C0,1(Ω×R,R) satisfy d2, and take δ1, δ2 > 0 and m1,m2 ∈
R with h(ω, x) ≥ δ1 if x ≤ m1 and h(ω, x) ≤ −δ2 if x ≥ m2 for all ω ∈ Ω. Then,

(i) v(t, ω, x) exists for (t, ω, x) ∈ [0,∞)×Ω×R, and m1 ≤ lim inft→∞ v(t, ω, x) ≤
lim supt→∞ v(t, ω, x) ≤ m2: any forward τ -semiorbit is bounded.

(ii) There exists the global attractor for τ , it is of the form

A =
⋃
ω∈Ω

(
{ω} × [l(ω), u(ω)]

)
, (2.16)

it is the union of all the globally defined and bounded τ -orbits, and it is con-
tained in Ω× [m1,m2]. Moreover,

l(ω) = lim
t→∞

v(t, ω·(−t),m1) ,

u(ω) = lim
t→∞

v(t, ω·(−t),m2) .

(iii) The maps l and u are, respectively, lower and upper semicontinuous τ -equilibria.

(iv) v(t, ω, x) is bounded from below if and only if x ≥ l(ω), and from above if and
only if x ≤ u(ω).

(v) If, for a point ω ∈ Ω, there exists a bounded C1 function b : R → R such that
b′(t) ≤ h(ω·t, b(t)) (resp. b′(t) ≥ h(ω·t, b(t))) for all t ∈ R, then b(t) ≤ u(ω·t)
(resp. b(t) ≥ l(ω·t)) for all t ∈ R. If b′(t) < h(ω·t, b(t)) (resp. b′(t) >
h(ω·t, b(t))) for all t ∈ R, then b(t) < u(ω·t) (resp. l(ω·t) < b(t)) for all
t ∈ R.

(vi) Assume that h satisfies also d1, d3 and d4, and that {l}, {m} and {u} are
three hyperbolic copies of the base with l < m < u. Then, A =

⋃
ω∈Ω({ω} ×

[l(ω), u(ω)]); {l} and {u} are attractive and {m} is repulsive; limt→∞(v(t, ω, x)−
u(ω·t)) = 0 if and only if x > m(ω); limt→∞(v(t, ω, x)− l(ω·t)) = 0 if and only
if x < m(ω); limt→−∞(v(t, ω, x) − m(ω·t)) = 0 if and only if x ∈ (l(ω), u(ω));
and t 7→ l(ω·t),m(ω·t), u(ω·t) define the three unique hyperbolic solutions of
(2.9)ω.

(vii) If the upper Lyapunov exponent supLyap(A) of A is strictly negative, then the
τ -global attractor is an attractive hyperbolic τ -copy of the base.

Proof. (i)-(iv) The existence of m1,m2 and δ1, δ2 > 0 is ensured by hypothesis d2:
lim supx→−∞ −h(ω, x) < 0 ensures the existence ofm1 and δ1 > 0 such that h(ω, x) ≥
δ1 if x ≤ m1, lim supx→∞ h(ω, x) < 0 ensures the existence ofm2 and δ2 > 0 such that
h(ω, x) ≤ −δ2 if x ≥ m2. So, it easily follows that, for any x ∈ [m1,m2] and ω ∈ Ω,
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the solution v(t, ω, x) is defined for all t ≥ 0 and v(t, ω, x) ∈ [m1,m2]. To prove
(i) and (ii), we take n1 < m1 and n2 > m2 and check that v(t, ω, ni) ∈ [m1,m2]
for all ω ∈ Ω and i = 1, 2 if t ≥ max{(1/δ1)(m1 − n1), (1/δ2)(n2 − m2)}. We
deduce from this fact that (i) holds and that limt→∞ dist(τt(C),Ω × [m1,m2]) = 0
for every bounded set C ⊂ Ω × R; i.e., Ω × [m1,m2] is a compact absorbing set.
This property and [22, Theorem 2.2] prove the existence of the global attractor
A ⊆ Ω × [m1,m2], and [21, Theorem 1.7] ensures that A is the union of all the
globally defined and bounded τ -orbits. Lemma 1.29 proves (iii). To prove the
last assertion in (ii), note that the previous properties show that the constant map
ω 7→ m1 is a global strict lower solution, since h(ω,m1) > 0, and hence Proposition
1.24(i) ensures that it is a strong subequilibrium. Therefore, Proposition 1.20 shows
that b(ω) = limt→∞ v(t, ω·(−t),m1) is a bounded τ -equilibrium, and hence {b} ⊆ A.
For contradiction, we assume that l(ω0) < b(ω0). Then, l(ω0) < v(t0, ω0·(−t0),m1)
for large enough t0, and hence l(ω0·(−t0)) = v(−t0, ω0, l(ω0)) < m1, which is not the
case. Hence, b(ω) = l(ω) for all ω ∈ Ω. An analogous argument works for u and
m2. The assertions in (iv) follow from (i) and (ii).

(v) We consider the case of b′(t) ≤ h(ω·t, b(t)) for all t ∈ R. The (non strict)
conditions on b and a standard comparison argument ensure that v(t, ω·s, b(s)) ≤
b(t + s) for any t ≤ 0, and hence v(t, ω·s, b(s)) remains bounded from above as
time decreases. Therefore, by (iv), b(s) ≤ u(ω·s) for all s ∈ R. Now, we assume
b′(t) < h(ω·t, b(t)) for all t ∈ R, and, for contradiction, that b(s) = u(ω·s) for some
s ∈ R. Then, b(t + s) > v(t, ω·s, b(s)) = v(t, ω·s, u(ω·s)) = u(ω·(t + s)) if t < 0,
which is not possible. We proceed analogously in the other case.

(vi) Theorem 2.11 and point (ii) show that A =
⋃

ω∈Ω({ω} × [l(ω), u(ω)]), and
that {l} and {u} are attractive and {m} is repulsive. Now we fix (ω0, x0) with
x0 > m(ω0) and deduce from v(t, ω0, x0) > m(ω0·t) for t ∈ R that x̄ ≥ m(ω̄) for any
(ω̄, x̄) in the ω-limit set O of (ω0, x0) for τ . In addition, Proposition 1.57 ensures
that x̄ > m(ω̄). Let ΩO ⊆ Ω be the projection of O. Since O is a compact τ -
invariant set placed strictly above {m|ΩO}, which in turn is placed strictly above
{l|ΩO}, Theorem 2.11 (restricted to ΩO: see Remark 2.5) ensures that O = {u|ΩO}.
Let us now assume for contradiction that it is not true that limt→∞(v(t, ω0, x0) −
u(ω0·t)) = 0. Then, since u is continuous, there exists (tn) ↑ ∞ such that (ω0·tn)
tends to ω̄ and (v(tn, ω0, x0)) tends to x̄ ̸= u(ω̄). But this is impossible, since
(ω̄, x̄) ∈ O ⊆ {u}. Conversely, if limt→∞(v(t, ω, x) − u(ω·t)) = 0, then the τ -
invariance of {m} ensures that x > m(ω). The same arguments prove the statements
for x0 < u(ω0) and x0 ∈ (l(ω0), u(ω0)). Finally, Proposition 1.55 shows that t 7→
l(ω·t),m(ω·t), u(ω·t) are three hyperbolic solutions of (2.9)ω: attractive the upper
and lower ones, and repulsive the middle one. Assume that, for some ω ∈ Ω,
there exists one more, say b̃(t). Then, (ii) and the just proved properties yield
l(ω·t) < b̃(t) < u(ω·t) for all t ∈ R, and hence limt→−∞(b̃(t)−m(ω·t)) = 0 and either
limt→∞(b̃(t)− u(ω·t)) = 0 or limt→∞(b̃(t)− l(ω·t)) = 0. If b̃ is hyperbolic attractive
(resp. repulsive), then Proposition 1.56 provides a contradiction, since it cannot
approach a solution different from itself as time decreases (resp. increases).

(vii) Let S ⊆ Ω be a σ-minimal set, and consider the family (2.9) for ω ∈ S.
The corresponding attractor is AS = {(ω, x) ∈ A | ω ∈ S}. Since all its Lyapunov
exponents are negative, [18, Theorem 3.4] guarantees that AS is an attractive hy-
perbolic copy of the base of (S × R, τ). Then, Theorem 1.40 shows that A is an
attractive hyperbolic copy of the base.
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Theorem 2.13(i) ensures the existence of the ω-limit set for τ of any (ω, x) ∈
Ω×R. Theorem 2.13(iii) ensures that l and u are m-measurable τ -equilibria for any
m ∈ Merg(Ω, σ). We will use these facts throughout the document without further
reference.

The following proposition is valid in the minimal base framework. It proves that
the existence of either one repulsive hyperbolic τ -minimal set or two hyperbolic τ -
minimal sets implies the existence of exactly three τ -minimal sets. The dynamics
in that case of three hyperbolic τ -minimal sets will be completely described by
Theorem 2.18.

Proposition 2.14. Let (Ω, σ) be minimal and let h : Ω×R → R satisfy d1 and d2.
Then,

(i) if τ admits a repulsive hyperbolic minimal set M ⊂ Ω × R, then it admits at
least three different minimal sets Ml < M < Mu.

(ii) If τ admits two distinct hyperbolic minimal sets, then it admits at least three
different minimal sets.

Proof. Recall that we say that a τ -minimal set is hyperbolic if it is a τ -copy of the
base: see Remark 1.41. Let l and u be the lower and upper τ -equilibria of A given
by (2.16).

(i) Let b : Ω → R provide the repulsive hyperbolic copy of the base M = {b},
and let Mu be the τ -minimal set defined from u by (1.9). Assume for contradiction
the existence of (ω, x) ∈ Mu with x ≤ b(ω). Then, since Mu is minimal, for any
continuity point ω0 of u there exists (tn) ↑ ∞ such that limn→∞(ω·tn, v(tn, ω, x)) =
(ω0, u(ω0)) ∈ Mu, so u(ω0) = limn→∞ v(tn, ω, x) ≤ limn→∞ v(tn, ω, b(ω)) = b(ω0) ≤
u(ω0). Therefore, u(ω0) = b(ω0). So, by the definition of τ -global attractor,
limt→∞(v(t, ω0, x0) − b(ω0·t)) = 0 for x0 > b(ω0). However, Proposition 1.55 en-
sures that t 7→ b(ω0·t) is a repulsive hyperbolic solution, and hence Proposition 1.56
ensures that inft>0 |v(t, ω0, x0)− b(ω0·t)| > 0, a contradiction. Therefore M < Mu.
An analogous argument shows that Ml < M, where Ml is defined from l. So, there
exist three different τ -minimal sets Ml < M < Mu.

(ii) If there were exactly two minimal sets and they were hyperbolic attractive,
then Theorem 1.40 would ensure that both of them have strictly negative upper
Lyapunov exponent and [18, Theorem 3.4] guarantees that the global attractor A
is a hyperbolic τ -copy of the base, contradicting the existence of two different τ -
minimal sets. Consequently, at least one of the two hyperbolic τ -minimal sets is
repulsive, and (i) concludes the proof.

2.2.3 Properties related to Lyapunov exponents

The following result ensures that the sum of two integrals of the type (1.10) given by
two bounded measurable equilibria is always negative. Recall that Theorem 1.36(ii)
ensures that these integrals correspond to Lyapunov exponents of suitable compact
τ -invariant sets.

Theorem 2.15. Let h : Ω × R → R satisfy d1, let us fix m ∈ Merg(Ω, σ), and
let b1, b2 : Ω → R be bounded m-measurable τ -equilibria with b1(ω) < b2(ω) for
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m-a.e. ω ∈ Ω. Assume that m({ω ∈ Ω | x 7→ hx(ω, x) is concave}) = 1. Then,∫
Ω

hx(ω, b1(ω)) dm+

∫
Ω

hx(ω, b2(ω)) dm ≤ 0 .

In addition, if m({ω ∈ Ω | hxx(ω, b1(ω)) > hxx(ω, b2(ω))}) > 0, then∫
Ω

hx(ω, b1(ω)) dm+

∫
Ω

hx(ω, b2(ω)) dm < 0 .

Proof. Let Ωd be the σ-invariant set with m(Ωd) = 1 given by Lemma 2.6, and let
Ω0 = Ωd ∩ {ω ∈ Ω | b1(ω) < b2(ω)}. Then, Ω0 is σ-invariant and m(Ω0) = 1. Let
us define c(ω) = b2(ω) − b1(ω) for ω ∈ Ω0 and note that c(ω) > 0 for all ω ∈ Ω0.
Then,

c′(ω·t) = h(ω·t, c(ω·t) + b1(ω·t))− h(ω·t, b1(ω·t)) = c(ω·t)F (ω·t, c(ω·t)) , (2.17)

where F (ω, y) =
∫ 1

0
hx(ω, s y+ b1(ω)) ds. As x 7→ hx(ω, x) is concave for all ω ∈ Ω0,

y 7→ Fy(ω, y) =
∫ 1

0
s hxx(ω, s y + b1(ω)) ds is nonincreasing for all ω ∈ Ω0, so

F (ω, c(ω)) = F (ω, 0) +

∫ 1

0

c(ω)Fy(ω, s c(ω)) ds ≥ F (ω, 0) + c(ω)Fy(ω, c(ω)) (2.18)

for all ω ∈ Ω0. Derivating the equality yF (ω, y) = h(ω, y+b1(ω))−h(ω, b1(ω)) with
respect to y and evaluating at y = c(ω) yields

F (ω, c(ω)) + c(ω)Fy(ω, c(ω)) = hx(ω, b2(ω)) .

This equality combined with F (ω, 0) = hx(ω, b1(ω)) and (2.18) provides∫
Ω

hx(ω,b1(ω)) dm+

∫
Ω

hx(ω, b2(ω)) dm

=

∫
Ω

(
F (ω, 0) + F (ω, c(ω)) + c(ω)Fy(ω, c(ω))

)
dm

≤ 2

∫
Ω

F (ω, c(ω)) dm .

(2.19)

According to (2.17), c′(ω)/c(ω) = F (ω, c(ω)) for all ω ∈ Ω0. Since c is bounded,
so it is ω 7→ F (ω, c(ω)), and hence it is in L1(Ω,m). Therefore, Birkhoff’s Ergodic
Theorem 1.10 ensures that∫

Ω

F (ω, c(ω)) dm = lim
t→∞

1

t

∫ t

0

c′(ω0·s)
c(ω0·s)

ds = lim
t→∞

1

t
log

(
c(ω0·t)
c(ω0)

)
= 0 , (2.20)

for some ω0 ∈ Ω0, so the right-hand side of (2.19) vanishes. This proves the first
assertion.

Now, let us check that the inequality is strict if, in addition, m(Ωs) > 0, where
Ωs = {ω ∈ Ω | hxx(ω, b1(ω)) > hxx(ω, b2(ω))}. To this end, we fix ω ∈ Ω0 and

note that Fy(ω, 0) =
∫ 1

0
s hxx(ω, b1(ω)) ds, that Fy(ω, c(ω)) =

∫ 1

0
s hxx(ω, s b2(ω) +

(1 − s)b1(ω)) ds, and that s hxx(ω, b1(ω)) ≥ s hxx(ω, s b2(ω) + (1 − s)b1(ω)) for all
s ∈ [0, 1] and ω ∈ Ω0. If, in addition, ω ∈ Ωs, the continuity of hxx ensures that the
previous inequality is strict for s close to 1, and hence that Fy(ω, 0) > Fy(ω, c(ω)).
Since this happens on the set Ω0 ∩Ωs, which is of positive m-measure, we conclude
that (2.19) is strict. The assertion follows from here and (2.20).
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The following result gives an important property of the global attractor A under
conditions d1 and d2: the integrals of the type (1.10) given by the lower and upper
τ -equilibria l, u : Ω → R of the global attractor (see (2.16)) and any m ∈ Merg(Ω, σ)
are always nonpositive. As a consequence, Theorem 1.36(ii) ensures that the lower
Lyapunov exponent of A is always nonpositive, that is, inf Lyap(A) ≤ 0.

Proposition 2.16. Let h : Ω×R → R satisfy d1 and d2, let us fix m ∈ Merg(Ω, σ),
and let l and u be given by (2.16). Then,∫

Ω

hx(ω, l(ω)) dm ≤ 0 and

∫
Ω

hx(ω, u(ω)) dm ≤ 0 .

Proof. We reason with u, assuming for contradiction that
∫
Ω
hx(ω, u(ω)) dm = ρ > 0.

Birkhoff’s Ergodic Theorem 1.10 provides a nonempty σ-invariant subset Ω0 ⊆ Ω
and, for each ω ∈ Ω0, a time tω > 0 such that∫ t

0

hx(ω·s, u(ω·s)) ds ≥ (ρ/2) t (2.21)

for all t ≥ tω. Let L > 0 satisfy the Lipschitz condition

|hx(ω, x)− hx(ω, u(ω))| ≤ L |x− u(ω)| (2.22)

for all ω ∈ Ω and x ∈ [u(ω), u(ω) + 1]. Let us take k ∈ (0, 1) with Lk ≤ ρ/4, and
fix ω0 ∈ Ω0 and x0 > u(ω0). Since A is the τ -global attractor, there exists t1 > 0
such that

v(t, ω0, x0)− u(ω0·t) ≤ k < 1 (2.23)

for all t ≥ t1. Then, for ω1 = ω0·t1 (which belongs to Ω0) and t > 0, there exists
ξt ∈ [u(ω1), x1] such that, if x1 = v(t1, ω0, x0), then

v(t+ t1, ω0, x0)− u(ω0·(t+ t1)) = vx(t, ω1, ξt) (x1 − u(ω1)) . (2.24)

Since v(s, ω1, ξt) − u(ω1·s) ≤ v(s + t1, ω0, x0) − u(ω0·(s + t1)), (2.23) and (2.22)
ensure that |hx(ω1·s, v(s, ω1, ξt)) − hx(ω1·s, u(ω1·s))| ≤ Lk ≤ ρ/4 for all s > 0. So,
it follows from (2.21) that vx(t, ω1, ξt) = exp

∫ t

0
hx(ω1·s, v(s, ω1, ξt)) ds ≥ e(ρ/4) t if

t ≥ tω1 . Hence, the left-hand term of (2.24) cannot converge to 0 as t → ∞, which
is the sought-for contradiction. The argument is similar for l.

The following result, which refers to the case of minimal base flow and will be
often used, makes use of the previous one and Proposition 1.32. The notion of
hyperbolic minimal set appears in Remark 1.41.

Proposition 2.17. Let (Ω, σ) be minimal. Let h ∈ C0,1(Ω × R,R) satisfy d1 and
d2, and let l and u be given by Theorem 2.13. Then,

(i) the expression (1.9) applied to l (resp. u) provides the least (resp. greatest)
element Ml (resp. Mu) of the set of τ -minimal sets equipped with the total
order of Definition 1.28 and Corollary 1.33.

(ii) Ml (resp. Mu) is hyperbolic if and only if it is hyperbolic attractive, in which
case Ml = {l} (resp. Mu = {u}).

Proof. (i) Let ω be a continuity point for l and u. Then, l(ω) ≤ x ≤ u(ω) for any
point (ω, x) in any minimal set, and (i) follows from here.

(ii) Corollary 1.58(ii) shows that, if Ml is hyperbolic, then Ml = {l}. Proposi-
tion 2.16 and Theorem 1.36 show that inf Lyap(Ml) ≤ 0, so Theorem 1.40 ensures
thatMl is attractive. The converse is trivial, and the proof forMu is analogous.
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2.2.4 The dynamics with three hyperbolic solutions

The next result establishes equivalences regarding the existence of three uniformly
separated hyperbolic solutions of a given equation (2.9)ω̄, for some fixed ω̄ ∈ Ω, in
terms of the existence of three ordered hyperbolic τ -copies of the corresponding hull
Ωω̄ = closure{ω̄·t | t ∈ R} ⊆ Ω, and describes the dynamics of any orbit.

Theorem 2.18. Let h : Ω × R → R satisfy d1, d2, d3 and d4. Let us fix ω̄ ∈ Ω.
Then, the following assertions are equivalent:

(a) Equation (2.9)ω̄ has three hyperbolic solutions.

(b) Equation (2.9)ω̄ has three uniformly separated hyperbolic solutions.

(c) Equation (2.9)ω̄ has three uniformly separated bounded solutions.

(d) There exist three hyperbolic copies of the base for the restriction of the family
(2.9) to the closure Ωω̄ of {ω̄·t | t ∈ R}, given by l < m < u.

In this case, t 7→ l̃(t) = l(ω̄·t), t 7→ m̃(t) = m(ω̄·t) and t 7→ ũ(t) = u(ω̄·t) are the
three unique uniformly separated solutions of (2.9)ω̄, they are hyperbolic, and there
are no more hyperbolic solutions. In addition, if xω̄(t, s, x) is the solution of (2.9)ω̄
with xω̄(s, s, x) = x, then: limt→∞(xω̄(t, s, x) − ũ(t)) = 0 if and only if x > m̃(s);
limt→∞(xω̄(t, s, x) − l̃(t)) = 0 if and only if x < m̃(s); and limt→−∞(xω̄(t, s, x) −
m̃(t)) = 0 if and only if x ∈ (l̃(s), ũ(s)).

Proof. The assertions after the equivalences follow from (d) and Theorem 2.13(iv)
and (vi). We will check (b)⇒ (c)⇒ (d)⇒ (a)⇒ (b). Recall that the hypotheses on
h are also valid for its restriction to Ωω̄ × R: see Remark 2.5.

(b)⇒ (c)⇒ (d). Obviously, (b) implies (c). Now we assume (c). Let A be the
global attractor and let l and u be its lower and upper τ -equilibria: see Theorem
2.13(ii). Clearly, there is no restriction in assuming that the three uniformly sepa-
rated solutions are l(t) = l(ω̄·t), u(t) = u(ω̄·t), and m(t) with l(t) < m(t) < u(t).
We call δ = min{inft∈R(u(t)−m(t)), inft∈R(m(t)− l(t))} > 0. Let Km be the closure
of the τ -orbit of (ω̄,m(0)), which projects on Ωω̄. Let us check that x0 ≥ l(ω0) + δ
for all (ω0, x0) ∈ Km. We write (ω0, x0) = limn→∞(ω̄·tn,m(tn)) and assume with-
out restriction the existence of (ω0, x

0) = limn→∞(ω̄·tn, l(tn)), which belongs to A
(closed). If x0 < l(ω0) + δ, then x0 ≤ x0 − δ < l(ω0) + δ − δ = l(ω0), impossible.
Analogously, x0 ≤ u(ω0)−δ for all (ω0, x0) ∈ Km. Let us consider the restriction τ̄ of
τ to Ωω̄×R. Since any τ̄ -equilibria with graph in Km is strictly below u and strictly
above l, Theorems 2.9 and 1.36 show that all the Lyapunov exponents of Km are
strictly positive, and that its upper and lower equilibria coincide on a σ-invariant
set Ω0 with m0(Ω0) = 1 for all m0 ∈ Merg(Ωω̄, σ). Hence, Theorem 1.40 ensures
that Km is a repulsive hyperbolic copy of Ωω̄, in particular, there exists a continuous
map m : Ωω̄ → R such that Km = {m}. Then, Km is strictly above the closure Kl of
{(ω̄·t, l(ω̄·t)) | t ∈ R}: given (ω0, x0) ∈ Kl, we write (ω0, x0) = limn→∞(ω̄·tn, l(ω̄·tn)),
and from l(ω̄·tn) + δ ≤ m(ω̄·tn) it is obtained that x0 + δ ≤ m(ω0). Analogously,
Km is strictly below the closure Ku of {(ω̄·t, u(ω̄·t)) | t ∈ R}. Hence, Theorem 2.11
ensures that both Kl and Ku are attractive hyperbolic copies of Ωω̄: (d) holds.

(d)⇒ (a)⇒ (b). If (d) holds, then t 7→ l(ω̄·t), t 7→ m(ω̄·t) and t 7→ u(ω̄·t) are
three hyperbolic solutions of (2.9)ω̄ (see Proposition 1.55), so (a) holds. Let us as-
sume (a), and let x̃1 < x̃2 < x̃3 be the three hyperbolic solutions of (2.9)ω̄. Let us
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first eliminate the possibility that x̃2 is attractive, assuming it for contradiction. Let
us call l(t) = l(ω̄·t) and u(t) = u(ω̄·t). Proposition 1.56 provides δ > 0 such that
inft≤0(u(t) − x̃2(t)) > δ and inft≤0(x̃2(t) − l(t)) > δ. Let Ml, M2 and Mu be the
α-limit sets of (ω̄, l(0)), (ω̄, x̃2(0)) and (ω̄, u(0)), which project on the α-limit set
Ω− ⊆ Ωω̄ of ω̄. As in the previous paragraph, we check that l(ω0)+δ ≤ x0 ≤ u(ω0)−δ
if (ω0, x0) ∈ M2; and deduce that M2 is a repulsive copy of Ω−. Proposition 1.55
shows that any orbit in M2 corresponds to a repulsive hyperbolic solution, Proposi-
tion 1.54(i) shows that it also corresponds to an attractive hyperbolic solution, and
Remark 1.51 provides the sought-for contradiction.

Hence, x̃2 is repulsive. Proposition 1.56 yields δ > 0 such that inft≥0(u(t) −
x̃2(t)) > δ and inft≥0(x̃2(t) − l(t)) > δ. Let M̄2 be the ω-limit set of (ω̄, x̃2(0)),
which projects on the ω-limit set Ω+ ⊆ Ωω̄ of ω̄. As in the proof of (c)⇒ (d), we
check that l(ω0) + δ ≤ x0 ≤ u(ω0)− δ whenever (ω0, x0) ∈ M̄2; and we deduce that
M̄2 is a repulsive copy of Ω+. Hence, M̄2 does not intersect the ω-limit sets M̄1 of
(ω̄, x̃1(0)) and M̄3 of (ω̄, x̃3(0)): see Proposition 1.57. So, we have M̄1 < M̄2 < M̄3.
Theorem 2.11 applied to Ω+×R ensures that M̄1 and M̄3 are attractive hyperbolic
copies of Ω+ and, Proposition 1.54(i) shows that this is only possible if x̃1 and
x̃3 are attractive. Proposition 1.56 ensures that the three solutions are uniformly
separated: (b) holds.

2.2.5 Possible orders of three minimal sets

The purpose of this section, which is achieved in Theorem 2.20, is to show that, if
(Ω, σ) is minimal and h0(ω, x) ≤ h1(ω, x) are two ordered d-concave functions such
that both x′ = h0(ω·t, x) and x′ = h1(ω·t, x) have the maximum possible number
(three) of copies of the base, then there are only two possible orders among the
copies of the base. The proof of Theorem 2.20 is based on the next result, which
does not require (Ω, σ) to be minimal.

Proposition 2.19. Let h0, h1 : Ω × R → R satisfy d1 and d2, with h0(ω, x) ≤
h1(ω, x) for all (ω, x) ∈ Ω× R.

(i) Let li (resp. ui) be the lower (resp. upper) bounds of the global attractor (2.16)
of x′ = hi(ω·t, x) for i = 0, 1. Then, l0 ≤ l1 and u0 ≤ u1.

(ii) Assume also that both h0 and h1 satisfy d3 and d4, and that there exists ω̄ ∈ Ω
such that x′ = hi(ω̄·t, x) has three hyperbolic solutions l̃i < m̃i < ũi for i = 0, 1.
Then, inft∈R(m̃0(t)− l̃1(t)) > 0 if and only if inft∈R(ũ0(t)−m̃1(t)) > 0, in which
case l̃0 ≤ l̃1 < m̃1 ≤ m̃0 < ũ0 ≤ ũ1. If, in addition, h0(ω̄·t, x) < h1(ω̄·t, x) for
all (t, x) ∈ R× R, then all the inequalities are strict.

Proof. (i) Since u′0(ω·t) ≤ h1(ω·t, u0(ω·t)) and l′1(ω·t) ≥ h0(ω·t, l1(ω·t)) for all ω ∈ Ω
and t ∈ R, Theorem 2.13(v) proves (i).

(ii) As only a fixed ω̄ ∈ Ω is involved, let us use processes language to simplify
the notation: let t 7→ xi(t, s, x) stand for the solution of x′ = hi(ω̄·t, x) satisfying
xi(s, s, x) = x for i = 0, 1. Let us assume inft∈R(m̃0(t) − l̃1(t)) > 0: the argu-
ment is analogous if inft∈R(ũ0(t) − m̃1(t)) > 0. We define ms(t) = x1(t, s, m̃0(s))
(which always exists since l̃1 < m̃0 ≤ ũ0 ≤ ũ1) and observe that ms(t) > l̃1(t) for
all s, t ∈ R. A standard comparison argument shows that x1(t, s, m̃0(s)) ≤ m̃0(t)
if t ≤ s. In addition, if s0 < s1, then ms0 ≥ ms1 : ms1(t) = x1(t, s1, m̃0(s1)) =
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x1(t, s0, x1(s0, s1, m̃0(s1))) ≤ x1(t, s0, m̃0(s0)) = ms0(t). Therefore, there exists
m∞(t) = lims→∞ms(t) ∈ [l̃1(t), m̃0(t)] for all t ∈ R. It is easy to check that
t 7→ m∞(t) is a bounded solution of x′ = h1(ω̄·t, x). Our goal is to check that
limt→∞ |m∞(t)− m̃1(t)| = 0, which, according to Theorem 2.18, ensures that m∞ =
m̃1 and hence that m̃1 ≤ m̃0. This inequality combined with (i) proves that
l̃0 ≤ l̃1 < m̃1 ≤ m̃0 < ũ0 ≤ ũ1. In turn, this chain of inequalities combined with
the uniform separation of the hyperbolic solutions l̃i < m̃i < ũi (see Theorem 2.18)
ensures that inft∈R(ũ0(t)− m̃1(t)) > 0.

The inequalities m∞ ≤ m̃0 < ũ0 ≤ ũ1 and inft∈R(ũ0(t) − m̃0(t)) > 0 preclude
limt→∞ |m∞(t)− ũ1(t)| = 0. Hence, the unique possibility to be excluded (see again
Theorem 2.18) is limt→∞ |m∞(t) − l̃1(t)| = 0, which we assume for contradiction.
Corollary 1.53 provides a radius of uniform stability ρ > 0 and a dichotomy constant
pair (k, β) for the hyperbolic solution l̃1 of x′ = h1(ω̄·t, x). We look for t0 ∈ R such
that |m∞(t0)− l̃1(t0)| ≤ ρ/2, and by the definition of m∞ and the monotonicity on
the limit, we take s0 ≥ t0 such that |l̃1(t0) − x1(t0, s, m̃0(s)))| ≤ ρ for all s ≥ s0.
Then, |l̃1(s)− m̃0(s)| = |l̃1(s)−x1(s, t0, x1(t0, s, m̃0(s)))| ≤ ke−β(s−t0)ρ for all s ≥ s0.
Taking limit as s → ∞ yields inft∈R(m̃0(t) − l̃1(t)) = 0, which is the sought-for
contradiction.

The last assertion follows easily from contradiction and comparison. For instance,
if m0(s) = m1(s), then m0(t) = x0(t, s,m0(s)) < x1(t, s,m1(s)) = m1(t) for t > s,
which is not the case.

Theorem 2.20. Assume that (Ω, σ) is minimal. Let h0, h1 : Ω×R → R satisfy d1,
d2, d3 and d4, as well as h0(ω, x) < h1(ω, x) for all (ω, x) ∈ Ω × R. Assume that
the family x′ = hi(ω·t, x) has three hyperbolic copies of the base li < mi < ui for
i = 0, 1. Then, one of the following orders holds:

(1) l0 < l1 < m1 < m0 < u0 < u1,

(2) l0 < m0 < u0 < l1 < m1 < u1.

Proof. Let us assume (2) does not hold. Hence, there exists ω̄ ∈ Ω with l1(ω̄) ≤
u0(ω̄). A standard comparison argument ensures that l1(ω̄·t) < u0(ω̄·t) for all
t < 0, and hence the minimality of Ω ensures that l1 ≤ u0. If, in addition,
l1(ω0) = u0(ω0) for an ω0 ∈ Ω, then a new comparison argument shows that
u0(ω0·t) < l1(ω0·t) for all t > 0, impossible. Therefore, l1 < u0. Now, for contradic-
tion, we assume that (1) is also not satisfied, and deduce from Proposition 2.19(ii)
and the minimality of Ω the existence of ω̄ ∈ Ω with m0(ω̄) ≤ l1(ω̄). Hence,
m0(ω̄·t) < l1(ω̄·t) for all t > 0. We fix t0 > 0 and call ω0 = ω̄·t0. Theorem
2.13(vi) yields limt→∞(u0(ω0·t) − v0(t, ω0, l1(ω0))) = 0, where v0 stands for the so-
lutions of x′ = h0(ω·t, x). Since v0(t, ω0, l1(ω0)) < l1(ω0·t) for all t > 0, we deduce
that lim supt→∞(u0(ω0·t)− l1(ω0·t))) ≤ 0, which combined with the minimality of Ω
contradicts l1 < u0.

So, if (Ω, σ) is minimal, then the only two possible orders between two triads of
copies of Ω of h0 < h1 are as follows: the three copies of Ω for h0 are below and uni-
formly separated from the three copies of Ω for h1 (possibility (2) of Theorem 2.20)
or else the two upper copies of Ω for h0 are between the two upper copies of Ω for
h1 and the two lower copies of Ω for h1 are between the two lower copies of Ω for h0
(possibility (1) of Theorem 2.20).
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2.3 Negative Schwarzian derivative

In [50], results of the type discussed earlier in this chapter for quasiperiodically
forced increasing (on the fiber) maps T : S1× [a, b] → S1× [a, b] with strictly negative
Schwarzian derivative can be found. In [56, 58], pitchfork bifurcations of this type
of maps are investigated.

In order to find the link between d-concavity and negative Schwarzian derivative,
we will consider, for each fixed time t ∈ R, the Schwarzian derivative with respect to
the state variable x of the nonautonomous map Ω×R → Ω×R, (ω, x) 7→ τt(ω, x) =
(ω·t, v(t, ω, x)) given by the evolution at time t according to x′ = h(ω·t, x).

Recall that V ⊃ {0} × Ω × R is the (open) domain of the flow τ : see Section
1.2. Since, for all (ω, x) ∈ Ω×R, t 7→ vx(t, ω, x) solves the variational equation z′ =
hx(ω·t, v(t, ω, x)) z of x′ = h(ω·t, x) along t 7→ v(t, ω, x) and satisfies vx(0, ω, x) = 1,
we have

vx(t, ω, x) = exp

(∫ t

0

hx
(
ω·s, v(s, ω, x)

)
ds

)
for all (t, ω, x) ∈ V . A repeated usage of continuous dependence on initial conditions
and the theorem of derivation under the integral sign lead to the expressions

vxx(t, ω, x) = vx(t, ω, x)

∫ t

0

hxx(ω·s, v(s, ω, x)) vx(s, ω, x) ds ,

vxxx(t, ω, x) = vxx(t, ω, x)

∫ t

0

hxx(ω·s, v(s, ω, x)) vx(s, ω, x) ds

+ vx(t, ω, x)

∫ t

0

(
hxxx(ω·s, v(s, ω, x))

(
vx(s, ω, x)

)2
+ hxx(ω·s, v(s, ω, x)) vxx(s, ω, x)

)
ds ,

vxxxt(t, ω, x) = vxxt(t, ω, x)

∫ t

0

hxx(ω·s, v(s, ω, x)) vx(s, ω, x) ds

+ vxx(t, ω, x) hxx(ω·t, v(t, ω, x)) vx(t, ω, x)

+ vxt(t, ω, x)

∫ t

0

(
hxxx(ω·s, v(s, ω, x)) (vx(s, ω, x))2

+ hxx(ω·s, v(s, ω, x)) vxx(s, ω, x)
)
ds

+ vx(t, ω, x)
(
hxxx(ω·t, v(t, ω, x))

(
vx(t, ω, x)

)2
+ hxx(ω·t, v(t, ω, x)) vxx(t, ω, x)

)
,

from where it easily follows that vxx(0, ω, x) = 0, vxxx(0, ω, x) = 0 and vxxxt(0, ω, x) =
hxxx(ω, x) for every (ω, x) ∈ Ω× R. These expressions will be used in the proofs of
the following propositions.

Since vx(t, ω, x) never vanishes, the Schwarzian derivative with respect to the
state variable x, given by

Sxv(t, ω, x) =
vxxx(t, ω, x)

vx(t, ω, x)
− 3

2

(
vxx(t, ω, x)

vx(t, ω, x)

)2

, (2.25)

is well defined on V .
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Proposition 2.21. Let h ∈ C0,3(Ω× R,R). Then,

(i) Sxv(0, ω, x) = 0 for all (ω, x) ∈ Ω× R.

(ii) The partial derivative of Sxv with respect to t exists and is continuous on V,
and (Sxv)t(0, ω, x) = hxxx(ω, x) for every (ω, x) ∈ Ω× R.

Proof. Property (i) follows directly from the previous equalities, and the existence
and continuity of (Sxv)t on V follows from the regularity of all the involved functions.
The last assertion is proved by straight computation from (2.25)

(Sxv)t =
vxxxt vx − vxxx vxt

v2x
− 3

vxx (vxxtvx − vxxvxt)

v3x
,

and evaluation at t = 0.

The following proposition assumes that x′ = h(ω·t, x) satisfies a regularity as-
sumption stronger than d1 and stronger d-concavity assumptions than d3 and d4:
h ∈ C0,3(Ω × R,R) and hxxx(ω, x) < 0 for every (ω, x) ∈ Ω × R (which is slightly
stronger that x 7→ hx(ω, x) being strictly concave for all ω ∈ Ω and then ensures d3
and d4). In this situation, it shows that the fixed time evolution map Ω×R → Ω×R,
(ω, x) 7→ τt(ω, x) = (ω·t, v(t, ω, x)) given by x′ = h(ω·t, x) has strictly negative
Schwarzian derivative for all t > 0.

Proposition 2.22. Let h ∈ C0,3(Ω× R,R). Let us suppose that hxxx(ω, x) < 0 for
every (ω, x) ∈ Ω× R. Then, Sxv(t, ω, x) < 0 for every (t, ω, x) ∈ V with t > 0.

Proof. Let us fix (t0, ω0, x0) ∈ V with t0 > 0. We set k = supt∈[0,t0] |v(t, ω0, x0)|
and note that x0 ∈ [−k, k]. Proposition 2.21(ii) ensures that (Sxv)t(0, ω, x) < 0 for
every (ω, x) ∈ Ω× [−k, k]. Combining the continuity of s 7→ (Sxv)t(s, ω, x) with the
openness of V and the compactness of Ω × [−k, k], we find 0 < δ ≤ t0 and l < 0
such that (Sxv)t(s, ω, x) ≤ l for every (s, ω, x) ∈ [0, δ]× Ω× [−k, k]. Consequently,
it follows from Proposition 2.21(i) that

Sxv(s, ω, x) =

∫ s

0

(Sxv)t(r, ω, x) dr ≤ ls < 0 (2.26)

for every (s, ω, x) ∈ (0, δ] × Ω × [−k, k]. Let s0 ∈ (0, δ] and n0 ∈ N be fixed with
s0n0 = t0. [30, Chapter 2, Section 6] gives the formula of Schwarzian derivative of a
composition, which yields

Sxv(ns0, ω0, x0) = Sx(v(s0, ω0·(n− 1)s0, v((n− 1)s0, ω0, x0)))

= Sxv(s0, ω0·(n− 1)s0, v((n− 1)s0, ω0, x0)) · (vx((n− 1)s0, ω0, x0))
2

+ Sxv((n− 1)s0, ω0, x0)

for n ∈ {1, 2, . . . , n0}. Let us show by induction that Sxv(ns0, ω0, x0) < 0 for
every n ∈ {1, 2, . . . , n0}. Equality (2.26) shows it for n = 1; and, since v((n −
1)s0, ω0, x0) ∈ [−k, k], (2.26) (resp. the induction hypothesis) ensures that the first
(resp. second) term in the sum is strictly negative. In particular, Sxv(t0, ω0, x0) =
Sxv(n0s0, ω0, x0) < 0, as asserted.
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The following proposition explores the converse relation: if the fixed time evolu-
tion map Ω×R → Ω×R, (ω, x) 7→ τt(ω, x) = (ω·t, v(t, ω, x)) given by x′ = h(ω·t, x)
has nonnegative Schwarzian for t > 0 sufficiently close to 0, then x 7→ hx(ω, x) is
concave for all ω ∈ Ω (which is stronger than d3).

Proposition 2.23. Let h ∈ C0,3(Ω×R,R). Let us suppose that, given any (ω, x) ∈
Ω×R, there exists a sequence (tn) ↓ 0 with tn > 0 for all n ∈ N such that (tn, ω, x) ∈
V and Sxv(tn, ω, x) ≤ 0 for every n ∈ N. Then, x 7→ hx(ω, x) is concave for all
ω ∈ Ω.

Proof. Let (ω, x) ∈ Ω × R be fixed. Proposition 2.21 ensures that Sxv(t, ω, x) > 0
for t > 0 small enough if (Sxv)t(0, ω, x) = hxxx(ω, x) > 0. Since our hypotheses
ensure that this is not the case, hxxx(ω, x) ≤ 0 and hence x 7→ hx(ω, x) is concave
for all ω ∈ Ω.

Comments on Chapter 2

1. The cubic equation with smooth 1-periodic coefficients a0, a1, a2, a3 : R → R

x′ = a3(t)x
3 + a2(t)x

2 + a1(t)x+ a0(t) (2.27)

is called the Abel equation. Several papers (see [74], [44], [92]) have studied the
existence of a bound on the number of periodic solutions of (2.27). In [92], it was
proved that, if a3(t) > 0 (or a3(t) < 0) for all t ∈ [0, 1], then (2.27) can have at
most three periodic solutions. And in [74], it was proved that there is no upper
bound on the number of periodic solutions of (2.27) if the condition on the sign of
a3 is removed. Notice that the concavity of the derivative x 7→ hx(t, x), that is,
d-concavity, naturally generalizes the condition of positiveness of −a3 in (2.27).

2. In [34], one can find definitions of various properties of strict d-concavity
of a function given in terms of so-called “standardized moduli of d-concavity of
a function on a given interval” as well as constructions of examples of functions
that satisfy some of the definitions and not others [34, Examples 3.12 and 3.13].
The property d4 given in this chapter is close to what is there called the (SDC)∗
property (see [34, Proposition 3.9]), which is the strongest of those described in that
paper, although in [34] the concavity of x 7→ hx(ω, x) is asked for all ω ∈ Ω instead
of a full measure set as in d3. Consequently, it should be noted that some of the
results in this chapter (e.g. Theorem 2.11) and later sections also hold for slightly
weaker d-concavity conditions than those presented here. In this document, we have
chosen to limit ourselves to this definition of strict d-concavity for the sake of clarity
and expository coherence.



Chapter 3

Some bifurcation patterns
for d-concave nonautonomous
differential equations

This chapter addresses the bifurcation theory of d-concave nonautonomous scalar
differential equations. Specifically, it examines global bifurcation diagrams for three
distinct problems. In certain instances, these diagrams reproduce scenarios pre-
viously observed in the autonomous context, yet they may incorporate elements
of dynamical complexity. Conversely, other bifurcation diagrams, which may also
feature elements of dynamical complexity, are inherently nonautonomous. The bi-
furcation diagrams, that is, the main results of this chapter, are studied under the
assumption that the base flow (Ω, σ) is minimal, that is, every σ-orbit is dense in Ω
(recall Definition 1.6). In this way, we study bifurcations of minimal sets and bifur-
cations of the family of global attractors. On the other hand, some of the precedent
results do not require this minimality hypothesis, as it will be indicated below.

Three different one-parameter bifurcation problems of nonautonomous differen-
tial equations with concave derivative

x′ = f(ω·t, x, λ) , ω ∈ Ω , (3.1)

for λ ∈ R are considered. More precisely, the map (ω, x) 7→ f(ω, x, λ) satisfies d1,
d2, d3 and d4 (recall Section 2.2) for each λ ∈ R and takes the form

� f(ω, x, λ) = h(ω, x) + λ, in Section 3.2,

� f(ω, x, λ) = h(ω, x) + λx, with h(ω, 0) = 0 for all ω ∈ Ω, in Section 3.3,

� f(ω, x, λ) = h(ω, x) + λx2, with h(ω, 0) = 0 for all ω ∈ Ω, in Section 3.4.

So, for each fixed value of λ ∈ R, the family (3.1) fits in the framework analyzed
in Chapter 2. In continuity with the notation used before, the family of equations
(3.1) for a fixed λ ∈ R is denoted by (3.1)λ, and a particular equation of (3.1) with
λ ∈ R and ω ∈ Ω by (3.1)λ, ω. The maximal solution of (3.1)λ, ω with initial value
vλ(0, ω, x) = x is I λ

ω,x → R, t 7→ vλ(t, ω, x), and τλ is the corresponding (local)
skewproduct flow induced by (3.1)λ; i.e.,

τλ : Vλ ⊆ R× Ω× R → Ω× R , (t, ω, x) 7→
(
ω·t, vλ(t, ω, x)

)
,
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where Vλ =
⋃

(ω,x)∈Ω×R(I λ
ω,x×{(ω, x)}). Hypotheses d1 and d2 for each fixed λ ∈ R

ensure the existence of the global attractor Aλ of (3.1)λ for all λ ∈ R: Theorem 2.13
describes the structure of Aλ, written as

Aλ =
⋃
ω∈Ω

(
{ω} × [lλ(ω), uλ(ω)]

)
,

where lλ : Ω → R and uλ : Ω → R are, respectively, lower and upper semicontinuous
τλ-equilibria. It also describes its variation with respect to λ.

To describe the bifurcation diagrams of (3.1), we define what we mean by two
parametric families of bounded τλ-equilibria colliding as the parameter λ varies; and,
in the case of minimal base flow (Ω, σ), what we mean by two parametric families
of τλ-minimal sets colliding as λ varies.

Definition 3.1 (Collision of equilibria). Let (λ−, λ+) ⊆ R be a finite interval, and
let b1λ, b

2
λ : Ω → R be bounded semicontinuous τλ-equilibria defined for λ ∈ (λ−, λ+)

such that b1λ(ω) < b2λ(ω) for all ω ∈ Ω and λ ∈ (λ−, λ+), and limλ↑λ+ biλ(ω) exists
for all ω ∈ Ω and i ∈ {1, 2}. We shall say that b1λ and b2λ collide on a set Ω0 ⊆ Ω as
λ ↑ λ+ if

lim
λ↑λ+

b1λ(ω) = lim
λ↑λ+

b2λ(ω)

for all ω ∈ Ω0. Moreover, a compact τ -invariant set K ⊂ Ω×R is said to be enclosed
in such collision if

K ⊆
⋃
ω∈Ω

(
{ω} × [ lim

λ↑λ+

b1λ(ω), lim
λ↑λ+

b2λ(ω)]
)
.

The definition is symmetric when λ ↓ λ−.

We remark that, in the previous definition, biλ+
(ω) = limλ↑λ+ biλ(ω) is a τλ+-

equilibrium for i = 1, 2: it suffices to take limits as λ ↑ λ+ on biλ(ω·t) = vλ(t, ω, b
i
λ(ω)).

Recall that, if (Ω, σ) is minimal, we call hyperbolic minimal sets to the hyperbolic
copies of the base: see Remark 1.41.

Definition 3.2 (Collision of hyperbolic minimal sets). Assume that (Ω, σ) is min-
imal. Let (λ−, λ+) ⊆ R be a finite interval, and let M1

λ < M2
λ be hyperbolic

τλ-minimal sets for λ ∈ (λ−, λ+) which are uniformly bounded for all λ ∈ (λ−, λ+).
We shall say that M1

λ and M2
λ collide on a set Ω0 ⊆ Ω as λ ↑ λ+ if the continuous

τλ-equilibria b1λ, b
2
λ : Ω → R which give rise to M1

λ = {b1λ} and M2
λ = {b2λ} collide

on Ω0 as λ ↑ λ+. A symmetric definition holds when λ ↓ λ−.

To get bifurcation diagrams as simple as possible, in the always highly compli-
cated nonautonomous setting, most of the results of this chapter are formulated for
a minimal base. They give information about the number of τλ-minimal sets and
their hyperbolic or nonhyperbolic structure for each λ ∈ R, and the relation of these
properties with the shape of the global attractor Aλ, whose existence is guaranteed
by our hypotheses. Despite of this, some of the results of this section are formulated
on a general base to give the most general theory possible.

Recall that two τλ-minimal subsets of Ω × R are always ordered if the base is
minimal: see Corollary 1.33. We will use this fact often, without further reference.

The following is a brief description of some of the possible bifurcation diagrams
analyzed in this chapter for the case of minimal (Ω, σ). The criterion employed to
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say that a parameter value λ ∈ R is a bifurcation point relies either on changes in
the number of τλ-minimal sets or on their hyperbolic structure in a neighborhood
of λ. A more detailed description of all these bifurcation diagrams can be found in
the theorems scattered throughout the chapter.

In Section 3.2,
x′ = h(ω·t, x) + λ , ω ∈ Ω , (3.2)

is considered. The main results are Theorems 3.8 and 3.14, which describe in detail
two different bifurcation diagrams, depicted in Figures 3.1 and 3.2:

� One minimal bifurcation diagram. There is exactly one τλ-minimal set for
all λ ∈ R. This pattern corresponds to the nonautonomous analog of the
bifurcation diagram of x′ = −x3 + λ.

� Double saddle-node bifurcation diagram. There exist two bifurcation points
λ− < λ+ such that: there exist three hyperbolic τλ-minimal sets Ml

λ < Nλ <
Mu

λ for all λ ∈ (λ−, λ+), only one hyperbolic τλ-minimal set for all λ ̸∈ [λ−, λ+],
and at both λ− and λ+ a saddle-node bifurcation of minimal sets takes place,
that is, Ml

λ and Nλ (resp. Nλ and Mu
λ) collide on a residual σ-invariant

subset of Ω as λ ↑ λ+ (resp. λ ↓ λ−) and disappear for λ > λ+ (resp. λ < λ−).
This bifurcation diagram, which roughly speaking has the shape of an “S”,
corresponds to the nonautonomous analog of that of x′ = −x3 + x+ λ.

To some extent, the analysis in this section is the d-concave version of the saddle-
node bifurcation pattern studied in [6], [86] and [88] for the concave case.

In addition, we show that these two ones are the unique possible bifurcation
diagrams in the case that (Ω, σ) is uniquely ergodic (as in the autonomous case).

Section 3.3 deals with the second bifurcation problem of this chapter:

x′ = h(ω·t, x) + λx , ω ∈ Ω , (3.3)

with h(ω, 0) = 0 for all ω ∈ Ω. Here, the τλ-copy of the base M0 = Ω × {0} is
a τλ-minimal set for all λ ∈ R, and it is a nonhyperbolic τλ-minimal set for an
interval [λ−, λ+] of values of the parameter which can reduce to a point. In fact, it
indeed reduces to a point if (Ω, σ) is uniquely ergodic, which is the situation in the
autonomous case. The main results in this section are Theorems 3.20, 3.21 and 3.22,
which describe in detail the unique three possibilities for the bifurcation diagram,
briefly described in the following list and depicted in Figures 3.3, 3.4 and 3.5:

� Classical pitchfork bifurcation. λ− ≤ λ+ and λ+ is the unique bifurcation
point of change of number of τλ-minimal sets. There exist three hyperbolic τλ-
minimal sets Ml

λ < M0 < Mu
λ if λ > λ+, M0 is the unique τλ-minimal set if

λ ≤ λ+, and bothMl
λ andMu

λ collide withM0 on a residual σ-invariant subset
of Ω as λ ↓ λ+. This bifurcation diagram corresponds to the nonautonomous
analog of x′ = −x3 + λx, although, in the non uniquely ergodic case, λ− can
be strictly smaller than λ+.

� Local saddle-node and transcritical bifurcations. With λ− ≤ λ+, the bifurca-
tion points are λ0, λ− and λ+, with λ0 < λ−; that is, there are two or three
of them. There are two possible bifurcation diagrams which are symmetric
with respect to the horizontal axis x = 0. Let us describe one of them. For
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λ > λ+, there exist three τλ-minimal sets Ml
λ < M0 < Mu

λ; as λ ↓ λ+,
M0 and Mu

λ collide on a residual σ-invariant subset of Ω; for λ ∈ [λ−, λ+], the
unique τλ-minimal sets areMl

λ < M0, withMl
λ hyperbolic attractive andM0

nonhyperbolic; for λ ∈ (λ0, λ−), there are again three hyperbolic τλ-minimal
sets Ml

λ < Nλ < M0; as λ ↑ λ−, Nλ and M0 collide on a residual σ-invariant
subset of Ω; as λ ↓ λ0, Ml

λ and Nλ collide on a residual σ-invariant subset of
Ω; for λ0, the unique τλ0-minimal sets are Ml

λ0
< M0, with Ml

λ0
hyperbolic

attractive and M0 nonhyperbolic; and M0 is the unique (attractive hyper-
bolic) τλ-minimal set for λ < λ0. So, we have a local saddle-node bifurcation
of minimal sets at λ0, and a generalized transcritical bifurcation at [λ−, λ+],
which is classical if λ− = λ+. In the case of λ− = λ+, this bifurcation diagram
is a nonautonomous analog of that of x′ = −x3 + 2x2 + λx.

� Generalized pitchfork bifurcation. This one is only possible if λ− < λ+. There
are two bifurcation points λ+ and λ0 ∈ [λ−, λ+) of change of the number
of τλ-minimal sets. There are two possible bifurcation diagrams which are
symmetric with respect to the horizontal axis x = 0. Let us describe one
of them. There exist three hyperbolic τλ-minimal sets Ml

λ < M0 < Mu
λ if

λ > λ+; as λ ↓ λ+, M0 and Mu
λ collide on a residual σ-invariant subset of

Ω; there are two τλ-minimal sets Ml
λ < M0 if λ ∈ (λ0, λ+], where Ml

λ is
hyperbolic attractive; and M0 is the unique τλ-minimal set if λ < λ0.

In Section 3.4, the third and last bifurcation problem is considered:

x′ = h(ω·t, x) + λx2 , ω ∈ Ω , (3.4)

with h(ω, 0) = 0 for all ω ∈ Ω. As in (3.3), M0 = Ω×{0} is a τλ-minimal set for all
λ ∈ R. However, in this case, M0 has the same hyperbolic attractive, hyperbolic
repulsive or nonhyperbolic character for all the values of the parameter. Indeed, the
type of bifurcation diagram displayed depends on this character. The main results
in this section are Theorems 3.43, 3.44 and 3.45, which describe in detail the unique
three possibilities for the bifurcation diagram, briefly described in the following list
and depicted in Figures 3.6 and 3.7:

� No bifurcation. If M0 is a repulsive hyperbolic τλ-minimal set for all λ ∈ R,
then for all λ ∈ R there are three hyperbolic τλ-minimal setsMl

λ < M0 < Mu
λ.

� Two saddle-node bifurcations. If M0 is an attractive hyperbolic τλ-minimal
set for all λ ∈ R, then there exist λ1 < λ2 such that: for all λ > λ2 (resp.
λ < λ1), there exist three hyperbolic τλ-copies of the base M0 < Nλ < Mu

λ),
(resp. Ml

λ < Nλ < M0 and there are two saddle-node bifurcations: Nλ and
Mu

λ (resp. Ml
λ and Nλ) collide as λ ↓ λ2 (resp. λ ↑ λ1) on a σ-invariant

residual subset of Ω.

� Weak generalized transcritical bifurcation. IfM0 is a nonhyperbolic τλ-minimal
set for all λ ∈ R, then there exist λ1 ≤ λ2 such that: for all λ > λ2 (resp.
λ < λ1) there exist exactly two τλ-minimal sets M0 < Mu

λ (resp. Ml
λ < M0),

where Mu
λ (resp. Ml

λ) is hyperbolic attractive; and if M0 is the unique τλ2-
minimal set (resp. τλ1-minimal set), then M0 and Mu

λ (resp. Ml
λ and M0)

collide on a residual σ-invariant subset of Ω as λ ↓ λ2 (resp. λ ↑ λ1).
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So, the core of Chapter 3 is found in Sections 3.2, 3.3 and 3.4, especially in the
aforementioned theorems describing bifurcation diagrams. In the short Section 3.1,
of technical character, some relations between different coercivity conditions are es-
tablished. In this first section, the base flow is not required to be minimal. The same
occurs at the beginnings of the last three sections, where some general properties
on the variation of the global attractor are obtained without assuming minimality.
To avoid confusion, we will mention the minimality hypothesis in the statements of
all the results which require it.

