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Abstract

The investment in renewable energies has increased significantly in recent years,
with photovoltaic solar energy emerging as one of the most prominent sources. The
shift towards sustainable energy solutions is driven by the urgent need to miti-
gate climate change, reduce greenhouse gas emissions, and achieve energy indepen-
dence. Photovoltaic (PV) technology, which converts sunlight directly into electric-
ity using semiconductor materials, has seen substantial advancements in efficiency
and cost reduction, making it a viable and attractive option for large-scale energy
production.

Traditionally, the maintenance of photovoltaic plants has relied on manual la-
bor to inspect the conditions of numerous solar modules. This involves technicians
physically examining each module, looking for defects such as cracks, hot spots,
and dirt accumulation that can impair performance. While effective for small instal-
lations, this manual approach becomes impractical for large-scale installations com-
prising thousands or even millions of modules. The sheer scale of these operations
requires a more efficient and comprehensive method to ensure optimal performance
and longevity of the PV systems.

The integration of artificial intelligence in this field has offered a pathway to opti-
mize production and maintenance. AI technologies, including machine learning and
computer vision, can automate the inspection process, providing rapid and accurate
detection of defects. Presently, detecting problems on the surface of photovoltaic
cells involves identifying patterns of defects using various technologies such as in-
frared thermography, electroluminescence imaging, and aerial drone inspections.
However, this method has limitations because it does not directly correlate these is-
sues with energy production, leading to a potential gap in understanding the actual
impact of detected defects on the overall performance of the PV modules.

This thesis proposes a novel approach to analyzing the state of photovoltaic cells,
serving as the initial step toward developing a system applicable to entire mod-
ules. The analysis involves developing an AI model capable of estimating the energy
production of a photovoltaic cell using its electroluminescence image. Electrolumi-
nescence imaging is a powerful diagnostic tool that can reveal otherwise invisible
defects by capturing the emitted light when a current is applied to the cell. By corre-
lating these images with the cells performance data, specifically the current-voltage
(I-V) curves, the AI model can predict the energy output and identify cells that may
underperform due to defects.

The research has led to the creation of several datasets featuring various types
of photovoltaic cells, encompassing different technologies and defect types. These
datasets are crucial for training and validating the AI models, ensuring they can
generalize across different conditions and cell types. Different proposals have been
explored to address the problem, analyzing the advantages and disadvantages of
each. For instance, various machine learning algorithms, including Convolutional
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Neural Networks or Random Forest. These algorithms have been tested to deter-
mine the most effective approach for image-based energy prediction.

Additionally, secondary achievements of the thesis include analyzing data im-
balance using synthetic datasets and investigating the issue of series resistance ob-
served in various cells. Data imbalance can bias the AI model, leading to poor per-
formance on rare defects. By generating synthetic datasets, the research mitigates
this issue, ensuring a balanced representation of all defect types. Series resistance,
which affects the flow of current through the cell, is another critical parameter influ-
encing performance. The investigation into series resistance provides insights into
its impact on energy production and how it can detected with the EL images.

This thesis contributes by introducing an innovative AI-based approach for the
precise estimation of energy production from electroluminescence images. This work
not only enhances the efficiency of maintenance and monitoring of PV cells but also
sets the stage for implementing it at module level or even in large-scale PV installa-
tions.

Keywords: Solar Photovoltaic Energy, machine learning, deep learning, Artificial
Vision, Max Power Point.



v

Resumen

La inversión en energías renovables ha aumentado significativamente en los últimos
años, con la energía solar fotovoltaica emergiendo como una de las fuentes más pro-
minentes. El cambio hacia soluciones energéticas sostenibles está impulsado por la
necesidad urgente de mitigar el cambio climático, reducir las emisiones de gases de
efecto invernadero y lograr la independencia energética. La tecnología fotovoltaica,
que convierte la luz solar directamente en electricidad utilizando materiales semi-
conductores, ha visto avances sustanciales en eficiencia y reducción de costos. Esto
lo hace una opción viable y atractiva para la producción de energía a gran escala.