3.1 On the coercivity hypotheses

Let us recall the conditions d1-d4 described in Chapter 2, fundamental for the
forthcoming analysis.

d1 h ∈ C0,2(Ω× R,R),

d2 lim supx→±∞
(
± h(ω, x)

)
< 0 uniformly on Ω,

d3 m
(
{ω ∈ Ω | x 7→ hx(ω, x) is concave}

)
= 1 for all m ∈ Merg(Ω, σ),

d4 m
(
{ω ∈ Ω | x 7→ hx(ω, x) is strictly concave on J }

)
> 0 for all compact interval

J ⊂ R and all m ∈ Merg(Ω, σ).

Notice that to ask hypotheses d1, d3 and d4 to be fulfilled by (ω, x) 7→ h(ω, x)+λ,
(ω, x) 7→ h(ω, x) + λx or (ω, x) 7→ h(ω, x) + λx2 for all λ ∈ R is equivalent to
ask d1, d3 and d4 to be fulfilled by h : Ω × R → R. But the same is not true
for the coercivity hypothesis d2. To deal with this, we consider the following more
restrictive coercivity properties:

d2λ lim
x→±∞

h(ω, x) = ∓∞ uniformly on Ω,

d2λx lim
x→±∞

h(ω, x)

x
= −∞ uniformly on Ω,

d2λx2 lim
x→±∞

h(ω, x)

x2
= ∓∞ uniformly on Ω.

The following proposition states relations between the different coercivity properties
and unravels their meaning:

Proposition 3.3. Let h : Ω× R → R. Then,

(i) h satisfies d2λ if and only if (ω, x) 7→ h(ω, x) + λ satisfies d2 for all λ ∈ R,

(ii) h satisfies d2λx if and only if (ω, x) 7→ h(ω, x)+λx satisfies d2 for all λ ∈ R,

(iii) h satisfies d2λx2 if and only if (ω, x) 7→ h(ω, x)+λx2 satisfies d2 for all λ ∈ R,

(iv) h satisfies d1 and x 7→ hx(ω, x) is concave for all ω ∈ Ω, then h satisfies d2λx

if and only if limx→±∞ hx(ω, x) = −∞ uniformly on Ω,

(v) if h satisfies d2λx, then it satisfies d2λ,
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(vi) if h satisfies d2λx2, then it satisfies d2λx.

Proof. (i) If h satisfies d2λ, then limx→±∞(±h(ω, x) + λ) = −∞ uniformly on Ω
for all λ ∈ R, from where the result follows. If (ω, x) 7→ h(ω, x) + λ satisfies d2
for all λ ∈ R, lim supx→±∞(±h(ω, x)) < −λ uniformly on Ω for all λ ∈ R, so
limx→±∞(±h(ω, x)) = −∞ uniformly on Ω, and hence d2λ holds.

(ii) If h satisfies d2λx, then limx→±∞(h(ω, x) + λx)/x = −∞ uniformly on Ω
for all λ ∈ R, so limx→±∞(h(ω, x) + λx) = ∓∞ uniformly on Ω for all λ ∈ R. If
(ω, x) 7→ h(ω, x) + λx satisfies d2 for all λ ∈ R, then for each λ ∈ R there exists
ρλ > 0 such that h(ω, x)/x < −λ for all ω ∈ Ω and x ≥ ρλ, so limx→∞ h(ω, x)/x =
−∞ uniformly on Ω. An analogous argument as x → −∞ shows that d2λx holds.

(iii) This proof is analogous to that of (ii).

(iv) Assume first that limx→±∞ hx(ω, x) = −∞ uniformly on Ω. Let us reason
with x → ∞. Given m > 0, there exists ρ > 0 such that hx(ω, x) < −2m for all
ω ∈ Ω and x ≥ ρ. Then, the Mean Value Theorem ensures that, for x > ρ, there
exists ξω,x ∈ (ρ, x) such that

h(ω, x)

x
=

h(ω, ρ) + hx(ω, ξω,x)(x− ρ)

x
<

h(ω, ρ)

x
− 2m

(
1− ρ

x

)
.

Since ω 7→ h(ω, ρ) is bounded, there exists ρ′ > ρ such that h(ω, x)/x < −m for all
ω ∈ Ω and x ≥ ρ′. The argument for x → −∞ is analogous.

Now, assume that h satisfies d2λx. Let us take a < xl and b > xu, where xl

and xu are defined by Lemma 2.8. Since x 7→ hx(ω, x) is concave for all ω ∈ Ω,
x 7→ hxx(ω, x) is nonincreasing for all ω ∈ Ω. Consequently, inf{hxx(ω, x) | (ω, x) ∈
Ω× (−∞, a]} = inf{hxx(ω, a) | ω ∈ Ω} > 0, due to the compactness of Ω. That is,
hxx has a strictly positive lower bound on Ω × (−∞, a] and, analogously, it has a
strictly negative upper bound on Ω× [b,∞). The Fundamental Theorem of Calculus
and the previous bound show that, for any x ≤ a,

hx(ω, x) = hx(ω, a) +

∫ a

x

hxx(ω, y) dy

≤ sup{hx(ω, a) | ω ∈ Ω}+ (x− a) inf{hxx(ω, a) | ω ∈ Ω} ,

so limx→−∞ hx(ω, x) = −∞ uniformly on Ω. The other limit is proved analogously.

(v)-(vi) These properties follow immediately from the definitions.

Notice that, for the “if part” in the statement of (iv) of the previous proposition,
the fact of x 7→ hx(ω, x) being concave for all ω ∈ Ω is not needed, and that d1 can
be replaced by h ∈ C0,1(Ω× R,R).

3.2 Bifurcations of x′ = h(ω·t, x) + λ

As said in the introduction of this chapter, this section deals with the one-parametric
bifurcation problem

x′ = h(ω·t, x) + λ , ω ∈ Ω . (3.5)

Recall that Proposition 3.3(i) ensures that h + λ satisfies d1, d2, d3 and d4 for
all λ ∈ R if (and only if) h satisfies d1, d2λ, d3 and d4. In part of the results
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of this section, with a minimal base (Ω, σ), h will be asked to satisfy d2λx in-
stead of the weaker condition d2λ (see Proposition 3.3(v)), since the consequence
limx→±∞ hx(ω, x) = −∞ uniformly on Ω (see Remark 2.7 and Proposition 3.3(iv))
will be required.

The following result establishes relations between global upper and lower solu-
tions, equilibria and semiequilibria for different values of the parameter in (3.5).

Proposition 3.4. Let h ∈ C0,1(Ω×R,R). Every global upper (resp. lower) solution
of (3.5)λ is a strict global upper (resp. lower) solution of (3.5)ξ if ξ < λ (resp. λ <
ξ). Particularly, any equilibrium for (3.5)λ is a strong superequilibrium for (3.5)ξ if
ξ < λ, as well as a strong subequilibrium for (3.5)ξ if λ < ξ.

Proof. Let b : Ω → R be a global upper solution of (3.5)λ, and let ξ < λ. So,
b′(ω) ≥ h(ω, b(ω)) + λ > h(ω, b(ω)) + ξ for all ω ∈ Ω, that is, b is a strict global
upper solution of (3.5)ξ. Then, Proposition 1.24(i) proves the last assertion in the
superequilibrium case. The case of λ < ξ is analogous.

Theorem 2.13 proves the existence of the global attractor Aλ of (3.5)λ if h ∈
C0,1(Ω×R,R) satisfies d2λ, and explains part of its properties. The following result
provides information on how the global attractor Aλ changes as the parameter λ
varies.

Proposition 3.5. Let h ∈ C0,1(Ω× R,R) satisfy d2λ and let

Aλ =
⋃
ω∈Ω

(
{ω} × [lλ(ω), uλ(ω)]

)
(3.6)

be the global attractor for the skewproduct flow τλ induced by (3.5)λ. Then,

(i) for every ω ∈ Ω, the maps R → R, λ 7→ lλ(ω) and R → R, λ 7→ uλ(ω) are
strictly increasing on R and they are, respectively, left- and right-continuous.

(ii) limλ→±∞ lλ(ω) = limλ→±∞ uλ(ω) = ±∞ uniformly on Ω.

(iii) If limx→±∞ hx(ω, x) = −∞ uniformly on a Borel subset Ω0 ⊆ Ω such that
m(Ω0) = 1 for all m ∈ Merg(Ω, σ), then there exists λ∗ > 0 such that Aλ is
an attractive hyperbolic copy of the base if |λ| ≥ λ∗. In particular, this is the
case if h satisfies d1, d2λx and d3.

Proof. (i) Let ξ < λ. Proposition 3.4 ensures that uξ is a strict global lower solution
of (3.5)λ. Hence, Theorem 2.13(v) yields uξ(ω) < uλ(ω) for all ω ∈ Ω. Analogously,
lλ is a strict global upper solution for (3.5)ξ and Theorem 2.13(v) ensures that
lξ(ω) < lλ(ω) for all ω ∈ Ω.

Let ω0 ∈ Ω be fixed. We take a strictly decreasing sequence (λn) with λn ↓ λ0,
take into account that the previous part ensures that (uλn(ω0)) is strictly decreas-
ing and bounded by below by uλ0(ω0), and call y0 = limn→∞ uλn(ω0) ≥ uλ0(ω0).
Then, for any t ∈ Iλ0

ω0,y0
, we have vλ0(t, ω0, y0) = limn→∞ vλn(t, ω0, uλn(ω0)) =

limn→∞ uλn(ω0·t) ≤ uλ1(ω0·t), so that vλ0(t, ω0, y0) remains bounded from above
as time decreases. Theorem 2.13(iv) ensures that y0 ≤ uλ0(ω0), and hence that
uλ0(ω0) = limn→∞ uλn(ω0). The proof is analogous for lλ.

(ii) We use d2λ to find ρ > 0 such that h(ω, x) > 1 for all ω ∈ Ω if x ≤ −ρ.
Let us take n > 0 and λn > 1 − inf{h(ω, x) | (ω, x) ∈ Ω × [−ρ, n]} with λn > 0.
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Then, h(ω, x) + λ > 1 for all ω ∈ Ω, x ≤ n and λ ≥ λn. Theorem 2.13(ii) applied
to m1 = n shows that n ≤ lλ(ω) ≤ uλ(ω) for all ω ∈ Ω and λ ≥ λn. Then,
limλ→∞ lλ(ω) = limλ→∞ uλ(ω) = ∞ uniformly on Ω. Analogous arguments prove
the limits to −∞ as λ → −∞.

(iii) The additional hypothesis on h provides ρ > 0 such that hx(ω, x) < 0 if
|x| > ρ and ω ∈ Ω0. By (ii), there exists λ∗ such that Aλ ⊂ Ω × [ρ,∞) and
A−λ ⊂ Ω × (−∞,−ρ] if λ > λ∗. We fix λ with |λ| > λ∗, Theorem 1.36(iii) ensures
that there existm ∈ Merg(Ω, σ) and anm-measurable τλ-equilibrium b : Ω → R with
graph contained in Aλ ⊂ Ω × [ρ,∞) such that supLyap(Aλ) =

∫
Ω
hx(ω, b(ω)) dm.

Since m(Ω0) = 1, we get that supLyap(Aλ) =
∫
Ω0

hx(ω, b(ω)) dm < 0. Then,
Theorem 2.13(vii) ensures that Aλ is an attractive hyperbolic copy of the base for
|λ| > λ∗.

To check the last assertion, if h satisfies d1, d2λx and d3, then Remark 2.7
ensures the existence of a σ-invariant closed set Ωd ⊆ Ω such that m(Ωd) = 1 for all
m ∈ Merg(Ω, σ) and such that x 7→ hx(ω, x) is concave for all ω ∈ Ωd. Proposition
3.3(iv) applied to the restriction h : Ω0 × R → R ensures that limx→±∞ hx(ω, x) =
−∞ uniformly on Ω0 and completes the proof.

Figures 3.1 and 3.2 depict the evolution with respect to λ of the global attractor
Aλ in some particular cases.

The family {Aλ} of global attractors is said to be upper semicontinuous as λ →
λ0 if limλ→λ0 dist(Aλ,Aλ0) = 0, where dist is the Hausdorff semidistance, defined
by (1.8). The family {Aλ} of global attractors is said to be lower semicontinuous
as λ → λ0 if limλ→λ0 dist(Aλ0 ,Aλ) = 0. The upper semicontinuity of a family
of global attractors given by a λ-parametric family of equations which depends
continuously on the parameter is a usual property, but this is not the case with the
lower semicontinuity. The continuity of {Aλ} as λ → λ0 consists of the simultaneous
upper and lower semicontinuity as λ → λ0. Our next result analyzes this continuity
in our case:

Proposition 3.6. Let h ∈ C0,1(Ω × R,R) satisfy d2λ, and let Aλ =
⋃

ω∈Ω({ω} ×
[lλ(ω), uλ(ω)]) be the global attractor of (3.5)λ. Then,

(i) {Aλ} is upper semicontinuous as λ → λ0 for all λ0 ∈ R,

(ii) if the maps λ 7→ lλ(ω) and λ 7→ uλ(ω) are continuous at λ0 for every ω ∈ Ω,
then {Aλ} is continuous as λ → λ0.

Proof. (i) For any λ0, any sequence (λn) with limit λ0 and (ωn, xn) ∈ Aλn , we get
that lλn(ωn) ≤ xn ≤ uλn(ωn) for all n ∈ N. The monotonicity and semicontinuity
provided by Proposition 3.5(i) ensures that lλn(ωn) ≥ infω∈Ω linf(λn)(ω) = ρ1 ∈ R
and that uλn(ωn) ≤ supω∈Ω usup(λn)(ω) = ρ2 ∈ R. So, (xn) is bounded, and
hence it admits a subsequence (xm) which converges to some x ∈ [ρ1, ρ2]. In
addition, for any t ∈ R, ρ1 ≤ lλn(ωn·t) ≤ vλn(t, ωn, xn) ≤ uλn(ωn·t) ≤ ρ2. So,
limn→∞ vλn(t, ωn, xn) = vλ0(t, ω, x) is bounded, that is, x ∈ Aλ0 . The characteri-
zation of upper semicontinuity as λ → λ0 given in [21, Lemma 3.2(1)] shows that
{Aλ} is upper semicontinuous.

(ii) Assume that both maps λ 7→ lλ(ω) and λ 7→ uλ(ω) are continuous at λ0 for all
ω ∈ Ω. For any (ω, x) ∈ Aλ0 , let s ∈ [0, 1] be such that x = s lλ0(ω)+ (1− s) uλ0(ω).
It is clear that limn→∞(ω, xn) = (ω, x), where xn = s lλn(ω) + (1 − s) uλn(ω), so
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the characterization of lower semicontinuity as λ → λ0 given in [21, Lemma 3.2(2)]
shows that {Aλ} is lower semicontinuous at λ0, and hence, combining this with (i),
we conclude that {Aλ} is continuous at λ0.

Recall that
∫
K hx(ω, b(ω)) dm is one of the Lyapunov exponents of a compact τ -

invariant set K ⊂ Ω× R if b : Ω → R is an m-measurable τ -equilibrium with graph
in K and m ∈ Merg(Ω, σ): see Theorem 1.36(ii). The last result of this section
establishes a relation between two Lyapunov exponents of two suitable compact sets
which are τλ-invariant for two different values of the parameter λ, which will be
extremely useful in the proofs of the main results. Note that, as in Theorem 2.15,
no coercivity condition is required.

Proposition 3.7. Let h : Ω × R → R satisfy d1, let us fix m ∈ Merg(Ω, σ) and
λ1 < λ2, and let bi : Ω → R be a bounded m-measurable τλi

-equilibrium for i = 1, 2,
with b1(ω) < b2(ω) for m-a.e. ω ∈ Ω. Assume that m({ω ∈ Ω | x 7→ hx(ω, x) is
concave}) = 1. Then,∫

Ω

hx(ω, b1(ω)) dm+

∫
Ω

hx(ω, b2(ω)) dm < 0 .

Proof. The argument is similar to that of Theorem 2.15. We define Ω0 = Ωd ∩{ω ∈
Ω | b1(ω) < b2(ω)}, where Ωd is the σ-invariant set with m(Ωd) = 1 given by
Lemma 2.6. Hence, m(Ω0) = 1. A standard comparison argument shows that
b1(ω·t) = vλ1(t, ω, b1(ω)) ≤ vλ2(t, ω, b1(ω)) < vλ2(t, ω, b2(ω)) = b2(ω·t) for all t ≥ 0
if b1(ω) < b2(ω). Hence, ω·t ∈ Ω0 for all t ≥ 0 if ω ∈ Ω0. The function c(ω) =
b2(ω)− b1(ω) satisfies

c′(ω·t)
c(ω·t)

= F (ω·t, c(ω·t)) + λ2 − λ1

c(ω·t)
(3.7)

for all ω ∈ Ω0 and t ≥ 0, where F (ω, y) =
∫ 1

0
hx(ω, s y + b1(ω)) ds. Since ω 7→

F (ω, c(ω)) is bounded and hence it is in L1(Ω,m), and since ω 7→ (λ2 − λ1)/c(ω) is
strictly positive on Ω0, the application of Birkhoff’s Ergodic Theorem 1.10 to (3.7)
(see the application in the proof of Theorem 2.15) yields∫

Ω

F (ω, c(ω)) dm = −(λ2 − λ1)

∫
Ω

1

c(ω)
dm < 0 ,

which combined with (2.19), which also holds in this case, completes the proof.

3.2.1 Bifurcation diagrams with minimal base flow

The results of this section describe two possible bifurcation diagrams of τλ-minimal
sets for (3.5) under the assumption of minimal base flow (Ω, σ): the double saddle-
node bifurcation of Theorem 3.8 (see Figure 3.1) and the one minimal bifurcation
diagram of Theorem 3.14 (see Figure 3.2). The bifurcations of the family of global
attractors, that is, the points of discontinuity of the global attractors, will be de-
duced. Moreover, it will be checked that, if (Ω, σ) is uniquely ergodic, then these
two bifurcation diagrams are the only possible ones. Finally, following the ideas of
Remark 2.12, Theorem 3.16 provides local saddle-node bifurcations.
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The next result establishes conditions under which the global bifurcation diagram
of (3.2) presents two local saddle-node bifurcation points of τλ-minimal sets which
are also points of discontinuity of the global attractor Aλ. For each λ ∈ R, the maps
lλ and uλ of its statement are those provided by (3.6)λ.

Theorem 3.8 (Double saddle-node bifurcation). Let (Ω, σ) be minimal. Let h : Ω×
R → R satisfy d1, d2λx, d3 and d4. Assume that there exists λ0 ∈ R such that there
exist three different τλ0-minimal sets for (3.5). Then, there exists a finite interval
I = (λ−, λ+) with λ0 ∈ I such that

(i) for every λ ∈ I, there exist exactly three τλ-minimal sets Ml
λ < Nλ < Mu

λ

which are hyperbolic τλ-copies of the base, given by the graphs of lλ < mλ < uλ.
In addition, Nλ is repulsive and Ml

λ, Mu
λ are attractive, and λ 7→ mλ is strictly

decreasing on I.

(ii) The τλ-equilibria mλ and uλ (resp. lλ and mλ) collide on a σ-invariant residual
subset of Ω as λ ↓ λ− (resp. λ ↑ λ+), enclosing a nonhyperbolic τλ−-minimal
set Mu

λ−
(resp. τλ+-minimal set Ml

λ+
). In addition, there is exactly other

minimal set for τλ− (resp. τλ+) and it is an attractive hyperbolic copy of the
base given by the graph Ml

λ−
of lλ− (resp. Mu

λ+
of uλ+).

(iii) For λ ∈ (−∞, λ−) ∪ (λ+,∞), Aλ is an attractive hyperbolic τλ-copy of the
base, given by the graph of the map lλ = uλ.

In particular, local saddle-node bifurcations of minimal sets and discontinuous bi-
furcations of attractors occur at λ− and λ+.

Proof. Since (Ω, σ) is minimal, Corollary 1.33 allows us to apply Theorem 2.11 to
deduce that the three τλ0-minimal sets are three hyperbolic τλ0-copies of the base,
and that the upper and lower ones bound the set of bounded τλ0-orbits. Hence,
Theorem 2.13(ii) ensures that these τλ0-copies of the base are the graphs of lλ0 <
mλ0 < uλ0 , for a continuous τλ0-equilibrium mλ0 : Ω → R. Theorem 1.39 ensures that
there exists a maximal open interval I ∋ λ0 such that, for any λ ∈ I there are three
hyperbolic τλ-copies of the base Ml

λ < Nλ < Mu
λ, and the just used arguments show

that they are the unique τλ-minimal sets, given by the graphs of lλ < mλ < uλ for
a continuous τλ-equilibrium mλ : Ω → R, with {lλ} and {uλ} attractive and {mλ}
repulsive. Theorem 1.39 also ensures the continuity of the maps I → C(Ω,R),
λ 7→ lλ,mλ, uλ with respect to the uniform topology, and Proposition 3.5(i) shows
that λ 7→ lλ and λ 7→ uλ are strictly increasing on I.

Now, let us check that λ 7→ mλ is strictly decreasing on I. The continuous
variation on I allows us to take ξ > λ in I close enough to ensure mλ > lξ, and fix
ω ∈ Ω. Then, the τξ-orbit of (ω,mλ(ω)) is above {lξ}. In addition, vξ(t, ω,mλ(ω)) <
vλ(t, ω,mλ(ω)) = mλ(ω·t) for all t < 0. So, the α-limit set for τξ of (ω,mλ(ω))
exists, and it is below the graph of mλ. Let N be a τξ-minimal contained in this
α-limit set. Corollary 1.58(i) ensures that N is neither {lξ} nor {uξ}, and hence
N = {mξ}. This ensures that mξ ≤ mλ. And, if mξ(ω̄) = mλ(ω̄), then mξ(ω̄·1) =
vξ(1, ω̄,mλ(ω)) > vλ(1, ω̄,mλ(ω̄)) = mλ(ω̄·1), impossible. The assertion is proved.

Proposition 3.5(iii) provides λ∗ such that Aλ is an attractive hyperbolic τλ-copy
of the base if |λ| ≥ λ∗. Then, I ⊂ (−λ∗, λ∗). We define λ− = inf I ∈ [−λ∗, λ0). Since
λ− ̸∈ I, there are at most two τλ−-minimal sets. We define uλ−(ω) = limλ↓λ− uλ(ω),
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lλ−(ω) = limλ↓λ− lλ(ω) and mλ−(ω) = limλ↓λ− mλ(ω). As monotone limits of con-
tinuous functions, they are all semicontinuous on Ω. In particular, lλ− and uλ− are
upper semicontinuous and mλ− is lower semicontinuous. The continuous variation
with respect to λ ensures that

uλ−(ω·t) = lim
λ↓λ−

uλ(ω·t) = lim
λ↓λ−

vλ(t, ω, uλ(ω)) = vλ−(t, ω, uλ−(ω)) ,

that is, uλ− is a τλ−-equilibrium. The same holds for lλ− and mλ− . Let Ml
λ−

=
closureΩ×R{(ω0·t, lλ−(ω0·t)) | t ∈ R} for a continuity point ω0 of λ−. Proposition 1.32
shows that Ml

λ−
is a τλ−-minimal set. Since lλ− < lλ0 < mλ0 , we get Ml

λ−
< {mλ0}.

Since {mλ0} is a repulsive hyperbolic copy of the base,
∫
Ω
hx(ω,mλ0(ω)) dm > 0 for all

m ∈ Merg(Ω, σ) (see Theorem 1.40), and hence Proposition 3.7 and Theorem 1.36(iii)
show that the upper Lyapunov exponent of Ml

λ−
is strictly negative. Theorem 1.40

shows that Ml
λ−

is an attractive hyperbolic τλ−-copy of the base, and Corollary

1.58(ii) shows that lλ− is continuous and Ml
λ−

is its graph. Proposition 3.5(i) and
Theorem 1.39 show that lλ− and uλ− are the lower and upper bounds of Aλ− , so the
notation is coherent.

Let Mλ− be the minimal set associated to mλ− by (1.9). Proposition 2.14(ii)
shows that Mλ− is nonhyperbolic. The strict monotonicity properties of lλ and mλ

ensure that lλ− < lλ0 < mλ0 < mλ− , so Ml
λ−

< Mλ− . Therefore, Ml
λ−

and Mλ− are
the two unique τλ−-minimal sets. Since uλ− ≥ mλ− and there is not a τλ−-minimal
set above Mλ− , we deduce that Mλ− coincides with the τλ−-minimal set Mu

λ−

defined from uλ− by (1.9). Proposition 1.32 shows that uλ−(ω) = mλ−(ω) for all ω
in the residual set R ⊆ Ω of their common continuity points, at which (Mu

λ−
)ω is a

singleton. Note also thatMu
λ−

is contained in the set
⋃

ω∈Ω
(
{ω}×[mλ−(ω), uλ−(ω)]

)
,

which is a compact τλ−-invariant pinched set (see Definition 1.27). That is, the
collision of mλ and uλ as λ ↓ λ− encloses the nonhyperbolic minimal set Mu

λ−
.

The hyperbolic attractive character of {lλ−} and Theorems 1.40 and 1.36(iii)
yield the first inequality of∫

Ω

hx(ω, lλ−(ω)) dm < 0,

∫
Ω

hx(ω,mλ−(ω)) dm ≥ 0

and

∫
Ω

hx(ω, uλ−(ω)) dm ≤ 0 .

(3.8)

The other ones follow from Theorems 1.40 and 1.36(iii) applied to mλ and uλ for
λ ∈ I, and from Lebesgue’s Monotone Convergence Theorem. Let us check that
Aλ is an attractive hyperbolic τλ-copy of the base for all λ < λ−. If λ < λ−, then
Propositions 1.24(i), 1.25 and 3.5(i) provide e > 0 and s > 0 such that

mλ−(ω)− e > vλ(s, ω·(−s), uλ−(ω·(−s))) > vλ(s, ω·(−s), uλ(ω·(−s))) = uλ(ω)

for all ω ∈ Ω. In particular, any bounded τλ-equilibrium b : Ω → R, whose graph
is for sure contained in Aλ, is strictly below mλ− . Proposition 3.7 and the second
inequality of (3.8) ensure that

∫
Ω
hx(ω, b(ω)) dm < 0 for all m ∈ Merg(Ω, σ), which

combined with Theorem 1.36(iii) ensures that all the Lyapunov exponents of Aλ are
strictly negative. Hence, Theorem 2.13(vii) proves the assertion.

The same arguments for λ+ = sup I complete the proof of (i), (ii) and (iii). Note
that a local saddle-node bifurcation of minimal sets takes place at λ− (resp. λ+), as



68 Chapter 3. Some bifurcation patterns

the two minimal sets which collide at that value of the parameter actually disap-
pear for λ < λ− (resp. λ > λ+). Proposition 3.6 shows the continuity of {Aλ}
as λ → λ0 for λ0 ̸= λ−, λ+. Let us check the lower discontinuity of {Aλ} as
λ → λ−. The argument is, as usual, analogous for λ+. We take a sequence
(λn) ↑ λ− and assume for contradiction the existence of (ωn, xn) ∈ Aλn such that
limn→∞(ωn, xn) = (ω, uλ−(ω)) for a point ω ∈ Ω. Then, xn = lλn(ωn), and hence
uλ−(ω) = limn→∞ lλn(ωn) ≤ limn→∞ lλ−(ωn) = lλ−(ω), which is precluded by the ex-
istence of two τλ−-minimal sets. The characterization of [21, Lemma 3.2(2)] shows
the asserted lower discontinuity.

Figure 3.1: Double saddle-node bifurcation diagram described in Theorem 3.8. The strictly increas-
ing solid red curves represent the families of attractive hyperbolic solutions of the λ-parametric
family (3.5): lλ for λ ̸= λ+ and uλ for λ ̸= λ−. The strictly decreasing dashed blue curve represents
the family of repulsive hyperbolic solutions of (3.5): mλ for λ ∈ (λ−, λ+). A large black point
over λ+ represents the complex possibilities which arise for the collision of lλ and mλ as λ ↑ λ+,
which is partly explained in the right zoom: the limit maps lλ+

and mλ+
are not necessarily con-

tinuous, but lower and upper semicontinuous; for a residual invariant set of points ω, they take
the same value; but this residual set may coexist with an invariant set Ω0 ⊂ Ω, at whose points
lλ+

(ω) < mλ+
(ω); and, given m ∈ Merg(Ω, σ), nothing allows us to determine a priori if we are

in the case of m(Ω0) = 0 or in the case of m(Ω0) = 1. The situation is analogous for λ−, and
simply represented by “mλ− ⩽ uλ−”. The hyperbolic τλ-minimal sets are given by the graphs of
the curves lλ, mλ and uλ whenever they are hyperbolic. A nonhyperbolic minimal set Ml

λ+
exists

for λ+, lying in the region delimited by the graphs of lλ+ and mλ+ , and with a possibly highly
complex shape. The situation is, again, analogous for λ−, and no more minimal sets exist for any
λ. The green-shadowed area represents the global attractor Aλ, and the light grey arrows just
try to depict the attracting and repulsive properties of lλ, mλ and uλ. (We will use “large black
points” and analogous inequalities in the remaining figures to depict similar situations, as well as
red and blue “hyperbolic” curves, green-shadowing, and grey arrows.)

Figure 3.1 depicts the bifurcation diagram described by Theorem 3.8. As we
point out in the figure description, the dynamics at the nonhyperbolic minimal set
occurring at any of the bifurcation points of the previous theorem can be highly
complicated (see e.g. [18], [20], [78], [116] for the possible dynamical complexity
that can arise: Li-Yorke chaos, several ergodic measures, sensitive dependence on
initial conditions, strange nonchaotic attractors, etc). The next result contributes
to understand the possibilities for this complex dynamics. In particular, strictly
positive and strictly negative Lyapunov exponents can coexist on that set.
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Proposition 3.9. Assume the hypotheses of Theorem 3.8 and let m ∈ Merg(Ω, σ)
be fixed. Then,

(i) one of the following situations holds:

(a) m({ω ∈ Ω | mλ−(ω) = uλ−(ω)}) = 0,∫
Ω

hx(ω, uλ−(ω)) dm < 0 and

∫
Ω

hx(ω,mλ−(ω)) dm > 0 .

(b) m({ω ∈ Ω | mλ−(ω) = uλ−(ω)}) = 1 and∫
Ω

hx(ω, uλ−(ω)) dm =

∫
Ω

hx(ω,mλ−(ω)) dm = 0 ,

and this is the situation if and only if
∫
Kλ−

hx(ω, x) dν = 0 for Kλ− =⋃
ω∈Ω

(
{ω}×[mλ−(ω), uλ−(ω)]

)
and any ergodic measure ν ∈ Merg(Kλ− , τ)

projecting onto m.

(ii) Let lM and uM be the lower and upper equilibria of M = Mu
λ−

respectively.
Then, lM (resp. uM) coincides m-a.e. either with mλ− or with uλ−. If, in
addition, Merg(Ω, σ) = {m}, then lM = mλ− and uM = uλ− m-a.e.

Analogous properties hold for λ+.

Proof. (i) As {ω ∈ Ω | mλ−(ω) = uλ−(ω)} is σ-invariant and m ∈ Merg(Ω, σ),
we have m({ω ∈ Ω | mλ−(ω) = uλ−(ω)}) ∈ {0, 1}. If m({ω ∈ Ω | mλ−(ω) =
uλ−(ω)}) = 1, then (3.8) yields 0 ≤

∫
Ω
h(ω,mλ−(ω)) dm =

∫
Ω
hx(ω, uλ−(ω)) dm ≤ 0,

and hence (b) holds. If m({ω ∈ Ω | mλ−(ω) = uλ−(ω)}) = 0, then lλ− , mλ− and
uλ− are three ordered τλ−-equilibria, satisfying the conditions of Theorem 2.9. Since
all its hypotheses are fulfilled, this result shows that

∫
Ω
hx(ω, uλ−(ω)) dm < 0 and∫

Ω
hx(ω,mλ−(ω)) dm > 0, as asserted in (a). To check the “only if” in (b), we assume

that m({ω ∈ Ω | mλ−(ω) = uλ−(ω)}) = 1 holds, observe that bλ− = mλ− = uλ−

m-a.e for any τλ−-equilibrium bλ− with graph in Kλ− , and apply Theorem 1.36(i).
The “if” part in (b) follows from Theorem 1.36(ii), wich precludes (a).

(ii) According to Theorems 2.9 and 1.36(i), Aλ− concentrates at most three
ergodic measures projecting onto m. Since Theorem 1.36(ii) shows that Ml

λ−
con-

centrates one, the four τλ−-equilibria mλ− ≤ lM ≤ uM ≤ uλ− can define at most
two (by (1.10)), which ensures the first assertion in (ii). Now, let (Ω, σ) be uniquely
ergodic. For contradiction, we assume that mλ− ̸= lM m-a.e., which ensures that
lM = uM = uλ− m-a.e.: otherwise Theorem 1.36(ii) would provide more than three
elements of Merg(Aλ− , τλ−) projecting onto m. Reasoning as in (i), we deduce from∫
Ω
hx(ω, uλ−(ω)) dm < 0 (which holds since (a) holds) and from Theorem 1.36 that

M has a unique Lyapunov exponent, which is strictly negative. This and Theorem
1.40 contadict the nonhyperbolicity of M ensured by Theorem 3.8(ii). This means
that mλ− = lM m-a.e., and similar arguments show that uM = uλ− m-a.e..

The next result provides two alternative hypotheses to get the bifurcation dia-
gram of Theorem 3.8.
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Theorem 3.10. Let (Ω, σ) be minimal. Let h : Ω × R → R satisfy d1, d2λx, d3
and d4. Assume that there exists ξ ∈ R such that the flow τξ induced by (3.5)ξ
admits exactly two different minimal sets M1

ξ < M2
ξ with M1

ξ (resp. M2
ξ) hyperbolic.

Then, the bifurcation diagram of (3.5) is that described by Theorem 3.8, with λ− = ξ
(resp. λ+ = ξ). In particular, M1

ξ = {lξ} (resp. M2
ξ = {uξ}).

Proof. We reason in the case that the lower τξ-minimal set, M1
ξ , is hyperbolic.

Proposition 2.17(ii) ensures that M1
ξ is the graph of lξ. Theorem 1.39 guarantees

the existence of an attractive hyperbolic τλ0-copy of the base M1
λ0

strictly below
M2

ξ for a λ0 > ξ close enough. Recall that uλ is strictly increasing with respect to
λ: see Proposition 3.5(i). Recall also that the upper minimal set (which is M2

ξ for
λ = ξ) is defined from uξ via (1.9) (see Proposition 2.17(i)), and that the sections of
M2

ξ and the upper τλ0-minimal set Mu
λ0

reduce to a point for the residual set R ⊂ Ω
of common continuity points of uξ and uλ0 . Let us take (ω, x) ∈ M2

ξ . Then, the
τλ0-orbit of (ω, x) is above M1

λ0
, and vλ0(t, ω, x) < vξ(t, ω, x) ≤ uξ(ω·t) for all t < 0.

Hence, the α-limit set for τλ0 of (ω, x) exists and contains a minimal set N . We
look for (ω̄, x̄) ∈ N with ω̄ ∈ R, and write (ω̄, x̄) = limn→∞(ω·tn, vλ0(tn, ω, x)) for
(tn) ↓ −∞. Then x̄ ≤ uξ(ω̄) < uλ0(ω̄) and hence N < Mu

λ0
. Since Corollary 1.58(i)

ensures that N cannot be M1
λ0
, we conclude that there are three τλ0-minimal sets:

all the hypotheses of Theorem 3.8 hold.

Although the next result is stated for τ0 for the sake of simplicity, it can be
applied for any value of the parameter λ ∈ R whenever the hypothesis d2λ holds.

Theorem 3.11. Let (Ω, σ) be minimal. Let h : Ω× R → R satisfy d1, d2, d3 and
d4. Assume that the flow τ0 defined by (3.5)0 admits at least two minimal sets M1

and M2. Then,

(i) if Lyap(M1) ⊂ [0,∞), then M2 is hyperbolic attractive.

(ii) If either Lyap(M1) or Lyap(M2) reduces to a point, then either M1 or M2

is hyperbolic attractive.

(iii) If (Ω, σ) is uniquely ergodic, then either M1 or M2 is hyperbolic attractive.

Proof. (i) We will prove that supLyap(M2) < 0, since in this case Theorem 1.40
ensures that M2 is hyperbolic attractive. Theorem 1.36(iii) ensures that there
exist m ∈ Merg(Ω, σ) and an m-measurable τ0-equilibrium b2 : Ω → R with graph
contained inM2 such that supLyap(M2) =

∫
Ω
hx(ω, b2(ω)) dm. Let b1 be the upper

τ0-equilibrium of M1. Theorem 1.36(ii) shows that
∫
Ω
hx(ω, b1(ω)) dm ∈ Lyap(M1),

and hence, by hypothesis,
∫
Ω
hx(ω, b1(ω)) dm ≥ 0. Conditions d3 and d4 allow us

to apply the second assertion in Theorem 2.15 to conclude that supLyap(M2) < 0,
as asserted.

(ii) Suppose without loss of generality that Lyap(M1) = {a} with a ∈ R. If
a < 0, then Theorem 1.40 ensures that it is hyperbolic attractive. If not, then
{a} ⊂ [0,∞), so (i) proves that M2 is hyperbolic attractive.

(iii) If M1 is not an attractive hyperbolic τ0-minimal set, then Theorem 1.40
ensures that supLyap(M1) ≥ 0. If Merg(Ω, σ) = {m}, Theorem 1.36(iii) ensures
that, for i ∈ {1, 2}, sup Lyap(Mi) =

∫
Ω
hx(ω, bi(ω)) dm for an m-measurable τ0-

equilibrium bi : Ω → R with graph contained in Mi. As in (i), Theorem 2.15 allows
us to conclude that supLyap(M2) < 0, and Theorem 1.40 completes the proof.
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Remark 3.12. Note that Proposition 1.42 shows that the statements of Theorem
3.11 remain valid if we replace Lyap(Mi) for spMi

(hx) for i ∈ {1, 2}.

The “simplest” global bifurcation diagram of minimal sets (see Figure 3.2) occurs
when the flow τλ admits only one minimal set for every value of the parameter λ ∈ R.
In other words, when there are no bifurcation values, at least from the point of view
of the number of τλ-minimal sets. The next two results analyze this situation. Recall
that the τλ-global attractor Aλ is pinched if at least one of its sections is a singleton
(see Definition 1.27). The maps lλ and uλ in the statement are the semicontinuous
ones provided by (3.6)λ.

Theorem 3.13. Let (Ω, σ) be minimal. Let h ∈ C0,1(Ω×R,R) satisfy d2λ. Assume
that (3.5)λ has only one τλ-minimal set for all λ ∈ R. Then, Aλ is pinched for all
λ ∈ R, and Aλ < Aξ (i.e., uλ < lξ) if λ < ξ.

Proof. Let λ ∈ R be fixed. According to Proposition 2.17(i), the unique τλ-minimal
setMλ can be defined by (1.9) from lλ and from uλ, and (Mλ)ω = {lλ(ω)} = {uλ(ω)}
at any point ω in the residual set Rλ ⊆ Ω of common continuity points of lλ and
uλ. Hence, these maps coincide on Rλ, so Aλ is pinched.

Now, let λ < ξ. Proposition 3.4 shows that the semicontinuous maps lλ and uλ are
strong τξ-subequilibria, and we have just checked that they coincide at the residual
set Rλ. So, Proposition 1.25 provides e > 0 and s∗ > 0 such that uλ(ω) + e <
vξ(s∗, ω·(−s∗), lλ(ω·(−s∗))) < vξ(s∗, ω·(−s∗), lξ(ω·(−s∗))) = lξ(ω) for all ω ∈ Ω.
Here, we have used that lλ(ω) < lξ(ω) for all ω ∈ Ω (see Proposition 3.5(i)) and,
once more, the monotonicity of the flow. The proof is complete.

Theorem 3.14 (One minimal bifurcation diagram). Let (Ω, σ) be minimal. Let
h : Ω×R → R satisfy d1, d2λ and d3. Assume that (3.5)λ has only one τλ-minimal
set Mλ for all λ ∈ R. Then,

(i) for λ ∈ R, if Mλ is hyperbolic, then it is hyperbolic attractive and Aλ = Mλ.

(ii) If (Ω, σ) is uniquely ergodic (resp. finitely ergodic), then there exists at most
a value (resp. a finite number of values) of the parameter at which the τλ-
minimal set is nonhyperbolic. So, there exists at most a value (resp. a finite
number of values) of discontinuous bifurcation of attractors.

(iii) If there exists λ0 ∈ R such that the dynamical spectrum of hx on Aλ0 is {0},
then λ0 is the only value of the parameter at which the minimal set is nonhy-
perbolic.

Proof. (i) Proposition 2.17(i) and (ii) ensure that Mλ is attractive if it is hyperbolic.
In this case, Corollary 1.58(iii) proves that Aλ = Mλ.

(ii) Assume that Mλi
is a nonhyperbolic τλi

-minimal set for i ∈ {1, 2}, with
λ1 < λ2. Theorems 1.40 and 1.36(iii) ensure the existence of mi ∈ Merg(Ω, σ)
and an mi-measurable map bi : Ω → R with graph contained in Mλi

such that∫
Ω
hx(ω, bi(ω)) dmi ≥ 0 for i ∈ {1, 2}. Theorem 3.13 ensures that Aλ1 < Aλ2 ,

and hence b1(ω) < b2(ω) for all ω ∈ Ω. Consequently, since
∫
Ω
hx(ω, b1(ω)) dm1 +∫

Ω
hx(ω, b2(ω)) dm2 ≥ 0, Proposition 3.7 ensures that m1 ̸= m2. Therefore, the

number of parameter values λ for which the minimal set is nonhyperbolic is less
than or equal to the number of distinct ergodic measures in Merg(Ω, σ), so the first
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assertion in (ii) holds. The second one is a consequence of Proposition 3.6, point (i)
and Theorem 1.39.

(iii) Proposition 1.42 ensures that the only τλ0-minimal setMλ0 is nonhyperbolic.
Let λ > λ0 (resp. λ < λ0) be fixed and let Mλ be the only τλ-minimal set. Theorem
1.36(iii) provides m ∈ Merg(Ω, σ) and an m-measurable τλ-equilibrium b : Ω → R
with graph contained in Mλ such that supLyap(Mλ) =

∫
Ω
hx(ω, b(ω)) dm. Since

Theorem 1.36(ii) and (iii) ensure that
∫
Ω
hx(ω, uMλ0

(ω)) dm = 0, where uMλ0
is

the upper τλ0-equilibrium of Mλ0 , and Theorem 3.13 ensures that uMλ0
< b (resp.

uMλ0
> b), Proposition 3.7 ensures that supLyap(Mλ) < 0. Hence, Theorem 1.40

concludes the proof.

Figure 3.2 depicts the “reasonably simple” variation of Aλ with respect to λ
under the hypotheses of Theorem 3.14(iii) and in the uniquely ergodic case of (ii).

Figure 3.2: Evolution of the attractor Aλ for (3.5) in the cases of a unique value λ0 of nonhyper-
bolicity (of Mλ0

) described in Theorem 3.14. See Figure 3.1 to understand the meaning of the
different elements.

Theorem 3.15. Let (Ω, σ) be minimal and uniquely ergodic. Let h : Ω × R → R
satisfy d1, d2λx, d3 and d4. Then, the bifurcation diagrams of Theorems 3.8 and
3.14(ii) exhaust all the possibilities of (3.5).

Proof. If there exist λ0 ∈ R such that τλ0 admits three τλ0-minimal sets, then the
bifurcation diagram of Theorem 3.8 appears. If there exists ξ ∈ R such that τξ
admits exactly two τξ-minimal sets, then Theorem 3.11(iii) ensures that at least one
of them is hyperbolic attractive. If both of them are hyperbolic attractive, then
Proposition 2.14(ii) ensures that there are three τξ-minimal sets, a contradiction.
So, we are in the framework of Theorem 3.10, and hence the bifurcation diagram of
Theorem 3.8 appears. In other case, there is a unique minimal set for all the values
of the parameter, so the bifurcation diagram of Theorem 3.14(ii) takes place.

The last result of this section is a local bifurcation theorem. Following the
ideas of Remark 2.12, the properties of hypotheses d3 and d4 are only required
on certain compact interval J ⊂ R such that Ω × J contains two τλ-minimal sets
(again, for λ = 0 in the statement for simplicity). Three different possibilities for
these τλ-minimal sets ensure the existence of at least a local saddle-node bifurcation
of τλ-minimal sets.

Theorem 3.16 (Local saddle-node bifurcations). Let (Ω, σ) be minimal. Let J ⊂ R
be a compact interval and let h : Ω× R → R satisfy d1 and

d3J m
(
{ω ∈ Ω |x 7→ hx(ω, x) is concave on J }

)
= 1 for all m ∈ Merg(Ω, σ),
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d4J m
(
{ω ∈ Ω |x 7→ hx(ω, x) is strictly concave on J }

)
> 0 for allm ∈ Merg(Ω, σ).

Assume that the flow τ0 defined by (3.5)0 admits two minimal sets M1 < M2

contained on Ω× J . Then,

(i) if M1 is hyperbolic attractive or M2 is hyperbolic repulsive, then there exists
λ+ > 0 such that (3.5) exhibits a local saddle-node bifurcation of minimal sets
at λ+ (analogous to that occurring at λ+ in Theorem 3.8).

(ii) If M2 is hyperbolic attractive or M1 is hyperbolic repulsive, then there exists
λ− < 0 such that (3.5) exhibits a local saddle-node bifurcation of minimal sets
at λ− (analogous to that occurring at λ− in Theorem 3.8).

(iii) If both M1 and M2 are hyperbolic attractive, then there exists an intermediate
repulsive hyperbolic minimal set M, and two local saddle-node bifurcations of
minimal sets take place at λ− and λ+, with λ− < 0 < λ+ (analogous to these
occurring at λ− and λ+ in Theorem 3.8).

Proof. Let J = [a, b]. We define h̃ : Ω × R → R outside Ω × J as in Remark 2.12.

It is easy to check that h̃ satisfies d1, d2λ, d3 and d4. We consider the parametric
family of differential equations

x′ = h̃(ω·t, x) + λ , ω ∈ Ω ,

and the corresponding local skewproduct flow τ̃λ for each value of the parameter.
So, the τ̃λ-minimal sets contained in Ω× J are also τλ-minimal sets (the flow τλ is
given by h + λ) and vice versa. Hence, a local saddle-node bifurcation of minimal
sets (lsnb for short) for τ̃λ at some λ0 ∈ R taking place on Ω × intJ ensures an
lsnb for τλ at λ0: we will look for bifurcations of τ̃λ. Since, given a τλ-minimal (or
equivalently τ̃λ-minimal) set M ⊆ Ω × J , we have Minv(M, τ) = Minv(M, τ̃) and

h(ω, x) = h̃(ω, x) for all (ω, x) ∈ M, the dynamical spectrum of hx on M coincides

with that of h̃x on M. Therefore, Proposition 1.42 ensures that M is hyperbolic
attractive (resp. repulsive) for τλ if and only if it is so for τ̃λ.

Assume that τ̃0 admits three minimal sets N1 < N2 < N3 (so they are hyperbolic
copies of the base {b1} < {b2} < {b3}, as stated by Theorem 2.11). Theorem 3.8
provides an lsnb at λ− < 0 on the open band

⋃
ω∈Ω

(
{ω} × (b2(ω), b3(ω))

)
⊂ Ω×R

delimited by N2 and N3, as well as an lsnb at λ+ > 0 on the open band delimited
by N1 and N2. Under the hypotheses of (iii), Proposition 2.14(ii) and Theorem 2.11
provide a repulsive hyperbolic τ̃0-minimal set M with M1 < M < M2, and hence
we have two lsnb on Ω × intJ at λ− < 0 and λ+ > 0. On the other hand, if M1

(resp. M2) is hyperbolic repulsive, Proposition 2.14(i) provides a τ̃0-minimal set M
(possibly not contained in Ω × J ) with M < M1 < M2 (resp. M1 < M2 < M).
So, Theorem 3.8 ensures the existence of λ− < 0 (resp. λ+ > 0) such that a collision
of minimal sets occurs as λ ↓ λ− (resp. as λ ↑ λ+) in the open region of Ω × R
bounded by M1 and M2, which is contained in Ω× intJ . Hence, we have at least
an lsnb on Ω × intJ at λ− < 0 (resp. λ+ > 0). If M1 (resp. M2) is hyperbolic
attractive but M2 (resp. M1) is nonhyperbolic, Theorems 3.10 and 3.8 show that
τ̃λ has an lsnb on Ω × intJ at λ+ > 0 (resp. λ− < 0). These properties prove (i)
and (ii).
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3.3 Bifurcations of x′ = h(ω·t, x) + λx

This section copes with the following bifurcation problem:

x′ = h(ω·t, x) + λx , ω ∈ Ω , (3.9)

whose induced skewproduct flow is represented by τλ, with τλ(ω, x) = (ω·t, vλ(t, ω, x)).
We work under the fundamental assumption

d5 h(ω, 0) = 0 for all ω ∈ Ω.

Hence, M0 = Ω× {0} is always a τλ-copy of the base for every λ ∈ R and, if (Ω, σ)
is minimal, as in most of the results of this section, then M0 is a τλ-minimal set
for every λ ∈ R. Recall that Proposition 3.3(ii) ensures that (ω, x) 7→ h(ω, x) + λx
satisfies d1, d2, d3, d4 and d5 for all λ ∈ R if (and only if) h satisfies d1, d2λx, d3,
d4 and d5. As in the previous section, in this case, if (Ω, σ) is minimal, Remark 2.7
and Proposition 3.3(iv) ensure that limx→±∞ hx(ω, x) = −∞ uniformly on Ω.

The next result describes some useful consequences of d5.

Proposition 3.17. Let h ∈ C0,1(Ω× R,R) satisfy d5. Then,

(i) any strictly positive (resp. negative) global upper solution of (3.9)λ is a strict
global upper solution of (3.9)ξ whenever ξ < λ (resp. λ < ξ). In partic-
ular, any strictly positive (resp. negative) equilibrium for (3.9)λ is a strong
superequilibrium for (3.9)ξ whenever ξ < λ (resp. λ < ξ).

(ii) Any strictly positive (resp. negative) global lower solution of (3.9)λ is a strict
global lower solution of (3.9)ξ whenever λ < ξ (resp. ξ < λ). In particular,
any strictly positive (resp. negative) equilibrium for (3.9)λ is a strong subequi-
librium for (3.9)ξ whenever λ < ξ (resp. ξ < λ).

Proof. The same arguments of the proof of Propostion 3.4 hold in this case, taking
into account that the increasing or decreasing character of λ 7→ λ b(ω) depends on
the halfplane on which b is placed.

Theorem 2.13 proves the existence of the global attractor Aλ of (3.9)λ if h ∈
C0,1(Ω× R,R) satisfies d2λx, since Proposition 3.3(ii) ensures that all the required
hypotheses hold; and it explains part of its properties. In the line of Proposition
3.5, the next result analyzes the variation of Aλ with respect to λ. We remark that,
within Section 3.3, Aλ, τλ, vλ(t, ω, x), lλ and uλ refer to the dynamical elements of
(3.9)λ, not of (3.5)λ.

Proposition 3.18. Let h ∈ C0,1(Ω× R,R) satisfy d2λx and d5, and let

Aλ =
⋃
ω∈Ω

(
{ω} × [lλ(ω), uλ(ω)]

)
be the global attractor for the skewproduct flow τλ induced by (3.9)λ. Then,

(i) lλ(ω) ≤ 0 ≤ uλ(ω) for every ω ∈ Ω and λ ∈ R.

(ii) For every ω ∈ Ω, the maps λ 7→ lλ(ω) and λ 7→ uλ(ω) are respectively nonin-
creasing and nondecreasing on R and both are right-continuous. Moreover, if
lλ0(ω0) < 0 (resp. uλ0(ω0) > 0) for some λ0 ∈ R and ω0 ∈ Ω, then lλ2(ω0) <
lλ0(ω0) < lλ1(ω0) for all λ1 < λ0 < λ2 (resp. uλ1(ω0) < uλ0(ω0) < uλ2(ω0)).
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(iii) limλ→∞ lλ(ω) = −∞ and limλ→∞ uλ(ω) = ∞ uniformly on Ω. In particular,
if (Ω, σ) is minimal, then τλ admits at least three minimal sets for λ large
enough.

(iv) There exists λ0 ∈ R such that Aλ = M0 = Ω× {0} for every λ < λ0 and it is
an attractive hyperbolic τλ-copy of the base.

Proof. (i) It follows directly from M0 = Ω× {0} ⊆ Aλ, in turn ensured by d5.

(ii) Let λ0 < λ2. Since uλ0(ω) ≥ 0 for all ω ∈ Ω, u′λ0
(ω·t) = h(ω·t, uλ0(ω·t)) +

λ0 uλ0(ω·t) ≤ h(ω·t, uλ0(ω·t)) + λ2 uλ0(ω·t) for all ω ∈ Ω and t ∈ R, and hence
Theorem 2.13(v) proves that uλ0(ω) ≤ uλ2(ω) for all ω ∈ Ω. So, λ 7→ uλ(ω) is
nondecreasing for all ω ∈ Ω. If uλ0(ω0) > 0 for some ω0 ∈ Ω, then uλ0(ω0·t) > 0
for all t ∈ R. Hence, u′λ0

(ω0·t) < h(ω0·t, uλ0(ω0·t)) + λ2 uλ0(ω0·t) for all t ∈ R, so
Theorem 2.13(v) ensures that uλ0(ω0) < uλ2(ω0). Given λ1 < λ0, if, in addition,
uλ1(ω0) = 0, then uλ1(ω0) < uλ0(ω0); and if uλ1(ω0) > 0, then the previous argument
proves that u′λ1

(ω0·t) < h(ω0·t, uλ1(ω0·t)) + λ0 uλ1(ω0·t) for all t ∈ R, so uλ1(ω0) <
uλ0(ω0). The case of lλ is analogous, and the assertion on right-continuity follows
from the arguments used to prove Proposition 3.5(i).

(iii) For each ρ > 0, we take λρ > − inf{h(ω, ρ)/ρ | ω ∈ Ω}. Then, h(ω, ρ) +
λρ ρ > 0 for all ω ∈ Ω and hence h(ω, ρ) + λ ρ > 0 for all λ ≥ λρ and ω ∈ Ω.
Then, Theorem 2.13(v) ensures that ρ < uλ(ω) for all λ ≥ λρ and ω ∈ Ω, that is,
limλ→∞ uλ(ω) = ∞ uniformly on Ω. The proof for lλ is symmetrical. We have also
checked that the τλ-minimal set defined from uλ by (1.9) is strictly above M0 if
λ ≥ λρ. Similarly, that defined from lλ by (1.9) is strictly below M0 if λ is large
enough. These facts prove the second assertion in (iii).

(iv) Note that (ii) ensures that Aλ ⊆ Aξ if λ < ξ. Let us fix ξ ∈ R, take
r > 0 such that Aξ ⊆ Ω× [−r, r] and define λ0 = min{ξ, − sup{hx(ω, x) | (ω, x) ∈
Ω × [−r, r]}}. Then, hx(ω, x) + λ < 0 for all λ < λ0 and (ω, x) ∈ Ω × [−r, r], so
Theorem 1.36 ensures that every Lyapunov exponent of Aλ is strictly negative if
λ < λ0. Theorem 2.13(vii) guarantees that Aλ is an attractive hyperbolic τλ-copy
of the base if λ < λ0, so it coincides with M0.

The results of Proposition 3.6 also hold for the family of global attractors of
(3.9), with an analogous proof.

3.3.1 Bifurcation diagrams with minimal base flow

In this section, assuming that the base flow (Ω, σ) is minimal, all the possible bifurca-
tion diagrams of τλ-minimal sets for (3.9) are described. An important role in all the
bifurcation diagrams is played by the dynamical spectrum spM0

(hx) = [−λ+,−λ−]
of hx : M0 → R, whereM0 = Ω×{0} (see Definition 1.13): it is directly related with
the hyperbolic or nonhyperbolic character of M0, and it determines the endpoints
λ− and λ+ of an interval of values of the parameter on which most of the bifur-
cations take place. In particular, when λ− < λ+, bifurcations may arise that have
no autonomous analog: it is what we will call generalized transcritical bifurcations
and generalized pitchfork bifurcations. Throughout Sections 3.3.1 and 3.3.2, special
attention will be paid to generalized pitchfork bifurcations, since the construction
of some of them is nontrivial.
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The bifurcation diagram of (3.9) can be described depending on the relative
position of λ− ≤ λ+ and the following two parameters:

µ− = inf{λ : ∀ ξ > λ the graph of lξ is a hyperb. minimal set Ml
ξ < M0} ,

µ+ = inf{λ : ∀ ξ > λ the graph of uξ is a hyperb. minimal set Mu
ξ > M0} .