Tradicionalmente, el mantenimiento de las plantas fotovoltaicas ha dependido
del trabajo manual para inspeccionar el estado de numerosos módulos solares. Es-
to implica que los técnicos examinen físicamente cada módulo, buscando defectos
como grietas, puntos calientes y acumulación de suciedad que pueden perjudicar el
rendimiento. Aunque este enfoque es efectivo para instalaciones pequeñas, se vuel-
ve impracticable para instalaciones a gran escala que comprenden miles o incluso
millones de módulos. La magnitud de estas operaciones requiere un método más
eficiente y completo para asegurar el rendimiento óptimo y la longevidad de los
sistemas fotovoltaicos.

La integración de la inteligencia artificial en este campo ha ofrecido una forma
para optimizar la producción y el mantenimiento. Las tecnologías de IA, incluyen-
do el aprendizaje automático y la visión por computadora, pueden automatizar el
proceso de inspección, proporcionando una detección rápida y precisa de defectos.
Actualmente, la detección de problemas en la superficie de las celdas fotovoltaicas
implica identificar patrones de defectos utilizando varias tecnologías como la termo-
grafía infrarroja, la imagen electroluminiscente y las inspecciones con drones aéreos.
Sin embargo, este método tiene limitaciones porque no correlaciona directamente es-
tos problemas con la producción de energía, lo que lleva a una posible brecha en la
comprensión del impacto real de los defectos detectados en el rendimiento general
de los módulos fotovoltaicos.

Esta tesis propone un enfoque novedoso para analizar el estado de las celdas
fotovoltaicas, sirviendo como el paso inicial hacia el desarrollo de un sistema apli-
cable a módulos completos. El análisis implica desarrollar un modelo de IA capaz
de estimar la producción de energía de una celda fotovoltaica utilizando su imagen
de electroluminiscencia. La imagen de electroluminiscencia es una herramienta de
diagnóstico poderosa que puede revelar defectos invisibles capturando la luz emiti-
da cuando se aplica una corriente a la celda. Al correlacionar estas imágenes con los
datos de rendimiento de la celda, específicamente las curvas corriente-voltaje (I-V),
el modelo de IA puede predecir la producción de energía e identificar las celdas que
pueden tener un rendimiento inferior debido a defectos.

La investigación ha llevado a la creación de varios conjuntos de datos que pre-
sentan varios tipos de celdas fotovoltaicas, abarcando diferentes tecnologías y tipos
de defectos. Estos conjuntos de datos son cruciales para entrenar y validar los mode-
los de IA, asegurando que puedan generalizarse en diferentes condiciones y tipos de
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celdas. Se han explorado varias propuestas para abordar el problema, analizando las
ventajas y desventajas de cada una. Por ejemplo, se han probado varios algoritmos
de aprendizaje automático, incluyendo Redes Neuronales Convolucionales o Ran-
dom Forest para determinar el enfoque más efectivo para la predicción de energía
basada en imágenes.

Además, los logros secundarios de la tesis incluyen el análisis del desequilibrio
de datos utilizando un conjunto de datos sintéticos y la investigación del problema
de la resistencia en serie observada en varias celdas. El desequilibrio de datos pue-
de sesgar el modelo de IA, llevando a un rendimiento pobre en defectos raros. Al
generar conjuntos de datos sintéticos, la investigación mitiga este problema, asegu-
rando una representación equilibrada de todos los tipos de defectos. La resistencia
en serie, que afecta el flujo de corriente a través de la celda, es otro parámetro crítico
que influye en el rendimiento. La investigación sobre la resistencia en serie propor-
ciona información sobre su impacto en la producción de energía y cómo puede ser
detectada con las imágenes de electroluminiscencia.

Esta tesis contribuye al introducir un enfoque innovador basado en IA para la
estimación precisa de la producción de energía a partir de imágenes de electrolu-
miniscencia. Este trabajo no solo mejora la eficiencia del mantenimiento y la mo-
nitorización de las celdas fotovoltaicas, sino que también sienta las bases para su
implementación a nivel de módulo o incluso en instalaciones fotovoltaicas a gran
escala.

Palabras clave: Energía Solar Fotovoltaica, Aprendizaje Automatico, Aprendi-
zaje Profundo, Vision Artificial, Punto de Maxima Potencia
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Capítulo R1

Resumen en español de la Tesis
Doctoral

Este capítulo presenta la versión traducida al Español del capitulo de Introduc-
ción y Resultados de la tesis.

R1.1 Introduccion

Optimizar la producción y reducir los costes de mantenimiento de los Sistemas
Fotovoltaicos (PV) son desafíos críticos para mejorar la viabilidad y la confiabilidad
de las inversiones en Energía Fotovoltaica. Se han empleado nuevas tecnologías pa-
ra abordar diversos problemas en esta área, siendo particularmente importante la
detección de defectos en los paneles solares.

La mayoría de los estudios en este tema se enfocan en analizar la superficie de
los paneles solares dividiéndola en células PV individuales y luego aplicar diversas
técnicas para identificar patrones de defectos.

Sin embargo, un enfoque alternativo implica considerar directamente la produc-
ción energética del propio modulo. La monitorización de los datos de producción
puede ayudar a detectar cuándo los paneles no están funcionando como se espera-
ba.

Desarrollar un modelo que pueda estimar la producción únicamente a partir de
una imagen de un panel sería altamente ventajoso, ya que proporcionaría una me-
dida confiable del rendimiento sin la necesidad de medir la curva I-V.

R1.1.1 Motivación

Actualmente, habitamos en una sociedad con una demanda sustancial de energía,
alcanzando los 177,000 TWh en 2022 [1] (ver Fig. 1.1). Este persistente aumento en
la demanda requiere una inversión continua en generación de energía, influenciada
además por factores como los objetivos de reducción de gases de efecto invernadero
y la escasez de recursos fósiles. Esto promueve la inversión en formas alternativas de
energía que no solo mitigan los efectos de los gases invernadero, sino que también
reducen la dependencia en recursos limitados, es decir, las energías renovables. El
crecimiento de las energías renovables ha aumentado constantemente en los últimos
años, con una expansión anticipada de hasta 100 GW en producción para 2030 [2],
consolidando la energía solar como la forma más predominante de energía renova-
ble.
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Entre las distintas fuentes de energía renovable, los sistemas Fotovoltaicos han
ganado una relevancia significativa en los últimos años debido a una considerable
reducción en los costes asociados [3]. Esto, sumado a su fácil instalación que facilita
la democratización de la energía, ha provocado que actualmente sea la forma de
energía con mayor crecimiento [3].

La energía solar fotovoltaica se basa en la instalación de paneles solares que ab-
sorben la energía solar para generar electricidad. Cada panel solar está compuesto
por numerosas unidades conocidas como células solares, responsables del proceso
de producción de energía. Las grandes instalaciones solares consisten en una gran
cantidad de paneles solares, y también se instalan en entornos urbanos o en áreas
donde el suministro de otras formas de energía eléctrica puede no ser factible [3].
Diferentes tecnologías se emplean en la creación de paneles y células, mostrando
variaciones en eficiencia energética, vida útil, costo y otras características [4].

El mantenimiento de grandes granjas solares está influenciado por gran cantidad
de factores. Se ha observado un aumento en la investigación e inversión en áreas
relacionadas con la optimización de la producción y la reducción de costes de man-
tenimiento [5]-[7].

Estos métodos de inspección son capaces de detectar una parte significativa de
los defectos presentes en células o paneles fotovoltaicos. Para mantener eficazmente
grandes instalaciones, es imperativo automatizar el proceso de inspección. La utili-
zación de inteligencia artificial facilita la detección de defectos u otras anomalías en
los paneles, eliminando la necesidad de personal dedicado a estas tareas.