(3.10)

The following proposition gives some information which is common to the three
possible bifurcation diagrams of (3.9).

Proposition 3.19. Let (Ω, σ) be minimal. Let h : Ω×R → R satisfy d1, d2λx, d3,
d4 and d5. Let [−λ+,−λ−] be the dynamical spectrum of hx on M0 = Ω × {0},
with λ− ≤ λ+. Then,

(i) [−λ+,−λ−] = {
∫
Ω
hx(ω, 0) dm | m ∈ Minv(Ω, σ)}, and there exist m−,m+ ∈

Merg(Ω, σ) such that −λ− =
∫
Ω
hx(ω, 0) dm− and −λ+ =

∫
Ω
hx(ω, 0) dm+.

(ii) The τλ-minimal set M0 is hyperbolic attractive if λ < λ−, nonhyperbolic if
λ ∈ [λ−, λ+] and hyperbolic repulsive if λ > λ+.

(iii) τλ admits three different hyperbolic minimal sets Ml
λ < M0 < Mu

λ for λ >
λ+, where Ml

λ and Mu
λ are attractive and given by the graphs of lλ and uλ

respectively.

(iv) µ−, µ+ ∈ (−∞, λ+], and µ− = λ+ and/or µ+ = λ+. Moreover, µ− = λ+ (resp.
µ+ = λ+) if and only if lλ (resp. uλ) collides with 0 on a residual σ-invariant
subset of Ω as λ ↓ λ+. In this case, there are no τλ-minimal sets below M0

(resp. above M0) for any λ ≤ λ+.

(v) If λ− < λ+, then neither lλ nor uλ are identically zero for λ ∈ (λ−, λ+].

Proof. (i) It follows from Theorem 1.36(i) and (iii).

(ii) The dynamical spectrum of hx + λ on M0 is [−λ+ + λ,−λ− + λ]. Then,
[−λ+ + λ,−λ− + λ] ⊂ (0,∞) if λ > λ+, [−λ+ + λ,−λ− + λ] ⊂ (−∞, 0) if λ < λ−
and 0 ∈ [−λ+ + λ,−λ− + λ] otherwise. Hence, Proposition 1.42 ensures the stated
hyperbolicity properties of M0.

(iii) For λ > λ+, since M0 is hyperbolic repulsive, Proposition 2.14(i) ensures
that there exist three τλ-minimal sets Ml

λ < M0 < Mu
λ, and Theorem 2.11 ensures

that Ml
λ and Mu

λ are hyperbolic attractive and that Ml
λ = {lλ} and Mu

λ = {uλ}.
(iv) Let us check that µ−, µ+ ∈ (−∞, λ+]. From (iii) and the definition of µ−

and µ+ in (3.10), it follows that µ+, µ− ≤ λ+. Proposition 3.18(iv) ensures that µ+

and µ− are finite, and hence µ−, µ+ ∈ (−∞, λ+]. Now, let us check that µ− = λ+

and/or µ+ = λ+. For contradiction, assume that µ− < λ+ and µ+ < λ+. Then,
Ml

λ+
< M0 < Mu

λ+
are three τλ+-minimal sets and Theorem 2.11 contradicts the

nonhyperbolic character of M0. So, µ− = λ+ and/or µ+ = λ+.
Let us check now that µ+ = λ+ if and only if uλ collides with 0 on a residual σ-

invariant subset of Ω as λ ↓ λ+. Assume that µ+ = λ+, and assume for contradiction
that uλ+(ω) > 0 for all ω ∈ Ω. Then, Proposition 1.32 ensures that there exists
a τλ+-minimal set M0 < Mu

λ+
. Since the dynamical spectrum [0, λ+ − λ−] of

hx + λ+ on M0 is contained in [0,∞), Theorem 3.11(i) and Remark 3.12 ensure
that Mu

λ+
is hyperbolic attractive, and Proposition 2.17 shows that Mu

λ+
= {uλ+}.
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Hence, Mu
λ+

has an attractive hyperbolic continuation Mu
λ for λ < λ+ close enough

(see Theorem 1.39). If λ− < λ+, then the last assertion in Theorem 3.10 shows
that Mu

λ = {uλ} for λ < λ+ close enough; if λ− = λ+, then Proposition 2.14(ii)
applied to the attractive hyperbolic τλ-minimal sets M0 < Mu

λ, for λ < λ+ close
enough, ensures the existence of another τλ-minimal set Nλ, and Theorem 2.11
guarantees that M0 < Nλ < Mu

λ and Mu
λ = {uλ}. That is, in both cases, {uλ} is

an attractive hyperbolic τλ-copy of the base for λ < λ+ close enough, which leads
us to the contradiction µ+ < λ+. Hence, there exists ω0 ∈ Ω such that uλ+(ω0) = 0.
Proposition 1.34 ensures that uλ+(ω) = 0 on the residual set of the continuity points
of uλ+ , that is, uλ collide with 0 on a residual σ-invariant set as λ ↓ λ+. Conversely,
if µ+ < λ+, then it is clear that uλ does not collide with 0 on a residual σ-invariant
subset of Ω as λ ↓ λ+ since limλ↓λ+ uλ(ω) = uλ+(ω) whose graph is a hyperbolic
τλ+-minimal set with {uλ+} > M0. This proves the equivalence stated in (iv). Now,
with µ+ = λ+, the monotonicity in Proposition 3.18(ii) and Proposition 1.34 ensure
that uλ(ω) = 0 on the residual set of the continuity points of uλ for all λ ≤ λ+, and
hence (1.9) applied to uλ provides M0 for all λ ≤ λ+. Then, Proposition 2.17(i)
proves the last assertion in (iv). The proof in the case of µ− and lλ is analogous.

(v) Given λ ∈ (λ−, λ+], since (i) ensures that
∫
Ω
(hx(ω, 0) + λ) dm− = λ −

λ− > 0 and Proposition 2.16 ensures that
∫
Ω
(hx(ω, lλ(ω)) + λ) dm− ≤ 0 and∫

Ω
(hx(ω, uλ(ω)) + λ) dm− ≤ 0, if we assume that lλ or uλ is identically 0, then

we reach a contradiction.

The next three theorems describe the three possible bifurcation diagrams of (3.9),
which are depicted in Figures 3.3, 3.4 and 3.5. Moreover, Theorem 3.24 ensures that
they exhaust all the possibilities of bifurcation diagrams.

Theorem 3.20 (Global classical pitchfork bifurcation). Let (Ω, σ) be minimal. Let
h : Ω× R → R satisfy d1, d2λx, d3, d4 and d5. Let [−λ+,−λ−] be the dynamical
spectrum of hx on M0 = Ω× {0}, with λ− ≤ λ+. In addition to the conclusions of
Proposition 3.19, if µ+ = µ− = λ+, then

(i) both lλ and uλ collide with 0 on a residual σ-invariant subset of Ω as λ ↓ λ+.

(ii) M0 is the unique τλ-minimal set if λ ≤ λ+.

(iii) Aλ = M0 if λ < λ−.

That is, a classical pitchfork bifurcation of minimal sets arises around M0 at λ+.

Proof. The equivalences in Proposition 3.19(iv) show (i) and the last assertion in
Proposition 3.19(iv) shows (ii). Since M0 is an attractive hyperbolic τλ-copy of the
base for λ < λ− (see Proposition 3.19(ii)), Corollary 1.58(iii) shows that Aλ = M0

for all λ < λ−.

Theorem 3.21 (Local saddle-node and transcritical bifurcation). Let (Ω, σ) be min-
imal. Let h : Ω × R → R satisfy d1, d2λx, d3, d4 and d5. Let [−λ+,−λ−] be the
dynamical spectrum of hx on M0 = Ω × {0}, with λ− ≤ λ+. In addition to the
conclusions of Proposition 3.19, if µ+ = λ+ and µ− < λ−, then

(i) τλ admits exactly two minimal sets Ml
λ < M0 for λ ∈ [λ−, λ+], where Ml

λ is
hyperbolic attractive and given by the graph of lλ.
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Figure 3.3: The classical pitchfork bifurcation diagrams described in Proposition 3.19 and Theorem
3.20. In the second diagram, the large black points at 0 for λ ∈ (λ−, λ+] represent the fact that
the global attractor Aλ does not reduce to the unique τλ-minimal set M0. This may also be the
situation at λ−. See Figure 3.1 to understand the meaning of the remaining elements.

(ii) τλ admits three hyperbolic minimal sets Ml
λ < Nλ < M0 for λ ∈ (µ−, λ−),

where Ml
λ is attractive and given by the graph of lλ, and Nλ is repulsive and

given by the graph of a continuous map mλ : Ω → R, the map λ 7→ mλ is
strictly increasing on (µ−, λ−), and mλ collides with lλ (resp. with 0) on a
residual σ-invariant set as λ ↓ µ− (resp. λ ↑ λ−).

(iii) τµ− admits exactly two different minimal sets Ml
µ− < M0, where Ml

µ− is
nonhyperbolic.

(iv) Aλ = M0 for λ < µ−.

In particular, µ−, λ− and λ+ are the unique bifurcation points: a local saddle-node
bifurcation of minimal sets occurs around Mµ− at µ−, as well as a discontinuous
bifurcation of attractors; and a classical (resp. generalized) transcritical bifurcation
of minimal sets arises around M0 at λ− (resp. on [λ−, λ+]) if λ− = λ+ (resp.
λ− < λ+).

A global bifurcation diagram which is symmetric to the one described with respect
to the horizontal axis arises if µ− = λ+ and µ+ < λ−.

Proof. (i) Recall that the definition of µ− ensures that Ml
λ = {lλ} is hyperbolic

attractive for λ ∈ (µ−,∞). Proposition 3.19(ii) ensures the nonhyperbolicity of M0

for λ ∈ [λ−, λ+], and then Theorem 2.11 precludes the existence of other τλ-minimal
set apart from M0 and Ml

λ for λ ∈ [λ−, λ+].

(ii)-(iii) Again, Proposition 3.19(ii) and the definition of µ− ensure that M0 and
Ml

λ are hyperbolic attractive for λ ∈ (µ−, λ−), and hence Proposition 2.14(ii) and
Theorem 2.11 ensure the existence of a repulsive hyperbolic minimal set Nλ between
Ml

λ and M0 for λ ∈ (µ−, λ−), given by the graph of a continuous τλ-equilibrium
mλ : Ω → R. Reasoning as the second paragraph of the proof of Theorem 3.8,
but taking into account that in this case the kind of monotonicity depends on the
halfplane in which we are working (and mλ < 0 for λ ∈ (µ−, λ−)), it can be checked
that λ 7→ mλ(ω) is strictly increasing on (µ−, λ−) for all ω ∈ Ω. Consequently,
mλ−(ω) = limλ↑λ− mλ(ω) defines a lower semicontinuous τλ−-equilibrium, since it is
the limit of an increasing family of continuous τλ-equilibria. Since mλ− > mλ >
lλ > lλ− for λ ∈ (µ−, λ−) and M0 and Ml

λ−
are the unique τλ−-minimal sets,
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Proposition 1.32 ensures that the τλ−-minimal set (1.9) provided by mλ− is M0 and
that mλ− vanishes at the residual set of its continuity points.

Combining the previously obtained information, we observe that: the two hy-
perbolic τλ-minimal sets Nλ < M0 for λ < λ− close to λ− collide (on a residual
set subset of Ω) at λ− and the two hyperbolic minimal sets M0 < Mu

λ for λ > λ+

close to λ+ collide (on a residual set subset of Ω) at λ+, giving rise to a unique
nonhyperbolic minimal set M0 on the interval [λ−, λ+]. This is the generalized local
transcritical bifurcation of minimal sets around M0 mentioned in the statement. In
the case of λ− = λ+, it is a classical transcritical bifurcation.

Now, we define mµ−(ω) = limλ↓µ− mλ(ω), which is an upper semicontinuous
τµ−-equilibrium since it is the (bounded from below) limit of a decreasing fam-
ily of continuous τλ-equilibria, and note that mµ−(ω) < 0 for all ω ∈ Ω. Analo-
gously, lµ−(ω) = limλ↓µ− lλ(ω) is a lower semicontinuous τµ−-equilibrium (see Propo-
sition 3.18(ii)). Then, mµ−(ω) ≥ lµ−(ω) for all ω ∈ Ω, since mλ > lλ for λ ∈ (µ−, λ−).
It follows from the definition of µ− and from Theorem 1.39 that the τµ−-minimal set
Ml

µ− determined from lµ− by (1.9) is nonhyperbolic. Since Theorem 2.11 ensures

that there cannot exist any other τµ−-minimal set apart from Ml
µ− < M0 to not

contradict the nonhyperbolic character of Ml
µ− , the fact that mµ− < 0 ensures that

the τµ−-minimal set given by (1.9) for mµ− is Ml
µ− . So, Proposition 1.32 ensures

that mµ− and lµ− coincide at the residual set of their common continuity points,
giving rise to the nonhyperbolic τµ−-minimal set Ml

µ− . That is, M
l
µ− < Nλ < M0

for λ ∈ (µ−, λ−); and Ml
µ− < M0 are the unique τµ−-minimal sets.

(iv) Let λ < µ− and let us check that Aλ = M0. Since M0 is an attractive
hyperbolic τλ-copy of the base, it suffices to check that it is the unique τλ-minimal
set and apply Corollary 1.58(iii). Note first that Proposition 3.19(iv) ensures that
there are no τλ-minimal sets above M0 for λ < µ− < λ− ≤ λ+. Let us take
a τλ-minimal set Nλ ≤ M0 and prove that Nλ = M0. We fix (ω0, x0) ∈ Nλ.
Since lµ− ≤ mµ− are semicontinuous strong τλ-subequilibria (see Proposition 3.17(i))
which coincide at their continuity points, Proposition 1.25 provides s > 0 and e > 0
such that mµ−(ω0)+e < vλ(s, ω0·(−s), lµ−(ω0·(−s))) ≤ vλ(s, ω0·(−s), lλ(ω0·(−s))) =
lλ(ω0) ≤ x0, where the second inequality follows from the monotonicity and from
lµ− < lλ. So, x0 > mµ−(ω) = limλ↓µ− mλ(ω), and hence there exists ξ1 > µ− such
that mξ1(ω0) < x0. We take any ξ ∈ (ξ1, λ−) and apply Proposition 1.26 to the
continuous family of strong τλ-subequilibria mµ with µ ∈ [ξ1, ξ] to conclude that
there exists sξ > 0 such that mξ(ω0·s) ≤ vλ(s, ω0,mξ1(ω0)) < vλ(s, ω0, x0) for all
s ≥ sξ. Since Nλ is the ω-limit set for τλ of (ω0, x0), given any (ω1, x1) ∈ Nλ, there
exists (tn) ↑ ∞ such that ω1 = limn→∞ ω0·tn and x1 = limn→∞ vλ(tn, ω0, x0), and
hence mξ(ω1) = limn→∞ mξ(ω0·tn) ≤ limn→∞ vλ(tn, ω0, x0) = x1. In particular, we
get mλ−(ω1) = limξ↑λ− mξ(ω1) ≤ x1 ≤ 0. Hence, (Nλ)ω = {0} for all the points
ω of the residual set at which mλ− coincides with 0, which yields Nλ = M0. This
completes the proof. Note that a local saddle-node bifurcation of minimal sets occurs
at µ− around Ml

µ− , due to the collision of Ml
λ < Nλ on a residual subset of Ω as

λ ↓ µ−.
Let us check the lower discontinuity of {Aλ} as λ → µ−. We take a sequence

λn ↑ µ− and assume for contradiction the existence of (ωn, xn) ∈ Aλn such that
limn→∞(ωn, xn) = (ω, lµ−(ω)) for a point ω ∈ Ω. Since Aλn = Ω×{0} for all n ∈ N,
xn = 0 for all n ∈ N, leading to lµ−(ω) = 0, a contradiction. The characterization
of [21, Lemma 3.2(2)] shows the asserted lower discontinuity.
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Figure 3.4: Local saddle-node and transcritical bifurcation diagrams described in Proposition 3.19
and Theorem 3.21. The left panel corresponds to λ− = λ+ and the right one to λ− < λ+. The
solid red curves represent the families of attractive hyperbolic solutions of the λ-parametric family
(3.9): lλ for λ ̸= λ0 and uλ for λ /∈ [λ−, λ+]. The blue curve represents the family of repulsive
hyperbolic solutions of (3.9): mλ for λ ∈ (µ−, λ−)∪ (λ+,∞). In both diagrams, as in Figure 3.1, a
large black point with abscissa µ− represents the complex possibilities which arise for the collision
of lλ and mλ as λ ↓ µ−, which is partly explained in the left zoom: see the caption of Figure 3.1.
The situation is analogous for λ−, with the collision of mλ and uλ ≡ 0 as λ ↑ λ−; and for λ+,
with the collision of mλ ≡ 0 and uλ as λ ↓ λ+. In the second diagram the large black points at
0 for λ ∈ (λ−, λ+] represent the fact that uλ is not identically equal to 0. This may also be the
situation at λ−. The hyperbolic minimal sets are given by the graphs of the curves lλ, mλ and
uλ whenever they are hyperbolic. A nonhyperbolic minimal set Ml

µ−
exists for µ−, lying in the

region delimited by the graphs of lµ− and mµ− , and with a possibly highly complex shape. For
λ ∈ [λ−, λ+], M0 is nonhyperbolic. And no more τλ-minimal sets exist for any λ. As in Figure 3.1,
the green-shadowed area represents the global attractor Aλ, and the light grey arrows just try to
depict the attracting and repelling properties of lλ, mλ and uλ.

Theorem 3.22 (Global generalized pitchfork bifurcation). Let (Ω, σ) be minimal.
Let h : Ω×R → R satisfy d1, d2λx, d3, d4 and d5. Let [−λ+,−λ−] be the dynamical
spectrum of hx on M0 = Ω× {0}, with λ− ≤ λ+. In addition to the conclusions of
Proposition 3.19, if µ+ = λ+, λ− < λ+ and µ− ∈ [λ−, λ+), then

(i) τλ-admits two minimal sets Ml
λ < M0 for λ ∈ (µ−, λ+], where Ml

λ is hyper-
bolic attractive and given by the graph of lλ.

(ii) M0 is the unique τλ-minimal set if λ < µ−.

(iii) Aλ = M0 if λ < λ−.

That is, a generalized pitchfork bifurcation of minimal sets around M0 on [λ−, λ+]
arises, with µ−, λ− and λ+ as bifurcation points: the number of τλ-minimal sets
changes at µ− and λ+ and its hyperbolic structure changes at λ−.

A global bifurcation diagram which is symmetric to the one described with respect
to the horizontal axis arises if µ− = λ+, λ− < λ+ and µ+ ∈ [λ−, λ+).

The following technical lemma is needed in our proof of the theorem.

Lemma 3.23. Let (Ω, σ) be minimal. Let h : Ω× R → R satisfy d1, d2λx, d3, d4
and d5. Assume that the flow τ0 defined by (3.5)0 admits exactly two minimal sets
Ml < M0 = Ω×{0} (resp. Mu > M0 = Ω×{0}), with Ml (resp. Mu) hyperbolic
attractive. Assume also that

∫
Ω
hx(ω, 0) dm ̸= 0 for an m ∈ Merg(Ω, σ). Then,
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Ml = {l0} (resp. Mu = {u0}),
∫
Ω
hx(ω, u0(ω)) dm < 0 (resp.

∫
Ω
hx(ω, l0(ω)) dm <

0), and

m0(ω) = sup{x ∈ R : lim
t→∞

(v0(t, ω, x)− l0(ω·t)) = 0} ∈ (l0(ω), 0]

(resp. m0(ω) = inf{x ∈ R : lim
t→∞

(v0(t, ω, x)− u0(ω·t)) = 0} ∈ [0, u0(ω))) ,

defines a lower (resp. upper) semicontinuous τ0-equilibrium which vanishes at the
residual set of its continuity points and such that

∫
Ω
hx(ω,m0(ω)) dm > 0.

Proof. Proposition 2.14(ii) ensures the nonhyperbolicity of M0. We reason in the
case of Ml < M0. Theorem 3.10 ensures that the global ξ-bifurcation diagram for

x′ = h(ω·t, x) + ξ (3.11)

is described by Theorem 3.8 and that ξ− = 0 is the lower bifurcation value. In partic-
ular, Ml = {l0} and it is hyperbolic attractive. In addition, since g 7→

∫
Ω
g(ω, 0) dm

defines a τ -ergodic measure on any τ -invariant compact set containing M0 (see
Theorem 1.36(ii)), our hypotheses preclude the situation (b) of Proposition 3.9.
Hence, situation (a) holds, and this means that

∫
Ω
hx(ω, u0(ω)) dm < 0 and that∫

Ω
hx(ω, n0(ω)) dm > 0, where n0(ω) ≤ 0 is the lower semicontinuous equilibrium

for (3.11)0 (i.e., the τ0-equilibrium) given by the limit as ξ ↓ 0 of the maps nξ < 0
determining the repulsive hyperbolic copies of the base for (3.11)ξ, which satisfies
n0(ω) > l0(ω) for all ω ∈ Ω. Proposition 1.32 ensures that n0(ω) = 0 at the residual
set of its continuity points.

It remains to check that n0 coincides with the map m0 of the statement. Clearly,
n0 ≥ m0. So, it suffices to take x < n0(ω0) = limξ↓0 nξ(ω0) and check that
limt→∞(v0(t, ω, x)− l0(ω·t)) = 0. We take ξ > 0 such that x < nξ(ω0). Let v̄ξ(t, ω, x)
represent the cocycle of solutions of (3.11)ξ. Then, v0(t, ω0, x) = v̄0(t, ω0, x) <
v̄ξ(t, ω0, x) < v̄ξ(t, ω0, nξ(ω0)) = nξ(ω0·t) for t > 0, and hence the ω-limit set for τ0
of (ω0, x) does not contain M0. Hence, it contains {l0}. The assertion follows from
the uniform (exponential) stability of {l0}.

Proof of Theorem 3.22. Notice that, if λ ∈ (µ−, λ+], then there exist only two τλ-
minimal sets Ml

λ = {lλ} < M0: otherwise Theorem 2.11 would contradict the
nonhyperbolicity of M0. So, (i) is proved. Our goal will be two prove that, for
all λ < µ−, the τλ-equilibrium lλ vanishes at one of its continuity points. Then,
Proposition 2.17(i) ensures that M0 is the lower τλ-minimal set, which combined
with Proposition 3.19(iv) ensures that M0 is the unique τλ-minimal set, which is
assertion (ii). Finally, Corollary 1.58(iii) will ensure that Aλ = M0 for λ < λ−,
which is assertion (iii).

So, let us check that, for all λ < µ−, the τλ-equilibrium lλ vanishes at some
continuity point. We will check it in two different cases. First, let us assume that
there exists ω0 ∈ Ω such that lµ−(ω0) = 0. The nonincreasing character of λ 7→ lλ(ω)
for all ω ∈ Ω and its non positiveness given by Proposition 3.18(i) and (ii) ensure
that lλ(ω0) = 0 for all λ < µ−, and Proposition 1.34 ensures that ω0 is a continuity
point of lλ for all λ < µ−, as we wanted to see.

So, we work in the case that lµ−(ω) < 0 for all ω ∈ Ω. Then, Proposition 1.32
ensures the existence of a τµ−-minimal set Ml

µ− < M0 described by (1.9) for lµ− .

Notice that Ml
µ− is nonhyperbolic: otherwise the definition of µ− would be con-

tradicted by hyperbolic continuation (see Theorem 1.39) and Proposition 2.17(ii).
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Let us take λ ∈ (µ−, λ+]. Since the dynamical spectrum of hx + λ on M0 is the
nondegenerate interval [−λ++λ,−λ−+λ], Lemma 3.23 (applied to τλ instead of to
τ0) shows that

mλ(ω) = sup
{
x ∈ R

∣∣ lim
t→∞

(vλ(t, ω, x)− lλ(ω·t)) = 0
}

(3.12)

is a lower semicontinuous τλ-equilibrium mλ : Ω → (−∞, 0] which vanishes at its
continuity points, with mλ > lλ. In addition, it ensures that

∫
Ω
(hx(ω,mλ(ω)) +

λ) dm > 0 if
∫
Ω
(hx(ω, 0) + λ) dm < 0 for some m ∈ Merg(Ω, σ). In this case, since

m is ergodic and {ω ∈ Ω | mλ(ω) < 0} is σ-invariant, mλ(ω) < 0 for m-a.e. ω ∈ Ω:
otherwise

∫
Ω
(hx(ω,mλ(ω)) + λ) dm =

∫
Ω
(hx(ω, 0) + λ) dm, a contradiction. Let us

check that the map λ 7→ mλ(ω) is nondecreasing on (µ−, λ+] for all ω ∈ Ω. For
any λ ∈ (µ−, λ+], since Ml

λ is the only τλ-minimal set strictly below M0, (3.12)
guarantees that x < mλ(ω) if and only if Ml

λ = {lλ} is the ω-limit for τλ of
(ω, x). We take µ− < λ1 < λ2 ≤ λ+, ω ∈ Ω and x < mλ1(ω). Then, a standard
comparison argument ensures that vλ2(t, ω, x) < vλ1(t, ω, x) < vλ1(t, ω,mλ1(ω)) =
mλ1(ω·t) for all t > 0, which precludes the possibility of M0 being contained in
the ω-limit set for τλ2 of (ω, x), since limt→∞(vλ1(t, ω, x) − lλ1(ω·t)) = 0. Hence,
x < mλ2(ω), and this proves the nondecreasing character of λ 7→ mλ(ω) for all ω ∈ Ω.
Since lλ+ ≤ lλ < mλ for all λ ∈ (µ−, λ+], mµ−(ω) = limλ↓µ− mλ(ω) defines an m-
measurable τµ−-equilibrium for every m ∈ Merg(Ω, σ). Hence, Theorem 2.13(ii) and
the monotonicity of λ 7→ mλ ensure that lµ−(ω) ≤ mµ−(ω) ≤ mλ(ω) for all ω ∈ Ω if
λ ∈ (µ−, λ+].

Now, let us check that there exists ω0 ∈ Ω such that mµ−(ω0) ≤ ū(ω0), where
ū is the upper τµ−-equilibrium of Ml

µ− (recall (1.7)). Since Ml
µ− is nonhyperbolic,

Theorems 1.40 and 1.36(iii) ensure that there exists m ∈ Merg(Ω, σ) and an m-
measurable τµ−-equilibrium b̄ : Ω → R with graph contained in Ml

µ− such that∫
Ω
(hx(ω, b̄(ω)) + µ−) dm ≥ 0. Theorem 2.15 ensures that

∫
Ω
(hx(ω, 0) + µ−) dm < 0,

so
∫
Ω
(hx(ω, 0) + λ) dm < 0 for λ ≥ µ− close enough. So, as seen in the previous

paragraph, mλ(ω) < 0 for m-a.e. ω ∈ Ω for these values of the parameter, and hence
mµ−(ω) < 0 for m-a.e. ω ∈ Ω. Assume for contradiction that mµ−(ω) > ū(ω) for all
ω ∈ Ω, and hence that mµ−(ω) > b̄(ω) for all ω ∈ Ω. Then, Theorem 2.9 applied to
the τµ−-equilibria 0, mµ− and b̄ ensures that

∫
Ω
(hx(ω, b̄(ω)) + µ−) dm < 0, which is

not the case. So, there exists ω0 ∈ Ω such that mµ−(ω0) ≤ ū(ω0).
Finally, let us fix λ < µ− and check that lλ vanishes at one of its continuity points.

As mentioned before, this completes the proof of the theorem. Note that Proposi-
tion 1.32 ensures that lµ− and ū coincide on the residual set of its common continuity
points. Then, Proposition 3.17(ii) ensures that Proposition 1.25 can be applied to
show the existence of s∗ > 0 such that ū(ω) < vλ(s

∗, ω·(−s∗), lµ−(ω·(−s∗))) ≤ lλ(ω)
for all ω ∈ Ω, where the last inequality follows from the flow monotonicity and
the nonincreasing character of λ 7→ lλ(ω) given by Proposition 3.18(ii). We take
ω0 ∈ Ω with mµ−(ω0) ≤ ū(ω0). Then, limλ↓µ− mλ(ω0) = mµ−(ω0) ≤ ū(ω0) <
lλ(ω0). Therefore, there exists ξ > µ− close enough to get mξ(ω0) < lλ(ω0).
Since ξ > λ, a standard comparison argument and the flow monotonicity show
that mξ(ω0·t) ≤ vλ(t, ω0,mξ(ω0)) < vλ(t, ω0, lλ(ω0)) = lλ(ω0·t) for all t > 0. Let
ω1 be a common continuity point of mξ and lλ. As (Ω, σ) is minimal, there ex-
ists a sequence (tn) ↑ ∞ such that ω0·tn → ω1 as n → ∞. Since mξ vanishes at
ω1, 0 = mξ(ω1) = limn→∞mξ(ω0·tn) ≤ limn→∞ lλ(ω0·tn) = lλ(ω1) ≤ 0. That is,
lλ(ω1) = 0, and the proof is complete.
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Theorem 3.24. Let (Ω, σ) be minimal. Let h : Ω × R → R satisfy d1, d2λx, d3,
d4 and d5. Then, the bifurcation diagrams of Theorems 3.20, 3.21 and 3.22 exhaust
all the possibilities of (3.9). Moreover, the bifurcation diagram of Theorem 3.22
is only possible if λ− < λ+, where [−λ+,−λ−] is the dynamical spectrum of hx on
M0 = Ω× {0}.

Proof. The three theorems exhaust all the possible configurations of the parameters
λ− ≤ λ+ and µ−, µ+ ≤ λ+: global classical pitchfork bifurcation if µ− = µ+ = λ+

(Theorem 3.20); local saddle-node and transcritical bifurcation if either µ+ = λ+ and
µ− < λ−, or µ− = λ+ and µ+ < λ−, which is classical if λ− = λ+ (Theorem 3.21);
and generalized pitchfork bifurcation if λ− < λ+ and either µ+ = λ+ and µ− ∈
[λ−, λ+), or µ− = λ+ and µ+ ∈ [λ−, λ+) (Theorem 3.22).

The diagrams in Figure 3.4 (resp. in
Figure 3.3) depict the two cases of local
saddle-node and transcritical bifurcations
(resp. classical pitchfork bifurcation) de-
scribed in detail in Proposition 3.19 and
Theorem 3.21 (resp. Theorem 3.20) when
the dynamical spectrum of hx on M0 is a
point (the first one) and a band (the sec-
ond one). The diagram in Figure 3.5 de-
picts the case of a generalized pitchfork
bifurcation, described in Theorem 3.22,
which requires the dynamical spectrum of
hx on M0 to be a band (and hence never
happens in the autonomous case, which
is uniquely ergodic). Notice that we have
examples of one, two, and three bifurca-
tion points. In particular, the band case
of local saddle-node and transcritical bi-
furcation diagram exhibits three of these
values.

Figure 3.5: The generalized pitchfork bi-
furcation diagram described in Proposition
3.19 and Theorem 3.22. The possible ex-
istence of one or two nonhyperbolic min-
imal sets at µ− (a result not included in
this document) is depicted by a solid-filled
purple eight. See Figures 3.1, 3.3 and 3.4
to understand the meaning of the remain-
ing elements.

There are simple autonomous examples of classical pitchfork bifurcation (as x′ =
−x3 + λx, with λ± = 0 as bifurcation point) and local saddle-node and transcritical
bifurcation (as x′ = −x3 ± 2x2 + λx, with λ0 = −1 as local saddle-node bifurcation
point and λ± = 0 as local classical transcritical bifurcation point; the two signs
of the second-order term correspond to the two possible sings for the curve mλ of
nonhyperbolic critical points). We will go deeper in this matter in Sections 3.3.2 and
3.4, where we will show that all the possibilities realize for suitable families (3.9).

We complete this subsection by describing a simple situation in which the bifur-
cation diagram for (3.9) is that of Theorem 3.20: a global pitchfork bifurcation.

Proposition 3.25. Let (Ω, σ) be minimal. Let h : Ω×R → R satisfy d1, d2λx, d3
and d5. Let [−λ+,−λ−] be the dynamical spectrum of hx on M0 = Ω × {0}, with
λ− ≤ λ+. Then,

(i) if hxx(ω, 0) ≥ 0 (resp. hxx(ω, 0) ≤ 0) for all ω ∈ Ω, then lλ (resp. uλ) takes the
value 0 at its continuity points for all λ < λ+.
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(ii) If h also satisfies d4 and hxx(ω, 0) = 0 for all ω ∈ Ω, then the bifurcation
diagram is that described in Theorem 3.20.

Proof. (i) Remark 2.7 ensures that x 7→ hx(ω, x) is concave for all ω ∈ Ω, and thus
x 7→ hxx(ω, x) is nonincreasing for all ω ∈ Ω. Consequently, if hxx(ω, 0) ≥ 0, then
hxx(ω, x) ≥ 0 for all x ≤ 0. We assume for contradiction the existence of λ < λ+

such that lλ(ω) < 0 for all ω ∈ Ω. Taylor’s Theorem, d5 and hxx(ω, x) ≥ 0 for all
x ≤ 0 ensure that there exist xω ∈ [lλ(ω), 0] such that

l′λ(ω)

lλ(ω)
=

h(ω, lλ(ω))

lλ(ω)
+ λ = hx(ω, 0) +

lλ(ω)

2
hxx(ω, xω) + λ ≤ hx(ω, 0) + λ ,

and hence Birkhoff’s Ergodic Theorem 1.10 ensures that 0 =
∫
Ω
(l′λ(ω)/lλ(ω)) dm ≤∫

Ω
(hx(ω, 0) + λ) dm for all m ∈ Merg(Ω, σ). So, −λ ≤

∫
Ω
hx(ω, 0) dm for all m ∈

Merg(Ω, σ), contradicting the existence of m+ such that
∫
Ω
hx(ω, 0) dm+ = −λ+ <

−λ (see Proposition 3.19(i)). Hence, there exists ω0 ∈ Ω such that lλ(ω0) = 0 and
Proposition 1.34 proves the claim. The proof for uλ is analogous.

(ii) Property (i) and Proposition 3.19(iv) show that µ− = µ+ = λ+. Hence, the
bifurcation diagram of Theorem 3.20 holds.

3.3.2 Criteria for cubic polynomial equations
with minimal (Ω, σ)

In this section, also with minimal base flow (Ω, σ), we provide several criteria in
cubic polynomials (the simplest d-concave functions) that give rise to each of the
three global bifurcation diagrams described in Theorems 3.20, 3.21 and 3.22. Let us
consider families of cubic polynomial ordinary differential equations

x′ = −a3(ω·t)x3 + a2(ω·t)x2 + (a1(ω·t) + λ)x , ω ∈ Ω , (3.13)

where ai ∈ C(Ω,R) for i ∈ {1, 2, 3}, a3 is strictly positive and λ ∈ R. It is easy to
check that the function h(ω, x) = −a3(ω)x

3 + a2(ω)x
2 + a1(ω)x satisfies d1, d2λx2

(and hence d2λx, d2λ and d2, as proved in Proposition 3.3(i)-(iii)), d3, d4 and d5.
Then, Theorem 3.24 shows that the three possible bifurcation diagrams of (3.13)
are those of Theorems 3.20, 3.21 and 3.22 and the conclusions of Proposition 3.19
are in force in this section. Our first goal is to describe conditions on the coefficients
ai determining the specific diagram. The last subsection is devoted to explain how
to get actual patterns satisfying the previously established conditions.

As in Section 3.3.1, τλ(t, ω, x) = (ω·t, vλ(t, ω, x)) repesents the local skewproduct
flow induced by (3.13)λ on Ω×R, and Aλ represents the global attractor of (3.13)λ
with lower and upper equilibria lλ and uλ. Notice that Theorem 1.36(i) ensures that
the dynamical spectrum of hx on M0 = Ω×{0} (which is τλ-minimal for all λ ∈ R)
coincides with the dynamical spectrum sp(a1) of a1. This will be used hereafter
without further mention.

The case of a1 with continuous primitive

The notation for the different sets of functions is established in Definition 1.62,
and the notion of dynamical spectrum of a real continuous map on Ω is given in
Definition 1.13. Throughout this section, we assume that a1 ∈ CP (Ω,R). Since
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Proposition 1.64(i) ensures that CP (Ω,R) ⊆ C0(Ω,R), the dynamical spectrum of
a1 is sp(a1) = {0}. With the notation of the previous section, this means that
λ− = λ+ = 0, and hence in this case the bifurcation diagram of (3.13) fits either
Theorem 3.20 or Theorem 3.21 and is given by the left panels in Figures 3.3 or 3.4
(or by the symmetric of this last one). Our goal is to provide conditions on a1 (or,
more precisely, on eba1 for a continuous primitive b of a1) characterizing each one of
these bifurcation possibilities. A key point to distinguish between the two diagrams
is to count the number of τ0-minimal sets: there is either one τ0-minimal set in
Theorem 3.20 or two τ0-minimal sets in Theorem 3.21.

Proposition 3.27 provides the classification of the possibilities for (3.13) in this
case. It is based on the previous bifurcation analysis made in Proposition 3.26 of

x′ = −a3(ω·t)x3 + (a2(ω·t) + ξ)x2 , ω ∈ Ω , (3.14)

where a2, a3 ∈ C(Ω,R) and a3 > 0. Let τ̌ξ the local skewproduct flow induced by
(3.14)ξ on Ω×R, let v̌ξ(t, ω, x) be the cocycle of solutions of (3.14)ξ, and let ľξ and
ǔξ stand for the lower and upper equilibria of the global attractor Ǎξ of (3.14)ξ,
respectively.

Proposition 3.26. Let (Ω, σ) be minimal. Let ai ∈ C(Ω,R) for i ∈ {2, 3} and let
a3 > 0. Then, the τ̌ξ-minimal set M0 = Ω× {0} is nonhyperbolic for all ξ ∈ R. In
addition, if sp(a2) = [−ξ+,−ξ−], with ξ− ≤ ξ+, then

(i) τ̌ξ admits exactly two minimal sets M0 < Mu
ξ respectively given by the graphs

of 0 and ǔξ for ξ > ξ+, where Mu
ξ is hyperbolic attractive; and ǔξ collides with

0 on a residual σ-invariant subset of Ω as ξ ↓ ξ+.

(ii) M0 is the unique τ̌ξ-minimal set for ξ ∈ [ξ−, ξ+].

(iii) τ̌ξ admits exactly two minimal sets Ml
ξ < M0 respectively given by the graphs

of ľξ and 0 for ξ < ξ−, where Ml
ξ is hyperbolic attractive; and ľξ collides with

0 on a residual σ-invariant subset of Ω as ξ ↑ ξ−.

Proof. First note that the linearized equation of (3.14)ξ around the τξ-minimal set
M0 is z′ = 0 for every ξ ∈ R. That is, the dynamical spectrum of the linearized
equation of (3.14)ξ around M0 is {0} for all ξ ∈ R, and hence Proposition 1.42
ensures that M0 is nonhyperbolic for all ξ ∈ R.

Let us fix ξ < ξ+. Let us check the existence of ω0 ∈ Ω such that v̌ξ(t, ω0, x)
is unbounded for any x > 0, which ensures the absence of τ̌ξ-minimal sets above
M0. Let m+ ∈ Merg(Ω, σ) satisfy

∫
Ω
(a2(ω) + ξ+) dm+ = 0. Birkhoff’s Ergodic

Theorem 1.10 provides Ω0 ⊆ Ω with m+(Ω0) = 1 such that
∫
Ω
(a2(ω) + ξ) dm+ =

limt→−∞(1/t)
∫ t

0
(a2(ω·s) + ξ) ds for all ω ∈ Ω0. Then, supt≤0

∫ t

0
(a2(ω·s) + ξ) ds =

∞ for all ω ∈ Ω0: otherwise 0 =
∫
Ω
(a2(ω) + ξ+) dm+ >

∫
Ω
(a2(ω) + ξ) dm+ =

limt→−∞(1/t)
∫ t

0
(a2(ω·s) + ξ) ds ≥ limt→−∞(1/t) supr≤0

∫ r

0
(a2(ω·s) + ξ) ds = 0 for

a point ω ∈ Ω0, a contradiction. We take ω0 ∈ Ω0. Let ǔξ(t, ω0, x) solve x′ =

(a2(ω0·t) + ξ)x2 with ǔξ(0, ω0, x) = x. That is, ǔξ(t, ω0, x) = (1/x −
∫ t

0
(a2(ω0·s) +

ξ) ds)−1 for all x ̸= 0. For x > 0, let α̌x = sup{t ≤ 0 |
∫ t

0
(a2(ω0·s) + ξ) ds =

1/x} ∈ R: it is easy to check that ǔξ(t, ω0, x) is well defined on (α̌x, 0] and that
limt↓α̌x ǔξ(t, ω0, x) = ∞. A standard comparison argument shows that v̌ξ(t, ω0, x) >
ǔξ(t, ω0, x) if t < 0 and x > 0, from where the claim follows: v̌ξ(t, ω0, x) is unbounded
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as time decreases for any x > 0. Hence, there are no τ̌ξ-minimal sets above M0.
Analogously, it can be proved that there are no τ̌ξ-minimal sets belowM0 for ξ > ξ−.
In particular, M̌0 is the unique τ̌ξ-minimal set for ξ ∈ (ξ−, ξ+).

Let us now fix ξ > ξ+ and prove the existence of a τ̌ξ-minimal set Mu
ξ strictly

above M0. Let ω0 ∈ Ω be fixed. Take α ∈ (0, ξ− ξ+) with α <
√
2r (or equivalently

α/2 < r/α) for r = maxω∈Ω a3(ω) > 0. Theorem 2.13(i) ensures that v̌ξ(t, ω0, 1/α)
is defined and bounded for t ∈ [0,∞). We will check below that v̌ξ(t, ω0, 1/α) is
bounded away from zero for t ≥ 0, thus ensuring the existence of a τ̌ξ-minimal set
Mu

ξ > M0 contained in the ω-limit of (ω0, 1/α). To this end, we consider the
function w(t) = (v̌ξ(t, ω0, 1/α))

−1, which satisfies

w′ = −(a2(ω0·t) + ξ) +
a3(ω·t)

w

with w(0) = α < 2r/α. It suffices to check that w is bounded on [0,∞) to prove
that v̌ξ(t, ω0, 1/α) is bounded away from 0 for t ≥ 0. An analogous argument to
that in the proof of Proposition 1.12(iv) ensures that there exists tα > 0 such that∫ tα
0
(a2(ω·s) + ξ) ds ≥ α tα for all ω ∈ Ω. We define t1 = sup{t > 0 | w(s) ≤

2 r/α + l tα for all s ∈ [0, t]}, where l = maxω∈Ω |a2(ω) + ξ| + r/α. We assume
for contradiction that t1 < ∞ and define t0 = inf{t < t1 | w(s) ≥ 2r/α for all
s ∈ [t, t1]}. Then, t0 < t1 − tα: otherwise

w(t1) = w(t0) +

∫ t1

t0

(
−
(
a2(ω0·s) + ξ

)
+

a3(ω0·s)
w(s)

)
ds <

2r

α
+ l tα ,

which is not the case. The integrand has been bounded by l since |a3(ω0·s)|/w(s) ≤
r/(2r/α) = α/2 < r/α. In particular, w(t) ≥ 2r/α for t ∈ [t1 − tα, t1], and hence

w(t1) = w(t1 − tα)−
∫ tα

0

(
a2(ω0·(t1 − tα)·s) + ξ

)
ds+

∫ t1

t1−tα

a3(ω0·s)
w(s)

ds

≤ w(t1 − tα)− α tα +
α

2
tα < w(t1 − tα) ,

which contradicts the definition of t1. Hence, t1 = ∞, that is, w(t) ≤ 2r/α+ ltα for
all t ≥ 0. Therefore, as explained before, there exists a τ̌ξ-minimal set Mu

ξ > M0.

Analogous arguments show the existence of a τ̌ξ-minimal set Ml
ξ < M0 for

ξ < ξ−. Since the dynamical spectrum of the variational equation of (3.14)ξ on M0

reduces to {0} for any ξ ∈ R, Theorem 3.11(i) ensures the attractive hyperbolicity
of Mu

ξ for all ξ > ξ+ and Ml
ξ for all ξ < ξ−. Since Theorem 2.11 and the nonhy-

perbolicity of M0 ensure that τ̌ξ admits at most two minimal sets for any ξ ∈ R,
Proposition 2.17 ensures that Mu

ξ = {ǔξ} for all ξ > ξ+ and Ml
ξ = {̌lξ} for all

ξ < ξ−. Theorem 3.11(i) also precludes the existence of a second minimal set for
τ̌ξ− (resp. τ̌ξ+) apart from M0, since it would be hyperbolic and hence persisting
(see Theorem 1.39) for ξ ∈ (ξ−, ξ+) close enough to ξ+ (resp. ξ−), which is not
possible. Proposition 3.41(ii) will provide the nondecreasing character of ξ 7→ ľξ(ω)
and ξ 7→ ǔξ(ω) for all ω ∈ Ω. In turn, this means that the semicontinuous τ̌ξ+-
equilibrium ǔξ+(ω) = limξ↓ξ+ ǔξ(ω) (resp. ľξ−(ω) = limξ↑ξ− ľξ(ω)) given by the limit
of a decreasing (resp. increasing) family of continuous τ̌ξ-equilibria coincides with
0 at its continuity points: otherwise, Proposition 1.32 would provide a second τ̌ξ+
(resp. τ̌ξ−) minimal set. This completes the proof of all the assertions.
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See the right panel in Figure 3.7 for a depiction of the bifurcation diagram
described in Proposition 3.26.

Proposition 3.27. Let (Ω, σ) be minimal. Let a1 ∈ CP (Ω,R), ai ∈ C(Ω,R) for
i ∈ {2, 3} and let a3 > 0. Let b be a continuous primitive of a1. Then,

(i) sp(eba2) ⊂ (0,∞) if and only if (3.13) exhibits the local saddle-node and classi-
cal transcritical bifurcations of minimal sets described in Theorem 3.21, with lλ
colliding with 0 on a residual σ-invariant subset of Ω as λ ↓ λ+. In particular,
this situation holds if 0 ̸≡ a2 ≥ 0.

(ii) sp(eba2) ⊂ (−∞, 0) if and only if (3.13) exhibits the local saddle-node and
classical transcritical bifurcations of minimal sets described in Theorem 3.21,
with uλ colliding with 0 on a residual σ-invariant subset of Ω as λ ↓ λ+. In
particular, this situation holds if 0 ̸≡ a2 ≤ 0.

(iii) 0 ∈ sp(eba2) if and only if (3.13) exhibits the classical pitchfork bifurcation of
minimal sets described in Theorem 3.20.

Proof. The family of changes of variable y(t) = e−b(ω·t)x(t) takes (3.13) to

y′ = −e2b(ω·t) a3(ω·t) y3 + eb(ω·t) a2(ω·t) y2 + (a1(ω·t)− b′(ω·t) + λ) y ,

which since b′ = a1, coincides with

y′ = −e2b(ω·t) a3(ω·t) y3 + eb(ω·t)a2(ω·t) y2 + λ y . (3.15)

The possibilities for the bifurcation diagram of (3.13) follow from here, since N ⊂
Ω × R is a minimal set for (3.15)λ if and only if M = {(ω, eb(ω)x) | (ω, x) ∈ N} is
minimal for (3.13)λ. If we define f(ω, y) = −e2b(ω) a3(ω) y

3 + eb(ω) a2(ω) y
2, then the

dynamical spectrum of fx on M0 is {0} = [−λ+,−λ−], so λ− = λ+ = 0. Therefore,
the bifurcation diagram of (3.15) is either the one described by Theorem 3.20 or the
one of Theorem 3.21 (see Theorem 3.24). According to Proposition 3.26, the flow
induced by y′ = f(ω·t, y), that is, (3.15)0, admits just one minimal set if and only
if 0 ∈ sp(eba2); two minimal sets, being M0 = Ω × {0} the lower one, if and only
if sp(eba2) ⊂ (0,∞); and two minimal sets, being M0 the upper one, if and only if
sp(eba2) ⊂ (−∞, 0). As said before, this determines the global bifurcation diagram.
The last assertions in (i) and (ii) are trivial.

As a consequence of the previous result, given any strictly positive a3 and any
changing-sign a2, we are able to construct a1 with bounded primitive in such a way
that (3.13) exhibits the classical pitchfork bifurcation of minimal sets described in
Theorem 3.20.

Proposition 3.28. Let (Ω, σ) be minimal. Let ai ∈ C(Ω,R) for i ∈ {2, 3} and let
a3 > 0. Assume that a2 changes sign. Then, there exists a1 ∈ CP (Ω,R) such that
(3.13) exhibits the classical pitchfork bifurcation described in Theorem 3.20.

Proof. Let m ∈ Merg(Ω, σ) be arbitrarily fixed. We define the nonempty open
sets U1 = {ω ∈ Ω | a2(ω) > 0} and U2 = {ω ∈ Ω | a2(ω) < 0}. As (Ω, σ) is
minimal, m(U1) > 0 and m(U2) > 0. A suitable application of Urysohn’s Lemma
provides nonnegative and not identically zero continuous functions c1, c2 : Ω → R
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such that supp(c1) ⊆ U1 and supp(c2) ⊆ U2. Then,
∫
Ω
c1(ω) a2(ω) dm > 0 and∫

Ω
c2(ω) a2(ω) dm < 0, so there exists ε > 0 such that

∫
Ω
(c1(ω) + ε) a2(ω) dm > 0

and
∫
Ω
(c2(ω) + ε) a2(ω) dm < 0. The density of C1(Ω,R) on C(Ω,R) (see Propo-

sition 1.64(iv)) and the strict positiveness of c1 + ε and c2 + ε ensure the existence
of strictly positive functions ĉ1, ĉ2 ∈ C1(Ω,R) such that

∫
Ω
ĉ1(ω) a2(ω) dm > 0 and∫

Ω
ĉ2(ω) a2(ω) dm < 0. Therefore, there exists s ∈ (0, 1) such that

∫
Ω
(s ĉ1(ω) +

(1− s) ĉ2(ω)) a2(ω) dm = 0. Since s ĉ1(ω) + (1− s) ĉ2(ω) is strictly positive, b(ω) =
log(s ĉ1(ω)+(1−s) ĉ2(ω)) is well defined and b ∈ C1(Ω,R). So,

∫
Ω
eb(ω)a2(ω) dm = 0,

and hence 0 ∈ sp(eba2). We take a1 = b′ and apply Proposition 3.27 to complete
the proof.

The case of sign-preserving a2

The possibilities for the bifurcation diagram of (3.13) are more complicated when
sp(a1) is a nondegenerated interval: it is given by the right panel of Figures 3.3 or
3.4, or by Figure 3.5 (or the symmetric of the last ones). The goal of this section
and of the following one is to check that these three bifurcation diagrams, described
in Theorems 3.20, 3.21 and 3.22, indeed occur for nonautonomous families of the
type (3.13), even under the restriction that a2 does not change sign. Our starting
point are the functions a1, a3 ∈ C(Ω,R), with a3 > 0, which are considered fixed.
From them, we define six constants:

p1 let sp(a1) = [−λ+,−λ−], with λ− ≤ λ+, be the dynamical spectrum of a1,

p2 let k1 < k2 be such that k1 ≤ a1(ω) ≤ k2 for all ω ∈ Ω,

p3 let 0 < r1 ≤ r2 be such that r1 ≤ a3(ω) ≤ r2 for all ω ∈ Ω.

Our goal in this section is to give bounds for a2 in terms of these six constants in
order to provide each of the different bifurcation diagrams for (3.13). A remarkable
fact is that, in the cases studied this section, a2 never changes sign, in contrast
with the situation of Proposition 3.28 and those that will be analyzed at the end of
Section 3.4.

The next result establishes relations between λ−, λ+, k1 and k2 which we will
use in the proofs of the main results of this section.

Lemma 3.29. Let (Ω, σ) be minimal, let a1 ∈ C(Ω,R) and let λ−, λ+, k1 and k2
be given by p1 and p2. Then,

(i) k1 ≤ minω∈Ω a1(ω) ≤ −λ+ ≤ −λ− ≤ maxω∈Ω a1(ω) ≤ k2.

(ii) a1 is nonconstant if and only if minω∈Ω a1(ω) < −λ+ (or equivalently if and
only if maxω∈Ω a1(ω) > −λ−).

(iii) k1 ≤ minω∈Ω a1(ω) < −λ+ < −λ− < maxω∈Ω a1(ω) ≤ k2 if and only if λ− <
λ+, i.e. if and only if a1 has band spectrum.

Proof. (i) It follows from minω∈Ω a1(ω) ≤
∫
Ω
a1(ω) dm ≤ maxω∈Ω a1(ω) for all m ∈

Minv(Ω, σ), which ensures that [−λ+,−λ−] ⊆ [minω∈Ω a1(ω), maxω∈Ω a1(ω)]. The
inequalities k1 ≤ minω∈Ω a1(ω) and maxω∈Ω a1(ω) ≤ k2 follow directly from p2.

(ii) Obviously, a1 is nonconstant if minω∈Ω a1(ω) < −λ+ or maxω∈Ω a1(ω) > −λ−.
Let us now assume that a1 is nonconstant and check that minω∈Ω a1(ω) < −λ+. We
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take 0 < ε < maxω∈Ω a1(ω) − minω∈Ω a1(ω). We define the nonempty open set
U1 = {ω ∈ Ω | a1(ω) > minω∈Ω a1(ω) + ε}, and note that m(U1) > 0 for all
m ∈ Merg(Ω, σ), since (Ω, σ) is minimal. Proposition 1.12(iii) and Remark 1.14.1
provide m1 ∈ Merg(Ω, σ) such that inf sp(a1) =

∫
Ω
a1(ω) dm1. Then,

inf sp(a1) =

∫
Ω

a1(ω) dm1 =

∫
Ω\U1

a1(ω) dm1 +

∫
U1

a1(ω) dm1

≥ m1(Ω \ U1) min
ω∈Ω

a1(ω) +m1(U1)
(
min
ω∈Ω

a1(ω) + ε
)
> min

ω∈Ω
a1(ω) .

To check that maxω∈Ω a1(ω) > −λ− if a1 is nonconstant, we work analogously with
U2 = {ω ∈ Ω | a1(ω) < maxω∈Ω a1(ω)− ε}.

(iii) It follows from (ii), since a1 is nonconstant if a1 has band spectrum, i.e. if
λ− < λ+.

Now, we recall and complete the statement of Proposition 3.25 when applied to
our current model (3.13), which gives a sufficient criterium for the classical pitchfork
bifurcation.

Proposition 3.30. Let (Ω, σ) be minimal. Let ai ∈ C(Ω,R) for i ∈ {1, 2, 3}, and
let a3 > 0. Let λ+ be given by p1. Then,

(i) (A criterium ensuring classical pitchfork bifurcation). If a2(ω) = 0 for all
ω ∈ Ω, then (3.13) exhibits the classical pitchfork bifurcation of minimal sets
described in Theorem 3.20.

(ii) If a2(ω) ≥ 0 (resp. a2(ω) ≤ 0) for all ω ∈ Ω, then lλ (resp. uλ) takes the value
0 at its continuity points for all λ ≤ λ+.

Proof. Proposition 3.25(ii) ensures that (i) holds. Proposition 3.25(i) guarantees
that the assertions of (ii) concerning λ < λ+ hold. To check it for λ+, it suffices to
observe that in the three possible bifurcation diagrams (see Theorem 3.24), whenever
lλ (resp. uλ) takes the value 0 at its continuity points for all λ < λ+, also lλ+ (resp.
uλ+) takes the value 0 at its continuity points. (This fact can be observed in Figures
3.3, 3.4 and 3.5 in the case of uλ.)

Propositions 3.32, 3.33 and 3.34 are the main results of this section, and their
proofs use the next technical result, which deals with some of the conditions in the
statement of Propositions 3.32 and 3.33.

Lemma 3.31. Let (Ω, σ) be minimal. Let ai ∈ C(Ω,R) for i ∈ {1, 2, 3}, and let
a3 > 0. Let k1 and r2 be given by p2 and p3, and let λ < −k1.

(i) If a2(ω) > 2
√

r2(−λ− k1) for all ω ∈ Ω, then ρ1 =
√

(−λ− k1)/r2 > 0 is a
global strict lower solution of (3.13)λ. Consequently, τλ admits a minimal set
Mu

λ > M0.