Existen varios enfoques para lograr esta tarea, pero el más comúnmente emplea-
do en la literatura es la detección directa de defectos [8]-[11]. Este enfoque permite
la identificación de fallas pero no considera el impacto de estas fallas en la produc-
ción de energía de los paneles o células. Para evaluar la producción de energía, es
necesario medir la Curva I-V, un proceso que puede realizarse a nivel de panel en el
campo o a nivel de celda en un laboratorio.

Actualmente, no hay muchas propuestas que consideren la detección de proble-
mas en células o paneles basándose en la curva IV [12], [13]. Este enfoque propuesto
proporcionará una estimación mucho más precisa del estado de los paneles y sus
células constituyentes, ya que una disminución en la producción de energía servirá
como una clara prueba de que el panel necesita ser verificado o incluso reemplazado.

R1.1.2 Hipótesis de Investigación

La hipotesis de investigacion de la tesis es la siguiente: Las imágenes de Electrolu-
miniscencia de las células fotovoltaicas proveen información suficiente para estimar la pro-
ducción de las propias células utilizando algoritmos de Inteligencia Artificial

R1.1.3 Objetivos
El objetivo global de esta tesis es mejorar la producción y reducir el costo de

mantenimiento de los Sistemas Fotovoltaicos mediante la creación de modelos
de Inteligencia Artificial (IA) capaces de predecir la producción energética de las
células Fotovoltaicas (PV), utilizando imágenes de Electroluminiscencia (EL) de
esas células.

Para lograr este objetivo global se utilizará la curva IV de las células fotovoltai-
cas, que proporciona información sobre su producción energética. El desarrollo de
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un modelo capaz de estimar la producción de energía de las células basándose en
patrones aprendidos durante la fase de entrenamiento sería una herramienta vital
en la optimización de los grandes sistemas fotovoltaicos. Una vez aplicado, también
podría usarse a nivel de panel, permitiendo una estimación precisa de la producción
de cada panel del que se disponga de una imagen de electroluminiscencia.

En base a esto, se proponen los siguientes objetivos específicos:

• SO1: Crear conjuntos de datos adecuados para los experimentos. Estos conjun-
tos de datos deben estar compuestos por imágenes EL y la curva I-V de las
células PV.

• SO2: Analizar el desbalance de los datos y crear imágenes sintéticas para re-
solverlo.

• SO3: Estimar el rendimiento de las células PV basándose en su imagen de elec-
troluminiscencia y su curva I-V utilizando modelos de IA.

• SO4: Realizar experimentos con otras tecnologías y enfoques en el problema.

• SO5: Realizar un análisis de los efectos de los problemas relacionados con la
resistencia en serie presente en las células PV apartir de la imagen EL y la curva
I-V.

• SO6: Mejorar el estimador de la potencia de salida de las células para que sea
capaz de ser utilizado con diferentes tecnologías de células PV.

R1.2 Contribuciones Principales

Esta tesis ha llevado a varias contribuciones al campo que se explicarán durante
el documento, también se pueden encontrar en la bibliografía o consultando al autor:

• Se han creado varios conjuntos de datos compuestos por imágenes EL de cé-
lulas fotovoltaicas y su curva I-V. Estos conjuntos de datos son importantes ya
que la mayoría de los conjuntos de datos de imágenes EL encontrados en la
bibliografía no proporcionan la curva I-V de las células analizadas. Se han uti-
lizado varios tipos de células fotovoltaicas para crear estos conjuntos de datos.

• Se ha presentado un Conjunto de Datos Ampliado compuesto por imágenes
sintéticas creadas por GANs. Este conjunto de datos funciona como una exten-
sión del Conjunto de Datos de Policristalino.

• Se han propuesto varios modelos para resolver este problema:

– Modelo basado en la extracción de características. Este modelo extrae ca-
racterísticas que describen las imágenes en lugar de utilizar directamente
las imágenes.