(ii) If a2(ω) < −2
√

r2(−λ− k1) for all ω ∈ Ω, then −ρ1 is a global strict upper
solution of (3.13)λ. Consequently, τλ admits a minimal set Ml

λ < M0.
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Proof. Let us prove (i). We define g(ρ) = r2 ρ − (λ + k1)/ρ. Then, g(ρ1) =
2
√

r2(−λ− k1), and, using that −r2 ≤ −a3(ω) and k1 ≤ a1(ω) for all ω ∈ Ω,

−a3(ω) ρ
3
1 + a2(ω) ρ

2
1 + (a1(ω) + λ) ρ1 ≥ ρ21

(
a2(ω)−

(
r2 ρ1 −

λ+ k1
ρ1

))
= ρ21 (a2(ω)− g(ρ1)) > 0

for all ω ∈ Ω, which proves the first assertion. In turn, this property ensures that
ρ1 < uλ(ω) for all ω ∈ Ω (see Theorem 2.13(v)), and hence Proposition 2.17(i) proves
the existence of a τλ-minimal set Mu

λ above M0. The proof of (ii) is analogous.

Proposition 3.32 (A criterium ensuring saddle-node and transcritical bifurca-
tions). Let (Ω, σ) be minimal. Let ai ∈ C(Ω,R) for i ∈ {1, 2, 3}, and let a3 > 0. Let
λ−, λ+, k1 and r2 be given by p1, p2 and p3. If k1 < −λ+ and

a2(ω) > 2
√

r2(−λ− − k1) (resp. a2(ω) < −2
√

r2(−λ− − k1) )

for all ω ∈ Ω, then (3.13) exhibits the local saddle-node and transcritical bifurcations
of minimal sets described in Theorem 3.21, with lλ (resp. uλ) colliding with 0 on a
residual σ-invariant subset of Ω as λ ↓ λ+.

Proof. Note that if k1 < −λ+, then −λ−−k1 ≥ −λ+−k1 > 0. Take δ > 0 such that
a2(ω) > 2

√
r2(−λ− + δ − k1) (resp. a2(ω) < −2

√
r2(−λ− + δ − k1) ) for all ω ∈ Ω.

Hence, Lemma 3.31(i) (resp. (ii)) applied with λ = λ− − δ ensures the existence of
a τλ−−δ-minimal set Mu

λ−−δ > M0 (resp. Ml
λ−−δ < M0), and this situation only

arises in the bifurcation diagram of Theorem 3.21: recall Theorem 3.24 and note
that in Theorems 3.20 and 3.22 we have that Aλ−−δ = M0.

Proposition 3.33. Let (Ω, σ) be minimal. Let ai ∈ C(Ω,R) for i ∈ {1, 2, 3}, and
let a3 > 0. Let λ−, λ+, k1, k2, r1 and r2 be given by p1, p2 and p3.

(i) (A criterium precluding classical pitchfork bifurcation). If k1 < −λ+ and

a2(ω) > 2
√

r2(−λ+ − k1) (resp. a2(ω) < −2
√

r2(−λ+ − k1) )

for all ω ∈ Ω, then (3.13) does not exhibit the classical pitchfork bifurcation of
minimal sets described in Theorem 3.20.

(ii) (A criterium precluding local saddle-node and transcritical bifurcations). If
λ− < λ+ and

0 ≤ a2(ω) <

√
r1 (λ+ − λ−)√

λ+ + k2

(
resp. −

√
r1 (λ+ − λ−)√

λ+ + k2
< a2(ω) ≤ 0

)

for all ω ∈ Ω, then (3.13) does not exhibit the saddle-node and transcritical
bifurcations of minimal sets described in Theorem 3.21.

Proof. (i) Lemma 3.31(i) (resp. (ii)) applied with λ = λ+ shows the existence of a
τλ+-minimal set Mu

λ+
> M0 (resp. Ml

λ+
< M0), precluding the occurrence of the

bifurcation diagram of Theorem 3.20.
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(ii) We reason in the case of a2 ≥ 0. We consider an auxiliary family obtained
by suppressing a2 in (3.13):

x′ = −a3(ω·t)x3 + (a1(ω·t) + λ)x , ω ∈ Ω . (3.16)

During this proof, let τ̂λ the skewproduct flow induced by (3.16)λ on Ω × R, let
v̂λ(t, ω, x) be the cocycle of solutions of (3.16)λ, let Âλ be its global attractor, and
let l̂λ and ûλ be the lower and upper equilibria of Âλ. Proposition 3.30(i) ensures
that the bifurcation diagram of (3.16) is that of Theorem 3.20.

Let us fix λ > λ+, so that Lemma 3.29(iii) ensures that λ+ k2 > λ+ + k2 > 0. If
ρ >

√
(λ+ k2)/r1, then

−a3(ω) ρ
3 + (a1(ω) + λ) ρ ≤ −r1 ρ

3 + (λ+ k2) ρ < 0 ;

that is, the constant map ρ is a global strict upper solution of (3.16)λ, and hence a
strong τ̂λ-superequilibrium (see Proposition 1.24(i)). Since ρ ≥ v̂(t, ω, ρ) > 0 for all
t ≥ 0, the ω-limit set of (ω, ρ) for τ̂λ contains a τ̂λ-minimal set M which is contained
in Ω× [0, ρ]. Corollary 1.58(i) precludes M = M0, since Proposition 3.19(ii) ensures
that M0 is hyperbolic repulsive. Proposition 2.14(i) ensures the existence of three
τ̂λ-minimal sets, and Theorem 2.11 ensures that M is the hyperbolic attractive
graph of ûλ, which is hence continuous. In particular, 0 < ûλ(ω) ≤ ρ for all ω ∈ Ω.
It follows that 0 < ûλ(ω) ≤

√
(λ+ k2)/r1 for all ω ∈ Ω and λ > λ+.

Now, we return to the complete equation (3.13)λ and make use of the information
just obtained for (3.16)λ. The inequality in the statement ensures the existence of
δ > 0 such that, if λ ∈ [λ+, λ+ + δ], then a2(ω) ≤ √

r1 (λ+ − λ−)/
√
λ+ k2 for all

ω ∈ Ω. If λ ∈ (λ+, λ++ δ], the bound obtained in the previous paragraph combined
with the previous inequality gives

a2(ω) ûλ(ω) ≤
√
r1 (λ+ − λ−)√

λ+ k2

√
λ+ k2
r1

= λ+ − λ−

for all ω ∈ Ω, and hence

û′λ(ω) = −a3(ω) ûλ(ω)
3 + (a1(ω) + λ) ûλ(ω)

> −a3(ω) ûλ(ω)
3 + (λ+ − λ−) ûλ(ω) + (a1(ω) + λ−) ûλ(ω)

≥ −a3(ω)ûλ(ω)
3 + a2(ω) ûλ(ω)

2 + (a1(ω) + λ−) ûλ(ω)

for all ω ∈ Ω. That is, for λ ∈ (λ+, λ+ + δ], we have that ûλ is a global strict
upper τλ−-solution, and, in particular, a continuous strong τλ−-superequilibrium
(see Proposition 1.24(i)). We recall that, since the bifurcation diagram of (3.16) is
that of Theorem 3.20, ûλ+ = limλ↓λ+ ûλ collides with 0 on a residual set R1 ⊆ Ω.

Let us assume for contradiction that the situation for (3.13) is that described in
Theorem 3.21. This theorem includes two possibilities. In one of them, lλ is strictly
negative for all λ ∈ [λ−, λ+], but this is precluded by Proposition 3.30(ii) since
a2 ≥ 0. So, the other possibility holds, which means that uλ− is a continuous strictly
positive τλ−-equilibrium whose graph is the attractive hyperbolic τλ−-minimal set
Mu

λ−
. Since sp(a1 + λ−) = [−(λ+ − λ−), 0], Proposition 1.12(iii) and Remark 1.14.1

ensure that there exists m ∈ Merg(Ω, σ) such that
∫
Ω
(a1(ω) + λ−) dm < 0, and

hence, since hx(ω, 0) = a1(ω) for all ω ∈ Ω, Lemma 3.23 ensures that

mλ−(ω) = inf
{
x ∈ R

∣∣ lim
t→∞

(vλ−(t, ω, x)− uλ−(ω·t)) = 0
}
∈ [0, uλ−(ω))
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vanishes on the residual set of its continuity points R2 ⊆ Ω.
Let us take ω0 ∈ R1 ∩ R2, so that mλ−(ω0) = 0 and ûλ(ω0) decreases to 0 as

λ ↓ λ+. Since uλ−(ω0) > 0, we can take λ ∈ (λ+, λ+ + δ] such that mλ−(ω0) =
0 < ûλ(ω0) < uλ−(ω0). Hence, limn→∞(vλ−(tn, ω0, ûλ(ω0)) − uλ−(ω0·tn)) = 0 for a
sequence (tn) ↑ ∞ such that ω0 = limn→∞ ω0·tn. Since the map ûλ is a continuous
τλ−-superequilibrium, vλ−(tn, ω0, ûλ(ω0)) ≤ ûλ(ω0·tn) for all n ∈ N, and hence 0 ≤
limn→∞(ûλ(ω0·tn) − uλ−(ω0·tn)) = ûλ(ω0) − uλ−(ω0) < 0. This is the sought-for
contradiction, which completes the proof.

Observe that Proposition 3.33(ii) requires a1 to have band spectrum. The same
happens with the next result: although λ− < λ+ is not explicitly required in the
statement of Proposition 3.34, it must be fulfilled for condition (3.17) to be satisfied.

Proposition 3.34 (A criterium ensuring generalized pitchfork bifurcation). Let
(Ω, σ) be minimal. Let ai ∈ C(Ω,R) for i ∈ {1, 2, 3}, and let a3 > 0. Let λ−, λ+,
k1, k2, r1 and r2 be given by p1, p2 and p3. If

r1(λ+ − λ−)
2 + 4 r2(λ+ + k1)(λ+ + k2) > 0 (3.17)

and

2
√

r2(−λ+ − k1) < a2(ω) <

√
r1 (λ+ − λ−)√

λ+ + k2(
resp. −

√
r1 (λ+ − λ−)√

λ+ + k2
< a2(ω) < −2

√
r2(−λ+ − k1)

) (3.18)

for all ω ∈ Ω, then (3.13) exhibits the generalized pitchfork bifurcation of minimal
sets described in Theorem 3.22, with lλ (resp. uλ) colliding with 0 on a residual
σ-invariant subset of Ω as λ ↓ λ+.

Proof. Lemma 3.29(i) ensures that (λ+ + k1)(λ+ + k2) ≤ 0. Therefore, condition
(3.17) yields λ− < λ+, and hence Lemma 3.29(iii) and (3.17) ensure that the in-
tervals given in (3.18) in which a2 can take values are finite and nondegenerate.
Proposition 3.33(i) and (ii) respectively preclude the diagrams of Theorems 3.20
and 3.21, so Theorem 3.24 ensures that the bifurcation diagram of Theorem 3.22
takes place. Proposition 3.30(ii) ensures the stated collision property for lλ (resp.
for uλ).

Cases of generalized pitchfork bifurcation

As said after Theorem 3.24, there are simple autonomous examples presenting ei-
ther the classical pitchfork bifurcation of Theorem 3.20 or the local saddle-node and
classical transcritical bifurcations of Theorem 3.21. The requirement of band spec-
trum (λ− < λ+) in the statement of Theorem 3.22 ensures that the two previous
possibilities are also the unique ones in nonautonomous examples if a1 has point
spectrum. This is the case of a1 ∈ CP (Ω,R), in which case Proposition 3.27 gives
necessary and sufficient conditions for the bifurcation diagrams of Theorems 3.20
and 3.21 to take place. In Proposition 3.30(i), we have observed that the classical
pitchfork bifurcation diagram of Theorem 3.20 can also occur in cases of a1 with
band spectrum. Proposition 3.32 proves the same with the bifurcation diagram of
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Theorem 3.21, in which case there is a generalized transcritical bifurcation. More-
over, Proposition 3.30(i) and 3.32 provide simple ways of construction of examples
by choosing a suitable a2 once fixed a1 and a3. In the same line, Proposition 3.34
establishes conditions ensuring the generalized pitchfork diagram of Theorem 3.22.
However, in this case the existence of nonautonomous cubic polynomials (and con-
stants given by p1, p2 and p3) satisfying condition (3.17) is not so obvious.

Therefore, our next objective is to develop systematic ways of constructing
nonautonomous third degree polynomials giving rise to families (3.13) for which
the global bifurcation diagram is that of Theorem 3.22. The conclusion is that all
the situations described in Theorem 3.24 actually realize.

Lemma 3.35. Let m1, . . . ,mn be different elements of Merg(Ω, σ) with n ≥ 1, and
let 0 < ε < 1 be fixed. For every i ∈ {1, . . . , n}, there exists a continuous ci : Ω →
[0, 1] with minω∈Ω ci(ω) = 0 and maxω∈Ω ci(ω) = 1 such that cicj ≡ 0 and

1− ε <

∫
Ω

ci(ω) dmi ≤ 1 , 0 ≤
∫
Ω

ci(ω) dmj < ε (3.19)

for every i, j ∈ {1, . . . , n} with j ̸= i.

Proof. Let ε > 0 be fixed. As explained in [54, Remark 1.10] and [75, Chapter
II, Section 6], there exist disjoint σ-invariant Borel sets Ω1, . . . ,Ωn ⊆ Ω such that
mi(Ωj) = δij for i, j ∈ {1, . . . , n}, where δij is the Kronecker delta: just take Ωi

as the so-called ergodic component of mi. Since mi for i ∈ {1, . . . , n} are regular,
we take compact sets Ki ⊆ Ωi such that mi(Ki) > 1 − ε for i ∈ {1, . . . , n}. Let
d = min1≤i<j≤n(inf{dΩ(ωi, ωj) | ωi ∈ Ki, ωj ∈ Kj}) and let Ui be an open set such
that Ki ⊂ Ui ⊆ BΩ(Ki, d/3), mi(Ui \ Ki) < ε and mj(Ui) = mj(Ui \ Ki) < ε for
i, j ∈ {1, . . . , n} with i ̸= j. The choice of d ensures that U1, . . . ,Un are pairwise
disjoint. Finally, Urysohn’s Lemma provides continuous functions ci : Ω → [0, 1]
with ci(ω) = 1 for all ω ∈ Ki and ci(ω) = 0 for all ω /∈ Ui, for i ∈ {1, . . . , n}.
Then, cicj ≡ 0 follows from Ui and Uj being disjoint; 0 ≤

∫
Ω
ci(ω) dmj ≤ 1 for all

i, j ∈ {1, . . . , n} follows from ci : Ω → [0, 1];
∫
Ω
ci(ω) dmi ≥

∫
Ki

ci(ω) dmi = mi(Ki) >

1−ε; and
∫
Ω
ci(ω) dmj =

∫
Ui
ci(ω) dmj =

∫
Ui\Ki

ci(ω) dmj ≤ mj(Ui\Ki) < ε for every

i, j ∈ {1, . . . , n} with j ̸= i.

Proposition 3.36. Let (Ω, σ) be minimal. Let m1, . . . ,mn be different elements of
Merg(Ω, σ) with n ≥ 2. Take r ≥ 1 and ε > 0 with

ε < ε1 =
n+ 2r(n− 1)− 2

√
r(n− 1)

(
r(n− 1) + n

)
n2

(so that 0 < ε < 1/n). Let c1 . . . , cn : Ω → [0, 1] be the continuous functions given
by Lemma 3.35 for m1, . . . ,mn and ε. Take constants α1 ≤ α2 ≤ · · · ≤ αn with
α1 < 0 and αn > 0, and define a1 =

∑n
i=1 αici, so that α1 ≤ a1(ω) ≤ αn for all

ω ∈ Ω. Then, a1 has band spectrum sp(a1) = [−λ+,−λ−] ⊂ (α1, αn) and

(λ+ − λ−)
2 + 4 r (λ+ + α1)(λ+ + αn) > 0 . (3.20)

Consequently, if a3 ∈ C(Ω,R) takes values in [r1, r2] for r1 > 0 and r2 = r r1, and
if a2 ∈ C(Ω,R) satisfies (3.18) for k1 = α1 and k2 = αn, then (3.13) exhibits the
generalized pitchfork bifurcation of minimal sets described in Theorem 3.22.
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Proof. It is easy to check that

2r(n− 1) < 2
√

r(n− 1)(r(n− 1) + n) < n+ 2r(n− 1) ,

and hence 0 < ε1 < 1/n. In addition, according to Lemma 3.35,∫
Ω

a1(ω) dm1 = α1

∫
Ω

c1(ω) dm1 +
n∑

i=2

αi

∫
Ω

ci(ω) dm1 < α1(1− ε) + (n− 1)αn ε ,∫
Ω

a1(ω) dmn = αn

∫
Ω

cn(ω) dmn +
n−1∑
i=1

αi

∫
Ω

ci(ω) dmn > αn(1− ε) + (n− 1)α1 ε .

Since the supports of c1, . . . , cn are pairwise disjoint, α1 = minω∈Ω a1(ω) and αn =
maxω∈Ω an(ω), so, in particular a1 is nonconstant. Hence, the previous inequalities,
the definition of sp(a1) and Lemma 3.29(i) ensure that α1 ≤ −λ+ < α1(1−ε)+(n−
1)αn ε and αn(1−ε)+(n−1)α1 ε < −λ− ≤ αn. Then, λ+−λ− > (αn−α1)(1−n ε) >
0 (which shows the nondegeneracy of sp(a1)). Now, Lemma 3.29(iii) shows that
α1 < −λ+ < −λ− < αn, and hence 0 > λ+ + α1 > ε (α1 − (n − 1)αn) and
0 < λ+ + αn < αn − α1, which in turn yields

(λ+ − λ−)
2 + 4 r (λ+ + α1)(λ+ + αn)

> (αn − α1)
2(1− n ε)2 + 4 r ε (αn − α1)

(
α1 − (n− 1)αn

)
.

So, in order to check that (3.20) holds with k1 = α1 and k2 = αn, it is enough to
check that the right-hand side is strictly positive, that is, it suffices to check that

αn

(
(1− n ε)2 − 4 r ε (n− 1)

)
> α1

(
(1− n ε)2 − 4 r ε

)
.

Since (1−n ε)2−4 r ε (n−1) ≤ (1−n ε)2−4 r ε and α1 < 0 < αn, it suffices to check
that (1− n ε)2 − 4 r ε (n− 1) > 0. That is, n2 ε2 − 2 (n+ 2 r (n− 1)) ε+ 1 > 0. And
this follows from ε < ε1, since ε1 is the smallest root of this quadratic polynomial
on the variable ε. Then, (3.20) holds. Finally, note that all the hypotheses of
Proposition 3.34 are fulfilled with k1 = α1 and k2 = αn. This proves the last
assertion.

Note that every function a1 constructed by the procedure of Proposition 3.36
takes both positive and negative values, that is, it changes sign. However, this is
not a real restriction to get a generalized pitchfork bifurcation diagram through
Proposition 3.36, since replacing a1 by a1 + µ for any constant µ ∈ R induces the
same type of bifurcation diagram.

Proposition 3.36 shows that no more than two different ergodic measures in
Merg(Ω, σ) are required to prove the existence of families (3.13) showing the gener-
alized pitchfork bifurcation diagram of Theorem 3.22. The functions a1 constructed
as there indicated are intended to satisfy (3.17); that is, their extremal Lyapunov
exponents (see Remark 1.14) are near its maximum and minimum. But in fact
this is not a necessary condition for a function a1 to be the first order coefficient
of a polynomial giving rise to a generalized pitchfork bifurcation. Theorem 3.39
proves this assertion in the case of a finitely ergodic base flow. Its proof in based on
Proposition 3.37 and Corollary 3.38.
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Proposition 3.37. Assume that Merg(Ω, σ) = {m1, . . . ,mn} with n ≥ 1. There
exists ε2 > 0 such that, if ε ∈ (0, ε2] and c1, . . . , cn : Ω → [0, 1] are the continuous
functions of Lemma 3.35 corresponding to m1, . . . ,mn and ε, then

C(Ω,R) = ⟨c1, . . . , cn⟩ ⊕ C0(Ω,R)

as topological direct sum of vector spaces, where C(Ω,R) is endowed with the uniform
topology, given by ∥a∥ = maxω∈Ω |a(ω)|. In particular, the dynamical spectrum of
a ∈ C(Ω,R) coincides with that of its projection onto ⟨c1, . . . , cn⟩.

Proof. Let Mn×n(R) be the linear space of n×n real matrices, which we endow with
the norm ∥C∥∞ = max1≤i,j≤n |cij|, where C = {cij}1≤i,j≤n. The set of regular n× n
real matrices GLn(R) is an open subset of Mn×n(R), and the n× n identity matrix
I belongs to GLn(R). Hence, there exists ε2 ∈ (0, 1) such that, if ∥C − I∥∞ ≤ ε2,
then C is regular. Therefore, if ε ∈ (0, ε2], then the functions c1, . . . , cn : Ω → [0, 1]
of Lemma 3.35 corresponding to m1, . . . ,mn and ε provide a regular matrix

C =


∫
Ω
c1(ω) dm1 . . .

∫
Ω
cn(ω) dm1

...
. . .

...∫
Ω
c1(ω) dmn . . .

∫
Ω
cn(ω) dmn

 .

Let us consider the continuous linear functionals Ti : C(Ω,R) → R, b 7→
∫
Ω
b(ω) dmi

for i ∈ {1, . . . , n}, and note that Ker(Ti) has codimension 1. Therefore, the codi-
mension of the set C0(Ω,R) =

⋂
i∈{1,...,n}Ker(Ti), is at most n. In addition, the linear

space ⟨c1, . . . , cn⟩ has dimension n, since the supports of c1, . . . , cn are pairwise dis-
joint. Let us check that ⟨c1, . . . , cn⟩ ∩ C0(Ω,R) = {0}: if c =

∑n
i=1 αici ∈ C0(Ω,R),

then 0 =
∫
Ω
c(ω) dmj =

∑n
i=1 αi

∫
Ω
ci(ω) dmj for every j ∈ {1, . . . , n}. These n

equations provide a homogeneous linear system for α1, . . . , αn with regular coeffi-
cient matrix C; so α1 = · · · = αn = 0 and hence c ≡ 0. Consequently, C(Ω,R) is the
algebraic direct sum of ⟨c1, . . . , cn⟩ and C0(Ω,R). We will check that the projections
of C(Ω,R) onto ⟨c1, . . . , cn⟩ and C0(Ω,R) are continuous, which will complete the
proof of the first assertion. Given a ∈ C(Ω,R), its projection P⟨c1,...,cn⟩a =

∑n
i=1 αici

onto ⟨c1, . . . , cn⟩ is given by α1
...
αn

 = C−1


∫
Ω
a(ω) dm1

...∫
Ω
a(ω) dmn

 ,

since, for these α1, . . . , αn, we have that
∫
Ω
(a(ω) −

∑n
i=1 αici(ω)) dmj = 0 for

j ∈ {1, . . . , n}. Therefore, ∥αici∥ = |αi| ≤ n ∥C−1∥∞∥a∥ for every i ∈ {1, . . . , n},
and hence ∥P⟨c1,...,cn⟩a∥ = ∥

∑n
i=1 αici∥ ≤ n2∥C−1∥∞∥a∥. So, P⟨c1,...,cn⟩ : C(Ω,R) →

⟨c1, . . . , cn⟩ is continuous. Finally, as PC0(Ω,R)a = a − P⟨c1,...,cn⟩a, also the projec-
tion PC0(Ω,R) is continuous, so C(Ω,R) is the topological direct sum of ⟨c1, . . . , cn⟩
and C0(Ω,R). Since

∫
Ω
a(ω) dmi =

∫
Ω
(P⟨c1,...,cn⟩a)(ω) dmi +

∫
Ω
(PC0(Ω,R)a)(ω) dmi =∫

Ω
(P⟨c1,...,cn⟩a)(ω) dmi for all i ∈ {1, . . . , n}, the second assertion follows.

Corollary 3.38. Let (Ω, σ) be minimal. Assume that Merg(Ω, σ) = {m1, . . . ,mn}
with n ≥ 2, and take r ≥ 1. Let a1 ∈ C(Ω,R) have dynamical spectrum sp(a1) =
[−λ+,−λ−] with λ− < 0 < λ+. Then, there exist ã1 ∈ C(Ω,R) with dynamical
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spectrum sp(ã1) = [−λ+,−λ−] and a1 − ã1 ∈ C0(Ω,R), and k1, k2 ∈ R such that
k1 ≤ ã1(ω) ≤ k2 for all ω ∈ Ω and

(λ+ − λ−)
2 + 4 r (λ+ + k1)(λ+ + k2) > 0 . (3.21)

Proof. We take 0 < ε < min(ε1, ε2), with ε1 and ε2 respectively provided by Propo-
sitions 3.36 and 3.37. Let c1, . . . , cn be the functions given by Lemma 3.35 for
m1, . . . ,mn and ε. Proposition 3.37 provides α1, · · · , αn such that the map ã1 =
α1c1 + · · ·+αncn satisfies sp(ã1) = sp(a1). Consider a permutation π : {1, . . . , n} →
{1, . . . , n} such that απ(1) ≤ απ(2) ≤ · · · ≤ απ(n). Hence, since λ− < 0 < λ+, ã1
takes positive and negative values, and therefore απ(1) < 0 < απ(n). Proposition 3.36
proves the claim when applied to mπ(1), . . . ,mπ(n) and ε.

Theorem 3.39. Let (Ω, σ) be minimal. Assume that Merg(Ω, σ) = {m1, . . . ,mn}
with n ≥ 2. Let a1 ∈ C(Ω,R) have dynamical spectrum sp(a1) = [−λ+,−λ−]
with λ− < λ+. Then, there exist ai ∈ C(Ω,R) with ai > 0 for i ∈ {2, 3} such
that (3.13) exhibits the generalized pitchfork bifurcation of minimal sets described in
Theorem 3.22.

Proof. We take any strictly positive ã3 ∈ C(Ω,R) and 0 < r1 ≤ r2 with r1 ≤ ã3(ω) ≤
r2 for all ω ∈ Ω, and call r = r2/r1. There is no loss of generality in assuming that
λ− < 0 < λ+, since the type of bifurcation diagram for a1 and a1 + µ coincide for
any µ ∈ R. We associate ã1 to a1 and r by Corollary 3.38 and also k1, k2 ∈ R such
that k1 ≤ ã1(ω) ≤ k2 for all ω ∈ Ω, so (3.21) holds. Note that (3.21) and λ− < λ+

ensure that there exists δ0 > 0 such that, if |λ+−µ+| < δ0 and |λ−−µ−| < δ0, then
µ− < µ+ and

(µ+ − µ−)
2 + 4 r(µ+ + k1 − δ0)(µ+ + k2 + δ0) > 0 . (3.22)

Then, for any c ∈ C(Ω,R) with |c(ω)| < δ0 for all ω ∈ Ω and any m ∈ Merg(Ω, σ),

−λ+−δ0 ≤
∫
Ω

ã1(ω) dm−δ0 <

∫
Ω

(ã1(ω)+c(ω)) dm <

∫
Ω

ã1(ω) dm+δ0 ≤ −λ−+δ0 .

So, if we denote sp(ã1 + c) = [−µ+,−µ−], then |λ+ − µ+| < δ0 and |λ− − µ−| < δ0.
Note that (Ω, σ) is not a periodic flow, since it is not uniquely ergodic. Hence,

CP (Ω,R) is dense in C0(Ω,R) (see Proposition 1.64(iii)). By construction, a1 −
ã1 ∈ C0(Ω,R), and hence there exists b ∈ C1(Ω,R) such that maxω∈Ω |a1(ω) −
ã1(ω) − b′(ω)| < δ0. We take c = a1 − ã1 − b′, so that |c(ω)| < δ0 for all ω ∈ Ω.
We also take ã2 ∈ C(Ω,R) satisfying 2

√
r2 (µ+ − k1 + δ0) < ã2(ω) <

√
r1 (µ+ −

µ−)/(
√

(µ+ + k2 + δ0) ) for all ω ∈ Ω. Then, since (3.22) holds for [−µ+,−µ−] =
sp(ã1 + c), Proposition 3.34 ensures that the parametric family

x′ = −ã3(ω·t)x3 + ã2(ω·t)x2 + (ã1(ω·t) + c(ω·t) + λ)x , ω ∈ Ω (3.23)

presents a generalized pitchfork bifurcation of minimal sets. The same change of
variables y(t) = eb(ω·t)x(t) used in the proof of Proposition 3.27 takes (3.23) to

y′ = −e−2b(ω·t) ã3(ω·t) y3 + e−b(ω·t) ã2(ω·t) y2 + (ã1(ω·t) + c(ω·t) + b′(ω·t) + λ) y ,

which, since c = a1 − ã1 − b′, coincides with

y′ = −e−2b(ω·t) ã3(ω·t) y3 + e−b(ω·t) ã2(ω·t) y2 + (a1(ω·t) + λ) y ,

and it does not change the global structure of the bifurcation diagram, as it was
explained in the proof of Proposition 3.27. That is, the strictly positive functions
a3 = e−2b ã3 and a2 = e−b ã2 fulfill the statement.
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3.4 Bifurcations of x′ = h(ω·t, x) + λx2

The ideas and methods developed in Sections 3.2 and 3.3 allow us to classify and
describe all the possibilities for the bifurcation diagram of a third problem,

x′ = h(ω·t, x) + λx2 , ω ∈ Ω , (3.24)

which will always be studied under assumption d5. Let τλ be the skewproduct
flow induced by (3.24)λ in Ω × R, with τλ(ω, x) = (ω·t, vλ(t, ω, x)). Hence, as in
Section 3.3, M0 = Ω × {0} is a τλ-copy of the base for all λ ∈ R and, if (Ω, σ)
is minimal (which will be the case in most of the results of this section), then
M0 = Ω × {0} is a τλ-minimal set for every λ ∈ R. However, a relevant difference
arises with Section 3.3: Theorem 1.36(i) ensures that the dynamical spectrum of
hx+2λx on M0 coincides with the dynamical spectrum sp(hx(·, 0)) of ω 7→ hx(ω, 0),
which is independent of λ. Therefore, Proposition 1.42 guarantees that M0 exhibits
the same hyperbolic or nonhyperbolic character for all the values of the parameter
λ. We recall that Proposition 3.3(iii) ensures that h(ω, x) + λx2 satisfies d1, d2,
d3, d4 and d5 for all λ ∈ R if (and only if) h satisfies d1, d2λx2 , d3, d4 and d5.
As in the previous section, in this case, if (Ω, σ) is minimal, then Remark 2.7 and
Proposition 3.3(iv) ensure that limx→±∞ hx(ω, x) = −∞ uniformly on Ω.

Besides its own interest, the analysis of (3.24) allows us to go deeper in the
construction of patterns for the three bifurcation possibilities described in Theorem
3.24 for (3.9), as explained at the end of this section.

Proposition 3.40. Let h ∈ C0,1(Ω × R,R) satisfy d5. Every strictly positive
or negative global upper (resp. lower) solution of (3.24)λ is a strict global upper
(resp. lower) solution of (3.24)ξ if ξ < λ (resp. λ < ξ). Particularly, any strictly
positive or negative equilibrium for (3.24)λ is a strong superequilibrium for (3.24)ξ
if ξ < λ, as well as a strong subequilibrium for (3.24)ξ if λ < ξ.

Proof. It is analogous to the proof of Propositions 3.4 and 3.17.

The following proposition describes the parametric variation of the global attrac-
tor Aλ, whose existence under the assumed conditions is guaranteed by Theorem
2.13, and whose lower and upper equilibria are represented by lλ and uλ. We em-
phasize that, within this section, Aλ, τλ, vλ(t, ω, x), lλ and uλ refer to the dynamical
elements of (3.24)λ, not of (3.5)λ or (3.9)λ.

Proposition 3.41. Let h ∈ C0,1(Ω× R,R) satisfy d2λx2 and d5, and let

Aλ =
⋃
ω∈Ω

(
{ω} × [lλ(ω), uλ(ω)]

)
be the global attractor for the skewproduct flow τλ induced by (3.24)λ. Then,

(i) lλ(ω) ≤ 0 ≤ uλ(ω) for every ω ∈ Ω and λ ∈ R.

(ii) For any ω ∈ Ω, the maps λ 7→ uλ(ω) and λ 7→ lλ(ω) are nondecreasing on R
and, respectively, right- and left-continuous. Moreover, if uλ0(ω0) > 0 (resp.
lλ0(ω0) < 0) for some λ0 ∈ R and ω0 ∈ Ω, then uλ1(ω0) < uλ0(ω0) < uλ2(ω0)
(resp. lλ1(ω0) < lλ0(ω0) < lλ2(ω0)) for all λ1 < λ0 < λ2.
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(iii) limλ→−∞ lλ(ω) = −∞ and limλ→∞ uλ(ω) = ∞ uniformly on Ω.

Proof. The arguments are analogous to those of Proposition 3.18(i)-(iii).

The results of Proposition 3.6 also hold for the family of global attractors of
(3.24), with an analogous proof.

The proof of Theorem 3.45, which describes one of the possible bifurcation di-
agrams for (3.24), requires the next technical result, similar to Theorem 2.15 and
Proposition 3.7.

Proposition 3.42. Let h : Ω×R → R satisfy d1 and d5, let us fix m ∈ Merg(Ω, σ),
µ > 0 and λ1 ≤ λ2 (resp. λ2 ≤ λ1), let b1 : Ω → R be a bounded m-measurable
equilibrium for x′ = h(ω·t, x) − µx + λ1 x

2, and let b2 : Ω → R be a bounded m-
measurable equilibrium for x′ = h(ω·t, x)+λ2 x

2, such that 0 < b1(ω) < b2(ω) (resp.
b2(ω) < b1(ω) < 0) for m-a.e. ω ∈ Ω. Assume that m({ω ∈ Ω | x 7→ hx(ω, x) is
concave}) = 1. Then,∫

Ω

(
hx(ω, b1(ω))− µ+ 2λ1 b1(ω)

)
dm+

∫
Ω

(
hx(ω, b2(ω)) + 2λ2 b2(ω)

)
dm < 0 .

Proof. Let Ωd be the σ-invariant set with m(Ωd) = 1 given by Lemma 2.6, and let
Ω0 = Ωd ∩ {ω ∈ Ω | 0 < b2(ω) < b1(ω)}. Then, m(Ω0) = 1. Since b′1(ω·t) =
h(ω·t, b1(ω·t)) − µ b1(ω·t) + λ1 b1(ω·t)2 < h(ω·t, b1(ω·t)) + λ2 b1(ω·t)2 for all t ∈ R
and ω ∈ Ω such that b1(ω) > 0, a standard comparison argument shows that
0 < b1(ω·t) < b2(ω·t) for all t ≥ 0 if 0 < b1(ω) < b2(ω), and hence ω·t ∈ Ω0 if
ω ∈ Ω0 and t ≥ 0. The function c(ω) = b2(ω)− b1(ω) satisfies

c′(ω·t) = h(ω·t, b2(ω·t)) + λ2 b2(ω·t)2 − h(ω·t, b1(ω·t)) + µ b1(ω·t)− λ1 b1(ω·t)2

= c(ω·t)
∫ 1

0

hx
(
ω·t, s c(ω·t) + b1(ω·t)

)
ds

+ (λ2 − λ1) b2(ω·t)2 + λ1

(
b2(ω·t)2 − b1(ω·t)2

)
+ µ b1(ω·t)

for all ω ∈ Ω and all t ∈ R, and hence

c′(ω·t)
c(ω·t)

= F (ω·t, c(ω·t))+(λ2−λ1)
b2(ω·t)2

c(ω·t)
+λ1

(
b1(ω·t)+b2(ω·t)

)
+µ

b1(ω·t)
c(ω·t)

(3.25)

for all ω ∈ Ω0 and t ≥ 0, where F (ω, y) =
∫ 1

0
hx(ω, s y + b1(ω)) ds. Since ω 7→

F (ω, c(ω)) + λ1(b1(ω) + b2(ω)) is bounded, and hence it is in L1(Ω,m) and ω 7→
(λ2 − λ1) b

2
2(ω)/c(ω) + µ b1(ω)/c(ω) is strictly positive on Ω0, Birkhoff’s Ergodic

Theorem 1.10 applied to (3.25) (see the proof of Theorem 2.15) yields

0 =

∫
Ω

F (ω, c(ω)) dm+ (λ2 − λ1)

∫
Ω

b2(ω)
2

c(ω)
dm

+ λ1

∫
Ω

(
b1(ω) + b2(ω)

)
dm+ µ

∫
Ω

b1(ω)

c(ω)
dm .

(3.26)

Equation (2.19), which also holds in this case, and (3.26) yield∫
Ω

(
hx(ω, b1(ω))− µ+ 2λ1 b1(ω)

)
dm+

∫
Ω

(
hx(ω, b2(ω)) + 2λ2 b2(ω)

)
dm

≤ 2

∫
Ω

F (ω, c(ω)) dm+ 2

∫
Ω

(
λ1 b1(ω) + λ2 b2(ω)

)
dm− µ

= −2 (λ2 − λ1)

∫
Ω

b1(ω)b2(ω)

c(ω)
dm− µ

∫
Ω

b1(ω) + b2(ω)

c(ω)
dm < 0 ,
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which proves the statement. The other case is analogous.

3.4.1 Bifurcation diagrams with minimal base flow

In this section, under the assumption that (Ω, σ) is minimal, all the possible bi-
furcation diagrams of τλ-minimal sets for (3.24) are presented. As remarked previ-
ously, in this case, the hyperbolic or nonhyperbolic character of the τλ-minimal set
M0 = Ω × {0} does not change with the parameter λ. The three possible bifurca-
tion diagrams are classified in terms of M0 being hyperbolic repulsive, hyperbolic
attractive or nonhyperbolic, or equivalently, in terms of the dynamical spectrum
sp(hx(·, 0)) either being contained in (0,∞), contained in (−∞, 0) or containing 0.

Theorem 3.43 (No bifurcation). Let (Ω, σ) be minimal. Let h : Ω×R → R satisfy
d1, d2λx2, d3, d4 and d5. If sp(hx(·, 0)) ⊂ (0,∞), then

(i) for all λ ∈ R there exist three hyperbolic τλ-minimal sets Ml
λ < M0 < Mu

λ,
where Ml

λ and Mu
λ are attractive and given by the graphs of lλ and uλ respec-

tively, and M0 is repulsive.

(ii) The maps R→C(Ω,R), λ 7→uλ and R→C(Ω,R), λ 7→ lλ are continuous in the
uniform topology, and limλ→∞ lλ(ω) = limλ→−∞ uλ(ω) = 0 uniformly on Ω.

Proof. (i) Theorem 1.36(i) and Proposition 1.42 ensure that M0 is a repulsive hy-
perbolic τλ-minimal set for every λ ∈ R. Consequently, Proposition 2.14(i) and
Theorem 2.11 ensure that, for every λ ∈ R, there exist three different hyperbolic
τλ-minimal sets Ml

λ < M0 < Mu
λ, where Ml

λ and Mu
λ are hyperbolic attractive

and respectively given by the graphs of lλ < uλ.

(ii) The hyperbolic continuation of minimal sets (see Theorem 1.39) guarantees
the continuity of the maps R → C(Ω,R), λ 7→ uλ and R → C(Ω,R), λ 7→ lλ in the
uniform topology. To check that limλ→−∞ uλ(ω) = 0 uniformly on Ω, we take any
ε > 0. Hypothesis d2λx2 provides ρ > ε > 0 such that h(ω, x) ≤ 0 for all x ≥ ρ
and ω ∈ Ω. Let us choose λε < − sup{h(ω, x)/x2 | (ω, x) ∈ Ω× [ε, ρ]} with λε < 0,
so h(ω, x) + λε x

2 ≤ 0 for all x ∈ [ε, ρ] and ω ∈ Ω. Then, h(ω, x) + λx2 ≤ 0 for all
λ ≤ λε, x ≥ ε and ω ∈ Ω. According to Theorem 2.13(v), uλ(ω) ≤ ε for all ω ∈ Ω if
λ ≤ λε, which proves the assertion. The argument is analogous for lλ.

The left panel of Figure 3.6 depicts the absence of bifurcation described in The-
orem 3.43 (and Proposition 3.41).

Theorem 3.44 (Two local saddle-node bifurcations). Let (Ω, σ) be minimal. Let
h : Ω× R → R satisfy d1, d2λx2, d3, d4 and d5. If sp(hx(·, 0)) ⊂ (−∞, 0), then

(i) M0 is an attractive hyperbolic τλ-copy of the base for all λ ∈ R.

In addition, there exist λ1 < λ2 such that

(ii) for all λ > λ2 (resp. λ < λ1), there exist three hyperbolic τλ-minimal sets
M0 < Nλ < Mu

λ (resp. Ml
λ < Nλ < M0) which are τλ-copies of the base,

given by the graphs of lλ = 0 < mλ < uλ (resp. lλ < mλ < 0 = uλ), where Mu
λ

(resp. Ml
λ) is attractive and Nλ is repulsive, and λ 7→ mλ is strictly decreasing

on (λ2,∞) (resp. (−∞, λ1)); and the graphs of mλ and uλ (resp. lλ and mλ)
collide on a residual σ-invariant set as λ ↓ λ2 (resp. λ ↑ λ1), giving rise to a
nonhyperbolic τλ2-minimal set Mu

λ2
(resp. τλ1-minimal set Ml

λ1
).
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(iii) For λ ∈ (λ1, λ2), Aλ = M0.

(iv) limλ→±∞ mλ(ω) = 0 uniformly on Ω.

In particular, two local saddle-node bifurcations of minimal sets occur at λ1 and λ2,
which are points of discontinuity of the global attractor.

Proof. Theorem 1.36(i) and Proposition 1.42 ensure that M0 is a attractive hyper-
bolic τλ-minimal set for every λ ∈ R. We fix ρ > 0 and λ+

ρ > − inf{h(ω, ρ)/ρ2 | ω ∈
Ω} with λ+

ρ > 0, and take λ > λ+
ρ . Then, h(ω, ρ) + λ ρ2 > 0 for all ω ∈ Ω. A stan-

dard comparison argument ensures that vλ(t, ω, ρ) ∈ (0, ρ) for all t < 0, and hence
the α-limit set for τλ of a point (ω, ρ) contains a τλ-minimal set Nλ ⊂ Ω × [0, ρ].
Corollary 1.58(i) guarantees that M0 < Nλ. On the other hand, Theorem 2.13(v)
yields ρ < uλ(ω) for all ω ∈ Ω, and hence Proposition 2.17(i) ensures that the
upper minimal set Mu

λ is strictly above Nλ. Altogether, we conclude that for
any λ > λ+

ρ , there exist three minimal sets M0 < Nλ < Mu
λ, and hence Theo-

rem 2.11 ensures that the three of them are hyperbolic τλ-copies of the base with
Mu

λ = {uλ} attractive and Nλ repulsive. An analogous argument works for −ρ and
λ−
ρ < − sup{h(ω,−ρ)/ρ2 | ω ∈ Ω} with λ−

ρ < 0, providing three different hyperbolic
τλ-copies of the base Ml

λ < Nλ < M0 for λ ≤ λ−
ρ , with Ml

λ = {lλ} attractive and
Nλ repulsive. Let mλ be the continuous τλ-equilibrium whose graph is Nλ, both
for λ ≥ λ+

ρ and λ ≤ λ−
ρ . Since the initially fixed ρ > 0 is as small as desired and

|mλ| ≤ ρ in both cases, limλ→±∞ mλ(ω) = 0 uniformly on Ω. The claims (i) and (iv)
have been proved. Let us define

I1 = {λ : ∀ ξ < λ the graph of lξ is a hyperb. minimal set Ml
ξ < M0} ,

I2 = {λ : ∀ ξ > λ the graph of uξ is a hyperb. minimal set Mu
ξ > M0} ,

(3.27)

and observe that λ−
ρ ∈ I1 and λ+

ρ ∈ I2 for any ρ > 0. We also define λ1 = sup I1

and λ2 = inf I2 and note that λ1 /∈ I1 and λ2 /∈ I2: otherwise Proposition 2.14(ii)
would ensure that there exist three τλ1- or τλ2-minimal sets, and Theorems 1.39 and
2.11 would contradict the definition of λ1 or λ2. Moreover, λ1 ≤ λ2: otherwise there
exists λ ∈ (λ2, λ1) such that {lλ} < M0 < {uλ} are three attractive hyperbolic τλ-
minimal sets (see Proposition 2.17(ii)), which is precluded by Theorem 2.11. Hence,
both λ1 and λ2 are finite. If λ ∈ I1 (resp. λ ∈ I2), then Propositions 2.17(ii) and
2.14(ii) and Theorem 2.11 ensure that there exists a repulsive hyperbolic τλ-copy of
the base Nλ and that Ml

λ < Nλ < M0 and uλ ≡ 0 (resp. M0 < Nλ < Mu
λ and

lλ ≡ 0). Let mλ be the continuous τλ-equilibrium whose graph is Nλ for λ ∈ I1∪I2.
Theorem 1.39 guarantees the continuity with respect to the uniform topology of the
maps λ 7→ lλ,mλ on I1 and λ 7→ mλ, uλ on I2. In addition, an analogous argument
to that of the second paragraph of the proof of Theorem 3.8 shows that λ 7→ mλ(ω)
is strictly decreasing on I1 and I2 for all ω ∈ Ω.

The maps lλ1(ω) = limλ↑λ1 lλ(ω) and mλ1(ω) = limλ↑λ1 mλ(ω) satisfy lλ1 ≤ mλ1 <
0 and are lower and upper semicontinuous τλ1-equilibria respectively, which must
coincide on the residual set of its common continuity points: otherwise Proposi-
tion 1.32 would define two different τλ1-minimal sets Ml

λ1
< Nλ1 < M0, so Ml

λ1

would be hyperbolic attractive (see Theorem 2.11) and λ1 ∈ I1, which is not the
case. Proposition 2.14(ii) ensures that the unique τλ1-minimal set Ml

λ1
that lλ1 and

mλ1 define by (1.9) is nonhyperbolic. Therefore, λ1 is a local saddle-node bifurcation
point of minimal sets. In addition, notice that λ1 < λ2: otherwise there would exist
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three τλ1-minimal sets, contradicting (see Theorem 2.11) the nonhyperbolicity of
Ml

λ1
. An analogous argument to that at the end of the proof of Theorem 3.8 shows

that both λ1 and λ2 are points of lower discontinuity of the global attractor. So (ii)
and the final assertions of the statement are proved.

It remains to prove (iii). Let λ ∈ (λ1, λ2), and let ω0 ∈ Ω be a common continuity
point of lλ, lλ1 and mλ1 . In particular, lλ1(ω0) = mλ1(ω0). We assume for contradic-
tion that lλ(ω0) < 0. Then, Proposition 3.41(ii) ensures that mλ1(ω0) = lλ1(ω0) <
lλ(ω0). Since limλ→−∞ mλ(ω0) = 0 and (−∞, λ1] → R, λ 7→ mλ(ω0) is continuous,
there exists ξ < λ1 such that mξ(ω0) = lλ(ω0). Proposition 3.40 and the definition
of λ1 ensure that mξ is a strong continuous τλ-subequilibrium. Proposition 1.22
provides s > 0 and e > 0 such that lλ(ω0·t) ≥ mξ(ω0·t) + e for all t ≥ s, and we get
the contradiction lλ(ω0) = limn→∞ lλ(ω0·tn) ≥ limn→∞ mξ(ω0·tn) + e = mξ(ω0) + e
by taking (tn) ↑ ∞ with ω0 = limn→∞ ω0·tn. This means that lλ(ω0) = 0, and hence
Proposition 2.17(i) shows thatMl

λ = M0 is the lowest τλ-minimal set. An analogous
argument shows that there are no τλ-minimal sets above M0. Consequently, M0

is the unique τλ-minimal set for λ ∈ (λ1, λ2) and, since it is hyperbolic attractive,
Corollary 1.58(iii) proves that Aλ = M0 for λ ∈ (λ1, λ2).

Figure 3.6: The no bifurcation bifurcation diagram (left) described in Theorem 3.43 and two local
saddle-node bifurcation diagram (right) described in Theorem 3.44. The meaning of the different
elements is explained in Figure 3.4.

The right panel of Figure 3.6 depicts the bifurcation described diagram described
by Theorem 3.44 (and Proposition 3.41).

Theorem 3.45 (Weak generalized transcritical bifurcation). Let (Ω, σ) be minimal.
Let h : Ω× R → R satisfy d1, d2λx2, d3, d4 and d5. If 0 ∈ sp(hx(·, 0)), then

(i) M0 is a nonhyperbolic τλ-copy of the base for all λ ∈ R, and there exists at
most another τλ-minimal set.

In addition, there exist λ1 ≤ λ2 such that

(ii) for all λ > λ2 (resp. λ < λ1) there exist exactly two τλ-minimal sets M0 < Mu
λ

(resp. Ml
λ < M0), where Mu

λ (resp. Ml
λ) is an attractive hyperbolic copy of

the base given by the graph of uλ (resp. lλ).

(iii) If M0 is the unique τλ2-minimal set (resp. τλ1-minimal set), then 0 and uλ
(resp. lλ and 0) collide on a residual σ-invariant set as λ ↓ λ2 (resp. λ ↑ λ1).

(iv) If 0 = inf sp(hx(·, 0)), then M0 is the unique τλ-minimal set for all λ ∈ [λ1, λ2].
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(v) If 0 ̸= inf sp(hx(·, 0)), then λ1 < λ2 and M0 is the unique τλ-minimal set for
any λ ∈ (λ1, λ2).

(vi) If 0 = sup sp(hx(·, 0)), then there exists a σ-invariant subset Ω0 ⊆ Ω such that
m(Ω0) = 1 for all m ∈ Merg(Ω, σ) and such that lλ(ω) = 0 for all ω ∈ Ω0 and
λ > λ2 and uλ(ω) = 0 for all ω ∈ Ω0 and λ < λ1.

(vii) If 0 ̸= sup sp(hx(·, 0)), then uλ and lλ are not identically 0 for any λ ∈ R.

Proof. (i) Theorem 1.36(i) and Proposition 1.42 ensure that M0 is nonhyperbolic
for all λ ∈ R, and this fact precludes the existence of three τλ-minimal sets (see
Theorem 2.11).

(ii) Propositions 3.41(iii) and 2.17 ensure that uλ defines a τλ-minimal set Mu
λ >

M0 by (1.9) if λ is large enough, say λ > λ0. Let us check that Mu
λ is an attractive

hyperbolic τλ-copy of the base if λ is large enough. To this end, we fix µ > 0 such
that the dynamical spectrum of hx(ω, 0)−µ is contained in (−∞, 0). Consequently,
the bifurcation diagram of

x′ = h(ω·t, x)− µx+ ξ x2 (3.28)

with respect to the parameter ξ is that described in Theorem 3.44. Let ξ1 < ξ2 be
the two saddle-node bifurcation points of (3.28), and, for any ξ > ξ2, let 0 < m̂ξ < ûξ
be the equilibria of (3.28)ξ giving rise to the hyperbolic copies of the base. We take
λ > max{λ0, ξ2}. Then,

û′λ(ω) = h(ω, ûλ(ω))− µ ûλ(ω) + λ ûλ(ω)
2 < h(ω, ûλ(ω)) + λ ûλ(ω)

2 ,

so Theorem 2.13(v) ensures that ûλ(ω) < uλ(ω) for all ω ∈ Ω. Hence, if follows
from the definition (1.9) of Mu

λ that ûλ ≤ bλ for any equilibrium bλ with graph
contained inMu

λ. Theorem 1.36(iii) provides a τλ-equilibrium bλ : Ω → R with graph
contained in Mu

λ and m ∈ Merg(Ω, σ) such that supLyap(Mu
λ) =

∫
Ω

(
hx(ω, bλ(ω))+

2λ bλ(ω)
)
dm. Since {m̂λ} is a repulsive hyperbolic copy of the base for (3.28)λ,

Theorems 1.40 and 1.36(iii) ensure that
∫
Ω

(
hx(ω, m̂λ(ω)) − µ + 2λ m̂λ(ω)

)
dm > 0.

Thus, since m̂λ(ω) < ûλ(ω) ≤ bλ(ω) for all ω ∈ Ω, Proposition 3.42 ensures that
supLyap(Mu

λ) < 0. Then, Theorem 1.40 ensures thatMu
λ is an attractive hyperbolic

τλ-minimal set for these (large enough) values of λ. An analogous argument shows
that Ml

λ is an attractive hyperbolic τλ-minimal set if −λ is large enough. Now,
we define I1 and I2 as in (3.27), λ1 = sup I1 and λ2 = inf I2. Note that λ1 ≤ λ2:
otherwise there would be three τλ-minimal sets for λ ∈ (λ2, λ1), which is not possible,
as said before. This proves (ii).

(iii) Proposition 2.17(i) ensures that uλ2 vanishes on a residual set of continuity
points. The continuity of [λ2,∞) → R, λ 7→ uλ(ω) for all ω ∈ Ω, given by Propo-
sition 3.41(ii) and Theorem 1.39, provides the collision. This and an analogous
argument for λ1 prove the claim.

(iv) Assume that 0 = inf sp(hx(·, 0)), which implies that
∫
Ω
hx(ω, 0) dm ≥ 0

for all m ∈ Merg(Ω, σ). Let us check that M0 is the unique τλ-minimal set if
λ ∈ [λ1, λ2]. Theorems 2.15 and 1.36(iii) ensure that, for any λ ∈ R, the upper
Lyapunov exponent of any τλ-minimal set distinct from M0 is strictly negative.
Therefore, Theorem 1.40 ensures that, for any λ ∈ R, any τλ-minimal set distinct
from M0 is hyperbolic attractive. If Mu

λ2
> M0, then Proposition 2.17(ii) would
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ensure that Mu
λ2

= {uλ2}, which combined with the persistence Theorem 1.39 would
contradict the definition of λ2. Thus, Proposition 2.17(i) ensures that uλ2(ω) = 0 on
the residual subset of Ω of its continuity points. So, the monotonicity properties of
uλ established in Proposition 3.41(ii) ensure that there are no τλ-minimal sets above
M0 for λ ≤ λ2: otherwise, if there exists Mu

λ > M0, then uλ > 0, so uλ2 > 0, a
contradiction. An analogous reasoning shows that there are no τλ-minimal sets below
M0 for λ ≥ λ1. Consequently, M0 is the unique τλ-minimal set for λ ∈ [λ1, λ2].

(v) Assume that 0 ̸= inf sp(hx(·, 0)). Since 0 ∈ sp(hx(·, 0)), inf sp(hx(·, 0)) < 0,
so there exists m ∈ Merg(Ω, σ) with

∫
Ω
hx(ω, 0) dm < 0. Let us check that λ1 < λ2.

For λ > λ2, Lemma 3.23 ensures that

mλ(ω) = inf
{
x ∈ R | lim

t→∞
(vλ(t, ω, x)− uλ(ω·t)) = 0

}
∈ [0, uλ(ω))

defines an upper semicontinuous τλ-equilibrium which satisfies
∫
Ω
(hx(ω,mλ(ω)) +

2λmλ(ω)) dm > 0. Reasoning as in Theorem 3.22, we check that λ 7→ mλ(ω) is
nonincreasing on I2 for all ω ∈ Ω. Since 0 ≤ mλ′ ≤ mλ ≤ uλ for any λ2 < λ′ ≤
λ, there exists the limit mλ2 = limλ↓λ2 mλ ≥ 0 and it defines an m-measurable
τλ2-equilibrium. Lebesgue’s Convergence Theorem ensures that

∫
Ω
(hx(ω,mλ2(ω)) +

2λmλ2(ω)) dm ≥ 0. In particular, mλ2(ω) > 0 for m-a.e. ω ∈ Ω: otherwise, since
m is ergodic, m({ω ∈ Ω | mλ2(ω) = 0}) = 1, and hence the previous inequality
yields

∫
Ω
hx(ω, 0) dm ≥ 0, which is not the case. A symmetric procedure performed

for λ < λ1, defining mλ(ω) = sup{x ∈ R | limt→∞(vλ(t, ω, x) − lλ(ω·t)) = 0},
and checking that λ 7→ m1

λ is nonincreasing on I1, shows the existence of a τλ1-
equilibrium mλ1 ≤ 0 such that mλ1(ω) < 0 for m-a.e. ω ∈ Ω. Finally, we assume for
contradiction that λ1 = λ2, observe that mλ1 ≤ 0 ≤ mλ2 define three τλ1-equilibria
which are strictly ordered for m-a.e. ω ∈ Ω, and conclude that

∫
Ω
hx(ω, 0) dm > 0

(see Theorem 2.9), which is not the case. This contradiction proves the assertion.
It remains to check thatM0 is the unique τλ-minimal set for λ ∈ (λ1, λ2). To this

end, we will check that, for λ > λ1, there are no τλ-minimal sets below M0 and that,
for λ < λ2, there are no τλ-minimal sets aboveM0. As in the proof of (iv), we deduce
from Proposition 3.41(ii) thatMu

λ = M0 for all λ < λ2 if uλ2(ω) = 0 for some ω ∈ Ω.
Let us check the same in the case of uλ2(ω) > 0 for all ω ∈ Ω. The argument adapts
to this situation that of the two last paragraphs of the proof of Theorem 3.22, as we
sketch in what follows. First, for λ > λ2, we consider the τλ-equilibrium mλ of the
previous paragraph, which satisfies mλ(ω) > 0 m-a.e. whenever

∫
Ω
hx(ω, 0) dm < 0

for an m ∈ Merg(Ω, σ). Second, we combine this property with the nonhyperbolicity
of the τλ2-minimal set Mu

λ2
induced by uλ2 by (1.9) to deduce that there are points

in the graph of mλ2 = limλ↓λ2 mλ which are above the lower equilibrium of Mu
λ2
.

And third, we deduce from this fact that uλ(ω) = 0 on its residual set of continuity
points if λ < λ2, which combined with Proposition 2.17(i) proves the assertion. The
argument is analogous for λ > λ1, and the proof of (v) is complete.

(vi) Assume that 0 = sup sp(hx(·, 0)) and, by contradiction, that there exist
λ < λ1 and m ∈ Merg(Ω, σ) such that m({ω ∈ Ω | uλ(ω) > 0}) = 1. Then, lλ(ω) <
0 < uλ(ω) for m-a.e. ω ∈ Ω, and hence Theorem 2.9 ensures that

∫
Ω
hx(ω, 0) dm > 0.

This contradicts 0 = sup sp(hx(·, 0)). Thus, since m is ergodic, m({ω ∈ Ω | uλ(ω) =
0} = 1 for every m ∈ Merg(Ω, σ) and λ < λ1. We take (λn) ↑ λ1 and define
Ω0 = ∩n∈N{ω ∈ Ω | uλn(ω) = 0}. So, Ω0 is σ-invariant and m(Ω0) = 1 for all
m ∈ Merg(Ω, σ). The monotonicity of λ 7→ uλ(ω) ensured by Proposition 3.41(ii)
yields uλ(ω) = 0 for every ω ∈ Ω0 and λ < λ1. The argument is analogous for λ2.
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(vii) If we assume that sup sp(hx(·, 0)) > 0, then there exists m ∈ Merg(Ω, σ)
such that

∫
Ω
hx(ω, 0) dm > 0. On the other hand, Proposition 2.16 ensures that∫

Ω
(hx(ω, lλ(ω)) + 2λ lλ(ω)) dm ≤ 0 and

∫
Ω
(hx(ω, uλ(ω)) + 2λ uλ(ω)) dm ≤ 0. So, we

reach a contradiction if we assume that lλ or uλ is identically 0 for any λ ∈ R.

Figure 3.7 depicts some possible bifurcation diagrams corresponding to the global
situation described in Theorem 3.45.

Figure 3.7: Some possibilities for the weak generalized transcritical bifurcation diagrams described
in Theorem 3.45. See Figures 3.1, 3.4 and 3.5 to understand the meaning of the different elements.
In the first two diagrams, sp(hx(·, 0)) is a nondegenerate interval which contains 0. The first one
corresponds to inf sp(hx(·, 0)) < 0 < sup sp(hx(·, 0)) (which yields λ1 < λ2). The second one
to inf sp(hx(·, 0)) = 0 < sup sp(hx(·, 0)) with λ1 < λ2 (the diagram for λ1 = λ2 is obtained by
deleting the vertical strip given by (λ1, λ2)). The third diagram corresponds to sp(hx(·, 0)) = {0}
with λ1 < λ2 (again, erasing the vertical strip given by (λ1, λ2) provides the diagram for λ1 = λ2

in this point spectrum case). The notation αµ
m
= 0 and βµ

m
= 0 represents the information in

Theorem 3.45(vi).

Theorem 3.46. Let (Ω, σ) be minimal. Let h : Ω × R → R satisfy d1, d2λx2, d3,
d4 and d5. Then, the bifurcation diagrams of Theorems 3.43, 3.44 and 3.45 exhaust
all the possibilities of (3.24).

Proof. As said at the beginning of this section, sp(hx(·, 0)) ⊂ (0,∞) (Theorem 3.43),
sp(hx(·, 0)) ⊂ (−∞, 0) (Theorem 3.44) and 0 ∈ sp(hx(·, 0)) (Theorem 3.45) exhaust
all the possibilities.

Autonomous cases x′ = h(x) + λx2 fitting the three possibilities described in
Theorem 3.46 are very easy to find, since they just depend on the sign of h′(0).
For example, x′ = −x3 + x + λx2 for the first one, x′ = −x3 − x + λx2 for (ii) for
the second one, and x′ = −x3 + λx2 for the third one. Note also that the model
analyzed in Proposition 3.26 fits in the situation of Theorem 3.45, and that in that
case we can determine the values of λ1 and λ2.

3.4.2 A two-parameter bifurcation problem

We close this chapter by using the information just obtained in Section 3.4 to go
deeper in the analysis of the bifurcation possibilities of the problem (3.9) analyzed
in Section 3.3, i.e., x′ = h(ω·t, x) + λx. To this end, we will study

x′ = h(ω·t, x) + λx+ µx2 , ω ∈ Ω , (3.29)
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which is a bifurcation problem of the type analyzed in this section for each fixed
value of λ, and a bifurcation problem of the type analyzed in Section 3.3 for each
fixed value of µ. We will assume that (Ω, σ) is minimal and that h : Ω × R → R
satisfies d1, d2λx2 , d3, d4 and d5, which according to Proposition 3.3 provide the
required hypotheses in both cases.

Let us conveniently fix the notation. Let Aλ,µ be the global attractor of the local
skewproduct flow τλ,µ induced on Ω×R by (3.29)λ,µ, with lower and upper equilibria
lλ,µ and uλ,µ, and let sp(hx(·, 0)) = [−λ+,−λ−] with λ− ≤ λ+. We define

µ̂ : (−∞, λ+] → R , λ 7→ inf{µ ∈ R | the graph of uλ,ν defines a

hyperbolic minimal set Mu
λ,ν ̸= M0 for all ν > µ} ,

λ̂ : R → (−∞, λ+] , µ 7→ inf{λ ∈ R | the graph of uξ,µ defines a

hyperbolic minimal set Mu
ξ,µ ̸= M0 for all ξ > λ} .

(3.30)

Notice that, sp(hx(·, 0) + λ) = [λ − λ+, λ − λ−] ̸⊂ (0,∞) for any λ ≤ λ+, which
ensures that the bifurcation diagram for the µ-parametric family (3.29)λ (fixing the
parameter λ) is not that of Theorem 3.43. So, Theorem 3.46 ensures that is is
described by Theorems 3.44 or 3.45, and hence µ̂(λ) is well defined: it is the upper
bifurcation point of the bifurcation diagram of (3.29)λ. Theorem 3.24 shows that
the bifurcation diagram of (3.29)µ is given by Theorems 3.20, 3.21 or 3.22 for any

µ ∈ R, and in these three cases λ is well defined and satisfies λ̂(µ) ≤ λ+.
The following proposition establishes properties of the two maps µ̂ and λ̂, and

will be used to use Corollary 3.48.

Proposition 3.47. Let (Ω, σ) be minimal. Let h : Ω × R → R satisfy d1, d2λx2,
d3, d4 and d5. Let λ̂ and µ̂ be the maps defined in (3.30). Then,

(i) λ̂ ◦ µ̂ = Id(−∞,λ+], and consequently, λ̂ is onto and µ̂ is injective.

(ii) λ̂ is nonincreasing and continuous.

Proof. (i) We fix λ0 ∈ (−∞, λ+] and call µ0 = µ̂(λ0) and λ̄0 = λ̂(µ0). The goal is to
check that λ̄0 = λ0. The definition of µ0 ensures that the graph of uλ0,µ0 does not

define a hyperbolic τλ0,µ0-minimal set distinct from M0, and hence λ0 ≤ λ̂(µ0) = λ̄0.
For contradiction, we assume that λ0 < λ̄0, and fix λ ∈ (λ0, λ̄0). As said before, µ0

is the upper bifurcation point of the diagram described by Theorems 3.44 or 3.45
for the µ-family of (3.29)λ0 . Note also that, for any ε > 0, the upper equilibrium
uλ0,µ0+ε of Aλ0,µ0+ε is continuous and strictly positive. Then, if ε ∈ (0, 1) satisfies
ε < (λ − λ0)/ supω∈Ω uλ0,µ0+1(ω), we have λ0 − λ + ε uλ0,µ0+ε(ω) < 0 for all ω ∈ Ω,
and hence

u′λ0,µ0+ε(ω) = h(ω, uλ0,µ0+ε(ω)) + λ0 uλ0,µ0+ε(ω) + (µ0 + ε) uλ0,µ0+ε(ω)
2

= h(ω, uλ0,µ0+ε(ω)) + λ uλ0,µ0+ε(ω) + µ0 uλ0,µ0+ε(ω)
2

+ uλ0,µ0+ε(ω) (λ0 − λ+ ε uλ0,µ0+ε(ω))

< h(ω, uλ0,µ0+ε(ω)) + λ uλ0,µ0+ε(ω) + µ0 uλ0,µ0+ε(ω)
2 .

That is, uλ0,µ0+ε is a global strict lower solution for (3.29)λ,µ0 . So, Theorem 2.13(v)
ensures that 0 < uλ0,µ0+ε < uλ,µ0 , which in particular implies the existence of a
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strictly positive τλ,µ0-minimal set: that defined in Proposition 2.17(i) from uλ,µ0 .
But this is not possible: in the three possible bifurcation cases for (3.29)µ0 described
by Theorems 3.20, 3.21 and 3.22, there are no τλ,µ0-minimal sets aboveM0 if λ < λ̄0.

This contradiction shows that λ̄0 = λ0, and hence that λ̂ ◦ µ̂ = Id(−∞,λ+].

(ii) For contradiction, we assume that there exist µ1 < µ2 such that λ1 = λ̂(µ1) <
λ̂(µ2) = λ2. We take λ ∈ (λ1, λ2). As λ > λ1, the definition of λ1 ensure that the
upper equilibrium uλ,µ1 of Aλ,µ1 is continuous and strictly positive. Notice that

u′λ,µ1
(ω) = h(ω, uλ,µ1(ω)) + λ uλ,µ1(ω) + µ2 uλ,µ1(ω)

2 + (µ1 − µ2) uλ,µ1(ω)
2

< h(ω, uλ,µ1(ω)) + λ uλ,µ1(ω) + µ2 uλ,µ1(ω)
2 ,

so uλ,µ1 is a strict global lower solution for (3.29)λ,µ2 . Therefore, Theorem 2.13(v)
ensures that 0 < uλ,µ1 < uλ,µ2 , which in particular implies the existence of a strictly
positive τλ,µ2-minimal set (see Proposition 2.17(i)). But the definition of λ2 ensures
that there are no τλ,µ2-minimal sets above M0, since λ < λ2, a contradiction. Hence,

λ̂ is nonincreasing. Finally, a nondecreasing and onto function defined from an
interval to an interval is always continuous.

The following corollary is the main result of this section. It states that, given
any function h satisfying the assumptions we have been asking for in the previous
sections, (3.9) can exhibit any of the bifurcation diagrams described in Theorem
3.24 if a suitable multiple of x2 is added to h. (Of course, the generalized pitchfork
diagram will only be possible if h has band spectrum.)

Corollary 3.48. Let (Ω, σ) be minimal. Let h : Ω× R → R satisfy d1, d2λx2, d3,
d4 and d5. Let sp(hx(·, 0)) = [−λ+,−λ−] and λ0 ≤ λ+. The λ-parametric family

x′ =
(
h(ω·t, x) + µ̂(λ0)x

2
)
+ λx (3.31)

exhibits

- the classical pitchfork bifurcation of Theorem 3.20 if λ0 = λ+, where λ0 is the
unique point at which the number of minimal sets changes;

- the local saddle-node and transcritical bifurcations of Theorem 3.21 if λ0 < λ−,
with λ0 = µ+ as local saddle-node bifurcation point and lλ colliding with 0 as
λ ↓ λ+;

- and the generalized pitchfork bifurcation of Theorem 3.22 if λ− < λ+ and
λ0 ∈ [λ−, λ+), with bifurcation point λ0 = µ+ and lλ colliding with 0 as λ ↓ λ+.

Proof. Proposition 3.47(i) ensures that λ̂(µ̂(λ0)) = λ0. That is, λ0 = inf{λ ∈ R :
the graph of uξ,µ̂(λ0) defines a hyperbolic minimal set Mu

ξ,µ̂(λ0)
̸= Ω × {0} for all

ξ > λ}. The conclusions follow from the descriptions of Theorems 3.20, 3.21 and
3.22 applied to (3.31): notice that in the last two cases the bifurcation diagram is
the symmetric of that depicted in Figure 3.4 or in Figure 3.5, since the definition of
the map λ̄ forces uλ to determine a hyperbolic copy of the base for all λ > λ0; and
hence lλ collides with 0 as λ ↓ λ+.

If analogous definitions were made to (3.30) replacing upper equilibria by lower
equilibria, then an analogous result to Corollary 3.48 would be obtained, with uλ
colliding with 0 at the upper bifurcation points.
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Comments on Chapter 3

1. In Theorems 3.8 and 3.10 and Proposition 3.9, the hypothesis on strict con-
cavity d4 can be asked not for all compact interval J ⊂ R but for a sufficiently
large compact interval J0 ⊂ R such that Aλ ⊆ Ω × J0 for all the values of the
parameter for which Aλ may not be a copy of the base (Proposition 3.5(iii) ensures
that these values of the parameter are contained on a compact interval [−λ∗, λ∗]).
This is the case of the statements of [34, Theorems 5.10 and 5.12, Proposition 5.11].
However, since the size of this compact interval J0 is not known a priori, for the
sake of simplicity, d4 has been assumed instead in this document.

2. The proof of the results of Section 3.2 can be repeated with small modifications
for the bifurcation problem x′ = h(ω·t, x) + λ c(ω·t), where c : Ω → R is a strictly
positive continuous function.

3. If (Ω, σ) has at least two ergodic measures, then we know that other bifurcation
diagram for x′ = h(ω·t, x) + λ different from the two described in Theorems 3.8
and 3.14, and which does not have any autonomous analog, can exist. But it is
not referred to in this document, as further research on this subject is still being
conducted. This fact is strongly related to the generalized pitchfork bifurcation of
Theorem 3.22, which is extensively described in this work.

4. All the bifurcation theorems in this chapter have been developed with minimal
base flow (Ω, σ). Of course, this is not the only case in which nonautonomous
bifurcations are of interest. For example, in [33, Theorem B.3] an “analog” to
Theorem 3.8 in the case of transitive base flow (Ω, σ) can be found. Some additional
difficulties arise in this case that must be carefully addressed.

5. An interesting motivation for the study of the bifurcation problem (3.9) can be
found in [34, Section 6.2] (it also serves as a motivation for (3.24)). Given a minimal
set M for the skewproduct flow τ0 induced by x′ = h(ω·t, x), the classical problem
of bifurcation of recurrent solutions “around” a fixed solution t 7→ v0(t, ω, z) can be
included in the analysis of bifurcation patterns for the family of equations

x′ = h(ω·t, x) + λ
(
x− v0(t, ω, z)

)
, (3.32)

for (ω, z) ∈ M. A change of variables and a change of skewproduct base (see
[34, Section 6.1]) transforms (3.32) into (3.9). In [34, Section 6.4], the information
obtained into the bifurcation theorems is translated into bifurcations of recurrent
solutions of (3.32).

6. In [35, Section 5], the ideas of Section 3.3.2 are used to construct examples of
all the three possible types of bifurcation diagrams described in Theorem 3.24 for
families of differential equations of a slightly more general type:

x′ =
(
− a3(ω·t) + h(ω·t, x)

)
x3 + a2(ω·t)x2 +

(
a1(ω·t) + λ

)
x , ω ∈ Ω ,

where ai ∈ C(Ω) for i ∈ {1, 2, 3}, a3 > 0, h ∈ C0,2(Ω × R,R), and h(ω, 0) = 0 for
all ω ∈ Ω. In this case, new bounds involving h are found to guarantee the different
bifurcation diagrams.

7. The techniques developed in this document can also be used to analyze
certain non scalar triangular systems of ordinary differential equations. For example,
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consider a triangular family of two-dimensional systems defined along the orbits of
a global flow (Ω, σ), {

x′ = h(ω·t, x) ,
y′ = g(ω·t, x, y) ,

where y 7→ g(ω, x, y) satisfies suitable d-concavity hypotheses, and assume that there
exists a compact invariant set K ⊂ Ω × R for the flow τ induced by x′ = h(ω·t, x)
on Ω × R. Then, the two-dimensional skewproduct flow can be partly analyzed
by studying the dynamics of the (d-concave) scalar equation y′ = g(τ |K(t, ω, x), y).
This matter will be the subject of further investigation.



Chapter 4

Critical transitions for d-concave
nonautonomous differential
equations and applications

Critical transitions or tipping points are significant nonlinear phenomena character-
ized by substantial, abrupt, and often irreversible changes in the state of a complex
system in response to minor and gradual changes in external conditions or inputs
of the physical phenomenon. In recent years, this concept has encompassed phe-
nomena in applied sciences as diverse as earthquakes, sudden desertification of a
typically vegetated region, coral reef collapse, habitat invasion caused by just a few
individuals, epileptic seizures, outbreak of global pandemics, stock market crashes...

The purpose of this chapter is to develop a theory of critical transitions for
phenomena modeled by d-concave nonautonomous equations. In the applications,
we will focus on the mathematical modeling of critical transitions in nonautonomous
continuous single species population models subject to the Allee effect: our attention
is on two phenomena, the critical extinction of a species and the sudden invasion of
certain patch. As will be indicated a little further down, we assume that the initial
and final states of the transition are governed by evolution laws given by d-concave
functions, which is a natural hypothesis in this context. Thus, we assume that the
population dynamics during the transition is given by a transition equation

x′ = g(t, x) , (4.1)

where g is a sufficiently regular, coercive, and admissible function. The existence
of two other sufficiently regular, coercive, and d-concave functions g− and g+ is
assumed, satisfying limt→±∞(g(t, x) − g±(t, x)) = 0 uniformly on compact subsets
of R. These functions serve to represent the past equation x′ = g−(t, x) and the
future equation x′ = g+(t, x), which govern the dynamics of the system before and
after the transition occurs respectively. We remark that the evolution law of the
transition equation, g, may not have a concave derivative: this is sometimes the case
in population dynamics models which include factors as migration or predation. The
theory we develop establishes conditions on the transition and limit equations which
determine all the dynamical possibilities for (4.1), achieved in the main Theorem
4.16, which we call Cases A, B and C, and explains the repercussion that each of
them has on the global attractor of the skewproduct and on the pullback attractor
of the transition equation. Case A, or tracking, signifies the seamless connection of
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past and future states, which is typically the desirable situation in many applications
(in population models, it means persistence of the species at risk or continued control
of the potentially invasive species); Cases C, or tipping, mean that all bounded
solutions of the transition equation have the same limit (which usually represents
the catastrophic situation of extinction or invasion); and Cases B are typically
unstable situations that separate Cases A and C. Of course, there are contexts
in which the desired situation may be one of the Cases C. One of the relevant
results of the chapter, Theorem 4.21, proves that the variation from Case A to
one of the Cases C always occurs through Cases B and can be understood as a
nonautonomous saddle-node bifurcation of hyperbolic solutions.

The chapter comprises four sections. The first one serves as motivation by intro-
ducing the nonautonomous population models that drive the study. It also includes
a nonautonomous approach to the concepts of strong and weak Allee effect, as well
as conditions to guarantee it for all the equations of a skewproduct flow. Section 4.2
provides the general theory for equations of the type (4.1): it describes the frame-
work in which the aforementioned classification exhausts the dynamical possibilities.
Section 4.3 particularizes the results of Section 4.2 for transition equations of the
form x′ = f(t, x,Γ(t, x)), where Γ bears the asymptotic variation. There, we present
three distinct mechanisms that can be sources of tipping: rate, phase, and size. It
also proves the existence of a safety interval for the range of Γ that preclude tipping,
and ensures the presence of tipping when part of the range of Γ goes sufficiently far
away from this safety interval. Lastly, Section 4.4 presents four examples, including
numerical simulations that illustrate various peculiarities of the theory presented,
and giving them a proper ecological sense.

4.1 Nonautonomous d-concave

population models

In this section we will briefly motivate the interest in ecology of nonautonomous
d-concave models to justify the development of a mathematical theory of critical
transitions in this type of models. In addition, a nonautonomous approach to the
notions of strong and weak Allee effect is also presented, as well as results that
ensure the same type of Allee effect for all the equations of a skewproduct flow.

Numerous aspects of life on Earth undergo temporal fluctuations. Various phe-
nomena, including Earth’s rotation, climate variability, and seasonal alternations,
exert influences on population environments. As stated in e.g. [100], those pop-
ulations whose law of evolution (the set of factors affecting their development) is
time-dependent can be suitably modeled by nonautonomous equations

x′ = h(t, x) ,

where the variable t represents time and the state variable x represents the popu-
lation size. At least, h ∈ C0,2(R × R,R) will always be assumed. This condition
is sufficient to allow the construction of the hull presented in Section 1.3.1, which
will be a fundamental tool in the subsequent theory. Under this nonautonomous
approach, all the model parameters (growth rates, carrying capacities, competitive
effects, predation features...) may be continuous time-dependent functions.
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Many continuous models of single species populations in mathematical biology
are concave or d-concave, that is, the population growth rate h as a function of
the population size x either is concave or has concave derivative. One of the most
classical (concave) population dynamics models, which incorporates intraspecific
competition for resources, is the autonomous logistic equation

x′ = r x
(
1− x

K

)
, (4.2)

where r > 0 and K > 0 stand for the intrinsic growth rate of the population and
the carrying capacity of the environment, respectively. Changing the parameters r
and K by time-dependent, bounded, uniformly continuous, and positively bounded
from below maps r(t) and K(t), we obtain the nonautonomous logistic equation

x′ = r(t)x

(
1− x

K(t)

)
.

Here and in the whole chapter, we say that a real map is positively bounded from
below if its inferior is strictly positive. It is remarkable that, in this model, K(t) does
no longer represent the healthy steady population since it is not even a solution of the
equation. However, as we will explain in Remark 4.3, there always exists a strictly
positive hyperbolic solution u(t) which represents the steady positive population, u
takes values in [inft∈R K(t), supt∈R K(t)], and, if the coefficients are recurrent, then
u(t) coincides with K(t) at least in the points of a two-sided sequence (tn)n∈Z, with
limn→±∞ tn = ±∞. The map r(t) retains the meaning that r has in (4.2).

Around 1930, perhaps earlier, W.C. Allee (see [2]) brought attention to the idea
that not only intraspecific competition, but also intraspecific cooperation, is impor-
tant for the evolution of a population: larger group sizes may encourage reproduc-
tion or extend survival in adverse conditions. This could imply a correlation between
low population density and increased risk of extinction. There are several biological
mechanisms related to survival and reproduction which can justify the appearance
of the Allee effect on different biological systems: easier mate finding, cooperative
breeding, cooperative anti-predator behavior, increased foraging efficiency... (see
[14], [27]). This is what nowdays is called the Allee effect (see [27], [31], [64]): a
positive correlation between the size of a population and its fitness, that is, the per
capita population growth rate. The study of this phenomenon is an active area of
both theoretical and experimental research.

The mathematical modeling of the Allee effect usually provides differential equa-
tions given by functions whose derivative with respect the state variable is (globally
or locally) concave. Some phenomenological models are obtained by including a
multiplicative term to the logistic model. Depending on its features, one of the
following multiplicative models (see [5], [27], [120]) may be preferred to the other
one:

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
, (4.3)

x′ = r(t)x

(
1− x

K(t)

)
x− µ(t)

ν(t) + x
, (4.4)

where S, µ and ν are bounded and uniformly continuous maps which determine the
strength of the Allee effect, K(t) + S(t) ≥ 0 for all t ∈ R, S ≯ K, and ν and ν + µ
are positively bounded from below.
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If the triggering mechanism of the Allee effect is related to predation, an additive
term (see [70]) is usually added to the logistic model, often in the form of a Holling
type II functional response, getting

x′ = r(t)x

(
1− x

K(t)

)
− a(t)x

x+ b(t)
, (4.5)

where the maps a and b are assumed to be bounded, uniformly continuous, and
positively bounded from below. They depend on the predator density and the
average time between attacks of a predator. On the other hand, the coexistence
of various mechanisms that give rise to the Allee effect can be studied through a
series of models that mix these elements. For instance, adding a Holling type III
functional response to (4.3) provides

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− a(t)x2

b(t) + x2
. (4.6)

The meaning of a and b is the same that in the Holling type II functional response.
(The biological meaning of Holling functional responses is detailed in [49]).

Allee effect and d-concavity

Let us display the third derivatives of the right-hand side of the previous models to
show its d-concavity properties. In particular, we will look for a strong version of
d-concavity: having strictly negative third derivative. To this end, we calculate the
third derivative with respect to x of the right-hand side of (4.3),

∂3

∂x3

(
r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)

)
= − 6 r(t)

K(t)2
< 0 , (4.7)

of the right-hand side of (4.4),

∂3

∂x3

(
r(t)x

(
1− x

K(t)

)
x− µ(t)

ν(t) + x

)
= −6 ν(t) r(t) (K(t) + ν(t))(ν(t) + µ(t))

K(t) (ν(t) + x)4
< 0 ,

of the right-hand side of (4.5),

∂3

∂x3

(
− a(t)x

x+ b(t)

)
= − 6 a(t) b(t)

(b(t) + x)4
< 0 ,

of the additive predation term in (4.6),

∂3

∂x3

(
− a(t)x2

x2 + b(t)

)
= −24 a(t) b(t)x (x2 − b(t))

(b(t) + x2)4
, (4.8)

which is not forcefully strictly negative. The third derivative of the right-hand
side of (4.6) is the sum of (4.7) and (4.8). Let us establish a relation between
the coefficient functions ensuring its d-concavity, under the assumption that b(t) is
constant: b(t) ≡ b.
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It is not difficult to check that the real function g(y) = −y (y2 − 1)/(1 + y2)4 at-

tains its global maximum at y0 =
√

1− 2/
√
5, with g(y0) = (5/128)

√
(25 + 11

√
5)/2.

Then,

max
x∈R

(
−24 a(t) b x (x2 − b)

(b+ x2)4

)
= max

x∈R
24 a(t) b−3/2g

(
x√
b

)

=
15 a(t) b−3/2

16

√
25 + 11

√
5

2
,

and hence, if

− 6 r(t)

K(t)2
+

15 a(t) b−3/2

16

√
25 + 11

√
5

2
< 0 ,

for all t ∈ R, then, the right-hand side of (4.6) is d-concave. This holds whenever

a(t) ∈

0, b3/2 64

5
√

(5− 2
√
5) (7 + 3

√
5)

inf
t∈R

r(t)

K(t)2

 (4.9)

for all t ∈ R. This condition will be used hereafter.

4.1.1 Nonautonomous approach to the types of Allee effect

In autonomous models, the Allee effect is said to be weak if the per capita population
growth rate (represented by x′/x in our equation) is lower at low density than at
higher densities but positive; and it is said to be strong if the per capita population
growth rate becomes negative below a certain value, which is called an Allee threshold
or a critical population size (see e.g. [16], [27], [113]) and which corresponds to a
strictly positive repulsive fixed point (i.e., a constant solution). That is, populations
under the Allee threshold decline to extinction. For example, x′ = r x (1−x/K)(x−
S)/K exhibits strong Allee effect if 0 < S < K and weak Allee effect if S < 0 < K.

To extend these concepts to our nonautonomous setting, we will classify strong
and weak Allee effect in terms of the existence or non-existence of such an (nonau-
tonomous) Allee threshold. This approach intends to be valid also for models which
are more general than (4.3), (4.4), (4.5) or (4.6), for which 0 may not solve the
equation.

In what follows, we assume that x′ = h(t, x) has exactly three hyperbolic solu-
tions. It is important to highlight that this property is not guaranteed a priori for
any of these equations, so it depends on the choice of the coefficient functions; and in
the case that it holds, these three hyperbolic solutions are not necessarily positive,
so its biological meaning is not automatically guaranteed. We will be interested in
the dynamics above the smallest nonnegative bounded solution, which is the bio-
logically meaningful dynamics. Later in this chapter, Lemma 4.7 will prove that, if
h ∈ C0,2(R×R,R) satisfies the coercivity condition lim supx→±∞(±h(t, x)) < 0 uni-
formly on R and the strict d-concavity condition inft∈R(hxx(t, x1) − hxx(t, x2)) > 0
whenever x1 < x2, then the hypotheses of Theorem 2.18 hold for its extension to the
hull, and therefore x′ = h(t, x) has at most three uniformly separated solutions, in
which case they are hyperbolic: attractive the upper and lower ones, which bound
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the set of bounded solutions, and repulsive the middle one. These are the hypotheses
under which we will work in what follows.

If the three hyperbolic solutions of x′ = h(t, x) are nonnegative, then the upper
and lower ones, attractive, can be understood as steady population states: the upper
one represents a healthy population state while the lower one represent the species
extinction (if it is 0) or a sparse (or low density) steady population. The intermediate
hyperbolic solution plays the role of a critical population size, separating the domains
of attraction of the other two solutions. This situation is what we will call the
strong Allee effect. If only two of the three hyperbolic solutions of x′ = h(t, x)
are nonnegative, then the upper one, which is attractive represents again a healthy
population state, while the extinct or a sparse steady population is represented by
the repulsive hyperbolic solution (typically close to 0). This is what we will call the
weak Allee effect: there is not a critical population size. There can exist intermediate
situations between weak and strong Allee effect, which we will not study in this work.

Now, always under the assumption of existence of three hyperbolic solutions of
x′ = h(t, x), we will characterize weak and strong Allee effects when 0 is one of
the hyperbolic solutions. So, the Allee effect is strong if 0 is attractive but not the
upper one, and it is weak if 0 is repulsive. Note that, in this case, the per capita
population growth rate at 0 is given by limx→0(h(t, x)/x) = hx(t, 0) for any t ∈ R.
Let us check that, if the upper bounded (and hyperbolic) solution of x′ = h(t, x) is
positively bounded from below, then x′ = h(t, x) exhibits strong Allee effect if and
only if the per capita population growth rate at 0 has negative average, that is,

lim
l→∞

(
sup

{
1

t− s

∫ t

s

hx(r, 0) dr

∣∣∣∣ t− s ≥ l

})
< 0 . (4.10)

If (4.10) holds, then there exists γ > 0 and l0 > 0 such that
∫ t

s
hx(r, 0) dr < −γ (t−

s) for all t − s ≥ l0, so exp
∫ t

s
hx(r, 0) dr < k e−γ (t−s) for all t ≥ s, where k =

sup{exp(γ(t− s) +
∫ t

s
hx(r, 0) dr) | t− s ∈ [0, l0]}, which is finite thanks to the C1-

admissibility of h. That is, 0 is hyperbolic attractive, and since the upper bounded
solution of x′ = h(t, x) is positively bounded from below, 0 is not the upper one.
Conversely, it is easy to check (4.10) if there exist γ > 0 and k ≥ 1 such that
exp

∫ t

s
hx(r, 0) dr < k e−γ (t−s) for all t ≥ s. Analogous arguments show that, x′ =

h(t, x) exhibits weak Allee effect if and only if the per capita population growth rate
at 0 has positive average, that is,

lim
l→∞

(
inf

{
1

t− s

∫ t

s

hx(r, 0) dr

∣∣∣∣ t− s ≥ l

})
> 0 .

We underline that, in autonomous dynamics, these averages of the per capita popu-
lation growth rate at 0 are equal to the constant value of the per capita population
growth rate at 0.

4.1.2 Allee effect in the skewproduct formalism

The C2-admissibility of the map h (which holds when h is the right-hand side of
(4.3), (4.4), (4.5) and (4.6)) allows us to work with the skewproduct flow defined on
Ω× R, where Ω is the hull of h: see Subsection 1.3.1. If, in addition, h is recurrent
(see Definition 1.45), then Ω is minimal, which we assume in what follows. Our next
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goal is to establish conditions on this hull extension ensuring the different types of
Allee effect for the equations of the family.

So, let (Ω, σ) be a minimal flow on a compact metric space, and let us consider
a family of nonautonomous scalar equations (see Section 1.2)

x′ = h(ω·t, x) , ω ∈ Ω , (4.11)

where h : Ω×R → R satisfies d1, d2, d3, d4 and d5 (see Sections 3.1 and 3.3). Let
τ be the scalar skewproduct flow induced by (4.11) in Ω × R (see Definition 1.15),
and let l and u be the lower and upper τ -equilibria of the global attractor for τ (see
Theorem 2.13). Observe that M0 = Ω× {0} is always a τ -minimal set. Recall that
any τ -copy of the base is a τ -minimal set, since (Ω, σ) is minimal. And that any
hyperbolic τ -minimal set is a hyperbolic τ -copy of the base: see Remark 1.41.

Proposition 4.1 provides simple criteria based on some results of Chapter 2 to
ensure that, thanks to Proposition 1.55, all the equations (4.11)ω of the family (4.11)
exhibit the same type of Allee effect: weak or strong.

Proposition 4.1. Let (Ω, σ) be minimal, and let h : Ω×R → R satisfy d1, d2, d3,
d4 and d5. The following statements hold:

(i) (Weak Allee effect). If M0 is a repulsive hyperbolic τ -minimal set, then there
exist exactly three different τ -minimal sets Ml < M0 < Mu, which are hy-
perbolic, with Ml = {l} and Mu = {u} attractive.

(ii) (Strong Allee effect). If M0 is an attractive hyperbolic τ -minimal set and there
exists ρ > 0 such that h(ω, ρ) > 0 for all ω ∈ Ω, then (4.11) has exactly three
different τ -minimal sets M0 < Mm < Mu, which are hyperbolic, with Mm =
{m} repulsive and Mu = {u} attractive; and, in addition, m(ω) < ρ < u(ω)
for all ω ∈ Ω.

Proof. (i) Proposition 2.14(i) ensures the existence of at least three τ -minimal sets,
and Theorem 2.11 proves the remaining assertions.

(ii) Theorem 2.13(v) ensures that ρ < u(ω) for all ω ∈ Ω, and l(ω) ≤ 0 < ρ for
all ω ∈ Ω since 0 is a bounded solution. Hence t 7→ v(t, ω, ρ) is globally defined
and bounded for all ω ∈ Ω. Take ω0 ∈ Ω, and let Mu and Mm be two τ -minimal
sets contained in the ω-limit set and the α-limit set for τ of (ω0, ρ), respectively.
Propositions 1.22 and 1.24 ensure that Mm < Ω×{ρ} < Mu, and Corollary 1.58(i)
ensures that M0 < Mm. Hence, there exist three hyperbolic τ -minimal sets, and
Theorem 2.11 completes the proof.

Now, we consider the particular case of (4.11) given by a model with multiplica-
tive Allee effect, a skewproduct version of (4.3),

x′ = r(ω·t)x
(
1− x

K(ω·t)

)
x− S(ω·t)
K(ω·t)

, ω ∈ Ω , (4.12)

where r,K,S : Ω → R are continuous, r and K are strictly positive, and S satisfies
S(ω) +K(ω) ≥ 0 for all ω ∈ Ω. The next result provides conditions ensuring each
type of Allee effect, and states a relation between the functions K and S and the
τ -minimal sets which determine the strength and range of action of the Allee effect.
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Proposition 4.2. Let (Ω, σ) be minimal, let r,K,S : Ω → R be continuous maps
with infω∈Ω r(ω) > 0, infω∈ΩK(ω) > 0 and let m ∈ Merg(Ω, σ).

(i) (Weak Allee effect). Assume that supω∈Ω S(ω) < 0. Then, (4.12) is in the
situation of Proposition 4.1(i), and hence it exhibits weak Allee effect. In
addition, u takes values in [infω∈Ω K(ω), supω∈Ω K(ω)] and either K ≡ u are
constant maps or, for all ω ∈ Ω, there exists a strictly increasing two-sided
sequence (tn)n∈Z with limn→±∞ tn = ±∞ such that t 7→ K(ω·t)−u(ω·t) changes
sign at tn for all n ∈ Z.

(ii) (Strong Allee effect). Assume that infω∈Ω S(ω) > 0 and supω∈Ω S(ω) < ρ <
infω∈Ω K(ω) for some constant ρ > 0. Then, (4.12) is in the situation of Propo-
sition 4.1(ii), and hence it exhibits strong Allee effect. In addition, u (resp. m)
takes values in [infω∈Ω K(ω), supω∈Ω K(ω)] (resp. [infω∈Ω S(ω), supω∈Ω S(ω)]),
and either K ≡ u (resp. S ≡ m) are constant maps or, for all ω ∈ Ω, there
exists a strictly increasing two-sided sequence (tn)n∈Z with limn→±∞ tn = ±∞
such that t 7→ K(ω·t)− u(ω·t) (resp. t 7→ S(ω·t)−m(ω·t)) changes sign at tn
for all n ∈ Z.

Proof. Let h(ω, x) = r(ω)x (K(ω)− x)(x− S(ω))/K(ω)2.

(i) If supω∈Ω S(ω) < 0, then hx(ω, 0) = −r(ω)S(ω)/K(ω) > 0 for all ω ∈ Ω,
and hence Proposition 1.42 (and Theorem 1.36(i)) shows that M0 is a repulsive
hyperbolic τ -minimal set, which is the situation of Proposition 4.1(i). We define
k− = infω∈Ω K(ω) > 0 and k+ = supω∈Ω K(ω) ≥ k− and observe that h(ω, k−) ≥ 0
and h(ω, k+) ≤ 0 for all ω ∈ Ω. A standard comparison argument shows that
k− ≤ v(t, ω0, k−) ≤ v(t, ω0, k+) ≤ k+ for all t ≥ 0 and ω0 ∈ Ω, which ensures that
theω-limit set of (ω0, k−) for τ exists and contains a τ -minimal set in turn contained
in Ω× [k−, k+]. It follows from Corollary 1.58(i) that this τ -minimal set is {u}. In
addition,

u′(ω)

u(ω)
=

r(ω)

K(ω)2
(K(ω)− u(ω))(u(ω)− S(ω)) (4.13)

for all ω ∈ Ω, where u′(ω) = (d/dt) u(ω·t)|t=0. Hence, u′ is continuous. Birkhoff’s
Ergodic Theorem 1.10 applied to (4.13) yields∫

Ω

r(ω)

K(ω)2
(K(ω)− u(ω)) (u(ω)− S(ω)) dm = 0 . (4.14)

If u = K, then (4.13) evaluated on ω·t yields u′(ω·t) = 0 for all ω ∈ Ω and t ∈ R.
So, u is constant along any orbit in Ω and, since Ω is minimal and u is continuous, u
(and hence K) is constant on Ω. If this is not the case, (4.14) and r (u−S)/K2 > 0
preclude u > K or u < K. Hence, there exist open sets U+,U− ⊂ Ω such that
K(ω) − u(ω) > 0 for all ω ∈ U+ and K(ω) − u(ω) < 0 for all ω ∈ U−. We fix
ω ∈ Ω and deduce from the minimality of Ω the existence of (s±n ) ↑ ∞ such that
ω·s±n ∈ U± for all n ∈ N. Consequently, there exists a sequence (tn) ↑ ∞ such that
t 7→ K(ω·t) − u(ω·t) changes sign at tn for all n ∈ N. The same argument proves
the existence of (t̃n) ↓ −∞ with the same property.

(ii) Now, h(ω, 0) < 0 for all ω ∈ Ω, and hence Proposition 1.42 (and Theo-
rem 1.36(i)) ensures that M0 is hyperbolic attractive. In addition, h(ω, ρ) > 0 for
all ω ∈ Ω, so the situation is that of Proposition 4.1(ii). Similar arguments to that
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of (i) show the assertions concerning u, having in mind that u− S > ρ− S > 0. To
cope with m, we take s− = infω∈Ω S(ω) > 0 and s+ = supω∈Ω S(ω) ≥ s− and use
a comparison argument to check that s− ≤ v(t, ω0, s−) ≤ v(t, ω0, s+) ≤ s+ for all
t ≤ 0 and ω0 ∈ Ω. From here we can repeat the arguments used for u, working with
the α-limit set for τ of (ω0, s−).

Remark 4.3. For x′ = r(ω·t)x (K(ω·t) − x)/K(ω·t), the arguments used in the
proof of Proposition 4.2(i) combined with the existence of a unique positive copy of
the base {u}, which is hyperbolic attractive (apply Proposition 1.20 to infω∈ΩK(ω)
and see [88] and [73]), prove the same properties relating u and K.

The maps u and m of Proposition 4.2(ii) respectively represent the maximum
population size and the critical population size (Allee threshold). They can be
naturally used to determine two more indicators of the strength of strong Allee
effect:

inf
m∈Merg(Ω,σ)

∫
Ω

m(ω)

u(ω)
dm and sup

m∈Merg(Ω,σ)

∫
Ω

m(ω)

u(ω)
dm ,

which measure the relative position of the upper and middle minimal sets with
respect to 0. If the first quantity is close to 1, it indicates that m is very close to u,
so that the strength of strong Allee effect is high: only a population very close to
the maximum population size can persist; and if the second quantity is close to 0,
it indicates that m is much lower than u, and hence that the strength of the strong
Allee effect is low: only very (relatively) small populations become extinct.

4.2 General theory of transition equations

The primary objective of this section is to establish the dynamical possibilities for
a class of equations

x′ = g(t, x) , (4.15)

which represents a transition between a past and a future, respectively modeled by
the equations x′ = g−(t, x) and x′ = g+(t, x). This class is considerably larger than
the set of transition equations for which g is strictly d-concave, which, as we will see
in the examples of Section 4.4, significantly broadens the scope of applications. Our
classification will serve as the key piece to discuss critical transitions. Once obtained,
we will characterize the different possibilities in terms of topological properties of the
global attractor and forward attraction properties of the pullback attractor. This is
achieved in Section 4.2.1. Sections 4.2.2 and 4.2.3 contain some general monotonicity
properties that lay the groundwork for the analysis of a particular type of parametric
families of transition equations that will appear in Section 4.3.

Let g : R×R → R be a C2-admissible function. The hull construction described in
Section 1.3.1 allows us to understand the σ-orbit of g, {g·t | t ∈ R}, which is dense in
the hull Ωg, as a connection between its α-limit set Ωα

g and itsω-limit set Ωω
g . In fact,

the hull Ωg is the union of these three sets: see Lemma 1.44. Our main goal in this
section is to describe the dynamical possibilities for an “asymptotically d-concave”
equation (4.15) under conditions which ensure that the families of equations defined
over Ωα

g (α-family) and Ωω
g (ω-family) satisfy the regularity, coercivity and strict d-

concavity properties d1, d2, d3 and d4, as well as the existence of three hyperbolic
copies of the base for the α-family and theω-family. This last condition provides the
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widest possible range of dynamical possibilities for (4.15) under conditions d1, d2,
d3 and d4: the maximum number of uniformly separated solutions for each equation
of the α-family or the ω-family is three (see Theorem 2.18); hence, Proposition 1.47
precludes the existence of more than three uniformly separated solutions of (4.15);
and, if there are three, then Theorem 2.18 yields three hyperbolic copies of the base
for the α-family and the ω-family. That is, a lower number of hyperbolic solutions
of the α-family or the ω-family precludes the existence of three hyperbolic solutions
of (4.15). Since the structures of Ωα

g and Ωω
g represent the past and future of g, we

are understanding (4.15) as a transition between the α-limit and ω-limit families.
We will achieve all the required properties on Ωα

g and Ωω
g by assuming the exis-

tence of two strictly d-concave (in x) maps g− and g+ such that g and g− (resp. g
and g+) form an asymptotic pair as t → −∞ (resp. as t → ∞) in the common
hull of g and g− (resp. g and g+): recall Definition 1.5. (The common hull of two
admissible maps h1 and h2 is the compact metric space defined as the closure of
{hi·t | i = 1, 2, t ∈ R} in the compact-open topology.) The existence of the maps
g− and g+ does not imply their uniqueness, but Lemma 4.6 below also shows that
Ωα

g and Ωω
g respectively coincide with Ωα

g− and Ωω
g+
, independently of the choice of

g− and g+, which is a key point in our analysis.
So, we fix g and assume the existence of g− and g+ such that:

g1 g, g−, g+ ∈ C0,2(R× R,R).

g2 limt→±∞
(
g(t, x)− g±(t, x)

)
= 0 uniformly on each compact subset J ⊂ R.

g3 lim supx→±∞
(
± h(t, x)

)
< 0 uniformly on R for h = g, g−, g+.

g4 inft∈R
(
(g±)xx(t, x1)− (g±)xx(t, x2)

)
> 0 whenever x1 < x2.

g5 Each one of the equations

x′ = g−(t, x) and x′ = g+(t, x) (4.16)

has three hyperbolic solutions, l̃g− < m̃g− < ũg− and l̃g+ < m̃g+ < ũg+ .

As Lemma 4.7 will prove, conditions g1-g4 provide a setting satisfying the hypothe-
ses of Chapter 2.

Remarks 4.4. 1. Slightly abusing language, we will say that “g satisfies conditions
g1-g5” if there exist g− and g+ such that all the listed conditions are satisfied.

2. To simplify the language, we will refer to (4.15) as a transition equation
between the past equation and the future equation, which are the first one and the
second one in (4.16). That the use of these words is accurate is partly justified by
the previously mentioned equalities Ωα

g− = Ωα
g and Ωω

g+
= Ωω

g , which mean that the
hyperbolic structures of the equations (4.16) condition that of (4.15) and viceversa;
and it will be better justified by the main results of this section. But observe that
the future of the dynamics of the nonautonomous equation x′ = g−(t, x) is not
necessarily related to its past (since Ωα

g− can be different Ωω
g−), and hence it can be

not related to the dynamics of x′ = g(t, x). And the same happens with the past
dynamics of x′ = g+(t, x) and x′ = g(t, x).

3. Note again that the function g giving rise to the transition equation is not
required to be d-concave.
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As said before, the main (and initial) purpose of this section is to classify the dy-
namical scenarios for the transition equation (4.15) when g satisfies g1-g5. We will
check that the dynamical possibilities for (4.15) correspond to the cases described
in the following definition, describe the dynamics of each of them and relate their
dynamics to that of the past and future equations (4.16).

Definition 4.5. Let g satisfy g1-g5. We shall say that equation (4.15) is

- in Case A if it has three hyperbolic solutions, which are the unique three
uniformly separated solutions.

- In Case B if it has exactly two uniformly separated solutions, one of which is
the only hyperbolic solution, of attractive type, and the other locally pullback
attractive and repulsive. If the hyperbolic solution is above the other one, it
is in Case B1, and otherwise in Case B2.

- In Case C if it has no uniformly separated solutions and it has exactly two
hyperbolic solutions, which are attractive, and a locally pullback repulsive
solution defined on a positive halfline, which is either below the hyperbolic
solutions (Case C1) or above them (Case C2).

The classification is given in Theorem 4.16, whose proof relies on Theorems 4.17
and 4.18. The statements of these three theorems require the information provided
by another fundamental result, Theorem 4.13. The proof of all these results require
some previous work. Having a first look to Figures 4.1, 4.2 and 4.3 may provide
a global idea of the dynamics of each one of the five cases, although a complete
understanding of these drawings is difficult before completing the reading of the
statement of Theorem 4.16 (in turn based on the previous results). Throughout
this chapter, the numerical integration has been performed using the variable step
integration algorithm ode45 of Matlab2023a with suitable tolerances.

Our first two lemmas, fundamental for the subsequent application of Theorem
2.18, refer to the hull extensions (see Subsection 1.3.1). Recall that we represent
by xh(t, s, x) the maximal solution of x′ = h(t, x) which satisfies xh(s, s, x) = x (see
Section 1.3): we will use this notation for h equal to g, g−, g+, and some other
auxiliary admissible functions. In all these cases, the set Ωh is the hull of h, and
Ωα

h and Ωω
h are the α-limit set and ω-limit set of the element h ∈ Ωh. Recall that

h·t(s, x) = h(t + s, x), and that h(ω, x) = ω(0, x) if ω ∈ Ωh. We represent by g, g−
and g+ the extensions to the corresponding hulls of g, g− and g+ and by τg, τg−
and τg+ the corresponding skewproduct flows on Ωg × R, Ωg− × R and Ωg+ × R
respectively. These auxiliary lemmas do not need all the conditions g1-g5: we will
specify the required ones.

Lemma 4.6. Let g and g± satisfy g1 and g2. Then,

(i) Ωα
g = Ωα

g− and Ωω
g = Ωω

g+
.

(ii) Ωg = Ωα
g− ∪ {g·t | t ∈ R} ∪ Ωω

g+
.

(iii) The restriction to Ωα
g × R (resp. Ωω

g × R) of the skewproduct flow given by
x′ = g(ω·t, x) coincides with that of x′ = g−(ω·t, x) (resp. x′ = g+(ω·t, x)). In
particular, both restrictions have the same invariant compact sets.
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Proof. Given a sequence (tn) with limit ∞, it follows from gc2 that limn→∞(g(t +
tn, x) − g+(t + tn, x)) = 0 uniformly for (t, x) in a compact subset of R × R. Con-
sequently, ω(t, x) = limn→∞ g(t+ tn, x) uniformly on the compact subsets of R× R
if and only if ω(t, x) = limn→∞ g+(t + tn, x) uniformly on the compact subsets of
R × R. This proves Ωω

g = Ωω
g+
. We complete the proof of (i) by checking in an

analogous way that Ωα
g = Ωα

g− . Combining the two obtained equalities with Lemma
1.44 proves (ii), and (iii) is a trivial consequence of (i).

Lemma 4.7. If h ∈ C0,2(R×R,R) then h satisfies d1 on Ωh. If h ∈ C0,2(R×R,R)
and lim supx→±∞(±h(t, x)) < 0 uniformly on R, then h satisfies d2 on Ωh. And, if
g1, g2 and g4 hold, then g and g± satisfy d3 and d4 on Ωg and Ωg±, respectively.

Proof. As explained in Section 1.3.1, the C2-admissibility of h ensures d1 for h. If,
in addition, lim supx→±∞(±h(t, x)) < 0 uniformly on R, then there exists δ > 0 and
ρδ > 0 such that h(t, x) ≤ −δ if x ≥ ρδ and t ∈ R, and h(t, x) ≥ δ if x ≤ −ρδ and
t ∈ R. Since any ω ∈ Ωh satisfies ω(0, x) = limn→∞ h(tn, x) for a sequence (tn), we
have h(ω, x) = ω(0, x) ≤ −δ if x ≥ ρδ and h(ω, x) ≥ δ if x ≤ −ρδ: d2 holds on Ωh.

Now, we assume that g1, g2 and g4 hold. To prove the last assertion, it is enough
to reason with g, since g− and g+ satisfy the conditions assumed on g. Let us check
that g satisfies d3 and d4 on Ωg. Lemma 1.44 ensures that Ωg = Ωα

g ∪ {g·t | t ∈
R}∪Ωω

g . In particular, given m ∈ Merg(Ωg, σg), m(Ωα
g ) = 1 or m(Ωω

g ) = 1 (or both):
this is trivial if g is independent of t or t-periodic (since Ωg = Ωα

g = Ωω
g ); and, in

the remaining cases, {g·t | t ∈ R} =
⋃

n∈Z σn({g·t | t ∈ [0, 1)}) (where σn(ω) = ω·n)
is a nonfinite union of disjoint sets. Therefore, m(σn({g·t | t ∈ [0, 1)})) = 0 for
all n ∈ N, since this measure is independent of n. Hence, it suffices to check that
x 7→ gx(ω, x) is strictly concave on R for all ω ∈ Ωα

g ∪Ωω
g : this ensures that m({ω ∈

Ωg | x 7→ gx(ω, x) is strictly concave on R}) = 1 for all m ∈ Merg(Ωg, σg), which
is stronger than d3 and d4. We reason for ω ∈ Ωω

g . According to Lemma 4.6(i),
ω = limn→∞ g+·tn (in the compact-open topology) for a sequence (tn) with limit ∞.
Then, ωx is the limit of any subsequence of ((g+)x·tn) which uniformly converges on
the compact subsets of R × R, and hence ωx = limn→∞(g+)x·tn uniformly on the
compact subsets of R×R (recall that in a compact metric space, if every convergent
sequence converges to the same limit, then the sequence converges to that limit;
and that, since g+ ∈ C0,2(R× R,R), closureΩ×R{(g+)x·t | t ∈ R} is compact in the
compact-open topology). Analogously, ωxx = limn→∞(g+)xx·tn. We take x1 < x2,
and apply g4 to get

gxx(ω, x1)− gxx(ω, x2) = ωxx(0, x1)− ωxx(0, x2)

= lim
n→∞

(
(g+)xx(tn, x1)− (g+)xx(tn, x2)

)
> 0 ,

which completes the proof.

Remark 4.8. Lemma 4.7 shows that g− satisfies d1, d2, d3 and d4 if g− satisfies
the conditions assumed on it on g1, g3 and g4. Hence, in this case, and according to
Theorem 2.18, the property corresponding to g− in condition g5 can be reformulated
as: “the equation x′ = g−(t, x) has three uniformly separated solutions”, which
determine the global dynamics according to Theorem 2.18. The same applies to g+.
We will use these facts without further reference.

The next result allows us to use the persistence of hyperbolic solutions guaranteed
by Theorem 1.52 in the proofs of Proposition 4.12 and of Theorem 4.13.
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Lemma 4.9. If g and g± satisfy g1 and g2, then limt→±∞(gx(t, x)−(g±)x(t, x)) = 0
and limt→±∞(gxx(t, x)− (g±)xx(t, x)) = 0 uniformly on each compact subset J ⊂ R.

Proof. Let us reason for the map g−, taking (tn) ↓ −∞. Since h− = g − g− is
C2-admissible, closureΩ×R{(h−)x·t | t ∈ R} is a compact set, so it suffices to check
that limk→∞(h−)x(tk, x) = 0 for every subsequence (tk) for which (h−)x·tk con-
verges (uniformly on compact sets). Let (tk) be such a sequence, define d−(x) =
limk→∞(h−)x(tk, x), observe that the uniform convergence in compact sets ensures
that d− is continuous, and assume for contradiction that d− ̸≡ 0. Then, there
is no restriction in assuming that d−(x) > 0 for all x in an interval [x1, x2], and
hence we have 0 = limk→∞(h−(tk, x2) − h−(tk, x1)) = limk→∞

∫ x2

x1
(h−)x(tk, s) ds =∫ x2

x1
d−(s) ds > 0, a contradiction. The proofs for g+ and for the second order deriva-

tives are analogous.

Remark 4.10. Assume that h ∈ C0,1(R × R,R) and lim supx→±∞(±h(t, x)) < 0
uniformly in t ∈ R. Hypotheses g1 and g3 ensure that this is the case for g, g− and
g+. Lemma 4.7 and Theorem 2.13 ensure the existence of the global attractor

Ah =
⋃

ω∈Ωh

(
{ω} × [lh(ω), uh(ω)]

)
of the flow τh defined by x′ = h(ω·t, x) on Ωh × R. In particular, if ω0 = h, then
the maps lh(t) = lh(ω0·t) and uh(t) = uh(ω0·t) define the lower and upper bounded
solutions of x′ = h(t, x), and all the positive (forward) semiorbits of x′ = h(t, x) are
globally defined and bounded. In addition, since the global attractor corresponds to
the set of bounded orbits, Proposition 1.61 ensures that the pullback attractor (see
Definition 1.60) of the induced process xh(t, s, x) is Ah = {Ah(s) = [lh(s), uh(s)] | s ∈
R}. Recall that xh(t, s, x) is the solution of x′ = h(t, x) which satisfies xh(s, s, x) = x.

Definition 4.11. The graph of a solution b of (4.15) defined on a positive halfline
(resp. negative halfline) is said to approach that of a continuous map c : R → R as
time increases (resp. as time decreases) if

lim
t→∞

(
b(t)− c(t)

)
= 0

(
resp. lim

t→−∞

(
b(t)− c(t)

)
= 0
)
.

Theorem 4.13, key in the proof of Theorem 4.16, establishes the existence of
three solutions which govern the dynamics of (4.15) if g1-g5 hold: the lower and
upper bounded solutions of Remark 4.10, lg and ug, which are locally pullback
attractive, and a locally pullback repulsive one, mg. They are characterized in terms
of asymptotic approaches to the hyperbolic solutions of the limit equations. Its proof
requires the next previous result, which describes the part of the dynamics of the
future equation (resp. past equation) that is inherited by the transition equation in
the case that only the part of the assumptions g1-g5 concerning the future equation
(resp. past equation) and the transition equation are required.