– Modelo Clasificador Difuso. Este modelo proporciona una consideración
alternativa del problema, abordándolo como una clasificación en lugar de
una regresión, lo que lo hace más simple. El enfoque difuso del modelo
proporciona una lógica comprensible para los humanos.

– Modelo Regresión ANFIS. Este modelo proporciona un híbrido entre la
Lógica Difusa con su conocimiento comprensible para los humanos y las
Redes Neuronales con su alta capacidad de cálculo.
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– Mezcla Convolucional de Expertos. Este modelo proporciona una solu-
ción convolucional al problema, siendo capaz de tratar directamente con
la imagen. También tiene la capacidad de manejar varios tipos de células
fotovoltaicas gracias a la implementación de la Mezcla de Expertos.

R1.2.1 Estructura del Documento

Este documento está estructurado en seis partes. El capítulo 1 presenta y explica
el tema principal de esta tesis y sus objetivos. En el capítulo 3 , se presenta una
revisión profunda del trabajo relacionado en el estado del arte. También proporciona
una introducción al tema fotovoltaico para los lectores que no conocen ese campo.
El capítulo 4 presenta los materiales utilizados durante la tesis.

Los detalles sobre el esquema de la metodología se presentan en el capítulo 5. La
sección 5.2 explica la recopilación, el preprocesamiento y el etiquetado de los datos
para crear los conjuntos de datos originales.

Los detalles sobre cada parte de la experimentación se explican en el capítulo 6
de la tesis. En particular, la sección 6.1 explica los detalles sobre la construcción del
conjunto de datos sintéticos y el diseño de Redes Generativas Adversarias (GANs)
para crear datos sintéticos.

En la sección 6.2 se evalúan diferentes técnicas de Machine Learning (ML) tra-
tando de estimar la potencia de salida de las células PV basándose en características
extraídas de las imágenes. En las secciones 6.3 y 6.4 se proponen dos enfoques utili-
zando lógica difusa.

El problema de la resistencia en serie se analiza en la sección 6.5. Finalmente, la
sección 6.6 presenta un enfoque convolucional capaz de manejar diferentes tipos de
células fotovoltaicas.

Una discusión sobre los resultados de los diferentes modelos se proporciona en
el capítulo 7, abordando el problema del desbalance (sección 7.1), el problema de la
resistencia en serie (sección 7.2) y el rendimiento de los modelos propuestos (sección
7.3).

En el capítulo 8 se resumen las conclusiones de la tesis, presentando también
algunas posibles líneas de trabajo futuro. Finalmente, se enumeran las publicaciones,
logros y atribuciones obtenidas durante esta disertación.

R1.3 Discusión de los resultados

Este capítulo explica las conclusiones obtenidas a partir de los experimentos rea-
lizados y explicados en el Capítulo 6. Este análisis se divide en tres problemas dife-
rentes: el desbalance en los datos observado durante la recopilación de datos, anali-
zando cómo afecta al problema; el problema de la Resistencia en Serie que también
fue observado; y, finalmente, se realiza una comparación de los rendimientos de los
diversos modelos propuestos.

R1.3.1 Efectos del Desbalance en los Datos

El problema del desbalance en los datos se observó durante la recopilación de los
mismos (Capítulo 5.2). Se detectó que un alto porcentaje de las etiquetas de los datos
estaban entre 0.6 y 0.8, dando una baja representación a otros valores del dominio.



R1.3. Discusión de los resultados 5

La creación de datos sintéticos (Capítulo 6.1) se concibió para resolver este pro-
blema, proporcionando nuevos ejemplos de valores subrepresentados. Se ha demos-
trado que estas imágenes son similares a las originales mediante el análisis del histo-
grama y con métricas de similitud como la Inspection Score (IS) y Fréchet Inception
Distance (FID).