Proposition 4.12. Assume that (4.15) has three uniformly separated hyperbolic
solutions l̃g < m̃g < ũg, with l̃g and ũg attractive and m̃g repulsive.

(i) If g, g+ satisfy the part of g1-g5 concerning them, then limt→∞(xg(t, s, x) −
ũg+(t)) = 0 if and only if x > m̃g(s), limt→∞(m̃g(t) − m̃g+(t)) = 0, and

limt→∞(xg(t, s, x)− l̃g+(t)) = 0 if and only if x < m̃g(s).
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(ii) If g, g− satisfy the part of g1-g5 concerning them, then t 7→ xg(t, s, x) is
bounded from above (resp. from below) as time decreases if and only if x ≤
ũg(s) (resp. x ≥ l̃g(s)); and limt→−∞(ũg(t)−ũg−(t)) = 0, limt→−∞(xg(t, s, x)−
m̃g−(t)) = 0 if and only if x ∈ (l̃g(s), ũg(s)) and limt→−∞(l̃g(t)− l̃g−(t)) = 0.

Proof. (i) Remark 4.8 ensures that g+ (the extension to the hull of g+) fulfills d1, d2,
d3 and d4. The part of hypothesis g5 concerning g+ ensures that there exist three
hyperbolic solutions of the future equation, so Theorem 2.18(d) ensures that there
exist three hyperbolic τg+-copies of the base {lg+} < {mg+} < {ug+} given by the
continuous τg+-equilibria lg+ ,mg+ , ug+ : Ωg+ → R, whose restrictions to Ωω

g = Ωω
g+

(see Lemma 4.6(i)) we represent by lωg+, m
ω
g+ and uωg+, and which satisfy lg+(g+·t) =

l̃g+(t), mg+(g+·t) = m̃g+(t) and ug+(g+·t) = ũg+(t). Proposition 1.54(i) ensures
that the ω-limit set for τg of (g, m̃g(0)), which projects onto Ωω

g , is composed by
orbits of repulsive hyperbolic solutions, and hence Proposition 1.55 precludes that it
intersects {lωg+} and {uωg+}. So, this ω-limit set coincides with {mω

g+
}, since Theorem

2.18 proves that for any ω ∈ Ωω
g+

there are no repulsive hyperbolic solutions of x′ =
g+(ω·t, x) other than t 7→ mg+(ω·t). We take (tn) ↑ ∞ and look for a subsequence
(tm) such that there exists limm→∞(g·tm, m̃g(tm)) ∈ {mω

g+
} ⊆ {mg+}. So, this limit

is (ω,mg+(ω)) for an element ω ∈ Ω. Lemma 4.6(i) (see also its proof) shows that
ω = limm→∞ g+·tm, and hence mg+(ω) = limm→∞mg+(g+·tm) = limm→∞ m̃g+(tm).
So, limm→∞(m̃g(tm)− m̃g+(tm)) = 0, and hence limt→∞(m̃g(t)− m̃g+(t)) = 0.

Now, let us take x > m̃g(s) and a point (ω̄, x̄) in the ω-limit set of (g·s, x). So,
(ω̄, x̄) = limn→∞(g·(s+tn), xg(tn, s, x)) for a sequence (tn) ↑ ∞ for which there exists
limn→∞ m̃g(tn). As seen before, this last limit is mg+(ω̄), and hence Proposition 1.56
shows that x̄ > mg+(ω̄). So, (ω̄, x̄) belongs to a compact τg-invariant set above
{mω

g+
}, which is necessarily {uωg+}. Therefore, the ω-limit set for τg of (g·s, x)

is {uωg+}. In particular, this also happens for the ω-limit set for τg of (g, ũg(0)).
An analogous argument to that at the end of the previous paragraph shows that
limt→∞(xg(t, s, x)− ũg+(t)) = 0. The proof of the case x < m̃g(s) is analogous. The
equivalences follow immediately.

(ii) As in (i), let {lg−} < {mg−} < {ug−} be the three hyperbolic τg+-copies of
the base on Ωg− . Arguments analogous to those of (i) show that the α-limit sets of

(g, l̃g(0)), (g, m̃g(0)) and (g, ũg(0)) for τg are {lαg−}, {m
α
g−} and {uαg−} respectively,

and also that limt→−∞(ũg(t) − ũg−(t)) = 0, limt→−∞(xg(t, s, x) − m̃g−(t)) = 0 for

all x ∈ (l̃g(s), ũg(s)) and limt→−∞(l̃g(t) − l̃g−(t)) = 0. To prove the first assertion,
we assume for contradiction that t 7→ xg(t, s, x) is bounded for some x > ũg(s).
Then, there exists the α-limit set for τg of (g·s, x). Let (tn) ↓ −∞ be such that
there exists (ω̄, x̄) = limn→∞(g·(s + tn), xg(tn, s, x)) and assume without restriction
that ug−(ω̄) = limn→∞ ũg(tn). Since (ω̄, x̄) ∈ Ag, we get that x̄ ≤ ug−(ω̄). How-
ever, Proposition 1.56 ensures that x̄ − ug−(ω̄) = limn→∞(xg(tn, s, x) − ũg(tn)) ≥
inft<0(xg(t, s, x)− ũg(t)) > 0, a contradiction. The case x < l̃g(s) is analogous. The
equivalences follow immediately.

Theorem 4.13. Assume that g and g− satisfy the part of g1-g5 concerning them.
Let l̃g− < m̃g− < ũg− be the hyperbolic solutions of x′ = g−(t, x) given by g5, and let
lg and ug be the lower and upper bounded solutions of x′ = g(t, x). Then,

(i) ug and lg are the unique solutions of (4.15) satisfying limt→−∞(ug(t)−ũg−(t)) =

0 and limt→−∞(lg(t)− l̃g−(t)) = 0, and they are locally pullback attractive.
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(ii) For any s ∈ R, limt→−∞(xg(t, s, x)−m̃g−(t)) = 0 if and only if x ∈ (lg(s), ug(s)).

Assume that g and g+ satisfy the part of g1-g5 concerning them. Let l̃g+ < m̃g+ <
ũg+ be the hyperbolic solutions given by g5. Then,

(iii) there exists a unique solution mg of (4.15) defined at least on a positive half-
line and satisfying limt→∞(mg(t) − m̃g+(t)) = 0, and it is locally pullback
repulsive.

(iv) For s ∈ R in the interval of definition of mg, limt→∞(xg(t, s, x)− ũg+(t)) = 0

if and only if x > mg(s), and limt→∞(xg(t, s, x) − l̃g+(t)) = 0 if and only if
x < mg(s).

Proof. In this first part of the proof we will prove a general fact to be used in both
the proof of (i)-(ii) and of (iii)-(iv). The double sign ± appears in all the next
expressions: those for − (resp. +) require the part of the hypotheses concerning g
and g− (resp. g and g+). We point out now that Lemma 4.7 ensures that the hull
extensions of g± and g satisfy d1 and d2, which allows us to apply Theorem 2.13.
We use its point (ii) to take κ > 0 such that ∥b∥∞ ≤ κ for any bounded solution of
x′ = g(t, x) and x′ = g±(t, x). Let us define

ε0 =
1

3
min

{
inf
t∈R

(
ũg±(t)− m̃g±(t)

)
, inf

t∈R

(
m̃g±(t)− l̃g±(t)

)}
,

where l̃g± < m̃g± < ũg± are the hyperbolic solutions of x′ = g±(t, x) provided by g5.
Given ε ∈ (0, ε0], Theorem 1.52 provides δ± > 0 such that, if ∥g± − h±∥1,κ < δ±, then
each one of the equations x′ = h±(t, x) has three hyperbolic solutions, at a uniform
distance from those of x′ = g±(t, x) bounded by ε. We choose t0 = t0(ε) > 0 such
that |g(t, x) − g±(t, x)| < δ±/2 and |gx(t, x) − (g±)x(t, x)| < δ±/2 if ±t ≥ t0 and
|x| ≤ κ (see Lemma 4.9), and define

f±(t, x) =

{
g(t, x) if ± t > t0 ,
g±(t, x)− g±(±t0, x) + g(±t0, x) if ± t ≤ t0 .

(4.17)

Therefore,

∥g± − f±∥1,κ = sup
±t≥t0

x∈[−κ,κ]

|g(t, x)− g±(t, x)|+ sup
±t≥t0

x∈[−κ,κ]

|gx(t, x)− (g±)x(t, x)| < δ± ,

so each of the equations
x′ = f±(t, x)

has three uniformly separated hyperbolic solutions l̃f± < m̃f± < ũf± , satisfying

∥l̃f± − l̃g±∥∞ ≤ ε, ∥m̃f± − m̃g±∥∞ ≤ ε and ∥ũf± − ũg±∥∞ ≤ ε. It is easy to check that
f+ (resp. f−) satisfies the hypotheses assumed on g in Proposition 4.12(i) (resp. (ii))
with future equation g+ (resp. with past equation g−), which provides fundamental
information for the next steps. Note also that Theorem 2.13 can also be applied to
the hull extension of f±.

(i)-(ii) Let us take ε ∈ (0, ε0] and the value of t0 = t0(ε) before described.
Let l−ε and u−

ε be the maximal solutions of (4.15) satisfying l−ε (−t0) = l̃f−(−t0)

and u−
ε (−t0) = ũf−(−t0), observe that l−ε (t) = l̃f−(t) and u−

ε (t) = ũf−(t) for all
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t ≤ −t0, and deduce from Theorem 2.13(i) that l−ε and u−
ε are bounded. The

characterizations “x0 ≤ ũf−(−t0) = u−
ε (−t0) if and only if the solution xf−(t,−t0, x0)

is bounded from above as time decreases” (given by Theorem 2.18 and Theorem
2.13(iv) applied to f−) and “x0 ≤ ug(−t0) if and only if the solution xg(t,−t0, x0)
is bounded from above as time decreases” (given by Theorem 2.13(iv) applied to
g, since ug is the upper bounded solution of (4.15)), combined with the equality
xf−(t,−t0, x0) = xg(t,−t0, x0) for all t ≤ −t0 in the (common) interval of definition,
ensure that u−

ε (−t0) = ug(−t0) and hence the global equality u−
ε = ug. Therefore,

|ũg−(t) − ug(t)| = |ũg−(t) − u−
ε (t)| = |ũg−(t) − ũf−(t)| ≤ ε for t ≤ −t0(ε). This

shows that limt→−∞(ug(t) − ũg−(t)) = 0. Analogous arguments show that l−ε = lg
and limt→−∞(lg(t)− l̃g−(t)) = 0.

Now, let us check that limt→−∞(xg(t, s, x) − m̃g−(t)) = 0 if and only if x ∈
(lg(s), ug(s)). Note that x̄ = xg(−t0, s, x) ∈ (lg(−t0), ug(−t0)) = (l̃f−(−t0), ũf−(−t0)),
and that xg(t, s, x) = xg(t,−t0, x̄) = xf−(t,−t0, x̄) for t ≤ −t0. So, Proposition
4.12(ii) shows that limt→−∞(xg(t, s, x) − m̃g−(t)) = 0, as asserted. This property
proves (ii) and shows the uniqueness ensured in (i), since any bounded solution
different from lg and ug approaches m̃g− as time decreases.

The previously proved properties and the attractive hyperbolicity (see Corol-
lary 1.53) of ũf− provide a radius of uniform stability δ ∈ (0, ε), and a dichotomy
constant pair (k, γ) with k ≥ 1 and γ > 0 such that

|ug(t)− xg(t, s, ug(s)± δ)| = |ũf−(t)− xf−(t, s, ũf−(s)± δ)| ≤ k δ e−γ(t−s)

if s ≤ −t0 and t ∈ [s,−t0]. Taking limit as s → −∞ proves that ug is locally pullback
attractive. It can be analogously proved that lg is locally pullback attractive.

(iii)-(iv) Let us fix ε ∈ (0, ε0] and t0 = t0(ε) as above, and define mg as the
(perhaps locally defined) maximal solution of (4.15) satisfying mg(t

0) = m̃f+(t
0).

We take s in the domain of mg and x > mg(s), and we observe that, to prove
limt→∞(xg(t, s, x)− ũg+(t)) = 0, there is no restriction in assuming that s ≥ t0, since
all the solutions are globally forward defined. Then, xg(t, s, x) = xf+(t, s, x) for all
t ≥ s, and the assertion follows from Proposition 4.12(i). The same argument shows
that limt→∞(xg(t, s, x) − l̃g+(t)) = 0 if x < mg(s). This duality shows that mg is
unique and independent of the choice of ε. In addition, mg(t) = m̃f+(t) for all t ≥ t0,
which ensures that |mg(t) − m̃g+(t)| ≤ ε for all t ≥ t0(ε), that is, limt→∞(mg(t) −
m̃g+(t)) = 0. This completes the proofs of the asymptotic approaching properties
of the solutions. The proof of the locally pullback repulsive character of mg is
analogous to that of the locally pullback attractive character of ug.

Remark 4.14. We point out that Theorem 4.13 shows that, if g and g+ satisfy the
part of g1-g5 concerning them, then any (s, x) ∈ R×R satisfies one of the following
three possibilities

(1) limt→∞(xg(t, s, x)− l̃g+(t)) = 0,

(2) limt→∞(xg(t, s, x)− m̃g+(t)) = 0,

(3) limt→∞(xg(t, s, x)− ũg+(t)) = 0,

and, in particular, (2) holds if and only if mg(s) = x. Theorem 4.13 also determines
the asymptotic approaching as time decreases of the solution starting at (s, x), for
x ∈ [lg(s), ug(s)], to one of the hyperbolic solutions of the past equation if g and g−
satisfy the part of g1-g5 concerning them.
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The following technical lemma relates the asymptotic dynamics of the solutions
of (4.15) to their hyperbolic character or the lack thereof. We include its proof even
though it is standard (and similar to that of [32, Theorem 4.3.6]) for the sake of
completeness.

Lemma 4.15. Assume that g satisfies g1 and g2. Let bg be a bounded solution of
(4.15).

(i) If the graph of bg approaches that of an attractive (resp. repulsive) hyperbolic
solution of the past equation x′ = g−(t, x) as time decreases, then there exist
s0 > 0, k ≥ 1 and γ > 0 such that exp

∫ t

s
gx(l, bg(l)) dl ≤ k e−γ(t−s) if s ≤ t ≤

−s0 (resp. exp
∫ t

s
(gx(l, bg(l)) dl ≤ k eγ(t−s) if t ≤ s ≤ −s0).

(ii) If the graph of bg approaches that of an attractive (resp. repulsive) hyperbolic
solution of the future equation x′ = g+(t, x) as time increases, then there
exist s0 > 0, k ≥ 1 and γ > 0 such that exp

∫ t

s
(gx(l, bg(l)) dl ≤ k e−γ(t−s) if

s0 ≤ s ≤ t (resp. exp
∫ t

s
gx(l, bg(l)) dl ≤ k eγ(t−s) if s0 ≤ t ≤ s).

Consequently,

(iii) if the graph of bg approaches that of an attractive (resp. repulsive) hyperbolic
solution of the past equation x′ = g−(t, x) as time decreases and that of an at-
tractive (resp. repulsive) hyperbolic solution of the future equation x′ = g+(t, x)
as time increases, then bg is an attractive (resp. repulsive) hyperbolic solution
of (4.15).

(iv) If the graph of bg approaches that of an attractive (resp. repulsive) hyperbolic
solution of the past equation x′ = g−(t, x) as time decreases and that of a re-
pulsive (resp. attractive) hyperbolic solution of the future equation x′ = g+(t, x)
as time increases, then bg is a nonhyperbolic solution of (4.15).

Proof. (i)-(ii) Assume that b̃g− is a hyperbolic attractive solution of the past equation
which is approached by bg as time decreases. Let (k, γ) be a dichotomy constant
pair for b̃g− . Given δ ∈ (0, γ), Lemma 4.9 ensures that there exists s0 > 0 such

that |gx(t, bg(t)) − (g−)x(t, b̃g−(t))| < δ for all t ≤ −s0. So, exp
∫ t

s
gx(l, bg(l)) dl <

exp
∫ t

s
((g−)x(l, b̃g−(l)) + δ) dl ≤ k e−(γ−δ) (t−s) for all s ≤ t ≤ −s0. The proof in the

hyperbolic repulsive case and the proof of (ii) are analogous.

(iii) Let us work in the attractive hyperbolic case. From (i), it is deduced (tak-
ing the maximum of both k’s and minimum of both γ’s) that there exist k ≥ 1,
γ > 0 and s1 < s2 such that exp

∫ t

s
gx(l, bg(l)) dl ≤ k e−γ(t−s) if s ≤ t ≤ s1

and exp
∫ t

s
gx(l, bg(l)) dl ≤ k e−γ(t−s) if s2 ≤ s ≤ t. As we can take larger k and

smaller γ, we can assume without restriction that exp
∫ t

s
gx(l, bg(l)) dl ≤ k e−γ(t−s) if

s1 ≤ s ≤ t ≤ s2. Finally, it is easy to check that exp
∫ t

s
gx(l, bg(l)) dl ≤ k3 e−γ(t−s)

for all t ≤ s, which proves that bg is hyperbolic attractive. The proof is analogous
in the repulsive hyperbolic case.

(iv) Assume for contradiction that bg is hyperbolic repulsive and that it ap-
proaches the graph of an attractive hyperbolic solution b̃g− of the past equation as
time increases. Then, (i) ensures that there exist s0 > 0, k1 ≥ 1 and γ1 > 0 such
that exp

∫ t

s
gx(l, bg(l)) dl ≤ k1 e

−γ1(t−s) if s ≤ t ≤ −s0. On the other hand, the
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repulsive hyperbolic character of bg provides the existence of k2 ≥ 1 and γ2 > 0

such that exp
∫ t

s
gx(l, bg(l)) dl ≤ k2 e

γ2(t−s) for t ≤ s. Interchanging the role of t

and s in the second inequality and multiplying both of them: 1 ≤ k1k2e
−(γ1+γ2) (t−s)

for s ≤ t ≤ −s0, a contradiction. In the other case, an analogous contradiction is
reached.

We will denote lg, mg and ug by l̃g, m̃g and ũg when they are hyperbolic. Re-
call that two uniformly separated solutions are, by definition, bounded. Clearly,
there exist (at least) two uniformly separated solutions if and only if lg and ug are
uniformly separated.

Now, we state the main result of this section.

Theorem 4.16. Assume that g satisfies g1-g5, let l̃g± < m̃g± < ũg± be the hyper-
bolic solutions given by g5, and let lg, ug and mg be the solutions of (4.15) provided
by Theorem 4.13. Then, the dynamics of the transition equation (4.15) fits in one
of the following dynamical scenarios:

� Case A: there exist exactly three hyperbolic solutions, l̃g = lg and ũg = ug,
which are attractive, and m̃g = mg, which is repulsive. In addition, the unique
solution uniformly separated from l̃g and ũg is m̃g. In this case, l̃g < m̃g < ũg,
limt→±∞(l̃g(t) − l̃g±(t)) = 0, limt→±∞(m̃g(t) − m̃g±(t)) = 0 and limt→±∞(ũg(t) −
ũg±(t)) = 0.

� Case B: there exists exactly one hyperbolic solution, which is attractive, and
uniformly separated only from another solution, which is locally pullback attractive
and repulsive. There are two possibilities:

– Case B1: ũg = ug is hyperbolic attractive and uniformly separated of lg = mg.
In this case, limt→∞(ũg(t)− ũg+(t)) = 0 and limt→∞(lg(t)− m̃g+(t)) = 0.

– Case B2: l̃g = lg is hyperbolic attractive and uniformly separated of mg = ug.
In this case, limt→∞(l̃g(t)− l̃g+(t)) = 0 and limt→∞(ug(t)− m̃g+(t)) = 0.

� Case C: there are no uniformly separated solutions. In this case, l̃g = lg and
ũg = ug are the unique hyperbolic solutions, they are attractive, and the locally
pullback repulsive solution mg is unbounded. There are two possibilities:

– Case C1: mg < l̃g in its domain of definition. In this case, limt→∞(l̃g(t) −
ũg+(t)) = limt→∞(ũg(t)− ũg+(t)) = 0.

– Case C2: mg > ũg in its domain of definition. In this case, limt→∞(l̃g(t) −
l̃g+(t)) = 0 = limt→∞(ũg(t)− l̃g+(t)) = 0.

Furthermore, if we assume limt→∞(ug(t)−ũg+(t)) = 0 (resp. limt→∞(lg(t)− l̃g+(t)) =
0), then Case A holds if and only if there exists tg ∈ R such that lg(tg) < mg(tg)
(resp. mg(tg) < ug(tg)), Case B1 (resp. B2) holds if and only if there exists tg ∈ R
such that lg(tg) = mg(tg) (resp. mg(tg) = ug(tg)), and Case C1 (resp. C2) holds if
and only if there exists tg ∈ R such that lg(tg) > mg(tg) (resp. mg(tg) > ug(tg)).

The proof of Theorem 4.16 requires the information provided by the next two
theorems. Figures 4.1, 4.2 and 4.3 depict these five dynamical possibilities in the
case of a map g which is asymptotically periodic with respect to t.
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Figure 4.1: Numerical depiction of Case A. The central panel represents solutions of (4.15) with
g(t, x) = −(x − ϕ(t))((x − ϕ(t))2 − sin2(t)) + 0.2 sin(t) + ϕ′(t) + a exp(−(c t)2), where ϕ(t) =
arctan(0.3 t), a = −1 and c = 6. In red solid line, the attractive hyperbolic solutions l̃g and ũg

and, in blue dashed line, the repulsive hyperbolic solution m̃g. In black dotted lines, as in Figures
4.2 and 4.3, typical solutions different from the significant ones. Taking g±(t, x) = −(x∓π/2)((x∓
π/2)2 − sin2(t)) + 0.2 sin(t), we obtain g, g− and g+ satisfying g1-g5 independently of the values
of a and c. The three hyperbolic solutions of the past and the future equations are depicted in the
left and right panels: for large values of t in the right one, for large values of −t in the left one.
Looking at all three panels simultaneously, the asymptotic approaching of the hyperbolic solutions
of the transition equations to the hyperbolic solutions of the limit equations is apparent. Locally
pullback attractive (resp. repulsive) solutions have been numerically approximated by forward
(resp. backward) integration from close initial data on a large negative (resp. positive) time: their
hyperbolicity properties guarantee a reliable representation. This way of approximating locally
attractive pullback solutions will be used throughout the rest of the document without further
mention.

Theorem 4.17. Assume that g satisfies g1-g5, let l̃g± < m̃g± < ũg± be the hyper-
bolic solutions given by g5, and let lg, ug and mg be the solutions of (4.15) provided
by Theorem 4.13. Assume also that limt→∞(ug(t) − ũg+(t)) = 0. Then, ũg = ug is
an attractive hyperbolic solution, and one of the following cases holds:

(1) limt→∞(lg(t) − l̃g+(t)) = 0, in which case mg is globally defined and satisfies
limt→−∞(mg(t)− m̃g−(t)) = 0; if so, the equation (4.15) is in Case A, being

l̃g = lg, m̃g = mg and ũg = ug the three hyperbolic solutions. In addition, the
unique solution uniformly separated from l̃g and ũg is m̃g.

(2) limt→∞(lg(t) − m̃g+(t)) = 0 or, equivalently, mg = lg; if so, the equation
(4.15) is in Case B1, being ũg = ug the unique hyperbolic solution and being
uniformly separated only from mg = lg;

(3) limt→∞(lg(t)− ũg+(t)) = 0, in which case limt→∞(bg(t)− ũg+(t)) = 0 for every
bounded solution bg(t) of (4.15); if so, the equation (4.15) is in Case C1,
being ũg = ug and l̃g = lg the unique hyperbolic solutions. In addition, mg is
unbounded and mg < l̃g in its domain of definition.

Besides, if mg = lg or if limt→∞(lg(t)− ũg+(t)) = 0, then limt→∞(ug(t)− ũg+(t)) = 0.

Proof. Remark 4.14 shows that (1), (2) and (3) exhaust the possibilities for the
limiting behavior of lg as t → ∞, as well as the equivalence stated in (2). In the three
cases, the hyperbolicity of ug follows from the assumed condition limt→∞(ug(t) −
ũg+(t)) = 0, the fact that limt→−∞(ug(t) − ũg−(t)) = 0 (see Theorem 4.13(i)), and
Lemma 4.15(iii).
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(a) Case B1. In red solid line the attractive hyperbolic
solution ũg , in green dashed-dotted line the locally pull-
back attractive and repulsive solution lg = mg . In this
case, a = 1 and c = 3.193748430049.

(b) Case B2. In red solid line the attractive hyperbolic
solution l̃g , in green dashed-dotted line the locally pull-
back attractive and repulsive solution ug = mg . In this
case, a = −1 and c = 2.343278767126.

Figure 4.2: Aproximations to numerical depictions of Cases B. The high unpersistence of these
cases causes them to be numerically undetectable. So, we choose as g a map whose general
expression is that written in the caption of Figure 4.1, now with different choices for a and c which
ensure that, still in Case A, the solutions lg and mg in Figure 4.2a, and mg and ug in Figure
4.2b, are at distances of less than 1e-7 from each other in the representation interval. Hence, we
do not distinguish them, obtaining in this way suitable representations of Cases B. Here, we do
not represent the hyperbolic solutions of the limit equations x′ = g±(t, x), but, by having a look
to the left and right panels in Figure 4.1, it is easy to observe that these six hyperbolic solutions
play a role in the dynamics of the transition equation in both cases: see Remark 4.14.

Let us analyze situation (1): limt→∞(lg(t) − l̃g+(t)) = 0 and limt→∞(ug(t) −
ũg+(t)) = 0. That is, the graphs of lg, mg and ug respectively approach those

of l̃g+ , m̃g+ and ũg+ as time increases (see Theorem 4.13(iii)), which ensures that
mg(t) ∈ (lg(t), ug(t)) for large enough t. In particular, mg is globally defined. In
these conditions, and according to Theorem 4.13(i) and (ii), the graphs of lg, mg

and ug respectively approach those of l̃g− , m̃g− and ũg− as time decreases. Hence,
lg < mg < ug are three uniformly separated solutions, and Lemma 4.15(iii) shows
that they are hyperbolic. The dynamics fits in Case A. Since Theorem 4.13(ii)
and (iv) ensures that any bounded solution bg distinct from l̃g < m̃g < ũg satisfies
limt→−∞(bg(t)− m̃g−(t)) = 0 and either limt→∞(bg(t)− l̃g+(t)) = 0 or limt→∞(bg(t)−
ũg+(t)) = 0, the unique solution uniformly separated from l̃g and ũg is m̃g.

Assume that (2) holds (i.e., mg = lg), and let bg be a bounded solution of (4.15)
with lg = mg < bg < ug. Theorem 4.13(ii) and (iv) ensure that limt→−∞(bg(t) −
m̃g−(t)) = 0 and limt→∞(bg(t) − ũg+(t)) = 0. Therefore, ug is only uniformly sepa-
rated from lg = mg, with ũg = ug hyperbolic attractive and, according to Theorem
4.13(i) and (iii), lg is locally pullback attractive and repulsive; and Lemma 4.15(iv)
ensures that bg and lg are nonhyperbolic. We conclude that the dynamics fits in
Case B1.

Finally, we assume that (3) holds; i.e., that limt→∞(lg(t) − ũg+(t)) = 0. In this
case, any bounded solution bg of (4.15) with lg ≤ bg ≤ ug satisfies limt→∞(bg(t) −
ũg+(t)) = 0 (and hence Theorem 4.13(iii) ensures that mg cannot be bounded), and
if lg < bg < ug, then limt→−∞(bg(t) − m̃g−(t)) = 0. This precludes the existence
of (bounded) uniformly separated solutions, as well as the existence of hyperbolic
solutions different from ug and lg. In addition, Lemma 4.15(iii) shows the attractive
hyperbolicity of lg. Since there exists t0 sufficiently large such that mg(t0) < lg(t0),
mg < lg in the domain of definition of mg. The dynamics fits in Case C1.
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(a) Case C1. In red solid line the attractive hyperbolic
solutions l̃g and ũg , in blue dashed line mg . Here, a = 1
and c = 1.

(b) Case C2. In red solid line the attractive hyperbolic
solutions l̃g and ũg , in blue dashed line mg . Here, a =
−1 and c = 1.

Figure 4.3: Numerical depictions of Cases C. Again, we change the values of a and c in the
expression of g given in the caption Figure 4.1, and take the same g±. And again, the information
of Remark 4.14 is observable by having a look to the representation of the hyperbolic solutions of
the limit equations made in the left and right panels of Figure 4.1.

Let us check the last assertions. If mg = lg, then mg(−t) < ug(−t) for t > 0
sufficiently large. Then, Theorem 4.13(iv) ensures that limt→∞(ug(t)− ũg+(t)) = 0.
And if limt→∞(lg(t) − ũg+(t)) = 0, then mg(t) < lg(t) < ug(t) for t > 0 sufficiently
large, so Theorem 4.13(iv) ensures that limt→∞(ug(t)− ũg+(t)) = 0.

Figures 4.1, 4.2a and 4.3a represent the situations described by points (1), (2) and
(3) of Theorem 4.17. Figures 4.1, 4.2b and 4.3b represent the situations described by
points (1), (2) and (3) of the next “symmetrical” result, whose proof is completely
analogous to that of the previous theorem.

Theorem 4.18. Assume that g satisfies g1-g5, let l̃g± < m̃g± < ũg± be the hyper-
bolic solutions given by g5, and let lg, ug and mg be the solutions of (4.15) provided
by Theorem 4.13. Assume also that limt→∞(lg(t) − l̃g+(t)) = 0. Then, l̃g = lg is an
attractive hyperbolic solution, and one of the following cases holds:

(1) limt→∞(ug(t) − ũg+(t)) = 0, in which case mg is globally defined and satisfies
limt→−∞(mg(t)− m̃g−(t)) = 0; if so, the equation (4.15) is in Case A, being

l̃g = lg, m̃g = mg and ũg = ug the three hyperbolic solutions. In addition, the
unique solution uniformly separated from l̃g and ũg is m̃g.

(2) limt→∞(ug(t) − m̃g+(t)) = 0 or, equivalently, mg = ug; if so, the equation

(4.15) is in Case B2, being l̃g = lg the unique hyperbolic solution and being
uniformly separated only from mg = ug;

(3) limt→∞(ug(t) − l̃g+(t)) = 0, in which case limt→∞(bg(t) − l̃g+(t)) for every
bounded solution bg(t) of (4.15); if so, the equation (4.15) is in Case C2,
being ũg = ug and l̃g = lg the unique hyperbolic solutions. In addition, mg is
unbounded and mg > ũg in its domain of definition.

Besides, if mg = ug or if limt→∞(ug(t)− l̃g+(t)) = 0, then limt→∞(lg(t)− l̃g+(t)) = 0.

Proof of Theorem 4.16. The description of the cases is that of Theorems 4.17 and
4.18. Let us check that they exhaust the dynamical possibilities of (4.15). Re-
mark 4.14 ensures that one of the three following possibilities hold: limt→∞(ug(t)−
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l̃g+(t)) = 0, limt→∞(ug(t) − m̃g+(t)) = 0 or limt→∞(ug(t) − ũg+(t)) = 0. In the
third one, Theorem 4.17 exhausts all the dynamical possibilities. In the first and
the second one, the last assertion of Theorem 4.18 ensures that it exhausts all the
dynamical possibilities of (4.15).

Let us check the last assertion in the case of limt→∞(ug(t) − ũg+(t)) = 0. The-

orem 4.13(iv) ensures that lg(tg) < mg(tg) if and only if limt→∞(lg(t)− l̃g+(t)) = 0,
lg(tg) = mg(tg) if and only if limt→∞(lg(t)− m̃g+(t)) = 0 and lg(tg) > mg(tg) if and
only if limt→∞(lg(t)− ũg+(t)) = 0. Theorem 4.17 ends the proof. The other case is
analogous using Theorem 4.18 instead.

4.2.1 Global attractor and pullback attractor

In this section, we analyze the continuity of the upper and lower equilibria of the
global attractor (see Remark 4.10) in the different dynamical cases described in
Theorem 4.16, and we provide a characterization of all the cases in terms of the
forward attraction properties of the pullback attractor.

We recall that Theorem 2.13(iii) ensures that lg and ug are respectively lower
and upper semicontinuous maps.

Proposition 4.19. Assume that g satisfies g1-g5. The map lg (resp. ug) is con-
tinuous if and only if limt→∞(lg(t)− l̃g+(t)) = 0 (resp. limt→∞(ug(t)− ũg+(t)) = 0).
Consequently,

(i) (4.15) is in Case A if and only if both lg and ug are continuous.

(ii) If (4.15) is in Case B1 or C1, then ug is continuous.

(iii) If (4.15) is in Case B2 or C2, then lg is continuous.

Proof. Let us consider lg± , ug± : Ωg± → R (see Remark 4.10) and recall that lg(g·t) =
lg(t), ug(g·t) = ug(t), lg±(g±·t) = lg±(t) and ug±(g±·t) = ug±(t) for all t ∈ R.
Hypothesis g5 and Theorem 2.18 ensure that lg± and ug± are continuous, since their
graphs are hyperbolic copies of Ωg± : see Remark 4.8. Since both t 7→ lg(ω·t) and
t 7→ lg+(ω·t) stand for the lower bounded solution of x′ = ω(t, x) with ω ∈ Ωω

g = Ωω
g+

(recall Lemma 4.6(i)), we get that lg(ω) = lg+(ω), and analogously ug(ω) = ug+(ω),
for all ω ∈ Ωω

g = Ωω
g+
. An analogous argument shows that lg(ω) = lg−(ω) and

ug(ω) = ug−(ω) for all ω ∈ Ωα
g = Ωα

g− . Hence, the Pasting Lemma (see [80, Theorem
18.3]) ensures that the restrictions of lg and ug to Ωω

g ∪ Ωα
g are continuous.

Let us check that limt→∞(ug(t) − ũg+(t)) = 0 is equivalent to the continuity of
ug on Ωg. We begin by assuming that ug is continuous on Ωg. Take ω ∈ Ωω

g , and
(tn) ↑ ∞ such that g·tn → ω as n → ∞. The same argument used in the proof of
Lemma 4.6 shows that g+·tn → ω as n → ∞. Therefore, limn→∞ ug(g·tn) = ug(ω) =
ug+(ω) = limn→∞ ug+(g+·tn), and hence limn→∞(ug(tn)− ũg+(tn)) = 0. Remark 4.14

and the uniform separation between l̃g+ < m̃g+ < ũg+ prove the claim.
Conversely, assume that limt→∞(ug(t) − ũg+(t)) = 0. If {g·t | t ∈ R} ∩ Ωω

g+ ̸=
∅, then the compactness and τ -invariance of Ωω

g+ ensures that {g·t | t ∈ R} ⊆
Ωg ⊆ Ωω

g+ , and therefore ug = ug+ is continuous on Ωg ⊆ Ωω
g+ . An analogous

argument shows the continuity of ug if {g·t | t ∈ R} ∩ Ωα
g− ̸= ∅. So, we assume

without restriction that Ω is the disjoint union of {g·t | t ∈ R} and Ωω
g+ ∪ Ωα

g− .
In particular, {g·t | t ∈ R} is open. Since ug(g·t) = ug(t), the restriction of ug
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to {g·t | t ∈ R} is also continuous. Hence, checking that ug is continuous on
Ωω

g+ ∪ Ωα
g− proves that ug is globally continuous. We take ω ∈ Ωω

g+ ∪ Ωα
g− and

(ωn) with limit ω. To check that ug(ωn) → ug(ω) as n → ∞, it suffices to prove
that every subsequence admits a subsequence that converges to ug(ω). Given any
subsequence (ug(ωm)) of (ug(ωn)), we take a subsequence (ωk) of (ωm) contained
either in {g·t | t ∈ R} or in Ωω

g+ ∪Ωα
g− . In the first case, we can assume without loss

of generality (taking a suitable subsequence, and taking into account that the case
(tk) ↓ −∞ is analogous) that there exists (tk) ↑ ∞ such that g·tk → ω as k → ∞.
So, we get that 0 = limk→∞(ug(tk) − ũg+(tk)) = limk→∞(ug(g·tk) − ug+(g+·tk)) =
limk→∞ ug(g·tk) − ug+(ω), and hence limk→∞ ug(g·tk) = ug+(ω) = ug(ω). On the
other hand, if (ωk) is contained in Ωω

g+ ∪ Ωα
g− , then the last assertion in the first

paragraph ensures that ug(g·tn) → ug(ω) as n → ∞.
An analogous argument shows that limt→∞(lg(t) − l̃g+(t)) = 0 is equivalent to

the continuity of lg on Ωg. Points (i)-(iii) follow immediately from the two proved
equivalences and Theorem 4.16.

As said in Subsection 1.3.3, in general, pullback and forward attraction are un-
related (see e.g. [66]). The next result studies the local or global forward attraction
properties of the pullback attractor Ag = {Ag(t) | t ∈ R} of (4.15), whose exis-
tence is guaranteed by Proposition 1.61 under our hypotheses g1-g5 on g (see again
Remark 4.10).

Proposition 4.20. Assume that g satisfies g1-g5. Then,

(i) Ag is globally forward attractive if and only if (4.15) is in Case A.

(ii) Ag is not locally forward attractive if and only if (4.15) is in Case B.

(iii) Ag is locally forward attractive but not globally forward attractive if and only
if (4.15) is in Case C.

Proof. Recall that Ag(t) = [lg(t), ug(t)]: see Remark 4.10. First, note that

inf
x2∈A (t)

|xg(t, s, x1)− x2| =


lg(s)− xg(t, s, x1) if x1 < lg(s) ,

0 if x1 ∈ [lg(s), ug(s)] ,

xg(t, s, x1)− ug(s) if x1 > ug(s) ,

so, for any bounded set C ⊂ R and s ∈ R, it is not hard to check that

dist
(
xg(t, s, C),Ag(t)

)
= max

{
xg(t, s, sup C)− ug(t) , lg(t)− xg(t, s, inf C) , 0

}
.

Therefore, Ag is globally forward attractive if and only if limt→∞(lg(t)−xg(t, s, x)) =
0 for all x < lg(s) and limt→∞(xg(t, s, x) − ug(t)) = 0 for all x > ug(s), and is
locally forward attractive if and only if there exists δ > 0 such that limt→∞(lg(t)−
xg(t, s, lg(s)− δ)) = 0 and limt→∞(xg(t, s, ug(s) + δ)− ug(t)) = 0 for all s ∈ R.

To prove the claims, let us check that, if (4.15) is in Case A, then Ag is
globally forward attractive, that, if (4.15) is in Case B, then Ag is not locally
forward attractive (and therefore not globally forward attractive), and that, if
(4.15) is in Case C, then Ag is locally forward attractive but not globally for-
ward attractive. Then, Theorem 4.16 completes the proof of the equivalences.
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Recall that Theorem 4.13(iv) ensures that limt→∞(xg(t, s, x) − ũg+(t)) = 0 for all

x > mg(s) and limt→∞(xg(t, s, x) − l̃g+(t)) = 0 for all x < mg(s). If (4.15) is in

Case A, then Theorem 4.16 ensures that limt→∞(lg(t) − l̃g+(t)) = 0, and hence

limt→∞(xg(t, s, x)− lg(t)) = limt→∞(xg(t, s, x)− l̃g+(t)) + limt→∞(l̃g+(t)− lg(t)) = 0
for all x < lg(s). Analogously, limt→∞(ug(t)−xg(t, s, x)) = 0 for all x > ug(s). Then,
Ag is globally forward attractive. If (4.15) is in Case B1, then, for any s ∈ R and
any x < lg(s) = mg(s), limt→∞(xg(t, s, x) − l̃γ+(t)) = 0, which combined with the
fact that Theorem 4.16 ensures that limt→∞(lg(t) − m̃g+(t)) = 0 and the uniform

separation of l̃γ+ and m̃γ+ precludes limt→∞(xg(t, s, x) − lg(t)) = 0. Therefore, Ag

is not locally forward attractive. The argument is analogous if (4.15) is in Case
B2. If (4.15) is in Case C1, then, an analogous argument to the one in Case B1
precludes limt→∞(xg(t, s, x)− lg(t)) = 0 for s ∈ R in the domain of definition of mg

and x < mg(s), so Ag is not globally forward attractive. In this case, both ug and
lg are hyperbolic attractive. The minimum of a radius of uniform stability of each
of the two solutions (recall Corollary 1.53) provide δ > 0 ensuring that Ag is locally
forward attractive. The argument is analogous if (4.15) is in Case C2.

4.2.2 Parametric variation of transition equations:
What do we understand by a critical transition?

As explained in the Introduction, a critical transition (or tipping point) occurs when
a small variation on the external input of the equation causes a dramatic variation
on the dynamics of a system. We will focus on critical transitions associated to
one-parametric families of equations which occur when the dynamics moves from
Case A to one of the Cases C (see Theorem 4.16) as the parameter crosses a
particular critical value. While in Case A, which from now on will also be referred
to as tracking , the global attractor of the transition equation globally connects with
that of the past equation as time decreases and with that of the future equation as
time increases (see Figure 4.1, and see Proposition 4.19(i)), in Cases C it connects
that of the past with only a part of that of the future. To this extent, Cases C can
themselves be understood as tipping situations: the dynamics drastically changes
as the transition takes place, and for this reason from now on Cases C will also
be referred to as tipping . That is, if we understand that each of the past attractive
hyperbolic solutions has a different physical or biological meaning, then in Cases C
there exists a solution of the transition equation which connects states with different
meanings (lg or ug, see Theorem 4.16).

Theorem 4.21 shows the persistence of Cases A, C1 and C2 under small suitable
parametric variations, as well as the occurrence of a saddle-node bifurcation phe-
nomenon when Case A transits to one of the Cases B as the parameter varies: the
critical transition occurs as a consequence of the collision of an attractive hyperbolic
solution with a repulsive one.

Theorem 4.21. Let C ⊆ R be an open interval, and let ḡ : R × R × C → R be
a map such that gc(t, x) = ḡ(t, x, c) satisfies g1-g5 for all c ∈ C. Let ḡx be the
partial derivative with respect to the second variable, and assume that ḡ and ḡx are
admissible on R×R× C. Assume also that lim supx→±∞(±ḡ(t, x, c)) < 0 uniformly
on R× J for any compact interval J ⊂ C.

(i) Assume that there exist c1, c2 in C with c1 < c2 such that the dynamics of
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x′ = gc(t, x) is in Case A for c = c1 and not for c = c2. If c0 = inf{c >
c1 | Case A does not hold}, then c0 > c1. Let l̃gc < m̃gc < ũgc be the three
hyperbolic solutions of x′ = gc(t, x) for c ∈ [c1, c0). Then, the dynamics of
x′ = gc0(t, x) is either in Case B1, with limc→c−0

(m̃gc(t) − l̃gc(t)) = 0 for all

t ∈ R, or in Case B2, with limc→c−0
(ũgc(t) − m̃gc(t)) = 0 for all t ∈ R. The

results are analogous if c1 > c2.

(ii) Assume that there exist c3, c4 in C with c3 < c4 such that the dynamics of
x′ = gc(t, x) is in Case C1 for c = c3 and not for c = c4. If c0 = inf{c >
c3 | Case C1 does not hold}, then c0 > c3, and the dynamics of x′ = gc0(t, x)
is in Case B1. The results are analogous by replacing C1 and B1 by C2 and
B2, and also if c3 > c4.

Proof. The admissibility hypotheses ensure that, for c ∈ C, ρ > 0 and δ > 0 fixed,
there exists ε0 > 0 such that

sup
(t,x)∈R×[−ρ,ρ]

|gc(t, x)− gc+ε(t, x)|+ sup
(t,x)∈R×[−ρ,ρ]

|gcx(t, x)− gc+ε
x (t, x)| < δ

if |ε| ≤ ε0. Hence, Theorems 1.52 and 4.16 guarantee the persistence of Case A
under small variations of c. Let us check that also Case C1 is persistent, assuming
for contradiction that x′ = gc3(t, x) is in Case C1 for a point c3 ∈ C, and the
existence of a sequence (cn) with limit c3 such that x′ = gcn(t, x) is not Case C1
for all n ∈ N. (The same argument works for Case C2.) Theorem 1.52 shows that
x′ = gcn(t, x) has two different attractive hyperbolic solutions for large enough n,
which must be l̃gcn and ũgcn (see Theorem 4.16), and which satisfy limn→∞

∥∥l̃gcn −
l̃gc3
∥∥
∞ = limn→∞

∥∥ũgcn − ũgc3

∥∥
∞ = 0. This precludes Cases B for large enough

n. Let ρ be a radius of uniform exponential attraction provided by Theorem 1.52
for all l̃gcn and ũgcn with n large enough, and let us take n0 ∈ N such that

∥∥l̃gcn −
l̃gc3
∥∥
∞ < ρ/3 and

∥∥ũgcn − ũgc3

∥∥
∞ < ρ/3 for all n ≥ n0. If n ≥ n0, we deduce from

limt→∞(ũgc3 (t) − l̃gc3 (t)) = 0 the existence of t0 such that |ũgcn (t0) − l̃gcn (t0)| < ρ,
and hence that limt→∞(ũgcn (t) − l̃gcn (t)) = 0, which precludes Case A. That is,
x′ = gcn(t, x) is in Case C2 for all n ≥ n0.

Let k be a common bound for the ∥·∥∞-norm of the bounded solutions of x′ =
gc3(t, x) and x′ = gc3+ (t, x) (see Proposition 1.61), and let ε > 0 be smaller than

inft∈R(ũg
c3
+
(t) − m̃g

c3
+
(t)) and inft∈R(m̃g

c3
+
(t) − l̃gc3+ (t)). Theorem 1.52 applied to ε/4

provides δ > 0 such that, if f is C1-admissible and ∥f − gc3+ ∥1,k < δ, then x′ = f(t, x)

has three hyperbolic solutions at a ∥·∥∞-distance of those of x′ = gc3+ (t, x) less that
ε/4, and hence with a separation between them of at least ε/2. The admissibility of
ḡ and condition g2 applied to gc3 and gc3+ allow us to choose t0 and n0 large enough
to get

sup
(t,x)∈[t0,∞)×[−k,k]

|gcn(t, x)− gc3+ (t, x)|+ sup
(t,x)∈[t0,∞)×[−k,k]

|(gcn)x − (gc3+ )x(t, x)| < δ

for all n ≥ n0: we just write |gcn − gc3+ | ≤ |gcn − gc3| + |gc3 − gc3+ |, do the same
with the derivatives, and apply Lemma 4.9. Let us define f cn

+ (t, x) by truncating
gcn at t0, as in (4.17). Since ∥f cn

+ − gc3+ ∥1,k < δ, the equation x′ = gcn(t, x) has three

(possibly locally defined) solutions, bcn1 < bcn2 < bcn3 , with |bcni (t)| ≤ k + ε/4 and
bcni+1(t)− bcni (t) ≥ ε/2 for all t ≥ t0 and n ≥ n0. We define b̄c3i (t) = limn→∞ bcni (t) for
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i ∈ {1, 2, 3}, and get three solutions of x′ = gc3(t, x) defined and uniformly separated
by ε/2 on [t0,∞). Since x′ = gcn(t, x) is in Case C2, we have bcn2 (t) ≥ ũgcn (t) for
all t ∈ [t0,∞): there cannot be two different solutions separated on [t0,∞) strictly
below ũgcn . Hence, b̄c33 (t) ≥ b̄c32 (t) + ε/2 ≥ ũgc3 (t) + ε/2 for all t ∈ [t0,∞), which is
not possible in Case C1. This is the sought-for contradiction.

Let us complete the proof of (i) in the case c1 < c2. The persistence of Cases
A and C ensures that c0 > c1 and that x′ = gc0(t, x) is in one of the Cases B,
say B1. Let us prove that limc→c−0

(m̃gc(t) − l̃gc(t)) = 0 for all t ∈ R by checking

that, given (cn) ↑ c0, limn→∞ m̃gcn (t) = limn→∞ l̃gcn (t) = mgc0 (t) for all t ∈ R.
The hypothesis on lim supx→±∞(±ḡ(t, x, c)) ensures that there exists a common
bound for all the bounded solutions of x′ = gcn(t, x) for all n ∈ N (see again
Proposition 1.61). Then, for s ∈ R fixed, there exists a subsequence (ck) of (cn) such
that limk→∞ m̃gck (s) and limk→∞ l̃gck (s) exist. Moreover, xc0(t, s, limk→∞ m̃gck (s)) =
limk→∞ xck(t, s, m̃gck (s)) = limk→∞ m̃gck (t) for all t ∈ R, that is, t 7→ limk→∞ m̃gck (t)
is a bounded solution of x′ = gc0(t, x). And analogously with t 7→ limk→∞ l̃gck (t).
A new application of the last assertion of Theorem 1.52 applied to ũgc0 and its
approximants ũgck provides a radius of uniform stability ρ > 0, and shows that
ũgck (t)− l̃gck (t) > ũgck (t)− m̃gck (t) ≥ ρ if k is large enough: otherwise ũgck and m̃gck

would not be uniformly separated, which is impossible in Case A. And hence both
limits are mgc0 , which is the unique bounded solution of x′ = gc0(t, x) uniformly
separated from ũgc0 = limk→∞ ũgck (see Theorem 4.16). Since this is the limit of
any convergent subsequence, it is the limit of the original sequence. The remaining
situations are proved with similar arguments.

To complete the proof of (ii) in the case c3 < c4 and with x′ = gc3(t, x) in Case
C2, we deduce from the proved persistence that c0 > c3 and that the dynamics of
x′ = gc0(t, x) is in one of the Cases B. Let us assume for contradiction that it is
in Case B1, so that ũgc0 is hyperbolic. We take (cn) ↑ c0, with x′ = gcn(t, x) in
Case C2, and get the sought-for contradiction by repeating the last paragraph of
the proof of the persistence of Case C1: just replace c3 by c0. The remaining cases
are proved with similar arguments.

We complete this part with a result which ensures the existence and local unique-
ness of tipping points for certain parametric families:

Theorem 4.22. Let C ⊆ R be an open interval, and let {gc | c ∈ C} be a family of
functions satisfying g1-g5 and such that, if ḡ(t, x, c) = gc(t, x), then ḡ and ḡx are
admissible on R × R × C. Assume that there exists c̄ ∈ C such that the dynamics
of x′ = gc̄(t, x) is in Case B1 (resp. Case B2), and such that, for all c−, c+ ∈ C
with c− < c̄ < c+: g

c−(t, x) ≤ gc̄(t, x) ≤ gc+(t, x) for all (t, x) ∈ R×R; and, for any
compact set K ⊂ R, there exist tc− = tc−(K) and tc+ = tc+(K) such that the first and
second inequalities are strict for t = tc− and t = tc+ (respectively) and all x ∈ K.
Then, there exists ρ > 0 such that x′ = gc(t, x) is in Case A (resp. Case C2) for
c ∈ (c̄− ρ, c̄) and in Case C1 (resp. Case A) for c ∈ (c̄, c̄+ ρ).

Proof. Let lc, uc and mc be the three solutions of x′ = gc(t, x) given by Theorem
4.13. Let gc± be the globally bounded and C2-admissible functions associated to

gc by g2 at ±∞, and let l̃gc± < m̃gc±
< ũgc±

be the three hyperbolic solutions of
x′ = gc±(t, x) provided by g5. Let k be a common bound for the ∥·∥∞-norm of these
six solutions for c = c̄. We take 2ε > 0 smaller than inft∈R(ũgc̄±

(t) − m̃gc̄±
(t)) and
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inft∈R(m̃gc̄±
(t)− l̃gc̄±(t)). Then, Theorem 1.52 provides δ > 0 such that if ∥gc̄±−g∥1,k <

δ for a C1-admissible map g, then x′ = g(t, x) has three hyperbolic solutions at
∥·∥∞-distance of those of x′ = gc̄±(t, x) less than ε. Since x′ = gc̄(t, x) has an
attractive hyperbolic solution (see Theorem 4.16), we assume without restriction
that if ∥gc̄ − g∥1,k < δ/3 for a C1-admissible map g, then x′ = g(t, x) has an
attractive hyperbolic solution at ∥·∥∞-distance of that of x′ = gc̄(t, x) less than ε/2.

The admissibility of ḡ and ḡx provides ρ > 0 such that ∥gc̄ − gc∥1,k < δ/3 for all
c ∈ (c̄− ρ, c̄+ ρ). Our hypotheses provide tc ≥ 0 with sup(t,x)∈[tc,∞)×[−k,k] |gc(t, x)−
gc+(t, x)| + sup(t,x)∈[tc,∞)×[−k,k] |gcx(t, x) − (gc+)x(t, x)| < δ/3 for all c ∈ (c̄ − ρ, c̄ + ρ):
see g2 and Lemma 4.9. We take c∗ ∈ (c̄−ρ, c̄+ρ) and t0 = max(tc̄, tc∗). For h(t, x),
we denote by ĥ(t, x) the map given by h(t, x) for t ≥ t0 and by gc̄+(t, x)− gc̄+(t

0, x)+
h(t0, x) for t < t0. In this way, we construct ĝc∗+ , ĝc̄ and ĝc∗ from gc∗+ , gc̄ and gc∗ , and
note that they are C1-admissible. Then: ∥ĝc̄ − ĝc∗∥1,k < δ/3, since the difference is
ĝc̄(t0, x)−ĝc∗(t0, x) for t < t0 and gc̄(t, x)−gc∗(t, x) for t ≥ t0; and ∥ĝc∗−ĝc∗+ ∥1,k < δ/3
and ∥gc̄+ − ĝc̄∥1,k < δ/3 for analogous reasons. So, ∥gc̄+ − ĝc∗+ ∥1,k < δ, and hence
x′ = ĝc∗+ (t, x) has three hyperbolic solutions at a distance less than ε of those of
x′ = gc̄+(t, x). In addition, since they solve x′ = gc∗+ (t, x) on [t0,∞), the middle one
coincides with m̃gc∗+

on [t0,∞): m̃gc∗+
is the unique solution of x′ = gc∗+ (t, x) uniformly

separated from two other solutions as t increases. Hence, ũgc̄+
(t) ≥ m̃gc∗+

(t) + ε and

l̃gc̄+(t) ≤ m̃gc∗+
(t) − ε for t ≥ t0. Analogous arguments show, possibly increasing t0,

that ũgc̄−
(t) ≥ m̃gc∗−

(t) + ε and l̃gc̄−(t) ≤ m̃gc∗−
(t)− ε for t ≤ −t0.

Let us assume that x′ = gc̄(t, x) is in Case B1, associate ρ to c̄ as above, and
check that x′ = gc∗(t, x) is in Case C1 for any c∗ ∈ (c̄, c̄ + ρ), which we fix. Since
gc∗(t, lc∗(t)) ≥ gc̄(t, lc∗(t)) for all t ∈ R, Theorem 2.13(v) shows that lc̄ ≤ lc∗ . Let t0 =
t0(closure(lc∗(R))). These inequalities combined with gc∗(t0, lc∗(t0)) > gc̄(t0, lc∗(t0))
yield lc̄(t) < lc∗(t) for all t > t0, and hence limt→∞(xc̄(t, t0+1, lc∗(t0+1))−ũgc̄+

(t)) = 0:
see Theorems 4.13 and 4.16. A standard comparison argument shows that xc̄(t, t0+
1, lc∗(t0 + 1)) ≤ lc∗(t) for t ≥ t0 + 1, and hence lim inft→∞(lc∗(t) − ũgc̄+

(t)) ≥ 0.
Thus, lim inft→∞(lc∗(t)− m̃gc∗+

(t)) ≥ ε, which means Case C1 for c∗: see Theorem

4.16. Let us show now that Case A holds for c∗ ∈ (c̄−ρ, c̄). Analogous comparison
arguments to those used for c∗ ∈ (c̄, c̄+ρ) ensure that lim supt→∞(lc∗(t)−m̃gc∗+

(t)) ≤
−ε, so limt→∞(lc∗(t) − l̃gc∗+ (t)) = 0. On the other hand, if b̃gc∗ is the attractive

hyperbolic solution of x′ = gc∗(t, x) mentioned at the end of the first paragraph, then
lim inft→∞(b̃gc∗ (t)− m̃gc∗+

(t)) ≥ lim inft→∞(b̃gc∗ (t)− ũgc̄+
(t))+ε ≥ lim inft→∞(ũgc̄(t)−

ũgc̄+
(t)) + ε/2 = ε/2, and analogously lim inft→−∞(b̃gc∗ (t) − m̃gc∗−

(t)) ≥ ε/2. So,

Theorem 4.16 ensures that b̃gc∗ coincides with uc∗ = ũc∗ and that x′ = gc∗(t, x)
is in Case A. The stated properties if x′ = gc̄(t, x) is in Case B2 are proved
analogously.