A pesar de que se comprobó que las imágenes sintéticas eran de alta calidad, se ha
observado en los experimentos del regresor basado en características (Capítulo 6.2)
que su inclusión no tiene una mejora crítica en el rendimiento de los modelos. Se
encontró que el mejor modelo (Gradient Boosting) proporcionó un ECM de 0.00265
utilizando solo los datos originales frente a un ECM de 0.00282 al incluir los datos
sintéticos. Esto evidenció dos hechos importantes: es posible crear un modelo que
proporcionara un buen rendimiento para el problema (esto se detallará en la Sec-
ción 7.3) y la inclusión de datos sintéticos implica una mejora muy limitada en el
rendimiento de los modelos.

Existen varias razones plausibles para esta falta de mejora. En primer lugar, estos
modelos son bastante capaces de resolver el problema ya que proporcionan métricas
de error bajas, esto muestra que el problema del desbalance de los datos no les impi-
de realizar un buen desempeño en el problema. Otra razón de la falta de mejora es
que las GAN crean datos basándose en los datos de entrada [14], tratando de encon-
trar los patrones para replicarlos lo más exactamente posible. Esto implica que este
tipo de método no es adecuado para generar nuevos patrones, creando datos sinté-
ticos demasiado similares a los originales, lo que no proporciona nueva información
en los procesos de entrenamiento de los modelos.

La falta de mejora mostró que no era necesario considerar el problema del desba-
lance en los siguientes experimentos, por esta razón, los otros modelos no utilizan
el conjunto de datos sintéticos. Sin embargo, se planea volver a este problema en el
futuro, para probar otras tecnologías capaces de generar datos.

R1.3.2 Efectos del Problema de Resistencia en Serie

Durante la recopilación de datos (Capítulo 5.2), se observaron valores inespera-
dos de la potencia de salida en varias células, ya a pesar de no presentar defectos
ni sombras mostraban valores inusualmente bajos. Tras realizar el análisis presen-
tado en el Capítulo 6.5, se concluyó que este problema se debía a que esas células
fotovoltaicas presentan una resistencia en serie más alta de lo habitual, lo que estaba
produciendo una reducción en su rendimiento.

El análisis usando Wavelet proporcionó una nueva forma de analizar las imáge-
nes, ya que fue capaz de detectar problemas que no eran directamente visibles en
la imagen EL. Se observó que tanto el análisis continuo como el análisis discreto
también proporcionan información sobre la densidad espectral de potencia en ca-
da barra busbar. Las células con bajo Punto de Máxima Potencia (MPP) exhibieron
barras de busbar con zonas de baja densidad electrónica.

También se descubrió que el problema de resistencia en Serie en nuestros con-
juntos de datos fue provocado por algunas soldaduras incorrectas entre las células
fotovoltaicas y sus barras de busbar. Este tipo de defectos se presentó en las célu-
las desde su fabricación, ya que algunas células nuevas también presentaban este
problema.
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Sin embargo, este problema no es extremadamente crítico, ya que solo se presenta
en unas pocas células. En ese punto de la investigación, se decidió que no era factible
incluir este nuevo problema en los modelos que intentaban resolver el problema,
ya que requeriría cambiar completamente la planificación de los experimentos. No
obstante, será importante volver a este problema en el futuro, tratando de agregar
información sobre la resistencia a los modelos para mejorar su rendimiento.

R1.3.3 Comparación de los resultados de los diferentes Modelos

La estimación de la potencia de salida de las células fotovoltaicas fue el objetivo
principal de la tesis, y todos los objetivos específicos se han elegido para completar-
lo. Se han abordado dos enfoques diferentes: considerando el problema como una
clasificación (Capítulo 6.3) y como una regresión (Capítulos 6.2, 6.4, 6.6).