Corollary 4.23. Assume the hypotheses of Theorem 4.22 and, in addition, that
c 7→ gc(t, x) is nondecreasing for all (t, x) ∈ R and, for any c− < c+ with c−, c+ ∈ C
and any compact K ⊂ R there exists t∗ = t∗(K) such that gc−(t∗, x) < gc+(t∗, x) for
all x ∈ K. If x′ = gc̄(t, x) is in Case B1 (resp. B2), then x′ = gc(t, x) is in Case
C1 (resp. C2) for all c ∈ C with c > c̄ (resp. c < c̄). Consequently, there are at
most two tipping points in C and, if they exist, say c̄1 < c̄2, then x′ = gc(t, x) is in
Case C2 for all c ∈ C with c < c̄1, Case B2 for c = c̄1, Case A for c ∈ (c̄1, c̄2),
Case B1 for c = c̄2 and Case C1 for all c ∈ C with c > c̄2.
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Proof. Assume that there exists c̄ ∈ C such that x′ = gc̄(t, x) is in Case B1.
Theorem 4.22 ensures that there exists ρ > 0 such that x′ = gc(t, x) is in Case C1
for c ∈ (c̄, c̄+ ρ). Assume for contradiction that c0 = inf{c ∈ C with c > c̄ such that
x′ = gc(t, x) is not in Case C1} belongs to C. Then, Theorem 4.21(ii) ensures that
x′ = gc0(t, x) is in Case B1. A contradiction is reached applying Theorem 4.22 to
c0. So, x

′ = gc(t, x) is in Case C1 for all c ∈ C with c > c̄. The proof is analogous
if x′ = gc̄(t, x) is in Case B2. In addition, these properties show that neither two
points in Case B1 nor two points in Case B2 can exist in C and that, in case two
points c̄1 < c̄2 in Cases B exist, they are such that x′ = gc(t, x) is in Case C2 for
c < c̄1, Case B2 for c = c̄1, in Case B1 for c = c̄2, and in Case C1 for c > c̄2.
Theorems 4.22 and 4.21(i) ensure that x′ = gc(t, x) is in Case A for c ∈ (c̄1, c̄2).

Remarks 4.24. 1. All the hypotheses concerning order in Theorem 4.22 and Coro-
lary 4.23 hold if c 7→ gc(t, x) is strictly increasing for all (t, x) ∈ R×R, which is the
case in many examples.

2. By changing in all the hypotheses of these two results the type of monotonicity
with respect to c, we obtain analogous results.

4.2.3 A property precluding some dynamical possibilities

We complete this section with another monotonicity property, which unlike the
previous ones is not related to a parametric variation, and which will be used in the
next section. It establishes two conditions precluding some of the five dynamical
possibilities for (4.15) under conditions g1-g5 provided by Theorem 4.16.

Proposition 4.25. Assume that g satisfies g1-g5. Then,

(i) if there exists h1 : R × R → R such that h1(t, x) ≤ g(t, x) for all (t, x) ∈
R×R, and x′ = h1(t, x) has a bounded solution b1 such that lim inft→∞(b1(t)−
m̃g+(t)) > 0, then x′ = g(t, x) is in Case A, B1 or C1.

(ii) If there exists h2 : R×R → R such that h2(t, x) ≥ g(t, x) for all (t, x) ∈ R×R,
and x′ = h2(t, x) has a bounded solution b2 such that lim inft→∞(m̃g+(t) −
b2(t)) > 0, then x′ = g(t, x) is in Case A, B2 or C2.

Proof. Let us check (i): the second proof is analogous. Let ug be the upper
bounded solution of x′ = g(t, x). Then, b1 ≤ ug (see Theorem 2.13(v)). Hence,
lim inft→∞(ug(t) − m̃g+(t)) ≥ lim inft→∞(b1(t) − m̃g+(t)) > 0, which according to
Theorem 4.16 precludes Cases B2 and C2.

Note that, by combining both conditions, we guarantee Case A.
The example depicted in Figure 4.4 shows that the hypotheses concerning the rel-

ative order of m̃g+ and the bounded solution bi in the statement are not superfluous.

4.3 Critical transitions for x′ = f (t, x,Γc(t, x))

The main purpose of this section is to analyze the occurrence (or lack) of tipping
points for a parametric family of transition equations of the form

x′ = f(t, x,Γc(t, x)) (4.18)
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Figure 4.4: We define Γ(t) = arctan(5t)/π + 1/2 ∈ (0, 1), g(t, x) = −x3 + sin(t) + sin(
√
2 t) +

(5/2)x + Γ(t) a (3x2 − 3ax + a2 − 5/2), and g−(t, x) and g+(t, x) by replacing Γ(t) by 0 and 1 in
g(t, x), respectively. Then, g1-g5 hold. The central panel shows that the dynamics of x′ = g(t, x)
for a = 4.2 corresponds to Case C2, as we will check below: we depict in red the two attractive
hyperbolic solutions l̃g and ũg, and in blue the unbounded locally pullback repulsive solution mg.
The right (resp. left) panel shows the three hyperbolic solutions of the future equation x′ = g+(t, x)
(resp. past equation x′ = g−(t, x)). It is easy to check that g−(t, x) ≤ g(t, x) for this choice of
a. But, as checked below, any bounded solution of x′ = g−(t, x) (which are bounded by the red
curves in the left panel) is below m̃g+ (depicted in blue in the right panel), and hence neither the
hypotheses (using g− as h1) nor the thesis of Proposition 4.25(i) are fulfilled.
To prove the previous assertions, we first check that g−(t, x− a) = g+(t, x) and that ±g−(t, r) < 0
for ±r > 2. Hence, −2 ≤ l̃g−(t) < ũg−(t) ≤ 2, and 2.2 ≤ l̃g+(t) < ũg+(t) ≤ 6.2, which implies the

assertion. In addition, since lim inft→−∞(l̃g+(t) − ug(t)) > limt→−∞(ũg−(t) − ug(t)) + 0.2 = 0.2,

we get ug(t) < l̃g+(t) for t ≤ t0; and u′
g(t) < l̃′g+(t) if ug(t) = l̃g+(t), from where we deduce that

ug(t) < l̃g+(t) for all t ∈ R. This is only possible in Case C2.

as c varies. In this case, the name of transition equation assigned to (4.18) is
justified by the functions Γc, which are assumed to approach a pair of maps Γc

±(t, x)
as t → ±∞ for each value of c. This configuration of the transition equation enables
a distinct treatment of two components within the evolution law: the stationary or
permanent component, typically picked up by the explicit dependence on t and x
in the function f , and the transient or transitional component, picked up by the
function Γc. In many instances, the functions Γc

± will typically be independent of c,
say Γ±, giving rise to the (common) past and future equations:

x′ = f(t, x,Γ−(t, x)) and x′ = f(t, x,Γ+(t, x)) .

As we will explain very soon, the parameter may play different roles: for example,
to determine the speed of this transition, or its value at time 0, or the maximum
size that certain magnitude reaches during the transition. This formulation is a
generalization of that which gave rise to this theory: the parameter shifts studied
in [12]. In our case, both the transition function Γc and the functions Γc

± that Γc

asymptotically approximates can explicitly depend on both the state variable x and
the time variable t. Clearly, this broadens the field of application of the theory,
allowing us to deal with more realistic models: a priori, there is no reason to assume
that the future (or the past) will not depend on time and/or state.

Let us mention three of the large variety of physical mechanisms that may cause
critical transitions in (4.18):

- Rate-induced critical transitions: if Γc(t, x) = Γ(ct, x) for a fixed Γ and any c > 0,
then the parameter c > 0 determines the speed of the transition Γc. In order to
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have a past and a future independent of the rate, we require Γ− and Γ+ to be
independent of t. So, a larger c means a significant distance from Γ(ct, x) to Γ±(x)
during a shorter period.

- Phase-induced critical transitions: if Γc(t, x) = Γ(c + t, x), then the parameter
c ∈ R represents the initial phase of the transition function. As before, we assume
Γ− and Γ+ independent of t.

- Size-induced critical transitions: with Γ− ≡ 0 and Γc(t, x) = cΓ(t, x), different
values of c > 0 mean different sizes of the transition function which “takes”
x′ = f(t, x, 0) to x′ = f(t, x, cΓ+(t, x)).

There are two typical rate-related phenomena: rate-induced tipping and the so-
called rate-induced tracking . The first one occurs when the increase of the transition
rate leads the system to tipping, i.e. surpassing a critical speed threshold causes
tipping. The second consists of the inverse scenario, i.e., the increase of the transition
speed leads the system to tracking. In this case, tipping occurs for speeds below a
specific threshold. There are abundant references to both applied phenomena and
mathematical formulation on rate-induced tipping [3, 12, 60, 61, 65, 73, 105, 115],
while rate-induced tracking (sometimes called overshooting) has so far received less
attention [101, 102]. In the numerical simulations discussed in this document we will
focus on instances of rate-induced tracking. Regarding the phase-induced critical
transitions, we emphasize that the change of variable s = t + c transforms the
parametric transition equation into x′ = f(s−c, x,Γ(s, x)), giving rise to the analysis
of total tipping, partial tipping and total tracking (see [3] and [71, 72]), i.e., the study
of tipping or tracking for a fixed transition function and all the functions of the hull
of f with a fixed transition function Γ. This subject will not be dealt with in the
present document. On the other hand, we would like to emphasize that, unlike rate-
induced and phase-induced critical transitions, our definition of size-induced critical
transitions does allow for the future equation to depend on the parameter c. In
these transitions, the significance of “size” corresponds to the magnitude referenced
by the γ parameter, the third variable of the function f .

The section if composed by several subsections. The first one is devoted to
establish conditions on f , on the maps Γc (or more precisely, on the map Γc for
every fixed value of the parameter c) and on the “limits” Γc

± that guarantee that
the equation (4.18)c satisfies the conditions g1-g5 required in the previous section
on x′ = g(t, x), its past and its future, so that the classification in Cases A, B1,
B2, C1 and C2 holds. Thus, the meaning of a critical transition is that explained
at the beginning of Section 4.2.2. The parametric variation is introduced in Section
4.3.2, and conditions ensuring that the general results of Sections 4.2.2 and 4.2.3 can
be applied are established. Section 4.3.3 presents some results on the existence of
safety intervals such that if the transition function remains in them throughout the
transition, the occurrence of critical transitions is ruled out. Furthermore, under the
size-induced and rate-induced paradigms, it explains the possible existence of tipping
points when the transition function goes out of the safety interval: if it goes out of
the safety interval by a large amount (size) or during very long time intervals (rate),
a critical transition may occur. Finally, Section 4.3.4 does not contain new results
concerning critical transitions, but rather includes two examples that apply the
theory from this chapter to demonstrate the optimality of the assumptions employed
in two theorems of previous chapters.
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4.3.1 Dynamical possibilities for a fixed parameter value

In this section, we provide a set of hypotheses that ensure that, for each value of
the parameter c, the dynamical possibilities of equation (4.18)c are those described
by Theorem 4.16. To this end, we consider a single transition equation of the form
x′ = f(t, x,Γ(t, x)) and study its dynamical possibilities.

Let I ⊆ R be an open interval, and let the maps f : R×R× I → R, (t, x, γ) 7→
f(t, x, γ) and Γ,Γ−,Γ+ : R× R → I satisfy the following hypotheses:

f1 There exist the derivatives fx, fxx, fγ, fγγ, fxγ and fγx, and f , fx, fxx, fγ, fγγ,
fxγ and fγx are admissible on R× R× I.

f2 Γ,Γ− and Γ+ take values in [a, b] ⊂ I, are C2-admissible, and limt→±∞(Γ(t, x)−
Γ±(t, x)) = 0 uniformly on each compact subset J ⊂ R.

f3 lim supx→±∞(±f(t, x, γ)) < 0 uniformly in (t, γ) ∈ R × J for all compact
interval J ⊂ I.

f4 inft∈R
(
(∂2/∂x2)f(t, x,Γ±(t, x))|x=x1−(∂2/∂x2)f(t, x,Γ±(t, x))|x=x2

)
> 0 when-

ever x1 < x2.

f5 Each equation x′ = f(t, x,Γ±(t, x)) has three hyperbolic solutions l̃Γ± <
m̃Γ± < ũΓ± .

With the same abuse of language as in Remark 4.4.1, we will say that the pair
(f,Γ) satisfies f1-f5 if there exist maps Γ− and Γ+ such that the previous conditions
are satisfied, and refer to the equations

x′ = f(t, x,Γ−(t, x)) and x′ = f(t, x,Γ+(t, x)) (4.19)

as the “past” and “future” of

x′ = f(t, x,Γ(t, x)) . (4.20)

We can easily prove the next result.

Proposition 4.26. Assume that (f,Γ) satisfies f1-f5. Then, the maps g and g±
respectively given by g(t, x) = f(t, x,Γ(t, x)) and g±(t, x) = f(t, x,Γ±(t, x)) satisfy
the conditions g1-g5. Therefore, the dynamical possibilities for (4.20) are those
described in Theorem 4.16.

Proof. Let J ⊂ R be a compact set. Since f2 ensures that Γ(R×R) ⊆ [a, b] and f1
ensures that f is bounded on R× J × [a, b], we get that g(t, x) = f(t, x,Γ(t, x)) is
bounded on R×J . Since f is uniformly continuous in R×J×[a, b], given ε > 0, there
exists δ′ > 0 such that |f(t1, x1, γ1) − f(t2, x2, γ2)| ≤ ε if |t1 − t2| < δ′, x1, x2 ∈ J ,
|x1 − x2| < δ′, γ1, γ2 ∈ [a, b] and |γ1 − γ2| < δ′. Since Γ is uniformly continuous on
R × J , there exists δ ∈ (0, δ′) such that |Γ(t1, x1) − Γ(t2, x2)| < δ′ if |t1 − t2| < δ,
x1, x2 ∈ J and |x1 − x2| < δ. Hence, |g(t1, x1) − g(t2, x2)| = |f(t1, x1,Γ(t1, x1)) −
f(t2, x2,Γ(t2, x2))| ≤ ε if |t1 − t2| < δ, x1, x2 ∈ J and |x1 − x2| < δ, that is, g is
uniformly continuous on R×J . So, g is admissible. Analogous arguments show that
gx(t, x) = fx(t, x,Γ(t, x))+ fγ(t, x,Γ(t, x)) Γx(t, x) and gxx(t, x) = fxx(t, x,Γ(t, x))+
2fxγ(t, x,Γ(t, x)) Γx(t, x) + fγ(t, x,Γ(t, x)) Γxx(t, x) + fγγ(t, x,Γ(t, x)) (Γx(t, x))

2 are
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also admissible (note that fxγ = fγx). The proofs are the same for g− and g+. That
is, g1 holds. Using again the uniform continuity of f on R×J × [a, b], we get that
|f(t, x,Γ(t, x)) − f(t, x,Γ+(t, x))| ≤ ε if t ∈ R, x ∈ J and |Γ(t, x) − Γ+(t, x)| < δ′,
which f2 ensures that is uniformly achieved on J as t → ∞. The proof for g− is
analogous, taking t → −∞ instead of t → ∞. Therefore, g2 holds. Conditions
g3-g5 follow directly from f3-f5.

Remarks 4.27. 1. It can be checked that the proof of Proposition 4.26 can be
repeated in the next cases. First, if we remove the boundedness of Γ and Γ± from
condition f2 but assume that I = R and that the limit in f3 is uniform in (t, γ) ∈
R×R: since Γ is bounded on R×J , a compact interval containing Γ(R×J ) plays
the role of [a, b] at the beginning of the proof, and g3 follows from this boundedness
and the more demanding hypotheses which replaces f3. And second, if we remove
the assumptions on the derivatives fγ, fγγ, fxγ and fγx of f1 but assume that Γ,
and hence Γ±, depend only on t: in this case, we can repeat the proof and observe
that these derivatives do not appear in the expressions of gx and gxx. Hence, the
conclusions of Theorems 4.13 and 4.16 also hold under these conditions.

2. As explained in Remark 4.8, Proposition 4.26 applied to the pairs (f,Γ±)
allows us to reformulate condition f5 as: “each equation x′ = f(t, x,Γ±(t, x)) has
three uniformly separated solutions”, which determines its global dynamics.

4.3.2 Concerning parametric variation

Our purpose in this section is to check that hypotheses f1-f5 on (f,Γ) combined
with the independence of t of Γ± in the rate-induced and phase-induced cases, suf-
fices to identify the rate-induced and phase-induced tipping points with parametric
transitions from Case A to one of the Cases C, which must happen “crossing” one
of the Cases B and can be understood as nonautonomous saddle-node bifurcations.
That is, that the parametric family (4.18) satisfies all the hypotheses of Theorem
4.21. In the size-induced case, it is also required to reach the same conclusion that
conditions f1-f5 hold for (f, cΓ) for all c, which is particularly fulfilled if we as-
sume that Γ− = Γ+ ≡ 0. Proposition 4.28 will prove that all the hypotheses of the
(slightly) more general Theorem 4.30 hold, and this theorem proves our assertion.

Proposition 4.28. Let Γ satisfy f2. The following assertions hold:

(i) If Γ+ and Γ− are independent of t, then (t, x, c) 7→ Γc(t, x) = Γ(ct, x) is
admissible on R× R× (0,∞).

(ii) If Γ+ and Γ− are independent of t, then (t, x, c) 7→ Γc(t, x) = Γ(c + t, x) is
admissible on R× R× R,

(iii) (t, x, c) 7→ Γc(t, x) = cΓ(t, x) is admissible on R× R× R.

In addition, in the three cases, for any c ∈ C, there exists δc > 0 such that
sup(t,x)∈R×R, |ε|≤δc |Γc+ε(t, x)| < ∞.

Proof. (i) Note that f2 ensures that Γc(R×R) = Γ(R×R) ⊆ [a, b] for all c > 0. This
proves that (t, x, c) 7→ Γc(t, x) is bounded on its domain, as well as the last assertion
of the theorem in this rate-variation case. It remains to check that (t, x, c) 7→ Γc(t, x)
is uniformly continuous on R×K×J for arbitrarily fixed compact sets K ⊂ R and
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J ⊂ (0,∞). Let us fix ε > 0. Since limt→±∞ Γ(t, x) = Γ±(x) uniformly on K, there
exists t0 > 0 such that |Γ(t, x) − Γ±(x)| ≤ ε/3 if ±t ≥ t0 and x ∈ K. Since Γ± are
uniformly continuous on K (because they are admissible), there exists δ1 > 0 such
that |Γ±(x1) − Γ±(x2)| ≤ ε/3 if x1, x2 ∈ K and |x1 − x2| < δ1. So, if t1, t2 ≥ t0,
x1, x2 ∈ K and |x1 − x2| < δ1, then

|Γ(t1, x1)− Γ(t2, x2)| ≤ |Γ(t1, x1)− Γ+(x1)|
+ |Γ+(x1)− Γ+(x2)|+ |Γ+(x2)− Γ(t2, x2)| ≤ ε ,

and the same happens if t1, t2 ≤ −t0, x1, x2 ∈ K and |x1 − x2| < δ1. Since, due to
its admissibility, Γ is uniformly continuous on R × K, there exists δ2 ∈ (0, δ1) such
that |Γ(t1, x1) − Γ(t2, x2)| ≤ ε if |t1 − t2| < δ2, x1, x2 ∈ K and |x1 − x2| < δ2. So,
to complete the proof, it suffices to check the existence of δ3 ∈ (0, δ2) such that, if
|t1 − t2| < δ3, c1, c2 ∈ J and |c1 − c2| < δ3, then one of these three options holds:
|c1t1 − c2t2| < δ2; c1t1, c2t2 ≥ t0; c1t1, c2t2 ≤ −t0. Let k = max{t0, t0/ inf J } > 0.
Clearly, if t1 ≥ 2k (resp. t1 ≤ −2k) and |t1 − t2| < k, then t2 ≥ k (resp. t2 ≤ −k),
and c1t1, c2t2 ≥ t0 (resp. c1t1, c2t2 ≤ −t0) for all c1, c2 ∈ J . Hence, it suffices to find
δ3 ∈ (0, δ2) with δ3 ≤ k such that, if t1, t2 ∈ [−2k, 2k], |t1 − t2| < δ3, c1, c2 ∈ J and
|c1 − c2| < δ3, then |c1t1 − c2t2| < δ2, which is easy.

(ii) The same arguments provide a quite simpler proof in this case.

(iii) Given ε > 0, we use arguments analogous to those in the proof of (i) to
find δ > 0 such that |c1 Γ(t1, x1) − c2 Γ(t2, x2)| ≤ |c1| |Γ(t1, x1) − Γ(t2, x2)| + |c1 −
c2| |Γ(t2, x2)| ≤ ε for |t1−t2| < δ, x1, x2 ∈ K, |x1−x2| < δ, c1, c2 ∈ J and |c1−c2| < δ.
The last assertion of the statement is deduced from Γ(R× R) ⊆ [a, b].

Remark 4.29. Note that if, in the considered case of rate and phase variation, with
Γ± independent of t, all the pairs (f,Γc) satisfy f1-f5 if (f,Γ) does, with the same
maps Γ±. The same occurs in the size-variation case if we also assume Γ+ ≡ 0.

Theorem 4.30. Let C ⊆ R be an open interval, and let the maps {Γc | c ∈ C}
be a family of functions such that all the pairs (f,Γc) satisfy f1-f5 and such that
R× R× C → R, (t, x, c) 7→ Γc(t, x) is admissible. Assume also that, for any c ∈ C,
there exists δc > 0 such that sup(t,x)∈R×R, |ε|≤δc |Γc+ε(t, x)| < ∞. Then, the map
ḡ(t, x, c) = f(t, x,Γc(t, x)) satisfies all the hypotheses of Theorem 4.21.

Proof. Proposition 4.26 ensures that gc(t, x) = ḡ(t, x, c) satisfies g1-g5 for all c ∈ C.
Let K1 ⊂ R and J ⊂ C be compact sets. Let δc be the constant of the statement
for any c ∈ C. Since J is covered by a finite amount of balls BR(c, δc), there exists
a compact set K2 ⊂ R such that Γc(t, x) ∈ K2 for all t ∈ R, x ∈ R and c ∈ J . Since
f is bounded on R × K1 × K2, we get that ḡ is bounded on R × K1 × J . Now, let
us check that ḡ is uniformly continuous on R × K1 × J . Given ε > 0, the uniform
continuity of f on R × K1 × K2 provides δ′ > 0 such that |f(t1, x1,Γ

c1(t1, x1)) −
f(t2, x2,Γ

c2(t2, x2))| ≤ ε if |t1− t2| < δ′, x1, x2 ∈ K1, |x1−x2| < δ′ and |Γc1(t1, x1)−
Γc2(t2, x2)| < δ′. Since (t, x, c) 7→ Γc(t, x) is admissible, it is uniformly continuous
on R × K1 × J , so there exists δ ∈ (0, δ′) such that |Γc1(t1, x1) − Γc2(t2, x2)| < δ′

if |t1 − t2| < δ, x1, x2 ∈ K1, |x1 − x2| < δ, c1, c2 ∈ J and |c1 − c2| < δ. Hence,
ḡ is admissible on R × R × C. Analogous arguments prove the admissibility of ḡx.
Since Γc(t, x) ∈ K2 for all t ∈ R, x ∈ R and c ∈ J , we deduce from f3 that
lim supx→±∞(±ḡ(t, x, c)) < 0 uniformly on R× J . This completes the proof.
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4.3.3 Transition functions and safety intervals

In this section, we describe conditions ensuring the lack of rate-induced and phase-
induced critical transitions (in Theorem 4.31 and Corollary 4.32), as well as the
occurrence of size-induced critical transitions (in Theorem 4.33) and the uniqueness
of the tipping point in rate-induced tracking scenarios (in Theorem 4.36).

This collection of results has a common thread. Let us assume that γ 7→ f(t, x, γ)
is nondecreasing (to be specified below). Roughly speaking, the idea is that, if the
transition function Γ and its future asymptotic approximate Γ+ take values in a
suitable safety interval, determined by the values of the parameter for with x′ =
f(t, x, γ) has three hyperbolic solutions, then the transition exhibits tracking. The
immediate consequence is the absence of rate-induced and phase-induced tipping
points. This is what Theorem 4.31 and Corollary 4.32 prove. If, on the contrary, the
parametric variation of the transition function forces it to leave any bounded interval,
and hence any possible safety interval, then tipping occurs. Theorem 4.33 establishes
conditions under which this is precisely the situation. Under its hypotheses, in
the size-induced variation analysis, tipping occurs either for all the values of the
parameter or outside a compact interval. Finally, Theorem 4.36 uses the previous
results to establish conditions ensuring the uniqueness, in case of existence, of a
rate-induced critical transition, which is of rate-induced tracking type.

Safety intervals: absence of critical points

The next results show the aforementioned existence of a safety interval for the range
of Γ and Γ+, precluding tipping and hence the occurrence of size-induced or phase-
induced critical transitions. The hypotheses of Corollary 4.32 are more demanding
than those of Theorem 4.31, but also easier to be verified in the applications.

Theorem 4.31. Assume that (f,Γ) satisfies f1-f5. Assume also that γ 7→ f(t, x, γ)
is nondecreasing for all (t, x) ∈ R × R, and that there exist γ1 ≤ γ2 such that:
Γ(R×R) ⊆ [γ1, γ2], x

′ = f(t, x, γ1) has a bounded solution b1 with lim inft→∞(b1(t)−
m̃Γ+(t)) > 0; and x′ = f(t, x, γ2) has a bounded solution b2 with lim inft→∞(m̃Γ+(t)−
b2(t)) > 0. Then, (4.20) is in Case A.

If, in addition, we assume that Γ± do not depend on t, then the equations x′ =
f(t, x,Γ(ct, x)) and x′ = f(t, x,Γ(t+ c, x)) are in Case A for all c > 0 and c ∈ R,
respectively: there are neither rate-induced nor phase-induced critical transitions.

Proof. Apply Proposition 4.25(i) to h1(t, x) = f(t, x, γ1) ≤ f(t, x,Γ(t, x)) to pre-
cludeCases B2 and C2 for (4.20), and apply Proposition 4.25(ii) to f(t, x,Γ(t, x)) ≤
h2(t, x) = f(t, x, γ2) to preclude Cases B1 and C1 for (4.20).

Note that Γc(R × R) ⊆ Γ(R × R) for Γc(t, x) = Γ(ct, x) and for Γc(t, x) =
Γ(c + t, x). This fact, Remark 4.29 and the already checked property prove the
second assertion.

Corollary 4.32. Assume that (f,Γ) satisfies f1-f5. Assume also that γ 7→ f(t, x, γ)
is nondecreasing for all (t, x) ∈ R × R, and that there exist γ1 ≤ γ2 such that
Γ(R × R) ⊆ [γ1, γ2], Γ+(R × R) ⊆ [γ1, γ2], inft∈R(fxx(t, x1, γ) − fxx(t, x2, γ)) > 0
whenever x1 < x2 for all γ ∈ [γ1, γ2], and x′ = f(t, x, γ) has three hyperbolic solutions
for all γ ∈ [γ1, γ2]. Then, (4.20) is in Case A.
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If, in addition, we assume that Γ± do not depend on t, then the equations x′ =
f(t, x,Γ(ct, x)) and x′ = f(t, x,Γ(t+ c, x)) are in Case A for all c > 0 and c ∈ R,
respectively: there are neither rate-induced nor phase-induced critical transitions.

Proof. Lemma 4.7 with g(t, x) = g±(t, x) = f(t, x, γ) ensures that the extension to
the hull of (t, x) 7→ f(t, x, γ) satisfies d1, d2, d3 and d4 for all γ ∈ [γ1, γ2], and
hence that the dynamics of x′ = f(t, x, γ) is that described in Theorem 2.18 for
all γ ∈ [γ1, γ2]. Let us take γ̃ ∈ [γ1, γ2]. Theorem 1.52 provides δγ̃ > 0 such that
x′ = f(t, x, γ) has three hyperbolic solutions l̃γ < m̃γ < ũγ for all γ ∈ (γ̃−δγ̃, γ̃+δγ̃)
with inft∈R(ũλ1(t)−m̃λ2(t)) > 0 for all λ1 ≤ λ2 in (γ̃−δγ̃, γ̃+δγ̃). Hence, Proposition
2.19(ii) ensures that l̃λ1 ≤ l̃λ2 < m̃λ2 ≤ m̃λ1 < ũλ1 ≤ ũλ2 if λ1 ≤ λ2 in (γ̃−δγ̃, γ̃+δγ̃).
Since [γ1, γ2] is compact, there exist γ̃1, γ̃2, . . . γ̃n such that (γ̃i − δγ̃i , γ̃i + δγ̃i) cover
[γ1, γ2] for i ∈ {1, 2, . . . , n}. Hence, thanks to the connection of [γ1, γ2], we can
combine the previous inequalities to obtain that l̃γ1 ≤ l̃γ2 < m̃γ2 ≤ m̃γ1 < ũγ1 ≤ ũγ2 .
Now, since Γ+(R×R) ⊆ [γ1, γ2], Proposition 2.19(i) ensures that ũγ1 ≤ ũΓ+ , so m̃γ2 ≤
m̃γ1 < ũγ1 ≤ ũΓ+ . Then, inft∈R(ũΓ+(t)−m̃γ2(t)) > 0 and Proposition 2.19(ii) ensures

that inft∈R(m̃Γ+(t) − l̃γ2(t)) > 0. Analogously, inft∈R(ũγ1(t) − m̃Γ+(t)) > 0, so the
hypotheses of Theorem 4.31 hold. The proof of the first assertion is complete, and
the second one follows from the fact that Γc(R×R) ⊆ Γ(R×R) for Γc(t, x) = Γ(ct, x)
and for Γc(t, x) = Γ(c+ t, x), Remark 4.29 and the already checked property.

Occurrence of size-induced critical transitions

Theorem 4.33, based on Theorem 4.22, shows either the absence of critical transitions
or the occurrence of exactly two tipping points under hypotheses precluding the
transition function Γd to take values in any fixed interval for all the values of the
parameter, where Γd = Γ0 + dΓ (the size-variation case is included). Looking for
clarity in the statements, we just analyze the situation of nonnegative Γ.

Theorem 4.33. Let Γ0 : R × R → R and Γ: R × R → [0,∞) be globally bounded
and C2-admissible, and such that the pair (f,Γ0 + dΓ) satisfies f1-f5 for all d ∈ R.
Assume that Γ(t0, x) > 0 for all x ∈ R and a t0 ∈ R. Assume also that γ 7→ f(t, x, γ)
is strictly increasing on R for all (t, x) ∈ R × R, with limγ→±∞ f(t, x, γ) = ±∞
uniformly on compact sets of R× R. Then,

x′ = f(t, x,Γ0(t, x) + dΓ(t, x)) (4.21)

is either in Case C1 for all d ∈ R, in Case C2 for all d ∈ R, or there exist
d− < d+ such that it is in Case C2 for d < d−, in Case B2 for d = d−, in Case
A for d ∈ (d−, d+), in Case B1 for d = d+, and in Case C1 for d > d+.

Proof. Proposition 4.28(iii) shows that (t, x, d) 7→ dΓ(t, x) is admissible on R×R×R,
and hence so it is (t, x, d) 7→ Γ0(t, x) + dΓ(t, x). It also shows that, for any d ∈ R,
there exists δd > 0 such that sup(t,x)∈R×R, |ε|≤δd

|Γ0(t, x) + (d + ε) Γ(t, x)| < ∞. Let

us define gd(t, x) = f(t, x,Γ0(t, x) + dΓ(t, x)). The nonnegative character of Γ and
the strictly increasing character of γ 7→ f(t, x, γ) ensures that gd1(t, x) ≤ gd0(t, x) ≤
gd2(t, x) and gd1(t0, x) < gd0(t0, x) < gd2(t0, x) for all d1 < d0 < d2 and (t, x) ∈ R×R.
Since Proposition 4.26 ensures that gd satisfies g1-g5 for all d ∈ R, Theorems 4.21
and 4.22 can be applied at any point.

We assume that (4.21)d is in Case A for d = d̄ and define d+ = inf{d > d̄ |Case
A does not hold}. Theorem 1.52 ensures that d̄ < d+. We assume for contradiction
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that d+ = ∞. Let l̃d < m̃d < ũd be the three hyperbolic solutions of (4.21)d for
d ≥ d̄. Theorem 2.13(v) yields l̃d̄ ≤ l̃d for all d ≥ d̄. Let us prove that m̃d ≤ m̃d̄

for all d ≥ d̄. Clearly, it suffices to check it for d ∈ [d̄, d̄ + ρ] for any ρ > 0, which
we deduce from Theorem 1.52 and Proposition 2.19(ii) as in the proof of Corollary
4.32.

Therefore, we can take two constants m1 < m2 such that m1 ≤ l̃d̄ ≤ l̃d < m̃d ≤
m̃d̄ ≤ m2 for all d ≥ d̄. We look for t1 < t0 < t2 and k > 0 such that Γ(t, x) > k
if t ∈ [t1, t2] and x ∈ [m1,m2], and call kd = inf(t,x)∈[t1,t2]×[m1,m2] f(t, x,Γ0(t, x) +
dΓ(t, x)) for d ≥ d̄. Then, kd ≥ inf(t,x)∈[t1,t2]×[m1,m2] f(t, x,Γ0(t, x) + dk) if d ≥
max(0, d̄), which combined with the hypothesis on limγ→∞ f(t, x, γ) ensures that
limd→∞ kd = ∞. Hence, (t2 − t1) kd ≤ l̃d(t2) − l̃d(t1) ≤ m2 − m1 for all d ≥ d̄,
which is impossible. This contradiction shows that d+ ∈ (0,∞). Analogously,
d− = sup{d < d̄ | Case A does not hold} < d̄ is finite. Corollary 4.23 ensures that
the variation is the stated one: C2 for all d < d−, B2 at d−, A for all d ∈ (d−, d+),
B1 at d+, and C1 for all d > d+.

Theorem 4.22 precludes the dynamics to be always in one of the Cases B, and
shows the existence of values of the parameter in Case A if one of the Cases
B occurs at some value of the parameter. So, we would be in the situation of the
previous paragraph. Finally, the absence of Cases A and B is only possible if either
Case C1 or Case C2 occurs for all the values of c, as Theorem 4.21(ii) ensures.
The proof is complete.

A meaningful interpretation of the previous statement can be achieved by un-
derstanding Γ0 as a transition function whose range is contained within a safety
interval (such as those provided in Theorem 4.31 and Corollary 4.32), while the con-
tribution of dΓ causes the transition function to deviate from the safety interval for
sufficiently large values of d or −d: if we move too far away from the safety interval
we will obtain a critical transition.

By reviewing the proof of the previous theorem, we observe that we have in fact
proved the next result, which we will use in Section 4.4.

Theorem 4.34. Let Γ0 : R × R → R and Γ: R × R → [0,∞) be globally bounded
and C2-admissible, and such that the pair (f,Γ0 + dΓ) satisfies f1-f5 for all d ∈ R.
Assume that there exists d̄ ∈ R such that

x′ = f(t, x,Γ0(t, x) + dΓ(t, x)) (4.22)

is in Case A for d = d̄, and let l̃d̄ < m̃d̄ < ũd̄ be its three hyperbolic solutions. Let
m1 < m2 and m3 < m4 be such that m1 ≤ l̃d̄(t) < m̃d̄(t) ≤ m2 for all t ∈ R and
m3 ≤ m̃d̄(t) < ũd̄(t) ≤ m4 for all t ∈ R.

(i) Assume that there exists t0 such that Γ(t0, x) > 0 for all x ∈ [m1,m2], that
γ 7→ f(t, x, γ) is nondecreasing for all (t, x) ∈ R× R and strictly increasing for
(t, x) ∈ R× [m1,m2], with limγ→∞ f(t, x, γ) = ∞ uniformly on compact sets of
R × [m1,m2]. Then, there exists d+ > d̄ such that (4.22)d is in Case C1 for
d > d+, in Case B1 for d = d+, in Case A for d ∈ [d̄, d+).

(ii) Assume that there exists t0 such that Γ(t0, x) > 0 for all x ∈ [m3,m4], that
γ 7→ f(t, x, γ) is nondecreasing for all (t, x) ∈ R× R and strictly increasing for
(t, x) ∈ R× [m3,m4], with limγ→−∞ f(t, x, γ) = −∞ uniformly on compact sets
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of R× [m3,m4]. Then, there exists d− < d̄ such that (4.22)d is in Case C2 for
d < d−, in Case B2 for d = d−, in Case A for d ∈ (d−, d̄].

Remark 4.35. Frequently, the limit maps providing condition f2 for all d are Γ0,±+
dΓ± for C2-admissible maps Γ0,± and Γ± ≥ 0. If so, condition f5 for all x′ =
f(t, x,Γ0,±(t, x) + dΓ±(t, x)) is only possible if, for any t0 ∈ R, each map x 7→
Γ±(t0, x) vanishes at least for an x±

t0 ∈ [m1,m2]: otherwise, Theorem 4.33 precludes
the existence of three hyperbolic solutions if d and −d are large enough. Also often,
Γ0,± ≡ Γ0 and Γ− ≡ 0, and so Theorems 4.33 and 4.34 study the occurrence of size-
induced critical transitions: just define f ∗(t, x, dΓ(t, x)) = f(t, x,Γ0(t, x)+dΓ(t, x)).

Uniqueness of a rate-induced critical transition

In what follows, with an eye on applications, we deal with a two-parametric transi-
tion function dΓc: d determines the size and c represents the rate in the examples.
The information provided by Theorem 4.34 allows us to establish conditions ensur-
ing the existence of a continuous map d+(c) determining the unique positive critical
value of x′ = f(t, x, dΓc(t, x)), and to describe a continuous bifurcation function
φ(c) which vanishes at at most a point and whose sign determines the dynamical
situation of x′ = f(t, x,Γc(t, x)).

Theorem 4.36. Let C ⊆ R be an open interval, and let the maps {Γc | c ∈ C} be a
family of functions such that

(1) all the pairs (f,Γc) satisfy f1-f5 with Γ− ≡ Γ+ ≡ 0,

(2) Γc ≥ 0 and R× R× C → [0,∞), (t, x, c) 7→ Γc(t, x) is admissible,

(3) for any c ∈ C, there exists δc > 0 such that sup(t,x)∈R×R, |ε|≤δc |Γc+ε(t, x)| < ∞,

(4) γ 7→ f(t, x, γ) is strictly increasing for all (t, x) ∈ R× R.

Let l̃0 < m̃0 < ũ0 be the three hyperbolic solutions of x′ = f(t, x, 0) provided by f5,
and let m1 < m2 be such that m1 ≤ l̃0(t) < m̃0(t) ≤ m2 for all t ∈ R. Assume that
limγ→∞ f(t, x, γ) = ∞ uniformly on compact sets of R× [m1,m2] and that, for any
c ∈ C, there exists tc ∈ R such that Γc(tc, x) > 0 for all x ∈ [m1,m2]. The following
assertions hold:

(i) If, for each c ∈ C, the value d+(c) > 0 is provided by Theorem 4.34(i) applied
to x′ = f(t, x, dΓc(t, x)), then C → (0,∞), c 7→ d+(c) is continuous.

(ii) Besides, if c 7→ Γc(t, x) is nonincreasing (resp. nondecreasing) for all (t, x) ∈
R× R and, for any c1 < c2 with c1, c2 ∈ C and any compact set K ⊂ R, there
exists t∗ such that Γc1(t∗, x) > Γc2(t∗, x) (resp. Γc1(t∗, x) < Γc2(t∗, x)) for all
x ∈ K, then C → (0,∞), c 7→ d+(c) is strictly decreasing (resp. increasing).

(iii) There exists a continuous bifurcation function φ : C → R such that the equation

x′ = f(t, x,Γc(t, x)) (4.23)

is in Case A if φ(c) < 0, B1 if φ(c) = 0, and C1 if φ(c) > 0. If the additional
hypotheses of (ii) hold, then φ is strictly decreasing (resp. strictly increasing).
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Proof. For any fixed d ∈ R, the admissibility of R × R × C → [0,∞), (t, x, c) 7→
dΓc(t, x) follows from (2), and condition (3) obviously ensures that, for any c ∈ C,
there exists δc > 0 such that sup(t,x)∈R×R, |ε|≤δc |dΓc+ε(t, x)| < ∞. Hence, it can be
checked that all the pairs (f, dΓc) satisfy f1-f5 with Γ− ≡ Γ+ ≡ 0 for all c ∈ C and
d ∈ R. So, Theorem 4.34(i) can be applied: C → (0,∞), c 7→ d+(c) is well defined.

(i) For contradiction, we assume that there exist c0 ∈ C, (cn) with limn→∞ cn = c0
and δ > 0 such that d+(cn) > d+(c0) + δ for all n ∈ N. (An analogous argument
proves the same if d+(cn) < d+(c0)− δ for all n ∈ N.) Since d+(cn) > d+(c0) + δ >
d+(c0) for all n ∈ N, Theorem 4.34(i) ensures that x′ = f(t, x, (d+(c0) + δ) Γc0(t, x))
is in Case C1 and that x′ = f(t, x, (d+(c0)+δ) Γcn(t, x)) is in Case A for all n ∈ N.
On the other hand, Theorem 4.30 ensures that the hypotheses of Theorem 4.21(ii)
hold, and this result yields inf{c > c0 | x′ = f(t, x, (d+(c0) + δ) Γc(t, x)) is not in
Case C1} > c0, which contradicts the previous assertion. Hence, C → (0,∞),
c 7→ d+(c) is continuous.

(ii) Assume that c 7→ Γc(t, x) is nondecreasing for all (t, x) ∈ R× R. Then, the
map c 7→ f(t, x, dΓc(t, x)) is nondecreasing for any d > 0 and (t, x) ∈ R × R fixed
and, for any c1 < c2 with c1, c2 ∈ C and any compact set K ⊂ R, there exists t∗ ∈ R
such that f(t∗, x, dΓ

c1(t∗, x)) < f(t∗, x, dΓ
c2(t∗, x)) for all d > 0 and x ∈ K. Then,

given c1 < c2 with c1, c2 ∈ C, Corollary 4.23 ensures that x′ = f(t, x, d+(c1) Γ
c2(t, x))

is in Case C1. Consequently, d+(c2) < d+(c1), as we wanted to see.

(iii) Note that x′ = f(t, x, dΓc(t, x)) is in Case A if d ∈ [0, d+(c)), in B1 if d =
d+(c) and in C1 if d ∈ (d+(c),∞). Hence, (4.23)c is in Case A if 1 ∈ [0, d+(c)), in
B1 if d+(c) = 1, and in C1 if 1 ∈ (d+(c),∞). Therefore, the map φ : C → R given by
φ(c) = 1−d+(c), whose continuity is ensured by (i), satisfies the statement. Property
(ii) ensures the strict monotonicity of φ if the additional properties hold.

Remarks 4.37. 1. Let us explain how to apply Theorem 4.36 in a situation which
will appear in one of the examples described in Section 4.4. Let (f,Γ) satisfy f1-
f5 with Γ− ≡ Γ+ ≡ 0, and assume that Γ(t, x) = Γ(t) ≥ 0 for all (t, x) ∈ R
with Γ(0) > 0, that t 7→ Γ(t) is nondecreasing on (−∞, 0] and nonincreasing on
[0,∞), that γ 7→ f(t, x, γ) is strictly increasing for all (t, x) ∈ R × R, and that
limγ→∞ f(t, x, γ) = ∞ uniformly on compact sets of R×R. Let us define Γc(t, x) =
Γ(c t) for any c > 0 and (t, x) ∈ R × R. Proposition 4.28(i) ensures that (2)
and (3) holds, Γc(0, x) > 0 for all x ∈ R, and Remark 4.29 ensures that (1) also
holds. Notice also that t 7→ Γ(t) is nondecreasing on (−∞, 0] and nonincreasing
on [0,∞) if and only if (0,∞) → R, c 7→ Γc(t) = Γ(ct) is nonincreasing for all
t ∈ R, and that, in this case, Γ(0) = supt∈R Γ(t) > 0 = limt→∞ Γ(t). We take
γ0 ∈ (0,Γ(0)) and t0 = inf{t > 0 | Γ(t) = γ0}, so that Γ(t0) < Γ(s) for every
0 ≤ s < t0. Given 0 < c1 < c2, we take t∗ = t0/c2. Since 0 < c1t∗ < c2t∗ = t0,
we get Γc2(t∗) < Γc1(t∗). Theorem 4.36(iii) provides a strictly decreasing continuous
bifurcation map φ : (0,∞) → R such that (4.23)c is in Case A if φ(c) < 0, B1 if
φ(c) = 0, and C1 if φ(c) > 0.

2. A result on rate-induced critical transitions can be obtained using an analog of
Theorem 4.36 involving d− instead of d+: let (f,Γ) satisfy f1-f5 with Γ− ≡ Γ+ ≡ 0,
and assume that Γ(t, x) = Γ(t) ≤ 0 for all (t, x) ∈ R with Γ(0) > 0, that t 7→ Γ(t) is
nonincreasing on (−∞, 0] and nondecreasing on [0,∞), that γ 7→ f(t, x, γ) is strictly
increasing for all (t, x) ∈ R × R and that limγ→−∞ f(t, x, γ) = −∞ uniformly on
compact sets of R×R. Let us define Γc(t, x) = Γ(ct) for any c > 0 and (t, x) ∈ R×R.
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In this case, C → (−∞, 0), c 7→ d−(c) is strictly decreasing, and there also exists a
strictly decreasing continuous bifurcation map φ : (0,∞) → R such that (4.23) is in
Case A if φ(c) < 0, B2 if φ(c) = 0, and C2 if φ(c) > 0.

3. The two previous remarks are still true if we remove the assumption on
limγ→∞ f(t, x, γ). To check it in the situation of Remark 4.37.1, let [0, b] be such
that closureR(Γ(R× R)) ⊆ [0, b] (recall hypothesis f2) and let us define g(t, x, γ) =
f(t, x, γ) if γ ≤ b and g(t, x, γ) = f(t, x, b) + γ − b if γ > b. Then g(t, x,Γc(t)) =
f(t, x,Γc(t)), and it is easy to check that (g,Γ) satisfies all the hypotheses required
in Theorem 4.36(iii), from where the assertion follows. An analogous definition is
made in the case of Remark 4.37.2.

The situation of Remark 4.37.1 can be read as a possible situation of rate-induced
tracking. If, for a small rate c1 > 0, the dynamics of x′ = f(t, x,Γ(ct)) correspond
to tipping, then φ(c1) > 0. If the strictly decreasing map φ reaches 0 at a certain
rate c2, this means tracking for all rate c > c2. Notice, however, that the existence
of a root of the bifurcation function is not guaranteed, only its uniqueness.

All this can be understood in
terms of the safety interval I ∋ 0 de-
termined by the values of γ such that
x′ = f(t, x, γ) has three hyperbolic so-
lutions if, in addition, x 7→ fx(t, x, γ)
is strictly concave for all γ ∈ I. If
Γ(0) ∈ I, then Corollary 4.32 ensures
tracking for all c. So, let us assume
that Γ(0) > sup I. Then, the rate c
is inversely proportional to the length
of the period of time during which the
range of t 7→ Γ(ct) (with 0 ∈ I as
both asymptotic limits) escapes from
I. So, a small value of c may mean
that the range of Γ is outside I dur-
ing a period large enough to produce
tipping, but a larger value of c may
revert this situation. In other words,
we have either tracking forever, or tip-
ping forever, or a unique phenomenon
of rate-induced tracking. Figure 4.5
shows a drawing representing the pos-
sibility of a unique rate bifurcation
point, i.e., the case of rate-induced
tracking.

Figure 4.5: Sketch of the possible occurrence
of rate-induced tracking when the transition
function Γ escapes from a safety interval I.
In the top middle panel, the upper locally
pullback attractive solutions for three differ-
ent values 0 < c1 < c2 < c3 of c, in the bot-
tom panel, the transition functions for these
values of c.

4.3.4 Revisiting the necessity of hypotheses
in Theorems 1.40 and 2.20 through examples

In this section, we present two examples demonstrating the optimality of the as-
sumptions employed in two theorems of Chapters 1 and 2. Specifically, we address
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the condition imposed on the lower and upper equilibria of an invariant compact set
in Theorem 1.40, as well as the minimal base flow condition assumed in Theorem
2.20. These results are included at this point because the examples are constructed
precisely from transition equations such as those introduced in this chapter.

An example related to Theorem 1.40

We present an example of a uniformly exponentially stable (with strictly negative
upper Lyapunov exponent), pinched, compact (and connected), and τ -invariant set
K which projects onto the whole base and which is not a τ -copy of the base. So,
the thesis of Theorem 1.40 is false, due to existence of a minimal subset of the base
on which the sections of K do not reduce to a point. This is the unique hypothesis
of Theorem 1.40 not fulfilled.

To this end, we consider f(t, x, γ) = −x (x2 − 1) + γ and Γ(t) = exp(−t2).
Note that Γ± = limt→±∞ Γ(t) = 0, and that −1, 0 and 1 are hyperbolic solutions
of the (past and future) equation x′ = −x (x2 − 1), which is also the equation
x′ = f(t, x, dΓ(t)) for d = 0. So, fd1-fd5 hold and Theorem 4.33 ensures that there
exists d− < 0 such that, for all d < d−, the transition equation x′ = f(t, x, dΓ(t)) is
in Case C2. Therefore, the upper locally pullback attractive solution ud for d < d−
satisfies limt→−∞ ud(t) = 1 and limt→∞ ud(t) = −1.

From now on, we fix d < d−
and consider the hull Ωg of g(t, x) =
f(t, x, dΓ(t)) equipped with the usual
translation flow σg : R× Ωg → Ωg. Since
the map g−(x) = g+(x) = −x(x2 − 1)
does not depend on t, it is a fixed point
of σg, and the unique element of the α-
limit set and theω-limit set of g. That is,
(Ωg, σg) is homeomorphic to a continuous
flow on S1 with only one fixed point. In
the words of the decomposition of Lemma
1.44, Ωg = Ωα

g ∪{g·t | t ∈ R}∪Ωω
g , where

Ωα
g = Ωω

g = {g+} is disjoint from the or-
bit {g·t | t ∈ R}.

Figure 4.6: Sketch of the structure of the
example related to Theorem 1.40 in the
skewproduct formalism.

Let us consider the compact (and connected) τ -invariant set

K = closureΩ×R{(g·t, ud(t)) | t ∈ R} .

Since x′ = g(t, x) is in Case C2, Theorem 4.16 ensures that t 7→ ud(t) is an
attractive hyperbolic solution. So, Proposition 1.54(ii) ensures that supLyap(K) < 0
and that K is uniformly exponentially stable. An analogous argument to that of
Lemma 1.44 shows that K = Kα ∪ {(g·t, ud(t)) | t ∈ R} ∪ Kω, where Kα and Kω

are the α-limit and ω-limit sets for τ of (g, ud(0)), and in this case Kα ∪ Kω and
{(g·t, ud(t)) | t ∈ R} are disjoint, since they project onto disjoint parts of Ωg: onto
Ωα

g = Ωω
g = {g+} and onto {g·t | t ∈ R}, respectively. Since Ωα

g = Ωω
g = {g+} is

minimal and supLyap(Kα) ≤ supLyap(K) < 0, Theorem 1.40 ensures that Kα is an
attractive hyperbolic copy of Ωα

g = Ωω
g = {g+}, and analogously Kω. Moreover, the

asymptotic approaching ensures that Kα = {(g+, 1)} and Kω = {(g+,−1)}. Thus,
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Kω is a singleton for all ω ∈ {g·t | t ∈ R} (and hence it is pinched) and has two
elements for all Ωα

g = Ωω
g = {g+} (and hence it is not a copy of the base), as we

wanted to see. See Figure 4.6 for a depiction of the skewproduct structure of the
example.

An example related to Theorem 2.20

We present an example which shows that the minimality of (Ω, σ) is indeed re-
quired in Theorem 2.20. We construct a non minimal set Ω and a pair of functions
h1, h2 : Ω × R → R satisfying d1, d2, d3 and d4 with h1(ω, x) > h2(ω, x) for all
(ω, x) ∈ Ω × R, such that x′ = hi(ω·t, x) has three hyperbolic copies of the base
li < mi < ui for i = 1, 2 which satisfy none of the two possible orders described
in Theorem 2.20. We make use of the transition framework of the present chapter
to construct the example: x′ = hi(ω·t, x) for i = 1, 2 will be transition equations,
with Ω composed by a heteroclinic orbit connecting its α-limit set to its ω-limit
set, which are singletons and hence minimal subsets of Ω. The cornerstone of the
example is the fact that we construct three hyperbolic copies of the base Ω for each
one of the equations, whose projections over the α-limit set and ω-limit set are
ordered following order (1) and order (2) of Theorem 2.20, respectively. This fact
and the continuity of the copies of the base precludes one of the two orders to hold
over the whole set Ω.

Let Γ: R → (0, 1) be a continuous map with limt→∞ Γ(t) = Γ+ = 1 and
limt→−∞ Γ(t) = Γ− = 0 (as Γ(t) = arctan(t)/π + 1/2). We take a ≥

√
10 and

hb(x, α) = −x3 + x+ α (3x2a− 3xa2 + a3 − a) + α (1− α) b

for some b ≥ 0 which will be properly fixed later. Note that: hb(x, α) = h0(x, α) +
α(1− α) b; hb(x, 0) = −x(x− 1)(x+ 1); hb(x, 1) = −(x− a)(x− a− 1)(x− a+ 1);
and 3x2a − 3xa2 + a3 − a > 0 for all x ∈ R by the choice of a, so α 7→ h0(x, α) is
strictly increasing for all x ∈ R. For each b ≥ 0, we consider the equation

x′ = hb(x,Γ(t)) . (4.24)

It is easy to check that (hb,Γ) satisfies f1-f5 for any b ≥ 0: the past equation
x′ = hb(x, 0) has three hyperbolic critical points −1, 0 and 1, and the future equation
x′ = hb(x, 1), which is a shift of the past one, has three hyperbolic critical points
a− 1, a and a+ 1. So, the dynamics of (4.24)b fits in one of the dynamical cases of
Theorem 4.16.

We will check later the existence of b0 > 0 such that (4.24)b is in Case A
for b = b0. Let Ω be the hull of (t, x) 7→ hb0(x,Γ(t)) (see Section 1.3.1), and let
h1 : Ω × R → R be given by h1(ω, x) = ω(0, x) for (ω, x) ∈ Ω × R, that is, the
extension of hb0 to Ω. Then, h1(ω, x) is a cubic polynomial with −1 as leading
coefficient for all ω ∈ Ω, and hence h1 satisfies d1, d2, d3 and d4. Note that
Ω is the union of the (heteroclinic) σ-orbit {hb0(x,Γ(t + s)) | s ∈ R} and its α-
limit and ω-limit sets, {hb0(x, 0)} and {hb0(x, 1)}: see Lemma 1.44. Theorem 2.18
ensures that x′ = h1(ω·t, x) has three hyperbolic copies of the base l1 < m1 < u1.
In particular, the restrictions of these three copies to the α-limit set {hb0(x, 0)} are
−1, 0 and 1, and to the ω-limit set {hb0(x, 1)} are a− 1, a and a+ 1.
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Next, we define h2(ω, x) = −x3 + x − ε
for ε ∈ (0, 2/(3

√
3 )), which clearly satisfies

d1, d2, d3 and d4 and h1(ω, x) > h2(ω, x)
for all (ω, x) ∈ Ω×R. It can be checked that
x′ = h2(ω·t, x) has three copies of the base:
three constant equilibria l2,m2, u2 satisfying
l2 < −1 < 0 < m2 < u2 < 1. So, the or-
der of l1, m1, u1 and l2, m2, u2 is l2 < −1 <
0 < m2 < u2 < 1 (like in Theorem 2.20(1))
over the minimal set {hb0(x, 0)} ⊂ Ω, and
l2 < m2 < u2 < a − 1 < a < a + 1 (like
in Theorem 2.20(2)) over the minimal set
{hb0(x, 1)} ⊂ Ω, as asserted.
It remains to check the existence of b0 > 0
such that (4.24)b0 is in Case A, for which it
suffices to check (4.24)0 is in Case C2 and
that there exists b1 > 0 such that (4.24)b1 is
in Case C1: Theorems 4.21 and 4.22 pre-
clude moving from Case C2 to Case C1 as
b varies without crossing A.

Figure 4.7: Sketch of the structure of
the example related to Theorem 2.20
in the skewproduct formalism. In red
lines, the copies of the base for x′ =
h1(ω·t, x), in blue for x′ = h2(ω·t, x):
in solid lines the attractive ones and
in dashed lines the repulsive ones.

We denote by lb and ub (resp. mb) the locally pullback attractive (resp. repul-
sive) solutions of (4.24)b provided by Theorem 4.13(i) (resp. (iii)), and recall that
limt→−∞ ub(t) = 1, limt→−∞ lb(t) = −1, and limt→∞mb(t) = a. Since Γ(t) < 1
for all t ∈ R and α 7→ h0(x, α) is strictly increasing for all x ∈ R, we have
h0(a − 1,Γ(t)) < h0(a − 1, 1) = 0 for all t ∈ R, so R × (−∞, a − 1] is positively
invariant for (4.24)0. Since limt→−∞ u0(t) = 1 < a− 1, we have u0(t) ∈ (−∞, a− 1]
for all t ∈ R, and hence limt→∞ u0(t) = a− 1: the other possible future limits a and
a+ 1 are uniformly separated from u0. That is, (4.24)0 is in Case C2. To look for
b1, we first check that all the bounded solutions of (4.24)b take values in [−1,∞)
for b > 0, since hb(x, 0) < hb(x,Γ(t)) for all (t, x) ∈ R×R, and hence any m1 < −1
satisfies the initial hypothesis of Theorem 2.13. Next, we take t0 > 0 in the domain
of definition of m0 with m0(t) < a+ 1/2 for all t ≥ t0 and assume for contradiction
that lb(t) ≤ a + 1/2 for all b > 0 and t ∈ [t0, t0 + 1]. Let γ be a lower bound for

Γ(t)(1− Γ(t)) for t ∈ [t0, t0 + 1]. Then lb(t0 + 1) ≥ −2 +
∫ t0+1

t0
(−(a+ 1/2)3 + γ b) ds

for all b > 0, which is impossible. We take b1 and t1 with lb1(t1) > a+1/2 > m0(t1).
Theorem 4.13(iv) ensures that limt→∞(x0(t, t1, lb1(t1)) − (a + 1)) = 0, and a com-
parison argument yields lb1(t) = xb1(t, t1, lb1(t1)) ≥ x0(t, t1, lb1(t1)) for t ≥ t1. That
is, lim inft→∞(lb1(t)− (a+ 1)) ≥ 0, which may only happen in Case C1 (see Theo-
rem 4.16). This completes the proof.

4.4 Numerical simulations in d-concave

and asymptotically d-concave models

In this section, we consider four different single species population models whose
internal dynamics are driven by nonautonomous cubic equations and which include
predation and migration phenomena. The intrinsic cubic dynamics is due to the
Allee effect (see Section 4.1), e.g., due to some breeding cooperation mechanism or
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to an easier mate finding. In both cases, the evolution of the population is modeled
by

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
+ ∆(t, x) , (4.25)

where we assume r, K and S to be quasiperiodic functions with r and K posi-
tively bounded from below, and ∆ to be C2-admissible: so, if we define h(t, x, δ) =
r(t)x (1 − x/K(t))(x − S(t))/K(t) + δ, then h satisfies f1 and f3. In addition, we
will assume that (h,∆) satisfies f2, f4 and f5 for some maps ∆±. The meaning of r,
K and S has been explained in Section 4.1, and ∆ models the contribution of two
external effects: predation and migration.

The first two examples in this section use transition functions (using the approach
of Section 4.3) that do not depend on the state variable x and are asymptotically
constant, the third example incorporates asymptotic functions that depend on time,
and the fourth example includes explicit dependence of the transition function on
the state variable x. Proposition 4.26 ensures that the dynamical possibilities are
Cases A, B or C of Theorem 4.16. Throughout this section, we find Cases A, B
and C for different values of certain parameters in different models, and we point to
certain parametric variations as possible causes of tipping.

The hypotheses on the past and future equations ensure that for each of them
there are two possible steady populations, given by the two attractive hyperbolic
(positive) solutions. The desirable target of the transition can be either of the two:
either the upper one, which would represent a large healthy population, or the lower
one, which would represent a sparse population near extinction or of low density.
If the upper population is the target one, then the lower population will mean
extinction of the species under study or closeness to extinction [81], while in the
second case, the upper population will mean habitat invasion [69]. Let us focus on
the case in which the desirable target population is the upper one, i.e., we study a
population that is under some risk of extinction. We will assume that in the past the
population is also the desirable one, represented by the hyperbolic solution ũh− . This
solution is approached as time decreases by the upper bounded (and locally pullback
attractive) solution uh. So, the desirable dynamics for the transition equation is the
stableCase A (tracking) that means that uh approaches the upper bounded solution
ũh+ (the desirable large healthy population) of the future equation as time increases;
and the catastrophic situation corresponds to the stable Case C2 (tipping), with
uh approaching the extinction state l̃h+ as time increases. A critical transition from
A to C2 (which means crossing the highly unstable Case B2 due to a small change
in the predation and/or migration term ∆(t, x)) means a disaster, while a critical
transition from C2 to A means the recovery of the desirable situation. If, on the
contrary, our population was close to extinction in the past and hence represented
by the lower hyperbolic solution l̃h− , the tipping Case C1 represents the recovery
of a healthy state ũh+ while the tracking of Case A represents continuing in an

endangered state l̃h+ , close to extinction or even extinct. Then, a critical transition
from A to C1 (through B1) is desirable, and the converse one is something to avoid.
The perspective on the possible advantages and disadvantages of a critical transition
is exactly the opposite if we deal with the situation in which the lower steady state
is the target one. The study of critical transitions of extinction of a species will
appear in all four examples, while critical transitions of invasion will appear only in
the first of them.
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Example 4.38. Different types of critical transitions due to immigration
in the same model. In this example, we consider (4.25) and assume that the term
∆ only incorporates migration phenomena. Moreover, as starting point, we assume
that ∆(t, x) = γ ϕ(t), where γ is a nonnegative parameter and ϕ is a quasiperi-
odic function positively bounded from below, which represents the arrival of new
individuals to the habitat (immigration):

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
+ γ ϕ(t) , (4.26)

which we rewrite as x′ = f(t, x, γ). Departures of individuals (emigration), harvest-
ing and hunting could be represented by adding an analogous negative parametric
term. For the sake of simplicity, we will not deal with this case.

We consider rate-induced families of x-independent asymptotically constant tran-
sition functions Γ: R → R (that is, Γ(t, x) = Γ(t) for all (t, x) ∈ R × R when con-
sidering the framework of Section 4.3) which model the variation of the parameter
γ through the transition. In all the cases, Γ will have the same constant asymp-
totic limit γ+ = limt→±∞ Γ(t) in the past and in the future, which plays the role of
Γ− and Γ+. So, the transition equation to study, which includes the time varying
immigration term ∆c(t, x) = Γ(ct)ϕ(t), is

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
+ Γ(ct)ϕ(t) (4.27)

for positive rates c > 0. Our goal is to show that different choices of Γ result in two
of the different types of critical transitions described above: extinction and invasion.
We will work under the hypothesis that equation (4.26)γ+ shows strong Allee effect
(recall Section 4.1.1), that is, the past and future equations, which are the same and
given by (4.26)γ+ , display strong Allee effect, i.e., (4.26)γ+ has three nonnegative
(biologically meaningful) hyperbolic solutions. Then, it is clear that hypotheses f1-
f5 are satisfied for all c > 0. It will be shown that equation (4.27) for large values of
the rate c > 0 shows a dynamical behavior very similar to that of equation (4.26)γ+ ,
but that for small values of c > 0 very different dynamical behaviors may appear:
the critical transitions representing extinction and invasion.

In bird populations (see [96]), there exist several causes of migrant population
change: hunting, diseases, adverse winds, storms, orientation errors, changing at-
tractiveness of the breeding colony (availability of nesting sites)... Some of these
factors are not persistent in time, especially in populations with continental distri-
bution, which makes it appropriate to model them with a transition function with
equal asymptotic limits γ+. A somehow related real-world example, with foxes as
predators, can be found in the work [90], which describes the colonization of Punta
de la Banya by the Audouin’s gull: an increasing population began to severely de-
cline from a certain time due to the arrival of foxes, whom later were removed; and
then the gull population began to increase again.

To model some of these phenomena in a pretty simple way, we choose a Gaussian
transition function Γ(t) = γ++(γ∗−γ+) exp(−t2/10) with asymptotic limit γ+ both
at −∞ and +∞: it represents an impulse from its asymptotic limits at ±∞ to a
value γ∗ ̸= γ+. The fact that |Γ(t) − γ+| exponentially decreases as |t| increases
implies that the time window in which most of the transition takes place is relatively
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small. Once the rate c > 0 is introduced, the size of the this window decreases as c
increases.

The key element in understanding the types of critical transitions that can occur
in (4.27) is the bifurcation diagram that underlies (4.26). The proof of Theorem 3.8
and of the results of Chapter 3 leading to it can be repeated with little modification
for the bifurcation problem x′ = h(ω·t, x) + λ c(ω·t), where c : Ω → R is an strictly
positive continuous function. To apply this bifurcation result to (4.26), we consider
the hull of the quadruple (r,K, S, ϕ), that is, the closure of {(r·t,K·t, S·t, ϕ·t) | t ∈
R} in the compact-open topology of C(R,R4). It can be checked that this hull is
minimal (see [40, Theorem 2.9] and [76, Theorems 2.43 and 2.44]), and Proposition
2.18 ensures that there exist three τγ+-copies of the base. Hence, the extension of
Theorem 3.8 ensures that there exist γ1 < γ+ < γ2 such that, for all γ ∈ (γ1, γ2),
there exist three τγ-copies of the base, and two saddle-node bifurcations of minimal
sets take place at γ1 and γ2 (recall Figure 3.1). Proposition 1.55 provides a reading
of these facts in terms of hyperbolic solutions of (4.26): (4.26)γ has three hyperbolic
solutions for γ ∈ (γ1, γ2), and exactly one (attractive) hyperbolic solution if γ < γ1
or γ > γ2. Moreover, both the lower and upper bounded solutions of (4.26)γ strictly
increase as γ increases. And they do so continuously, except for the upper bounded
solution at γ1 and the lower bounded solution at γ2. Hence, if we choose the extreme
value γ∗ of Γ also in (γ1, γ2), then Corollary 4.32 precludes the existence of tipping
for any rate c ∈ (0,∞). That is, (γ1, γ2) is a safety interval for the range of Γ. To
allow critical transitions to take place, we will always choose γ∗ /∈ (γ1, γ2). This
implies that the transition function Γ takes values outside (γ1, γ2) during a period
of time which is determined by the rate c. What we will observe is that, if this
period is short (i.e., if c is large), then the dynamics of the transition equation is
basically equal to that of the future (and past) equation x′ = f(t, x, γ+). But if the
period is long enough (given by a sufficiently small c), then the dynamics changes
dramatically, in two possible different ways. That is, there is at least one (and, as we
will see, just one) positive critical value of the rate and it is of rate-induced tracking
type.

To perform the numerical simulations, we fix the functions r(t) ≡ 1, K(t) =
60+30 sin(t), S(t) = 38.5+10 sin(2t−3π/2) and ϕ(t) = 0.8+0.4 sin2(t

√
5/2) defining

the right-hand side of (4.26). With these choices, a simple numerical simulation
shows that 0 is the unique bounded solution for γ = 0. This uniqueness, which
is not possible in the autonomous formulation of (4.26), is fundamental in what
follows, since it ensures that all the bounded solutions of (4.26)γ for all γ > 0 are
nonnegative, i.e. biologically meaningful. In addition, the robustness of the existence
of hyperbolic solutions under small perturbations (see Theorem 1.52) makes it easy
to obtain numerical evidences of: [1.0, 4.0] ⊂ (γ1, γ2), 0.5 /∈ (γ1, γ2), and 5.0 /∈
(γ1, γ2). Altogether, we can identify (γ1, γ2) with the set of values of γ such that
(4.26)γ exhibits strong Allee effect, i.e. has three nonnegative hyperbolic solutions.

Figure 4.8a corresponds to γ+ = 4.0 and γ∗ = 5.0. The dotted red line represents
the lower locally pullback attractive solution lc of (4.27)c (see Theorem 4.13(i)) for
c = 0.1, and the solid blue one for c = 1.0. In both cases (as for any c > 0), this
solution may correspond to a desirable low density population which is under control
for large negative values of t, when Γ(ct) is practically equal to γ+. The value of
Γ(ct) is also practically equal to γ+ if t is large enough, but it smoothly increases
towards γ∗ as |t| approaches 0. This evolution occurs during a period of time which
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(a) For 4.0 = γ+ < γ∗ = 5.0, a small transition rate
c = 0.1 leads to habitat invasion (in dotted red line),
that is, Case C1; while a controlled small population
persists for c = 1.0 (in solid blue), Case A.

(b) For 1.0 = γ+ > γ∗ = 0.5, a small transition rate
c = 0.1 causes the extinction of the species (in dotted
red line), Case C2; while a healthy large population
persists for c = 1.0 (in solid blue), Case A.

Figure 4.8: Numerical simulations of rate-induced critical transitions produced by migration in
(4.27)c, with r(t) ≡ 1, K(t) = 60 + 30 sin(t), S(t) = 38.5 + 10 sin(2t − 3π/2), ϕ(t) = 0.8 +
0.4 sin2(t

√
5/2) and Γ(t) = γ+ + (γ∗ − γ+) exp(−t2/10). Each panel corresponds to a different

choice of γ+ and γ∗. In the left (resp. right) pannel, the lower (resp. upper) locally pullback
attractive solution lc (resp. uc) given by Theorem 4.13(i) for (4.27)c is plotted for two different
values of the rate c > 0: one leading to Case A (tracking) and the other leading to Case C
(tipping).

increases as the rate c decreases. For the value c = 1.0 (as for any large enough c),
the previous low population remains under control for always; but, for c = 0.1 (as
for any small enough c), the smallest steady population undergoes an overgrowth
which leads to the invasion of the habitat. So, there exists at least a critical rate
(and, as we will see, just one): a threshold which must be exceeded in order to
avoid an invasion. A rate above this threshold means increased immigration (more
arrivals) for a period of time which is short enough to allow the population to keep
its controlled size (Case A). But if the time is longer, invasion occurs (Case C1).

Figure 4.8b corresponds to γ+ = 1.0 and γ∗ = 0.5. Now, the immigration
smoothly decreases from γ+ = 1.0 to γ∗ = 0.5 when |t| approaches 0. Here, the
dotted red line represents the upper locally pullback attractive solution uc of (4.27)c
(see Theorem 4.13(i)) for c = 0.1, and the solid blue one for c = 1.0. Let us
understand this upper solution as a healthy population. As before, the behaviour
does not depend on c if −t is large enough. As we observe in the figure, this
population persists if the rate is large enough, but the population gets basically
extinct if c is very small. So, again, there exists a critical rate (and later we will
see that exactly one): a threshold which must be exceeded to avoid the critical
extinction. A rate above this threshold means a decreased immigration (less arrivals)
for a period of time short enough to avoid extinction (Case A), and a rate below
this threshold means extinction (Case C2).

It is remarkable that these two parametric problems present an opposite behavior
to other ones more usual in the literature (see e.g. [12], [73]), in which tracking takes
place at low transition rates and tipping appears for high transition rates. That is,
rate-induced tracking takes place in these two scenarios (see Section 4.3).

The difference between the type of critical transitions in the two analyzed exam-
ples can be easily explained by Remarks 4.37 and the comments below them. In the
case of γ+ < γ∗, we are dealing with the situation described in Remark 4.37.1, while
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in the case of γ+ > γ∗ it is Remark 4.37.2 which must be considered. In both cases,
the dynamical situation is determined by the sign of a strictly decreasing continu-
ous bifurcation function φ : (0,∞) → R, which can have at most a zero (and hence
the critical rate is unique if it exists), but the dynamical cases determined by this
bifurcation function are different in both cases. If this zero c0 exists and γ+ < γ∗
(resp. γ+ > γ∗), then (4.27)c is in Case C1 (resp. C2) if 0 < c < c0, B1 (resp.
B2) if c = c0), and A if c > c0. Herein lies the difference between critical transitions
of extinction and of invasion. We point out once again that the occurrence of the
(unique) critical transition is due to the fact that Γ(ct) /∈ (γ1, γ2) for an interval
of time which tends to infinity as c tends to cero. The radical difference appear-
ing in the two cases described in Figures 4.8a and 4.8b depends on the relation
inf Γ(ct) < γ1 (extinction) or supΓ(ct) > γ2 (invasion).

Example 4.39. Persistence or extinction depending on the type of Allee
effect involved. In this example, we compare numerical simulations of (4.25) for
two different choices of the coefficients. In one of them, the equation exhibits strong
Allee effect while in the other it exhibits weak Allee effect. This difference in the
type of Allee effect will cause a difference in the type of reaction of the population
to predation: critical extinction in the case of strong Allee effect versus continuous
decline in the case of weak Allee effect. We assume that the term ∆ includes only
predation, and that it is modeled by a Holling type III functional response term (see
(4.6)). We fix b > 0 and consider as starting point the γ-parametric auxiliary model

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− γ

x2

b+ x2
, (4.28)

which we rewrite as x′ = f(t, x, γ). In this case, we take a transition function
Γd(t) = dΓ(t), with Γ(t) = 1/2 + arctan(t)/π, depending on the parameter d ∈ R.
That is, we study size-induced critical transitions. Since 0 = limt→−∞ Γd(t) for
all d ∈ R and d = limt→∞ Γd(t), the biological meaning of this transition is that
the habitat of the species under study is initially free of predation but a group of
predators whose size is proportional to d arrives during the transition. We will see
that this may (not necessarily) give rise to a size-induced critical transition in the
dynamics of the transition equation

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− dΓ(t)

x2

b+ x2
(4.29)

as the parameter d increases (i.e., as predation increases). We will always take

d ∈ Ib =

0, b3/2 64

5
√

(5− 2
√
5) (7 + 3

√
5)

inf
t∈R

r(t)

K(t)2

 (4.30)

to ensure that hypothesis f4 holds (see (4.9) and Section 4.1). It is plain then that
hypotheses f1-f4 are satisfied. We choose r, K, S and b in such a way that the
past equation x′ = f(t, x, 0) has three hyperbolic solutions. That is, the part of f5
concerning Γd

− ≡ 0 is satisfied for all d ∈ R. Hence, the existence of three hyperbolic
solutions of x′ = f(t, x, d) for d > 0 close enough to 0 (see Theorem 1.52) ensures that
the part of f5 concerning Γd

+ ≡ d is also satisfied for d > 0 close enough to 0. Since
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(a) A critical extinction (in dashed-dotted red line) oc-
curs as the predation increases for a population with
multiplicative strong Allee effect in the absence of pre-
dation: r(t) ≡ 1, K(t) = 50+20 sin(t)+20 cos2(t

√
5/2),

S(t) = 26.7 + 5 sin(2t − 3π/2) + 10 cos2(t
√
5/2), and

b = 800. The blue solid line depicts ud for d = 0, the
green dotted line for d = 1.1, and the red dashed-dotted
line for d = 1.5.

(b) Persistence for several values of d of a single species
population which exhibits multiplicative weak Allee ef-
fect in the absence of predation. The chosen functions
are r(t) = 0.01+0.1 cos2(t

√
5/2), K(t) = 30+60 sin2(t),

S(t) ≡ −0.01, and b = 5 · 105. The blue solid line de-
picts ud for d = 0, the green dotted line for d = 100,
the red dashed-dotted line for d = 200, and the violet
dashed line for d = 400.

Figure 4.9: Numerical simulations of extinction or persistence depending on the type of Allee effect
in the absence of predation. In each panel, the upper locally pullback attractive solution ud of
(4.29)d is depicted for different values of d, with Γ(t) = 1/2 + arctan(t)/π, and certain choices of
the parameter functions r, K and S and the parameter b. A critical extinction takes place in the
left panel while a smooth decrease occurs in the right panel.

x′ = f(t, x,Γ0(t)) coincides with x′ = f(t, x, 0), (4.29)0 is in Case A. Consequently,
the robustness of Case A given by Theorem 4.21(i) (whose hypotheses are fulfilled,
as Proposition 4.28 shows) ensures that (4.29)d is in Case A for d > 0 small enough.
Note that Theorem 4.13(i) ensures that the upper bounded solution ud of (4.29)d is
locally pullback attractive and connects with the upper solution of (4.28)0 as time
decreases for all d. Note that fx(t, 0,♢) = −r(t)S(t)/K(t) for ♢ = γ or ♢ = Γd.
Since the maps r, S and K are quasiperiodic, the solution 0 is always hyperbolic
attractive (resp. repulsive) if the mean value of rS/K is positive (resp. negative):
this mean value is the unique Lyapuov exponent of the minimal set Ω × {0} in
the corresponding hull extensions of x = f(t, x,♢), which are made as indicated in
Example 4.38.

The two panels of Figure 4.9 show this solution ud for different values of d.
In Figure 4.9a, we take r(t) ≡ 1, K(t) = 50 + 20 sin(t) + 20 cos2(t

√
5/2), S(t) =

26.7 + 5 sin(2t − 3π/2) + 10 cos2(t
√
5/2), and b = 800. Since rS/K > 0, we have

that 0 is an attractive hyperbolic solution of (4.28)γ for all γ and also of (4.29)d for
all d ∈ R. In this case, a numerical simulation shows that x′ = f(t, x, 0) has three
nonnegative hyperbolic solutions, i.e. the past equation exhibits strong Allee effect.
In addition, with these choices of the functions and the parameter, sup Ib > 3.5 (see
(4.30)). The blue solid line represents ud for d = 0, the green dotted line for d = 1.1,
and the red dashed-dotted line for d = 1.5. We observe that, as already known,
a small predation ensures the persistence of the target population, while a greater
predation causes extinction. In Figure 4.9b, we take r(t) = 0.01 + 0.1 cos2(t

√
5/2),

K(t) = 30 + 60 sin2(t), S(t) ≡ −0.01, and b = 5 · 105. In this case rK/S < 0, so
0 is a repulsive hyperbolic solution of (4.28)γ for all γ and also of (4.29)d for all
d ∈ R. Proposition 4.1(i) shows the occurrence of weak Allee effect, which can also
be observed numerically. In addition, sup Ib > 560 (see (4.30)). The blue solid line
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depicts ud for d = 0, the green dotted line for d = 100, the red dashed-dotted line for
d = 200, and the violet dashed line for d = 400. Here, we simply observe a smooth
decrease of the population as predation increases.

So, in Figure 4.9a, departing from a population exhibiting strong Allee effect
in the absence of predation, we find at least a tipping value d0 of the parameter
in the predation term between 1.1 and 1.5 (which is in fact the unique one in Ib,
as we will explain below). In the case of Figure 4.9b, departing from a population
with weak Allee effect, the numerical simulation shows that Case A holds as d
increases, with ud decreasing with respect to d. (In this case, we numerically check
that x′ = f(t, x, d) = f(t, x,Γd

+) has three hyperbolic solutions for the chosen values
of d; so, f1-f5 are satisfied, and we can properly talk about Case A.)

The reason of this difference can be found in the underlying nonautonomous
bifurcation diagram of (4.28). The predation perturbation which has been intro-
duced does not change the hyperbolic character of 0 as the parameter changes; so,
as will be explained below, similarity arises with the mirror image (right-left) of the
positive halfplane of the bifurcation diagrams of Theorems 3.43 and 3.44. Proposi-
tion 1.55 translates those minimal sets into hyperbolic solutions of (4.28)γ, and a
result analogous to Proposition 3.41(ii) ensures that the upper bounded solution of
(4.28)γ strictly decreases as γ increases if it different from 0.

Let us consider the case of Figure 4.9a, with strong Allee effect. We already know
that 0 is hyperbolic attractive for (4.28)γ for all γ ∈ R, that there are two more
hyperbolic solutions for γ = 0, which persist as γ increases in a maximal interval
[0, γ0), and that the upper hyperbolic solution decreases as γ increases on [0, γ0).
Using arguments analogous to those in the proof of Theorem 3.8, we check that the
middle one increases, and we check numerically that γ0 < 2 ∈ Ib: 0 is the unique
bounded solution of x′ = f(t, x, 2). Altogether, this ensures that γ0 ∈ (0, 2) ⊂ Ib is
a bifurcation value for (4.28). That is, the two upper hyperbolic solutions approach
each other as the parameter increases until they collapse at γ0, and there are no
strictly positive bounded solutions for γ > γ0 ∈ Ib: we have a saddle-node bifurca-
tion point at γ0. Let us check that this value of γ0 coincides with the unique tipping
value d0 > 0 for (4.29) in Ib. If 0 ≤ d < γ0, then x′ = f(t, x, γ) has three hyperbolic
solutions for all γ ∈ [0, d]. Therefore, the pair (f,Γd) satisfies all the hypotheses of
Corollary 4.32, and this result ensures that the dynamics of (4.29)d is in Case A.
Now, let us take d ∈ (γ0, sup Ib): 0 is the unique nonnegative hyperbolic solution
of (4.28)d (i.e. (4.28)γ with γ = d), and it exponentially attracts any solution as
time increases. Let us check that this ensures that 0 is the asymptotic limit at ∞ of
any positive solution (4.29)d, which completes the proof of our assertion concerning
the uniqueness of d0 in Ib. Since 0 is a uniformly exponentially asymptotically sta-
ble solution of (4.29)d, a contradiction argument ensures the existence of a positive
bounded solution uniformly separated from 0. This means that the corresponding
skewproduct flow on the hull has a positive orbit uniformly separated from 0. The
ω-limit set of this orbit contains a strictly positive minimal set, and according to
Lemma 4.6 this minimal set is also minimal for the future equation (4.28)d, which
is impossible.

Notice that, since fx(t, 0, γ) = −r(t)S(t)/K(t) independently of the value of the
parameter, we have that, in contrast to the situation described in [99], there can
exist a critical transition of the d-parametric family (4.29) without a modification
of the indicator of the strength of strong Allee effect (4.10).
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Figure 4.10: The C1 map Γρ,L for L = 5 and several values of ρ > 0. This map is defined
as the unique C1 cubic spline which takes value 1 on [−L,L] and 0 outside [−L − ρ, L + ρ]: if
Q(y) = 2y3−3y2+1, then Γρ,L(t) = Q(−(t+L)/ρ) for t ∈ [−L−ρ,−L] and Γρ,L(t) = Q((t−L)/ρ)
for t ∈ [L,L+ ρ]. This map is increasing on [−L− ρ,−L] and decreasing on [L,L+ ρ], and hence
Γρ,L(·) is nondecreasing with respect to L and with respect to ρ.

In this example of strong Allee effect, we deal with a map Γ with asymptotic
limits 0 and 1 which is increasing, and with d ∈ Ib. This causes the range Γd to be
contained in Id, and hence the righ-hand side of (4.29) is d-concave for all t. It turns
out that the most significant conclusions remain valid by removing the condition of
monotonicity of Γ, and hence, possibly, the previous condition on d-concavity. By
assuming that the asymptotic limits of Γ are 0 and 1, we can repeat the previous
arguments, excepting one: we cannot apply Corollary 4.32 to check that Case
A persists for all d ∈ [0, γ0). What we know is that Case A persists for small
positive values of d, and we can check as before that all bounded solutions converge
to 0 for d ∈ (γ0, sup Ib). Corollary 4.23 ensures the uniqueness of the bifurcation
point in [0, γ0) if it exists. For example, if we take Γ(t) = arctan(t)/π + 1/2 +
5 exp(−t2/10) and the rest of the functions as in Figure 4.9a, then we numerically
find the size-induced tipping point of (4.29) near d = 0.58294, while the point where
the underlying bifurcation diagram of (4.28) loses the three hyperbolic solutions is
γ0 ≈ 1.22740 (the same as in Figure 4.9a).

In the case of weak Allee effect of Figure 4.9b, 0 is a repulsive hyperbolic solution
of (4.29)d for all d ∈ R and therefore Ω×{0} is a repulsive hyperbolic copy of the base
in the skewproduct formalism. Therefore, there exists a strictly positive attractive
hyperbolic solution while d remains in Ib (see Proposition 2.14(i) and recall again
Proposition 1.55). Consequently, the upper minimal set continuously decreases when
the parameter increases (see Theorem 3.43). The continuous variation of the set of
bounded solutions precludes the possibility of a critical extinction (while d is in Ib).

Example 4.40. Seasonal predation: introducing time-dependent asymp-
totic limits of transition functions. We begin by assuming again that, in (4.25),
the migration-predation term ∆ only includes predation, which we assume to be
suitably modeled by a Holling type III functional response term −γ x2/(b+x2) (see
again (4.6)). We have as starting point the γ-parametric auxiliary problem

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− γ

x2

b+ x2
. (4.31)

Next, we assume that the population is attacked by a predator species which be-
haves as follows: the habitat is initially free of predators; at a certain time a group
of predators arrives at the ecosystem, which they leave after some time; and this
behavior repeats yearly. Such a pattern may correspond to the colonization of a
new patch by a migratory species of predators, due to the reproductive, nutritional,
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Figure 4.11: The transition map ∆(dn) defined in (4.32) for ρ = 1, L1 = 10, L2 = 40, d+ = 0.5,

d = 2.5, dn = d+ + d/((n− 1)/4 + 1)2, and pn = (n− 1)L2 + (−1)(n−1)/n for all n ∈ N.

breeding or wintering interest of the habitat. (See, e.g., [1] for a study on the
evolution of some migration patterns of common swift, an insectivorous bird.)

Let L2 be the length of the year. We assume that the n-th predation season
occurs during the interval of time [pn − L1 − ρ, pn + L1 + ρ], with L2 > 2(L1 + ρ),
and that the maximum number of predators, dn ≥ 0, acts during [pn −L1, pn +L1]:
ρ > 0 is the (short) time needed for predators to reach and leave the patch. To avoid
superposition of the predation seasons, we assume that pn+1− pn > 2(L1+ ρ) for all
n ∈ N. We assume that the sequence (dn) of the predator group sizes is bounded
and has limit d+, so that the size of the n-th group tends to d+. We also assume
that limn→∞(pn − (n − 1)L2) = 0, which ensures that limn→∞(pn+1 − pn) = L2:
the yearly predation season is eventually almost identical to [nL2 − L1 − ρ, nL2 +
L1 + ρ], and the possible differences between pn and (n − 1)L2 capture variations
in the initial date of these seasons. (See [45] for a study on the variation of arrival
dates of common swift and barn swallow to the Iberian Peninsula.) The previous
hypotheses describe an asymptotically periodic phenomenon, which means that the
behavior of the predators becomes as regular as possible over time. Other more
complicated types of recurrence in the future equation may also fit in the model.
The phenomenon of lack of predators in some occasional years can be described
through null elements in the sequence (dn).

To model the effect of these phenomena in a simple way, we use a C1 approxima-
tion to the characteristic function of [−L,L]: the map Γρ,L is the unique C1 cubic
spline which takes the value 1 on [−L,L] and 0 outside [−L− ρ, L+ ρ]. Figure 4.10
depicts Γρ,L for L = 5 and some values of ρ, and its caption explains some of its
properties. The amount of predators at the ecosystem at time t will be described
by a transition function build by disjoint superposition of such maps:

∆(dn)(t) =
∞∑
n=1

dn Γρ,L1(t− pn) , (4.32)

which is a bounded continuous function due to the boundedness of (dn) and to
the disjointness of the intervals of predation. Figure 4.11 depicts ∆(dn) for ρ = 1,
L1 = 10, L2 = 40 and certain sequences (dn) and (pn). Note that ∆(dn)(t) = 0 for
all t < p1 − L1 − ρ.

So, we study the transition equation

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
−∆(dn)(t)

x2

b+ x2
, (4.33)

which represents the dynamics of the single species population through the repeated
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Figure 4.12: Numerical depiction of the existence of a unique size-tipping point for (4.33)d. The
central panel shows the dynamics for an accurate approximation to the tipping point d0: the
two upper hyperbolic solutions are so close within the representation window that are a good
approximation (green) to the nonhyperbolic solution of Case B2. The left panel depicts Case A,
which is the dynamics for any d ∈ [0, d0) and means survival: the attractive hyperbolic solutions
are drawn in red, and the repulsive one in blue. The right panel depicts Case C2, which is the
dynamics for any d > d0 and means extinction: the attractive hyperbolic solutions are drawn in
red, and the locally pullback repulsive solution in blue.

passage (which tends to be periodic) of groups of predators. We define ∆− = 0 and

∆+(t) =
∞∑

n=−∞

d+Γρ,L1

(
t− (n− 1)L2

)
,

which is bounded, continuous, and L2-periodic in time. Then, limt→−∞(∆(dn)(t) −
∆−(t)) = 0, since ∆(dn)(t) = 0 for all t ≤ p1 − L1 − ρ, and limt→∞(∆(dn)(t) −
∆+(t)) = 0, since the uniform continuity of Γρ,L1 on compact sets ensures that
limn→∞ ∥Γρ,L1(t− pn)− Γρ,L1(t− (n− 1)L2)∥∞ = 0, and the separation of the sup-
ports of the terms of the series guaranteed by the conditions L2 > 2(L1 + ρ)
and pn+1 − pn > 2(L1 + ρ) ensures that we can compare the series term-by-term.
That is, (4.32) corresponds to a transition between these two limit functions ∆−
and ∆+, and f2 is fulfilled. It can be checked that the right-hand side of equa-
tion (4.33) is not d-concave if maxt∈R ∆(dn)(t) = maxn∈N dn is large enough, while
r(t)x (1− x/K(t))(x− S(t))/K(t)−∆+(t)x

2/(b+ x2) is d-concave if d+ is not too
large, in which case also f4 is fulfilled: recall (4.9).

Let us choose: r(t) = 0.7 + 0.3 sin2(t), K(t) = 70 + 20 cos(
√
5 t) and S(t) =

20+ 30 cos2(
√
3 t) for the internal dynamics of the species, b = 200 for the influence

of the predation, and L1 = 10, L2 = 40, d+ = 0.3, dn = d++d/((n−1)/20+1)2 and
pn = (n−1)L2+(−1)(n−1)/n (for all n ∈ N) for the shape of the transition function.
The particular expression of dn implies that the annual number of predators dn
decreases to d+. The decreasing attractiveness of the habitat can be indebted to
different causes: learning of defensive mechanisms, overpopulation of predators in
the previous season, insufficient nesting or breeding space, etc. The constant d of
the definition of dn is a size bifurcation parameter in terms of which we will study
the dynamical cases of (4.33). The choice of d+ (below 0.32) guarantees f4. We
numerically check f5, and hence f1-f5 hold for all d ≥ 0. In addition, the size of
dn for small n provides a not d-concave equation (4.33) if d is large enough (above
0.96).
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Figure 4.13: Numerical depiction of the existence of a unique size-tipping point for (4.35)d when
L and c are fixed. In this example, L = 20 and c = 0.02. The central panel corresponds to the
approximation for d(20, 0.02) of Table 4.1: Case B2. To its left and right, we find Cases A and
C2. See Figure 4.12 to understand the color code.

We can rewrite ∆(dn) = ∆̃+ + d∆ for

∆̃+(t) =
∞∑
n=1

d+Γρ,L1

(
t− pn

)
, ∆(t) =

∞∑
n=1

(
1

((n− 1)/20 + 1)2

)
Γρ,L1(t− pn) ,

so that ∆ is a continuous nonnegative map whose limits as t → ±∞ are 0. We
define

f(t, x, γ) = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− ∆̃+(t)

x2

b+ x2
− γ

x2

b+ x2

and g(t, x, γ) = f(t, x,−γ), and check that the pairs (g, d∆) satisfy the hypotheses
of Theorem 4.34(ii) (with Γ0 ≡ 0, Γ ≡ ∆, and d̄ = 0). To this end, we numerically
check that x′ = g(t, x, 0) has three hyperbolic copies of the base and that the lower
one, attractive, is 0 (and hence m̃0 is positively bounded from below). Hence,
Theorem 4.33 ensures the existence of a unique size-induced tipping point d0 > 0
for x′ = f(t, x, d∆(t)) (i.e., for (4.33)): Case A holds for 0 ≤ d < d0, and Case
C2 holds for d > d0. That is, an excessive increase in the number of predators
visiting the habitat leads to the extinction of the species. The existence of this
critical transition is depicted in Figure 4.12.

In this example, it would also make sense to study the phase-variation of the
global dynamics, i.e. to replace the transition function ∆(dn)(t) by ∆(dn)(t + c)
for c ∈ R. This parametric variation implies advancing or delaying the arrival
of predators every year and would allow the occurrence of phase-induced critical
transitions, in a similar way as critical transitions in the L and c parameters will
appear in the following example.

Example 4.41. Modeling human actions on a herd: state-dependent tran-
sition function. Now, we consider that a flock of x animals described by (4.25)
grazes in a patch which is initially free of predators. We assume that at time t = 0
a group of predators, which we suppose that have constant density d (due to the
time scale in which we work) and whose predation mechanism is assumed to be
suitably modeled by a Holling type III functional response term −d x2 /(b(t) + x2)
reaches the patch (see again (4.6)). The function b is assumed to be quasiperiodic
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Figure 4.14: Numerical depiction of an L-induced tipping point: for c = 0.02 and d = 2.5806400722,
we find Case A for L = 10, Case B2 for L = 20 and Case C2 for L = 30.

and positively bounded from below. At time L > 0, the threat is identified by the
flock owner and s shepherds per unit of time are hired to protect the flock: there
are s (t − L) shepherds at time t ≥ L, and each shepherd is assumed to be able to
protect h heads of livestock. As soon as there are enough shepherds to protect the
whole herd, i.e, when x ≤ h s (t − L), predators are not able to attack the flock.
That is, predation occurs while 0 ≤ t ≤ L (cx+1), where c = 1/hsL. So, for x ≥ 0,
we can model the evolution of the flock by the equation

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− dΓL

(
2 t

cx+ 1
− L

)
x2

b(t) + x2
, (4.34)

where we take ΓL = Γρ,L for some small fixed ρ > 0, with Γρ,L defined in Example
4.40 (see Figure 4.10). Thus, the predation term practically vanishes when t is
outside the interval [0, L (cx + 1)]. By multiplying the Holling type III functional
response term by ΓL, it is implicitly assumed that the search for prey mechanism,
i.e. the Holling type III interaction, is not affected by the presence of shepherds as
long as there are not enough of them to protect the whole herd. This assumption,
made for the sake of simplicity, can be understood as follows: if a shepherd has more
sheep in his care than he can protect, then a predator, once it has located its prey,
can wait a negligible amount of time on the timescale we are working with until the
shepherd moves on to other sheep, far enough away to allow the predator to hunt
the prey.

Since R × [0,∞) is an invariant set for the process given by (4.34) and only
nonnegative solutions have biological meaning, we can replace the predation term
by a globally defined one. To this end, we take a a globally defined C2-map k(x)
which coincides with 1/(cx+ 1) on [0,∞), and consider the equation

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− dΓL(2 t k(x)− L)

x2

b(t) + x2
, (4.35)

Let ΛL,c(t, x) = ΓL(2 t k(x)− L). Then, for any choices of d ≥ 0, L > 0 and c > 0,
dΛL,c is globally bounded, C2-admissible on R×R, and with limt→±∞ dΛL,c(t, x) = 0
uniformly on each compact set J ⊂ R. That is, dΛL,c globally satisfies f2, with
Λ± = 0. In addition, if f is the right-hand term of (4.31), then it is not difficult to
check that f1, f3 and f4 hold.
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Figure 4.15: Numerical depiction of a c-induced tipping point: for L = 20 and d = 2.5806400722,
we find Case A for c = 0.01, Case B2 for c = 0.02 and Case C2 for c = 0.03.

We choose r(t) = 0.7 + 0.3 sin2(t), K(t) = 70 + 20 cos(
√
5 t), S(t) = 20 +

30 cos2(
√
3 t), and b(t) = 20 + cos(t) to construct Table 4.1 and Figures 4.13, 4.14

and 4.15, and numerically check that f5 holds for these choices, being 0 the lower
bounded solution of x′ = f(t, x, 0). That is (f, dΛL,c) satisfies f1-f5 for all d ≥ 0,
L > 0 and c > 0, and hence the dynamics of (4.35) fits in one of the cases de-
scribed by Theorem 4.16. Moreover, since 0 is the lowest bounded solution for
the past and future equations, Cases B1 and C1 are preluded. In addition, if
g(t, x, γ) = f(t, x,−γ), then the pairs (g, dΛL,c) satisfy all the hypotheses of Theo-
rem 4.34(ii) (with Γ0 ≡ 0, Γ ≡ ΛL,c and d̄ = 0). This result shows the existence of
a unique tipping value d(L, c) > 0: (4.35)d is in Case A for all d ∈ [0, d(L, c)), in
Case B2 for d = d(L, c) and in Case C2 for all d > d(L, c). Figure 4.13 depicts the
upper locally pullback attractive and the locally pullback repulsive solutions of the
transition equation (4.35)d for d close to the bifurcation point, for some fixed L and
c, and Table 4.1 shows numerical approximations to d(L, c) for different L, c > 0.

d(L, c) c = 0.01 c = 0.02 c = 0.03

L = 2 9.5918417988 7.8400146619 6.6406325271

L = 10 3.5156887400 3.1640725896 2.9522195572

L = 20 2.7559336044 2.5806400722 2.4622290038

L = 30 2.4757094854 2.3677420953 2.3132184604

L = 40 2.3543746813 2.2850546293 2.2459305139

Table 4.1: Numerical approximations up to ten places to the bifurcation points d(L, c) of (4.35)d.
The displayed number is a value of d for which (4.35)d is in Case A and such that (4.35)d+1e−10

is in Case C. The final integration has been carried out over the interval [−1e4, 1e4].

Now, we will let the other parameters, L and c, vary. We will observe the occur-
rence of critical transitions which do not fit in the rate-induced, phase-induced or
size-induced ones described in Section 4.3. It is not hard to check the nondecreasing
character of L 7→ ΓL(2t/(cx + 1) − L) for any (t, x) ∈ R × [0,∞): ΓL(s − L) =
ΓL′(s− L′) for all L < L′ and s ≤ 2L, (∂/∂L) ΓL(s− L) = (∂/∂L)Q((s− 2L)/ρ) =
−(2/ρ)Q′((s− 2L)/ρ) > 0 for all s ∈ (2L, 2L+ ρ) (see the caption of Figure 4.10),
and ΓL(s − L) = 0 for all s ≥ 2L + ρ. This monotonicity yields the uniqueness
of a possible tipping point L0 for (4.35)L for d and c fixed. In fact, if ũL and m̃L
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are the upper and middle hyperbolic solutions when (4.35)L is in Case A, and if
L1 < L2 provide this case, then Theorem 2.13(iv) shows that ũL1 > ũL2 , and a new
comparison argument shows that m̃L1 ≤ m̃L2 . So, if Case B2 (the unique possible
one) occurs as L ↑ L0, then they collide, and Case A cannot occur for L > L0.

Analogously, the nondecreasing character of c 7→ ΓL(2t/(cx + 1) − L) for any
(t, x) ∈ R× [0,∞) ensures the uniqueness of the bifurcation for (4.35)c for d and L
fixed in the case of existence. The biological sense of the problem makes it reasonable
to expect at most a critical transition as L or c varies: the decrease in L means an
earlier detection of the problem and therefore the extinction of the hinders; and the
decrease in c means an increase in the rate of recruitment of shepherds, i.e., a faster
response to the problem that facilitates survival.

Figures 4.14 and 4.15 represent the behaviour of the locally pullback attractive
and locally pullback repulsive solutions of the transition equation (4.35)L for fixed
d and c, and (4.35)c for fixed d and L, respectively. As in the case of Figure
4.13, the left-hand panel corresponds to the survival of the species (Case A), the
right-hand panel corresponds to extinction (Case C2), and the middle panel is an
approximation to the intermediate unstable situation between them (Case B2).

Comments on Chapter 4

1. During this chapter we have discussed the Allee effect in d-concave equations,
that we have already seen that they provide a natural framework. However, the Allee
effect can also be modeled through other equations that are coercive and bistable.
This is also the case if the per capita population growth rate h(t, x)/x is concave
(that is, x-concave equations; see [34, 35] and Section 5 of [86]).

2. One of the focuses of interest of applied scientists in the study of critical
transitions is the search for early-warning signals (see [28], [29], [68], [106]), i.e.,
signals that indicate the proximity of the catastrophe before it occurs. In [33],
the effectiveness of finite-time Lyapunov exponents as early-warning signals of rate-
induced tracking scenarios has been explored in the framework of this chapter.

3. In none of the four numerical examples in this chapter do the “limits” Γ− and
Γ+ of the transition function depend on the state variable. However, [37, Example
4.21] presents a transition in a concave equation undergoing migration and predation
that is studied through a transition function whose bounds depend explicitly on x.

4. In the numerical examples, we have not used the Holling type II functional
response since it does not modify the d-concavity of the equation, which could lead
to critical transitions based on the generalized pitchfork bifurcation. This will be
the subject of further study.

5. The assumption that the Holling type III interaction is not affected by the
presence of shepherds as long as there are not enough to protect the entire herd
made in Example 4.41 may seem somewhat artificial. Another option for further
study would be to replace the function ΓL by a function that has value 1 in −L and
decreases until it reaches 0 in L. This would reflect the decrease in the intensity
of predation as the number of shepherds increases, which may be more realistic in
some cases.



Conclusions

The results presented in this document delve deeper into nonautonomous bifurcation
theory with a view towards critical transitions. Nonautonomous d-concave scalar
differential equations have been studied due to their significance in modeling various
real-world phenomena. Special interest has been placed on their applications in
ecology, where d-concave equations are frequently employed to describe single species
populations subject to the Allee effect.

It has been found that the skewproduct flow induced by nonautonomous d-
concave scalar equations can admit at most three ordered compact invariant sets
projecting onto the whole base and at most three ordered bounded measurable
equilibria. These constraints, alongside certain identified properties regarding the
Lyapunov exponents of compact invariant sets, restrict the dynamical possibilities
of these equations, providing the necessary tools for the study of the subsequent
nonautonomous bifurcation theory and critical transitions theory.

In our approach to nonautonomous bifurcation theory, three different paramet-
ric variations of an equation described by a recurrent function have been analyzed.
The recurrence provides a skewproduct flow over a minimal base, and this flow has
been the framework for the analysis. Certain obtained bifurcation diagrams serve
as nonautonomous counterparts to previously known autonomous bifurcation di-
agrams, although in some cases nonhyperbolic minimal sets with high dynamical
complexity may exist, contrary to the autonomous case. Other bifurcation dia-
grams depict entirely novel scenarios that do not arise in the autonomous setting.
Such is the case with the generalized pitchfork bifurcation and the weak generalized
transcritical bifurcation.

In the context of the first problem x′ = h(ω·t, x) + λ, two different bifurcation
diagrams of minimal sets have been described. It has been demonstrated that these
two diagrams represent the only possibilities when considering a uniquely ergodic
base flow. As mentioned in the comments at the end of Chapter 3, the existence of
another possible bifurcation diagram that is only possible if there are several ergodic
measures in the base is known. However, this scenario has not been detailed in the
present document and will serve as the focus of further investigation.

For the second problem x′ = h(ω·t, x) + λx, three different bifurcation diagrams
have been obtained and it has been shown that they are the unique possible ones.
Among them is the generalized pitchfork bifurcation, which can only appear in the
case where there exist several ergodic measures for the base flow. Furthermore, in the
case of cubic polynomials, we have found bounds on the size of the nonautonomous
coefficients that allow us to find each of the three bifurcation diagrams.

The third problem x′ = h(ω·t, x)+λx2 also reveals only three possible bifurcation
diagrams, among which is the weak generalized transcritical bifurcation. Through
the examination of this third bifurcation problem, further insights have been gar-
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nered from the second problem: examples showcasing all three types of bifurcation,
have been constructed in equations much more general than the cubic equations.

In the domain of critical transitions theory, a novel dynamical formulation has
been introduced, wherein all components within the transition equation are allowed
to vary over time. Asymptotically d-concave nonautonomous scalar differential equa-
tions have been employed as the transition equations in our investigation, always
assuming that the (d-concave) past and future equations have the maximum possible
number of hyperbolic solutions, that is, three.

In the skewproduct formulation, the orbit of the transition equation has been
conceptualized as a heterocline (or homocline) orbit connecting its α-limit set, sym-
bolizing the past, to its ω-limit set, symbolizing the future. This has enabled us to
establish the five possible dynamical cases that the transition equation can exhibit.
Three of these scenarios, Case A and Cases C, represent robust situations and
respectively depict the desired and undesired (or undesired and desired, depending
on the case) outcomes for the transition. In our examples, Case A means either
the persistence of a species at risk of extinction or the continued control of the
population size of an invasive species, while Cases C mean either extinction or
habitat invasion. These cases are typically separated by the unstable Cases B. The
dynamical objects that enable the construction of the different cases and demon-
strate that these three cases encompass all dynamical possibilities are two locally
pullback attractive solutions that approach the attractive hyperbolic solutions of
the past equation as time decreases, and one locally pullback repulsive solution that
approaches the repulsive hyperbolic solution of the future equation as time increases.

Some of the various mechanisms described in the literature of applied sciences
as potential triggers for critical transitions (rate, phase, size, etc.) have been incor-
porated as parametric variations into the transition equation. In this formulation,
critical transitions can be understood as saddle-node bifurcations of hyperbolic so-
lutions occurring when the parametric variation shifts the system from Case A
to Cases C. Rigorous theorems have been provided, demonstrating the existence,
uniqueness, or absence of these critical transitions in various systems, as well as the
existence of continuous bifurcation maps.

Finally, numerical simulations have been conducted in the context of population
dynamics models with Allee effect, in order to illustrate various results and aspects
of the theory, ranging from different types of critical transitions (extinction and
invasion) to the temporal dependence of various elements of the transition equation
for modeling seasonal phenomena, as well as the different consequences that the
Allee effect can have depending on whether it is strong or weak.
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[32] J. Dueñas. Métodos dinámicos para el estudio de transiciones
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[51] T.H. Jäger. The creation of strange non-chaotic attractors in non-smooth
saddle-node bifurcations. Mem. Amer. Math. Soc. 201 (945), 2009.

[52] R. Johnson. Minimal functions with unbounded integral. Israel J. Math. 31 (2),
133-141 (1978).

[53] R. Johnson, F. Mantellini. A nonautonomous transcritical bifurcation problem
with an application to quasi-periodic bubbles. Discrete Contin. Dyn. Syst. 9
(1), 209-224 (2003).

[54] R. Johnson, R. Obaya, S. Novo, C. Núñez, R. Fabbri. Nonautonomous linear
Hamiltonian systems: oscillation, spectral theory and control. Developments in
Mathematics 36, Springer, 2016.

[55] R. Johnson, K. Palmer, G.R. Sell. Ergodic properties of linear dynamical sys-
tems. SIAM J. Math. Anal. 18 (1), 1-33 (1987).
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[67] J.A. Langa, J.C. Robinson, A. Suárez. Bifurcations in non-autonomous scalar
equations. J. Differential Equations 221 (1), 1-35 (2006).

[68] T. Lenton. Early warning of climate tipping points. Nature Clim Change 1,
201-209 (2011).

[69] M.A. Lewis, S.V. Petrovskii, J.R. Potts. The mathematics behind biological
invasions. Springer-Verlag, Switzerland, 2016.

[70] X. Liu, G. Fan, T. Zhang. Evolutionary dynamics of single species model with
Allee effect. Phys. A 526, 120774 (2019).
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[73] I.P. Longo, C. Núñez, R. Obaya, M. Rasmussen. Rate-induced tipping
and saddle-node bifurcation for quadratic differential equations with nonau-
tonomous asymptotic dynamics. SIAM J. Appl. Dyn. Syst. 20 (1), 500-540
(2021).

[74] A. Lins Neto. On the number of solutions of the equation dx
dt

=
∑n

j=0 aj(t)x
j

for which x(0) = x(1). Invent. Math. 59 (1), 67-76 (1980).



172 Bibliography
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[88] C. Núñez, R. Obaya, A.M. Sanz. Minimal sets in monotone and concave skew-
product semiflows I: a general theory. J. Differential Equations 252 (10), 5492-
5517 (2012).

[89] P.E. O’Keeffe, S. Wieczorek. Tipping phenomena and points of no return in
ecosystems: beyond classical bifurcations. SIAM J. Appl. Dyn. Syst., 19 (4),
2371-2402 (2020).
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[95] C. Pötzsche. Nonautonomous continuation of bounded solutions. Commun.
Pure Appl. Anal. 10 (3), 937-961 (2011).

[96] J.H. Rappole. The avian migrant: the biology of bird migration. Columbia Uni-
versity Press, New York, 2013.

[97] M. Rasmussen. Attractivity and bifurcation for nonautonomous dynamical sys-
tems. Lecture Notes in Mathematics 1907. Springer, Berlin, 2007.

[98] M. Rasmussen. Nonautonomous bifurcation patterns for one-dimensional dif-
ferential equations. J. Differential Equations 234 (1), 267-288 (2007).
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BΘ(θ, δ), 9
C(Ω,R), 35
C1 along the base orbits, 16
C0,i(R× R,R), see admissible map
C0,i(Ω× R,R), 13
C0(Ω,R), C1(Ω,R), CP (Ω,R), 35, 84
ω-section, 19
{b}, see graph
m-a.e., 9
m-measurable, 9
(SDC)∗, 56

Abel equation, 56
admissible map, 24
Allee effect, 111

weak and strong, 113, 115, 155
Allee threshold, 113
almost periodic function, 26
approach a graph, 121
asymptotic pair, 9, 118
asymptotically d-concave, 117

band spectrum, 12, 83, 88, 92
base flow, 14
bifurcation

classical pitchfork, 59, 77
double saddle-node, 59, 66
generalized pitchfork, 60, 80
of recurrent solutions, 107
saddle-node & transcritical, 59, 77
two saddle-node, 60, 99
weak generalized transcritical, 60,

101
bifurcation point, 59
Birkhoff’s Ergodic Theorem, 10
bounded primitive, see CP (Ω,R)

Cases A, B, C, 119, 126
change of skewproduct base, 107

cocycle of solutions, 13
cocycle property, 13
coercivity property, 41, 46, 61, 118
collision

of equilibria, 58
of minimal sets, 58

concave-convex, 40
continuous flow, 8
copy of the base, 14
critical extinction, 151, 152
critical population size, see Allee

threshold
critical transition, 1, 109, 132

d-concave function, 38
dichotomy constant pair, 23, 26, 29
divided differences, 38
dynamical spectrum, 12, 24

early-warning signals, 164
equilibrium, 14

lower and upper, 19
ergodic measure, 10
extension to the hull, 25, 119

fiber monotonicity, 13
finitely ergodic, 10
fitness, see per capita population

growth rate
future equation, 118, 139

global attractor, 20, 46
global upper and lower solutions, 16
graph, 14

Hausdorff semidistance, 20, 34
Holling functional response, 112
hull, see extension to the hull
Hurwitz linear system, 26
hyperbolic copy of the base, 23, 44
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d2λ, d2λx, d2λx2 , 61
d5, 74
f1-f5, 139
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invariant measure, 10
invariant set, 8
invasion of a habitat, 151, 152

Kryloff-Bogoliuboff Theorem, 10, 11

Li-Yorke chaos, 68
local bifurcation theorem, 72
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solution, 33, 122, 126
logistic equation, 111
Lyapunov exponent, 11, 22, 23, 46, 48

minimal set, 9, 52
ordering, 52

moduli of d-concavity, 56

nonperiodic flow, 35

orbit, 8
ordered invariant sets, 19

past equation, 118, 139
per capita population growth rate,

111, 113, 164
periodic flow, 35
phase-induced critical transitions, 138
point spectrum, 12, 83
population models, 110
predation, 112, 150, 155, 158
processes formulation, 24

project onto, 19, 22
pullback attractor, 34, 121

quasiperiodically forced maps, 54

radius of uniform stability, 23, 29
rate-induced critical transitions, 137
rate-induced tipping, 138
rate-induced tracking, 138, 154
recurrent, 25
residual set, 15

saddle-node bifurcation, 59
Schwarzian derivative, 54
semicontinuity, 15, 19, 46

of global attractors, 64
semiequilibrium, 14
sensitive dependence on initial

conditions, 68
size-induced critical transitions, 138
skewproduct formalism, 13
standard comparison arguments, 16
strange nonchaotic attractor, 68
strictly d-concave, 38
strong semiequilibrium, 15
subequilibrium, see semiequilibrium
superequilibrium, see semiequilibrium

tipping, 132
tipping point, 109
tracking, 132
transition equation, 118, 139
transitive flow, 9, 25, 107

uniformly exponentially stable
compact invariant set, 23
solution, 29

uniformly separated solutions, 25
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variational equation, 21, 27
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