Enfoque de Clasificación

El enfoque de clasificación difusa fue propuesto para resolver el problema tratan-
dolo como una clasificacion. De los dos modelos propuestos con este enfoque, el mo-
delo de Policristalino mostró una precisión del 99 % y el modelo de Monocristalino
una precisión del 98 %. Sus resultados son claramente superiores a otros métodos de
Machine Learning probados, como los clasificadores en conjunto o los árboles de de-
cisión. Este modelo también ha proporcionado varias reglas comprensibles que pue-
den ser utilizadas por los trabajadores para realizar una inspección visual manual.
Es importante destacar que el enfoque de clasificación reduce considerablemente la
complejidad del problema. La cantidad de información proporcionada por la clasi-
ficación es bastante limitada en comparación con la información proporcionada por
una estimación completa de la potencia de salida. Sin embargo, este modelo sigue
siendo útil debido a sus buenos resultados y su lógica transparente.

Enfoque de Regresión

El enfoque de regresión fue el enfoque principal de la investigación. Los prime-
ros modelos que lo abordaron fueron los modelos basados en características, que
utilizaron características configuradas manualmente obtenidas de las imágenes pa-
ra estimar la potencia de salida. El mejor modelo presentó un MAE de 0.0341 y un
MSE de 0.0021. Esto demostró que era posible resolver el problema con un buen
rendimiento, ya que un MAE de 0.0341 presenta un error de alrededor del 3.4 %,
lo cual es un valor aceptable en nuestro contexto. Sin embargo, este modelo solo se
probó en el conjunto de datos de Policristalino, ya que era el único disponible en ese
momento.

La segunda ola de modelos propuestos se basó en el concepto ANFIS, combinan-
do las capacidades de las Redes Neuronales y la lógica transparente de los Modelos
Difusos. También se basó en características configuradas manualmente pero limita-
das a tres características. El mejor modelo obtuvo un MAE de 0.0535 y un MSE de
0.0073. Aunque su rendimiento es considerablemente menor que el del modelo an-
terior, es importante tener en cuenta que ese modelo utilizó la primera propuesta
de etiquetado (ver Capítulo 5.2). La primera propuesta tenía los valores extrema-
damente enfocados en ciertos valores, lo que redujo el dominio real del problema.
Este modelo y los siguientes utilizan la segunda propuesta, que proporciona una
mejor distribución de salida. Este modelo también proporcionó información impor-
tante que puede ser útil para la inspección manual o para encontrar nuevos patrones
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de error en las células. Similarmente al caso anterior, solo se utilizó el conjunto de
Policristalino.

La última ola de modelos propuestos se basó en Redes Neuronales Convolucio-
nales (Capítulo 6.6), analizando el rendimiento de los modelos dependiendo de los
datos utilizados para entrenarlos. Los resultados mostraron que los modelos no eran
capaces de obtener buenos resultados con tipos de células PV diferentes a los utili-
zados en el proceso de entrenamiento. Por ejemplo, un modelo entrenado solo con
el conjunto de datos de Monocristalino obtuvo un MAE de 0.0194 en su conjunto de
prueba, pero obtuvo un MAE de 0.2159 en el conjunto de Policristalino. Este compor-
tamiento se presentó con todos los diferentes tipos de células PV, mostrando que era
necesario entrenar un modelo en un tipo de tecnología para obtener buenos resulta-
dos con esa tecnología. El enfoque de Mezcla de Expertos presentado en el mismo
capítulo, que combina modelos entrenados con cada tipo de células PV, fue capaz
de obtener un MAE de 0.0262 en el conjunto de datos Mono+Poli. Esto mostró cómo
este modelo era capaz de resolver el problema para cada una de las tecnologías pre-
sentadas de células PV, y tenía la ventaja de ser fácilmente reentrenable si se incluían
nuevas tecnologías de células PV.

El enfoque CNN ha sido encontrado como el método de mejor rendimiento, sin
embargo, los otros enfoques no son inútiles. El método basado en características pro-
porciona un buen rendimiento con un bajo costo computacional en comparación con
los enfoques basados en las propias imágenes. El enfoque ANFIS no proporciona un
rendimiento al nivel de los otros enfoques, pero proporciona la base de su lógica
con reglas comprensibles. Estas reglas pueden ser utilizadas para analizar directa-
mente cómo las sombras y los defectos impactan en la producción de las células PV.
También es menos exigente en términos computacionales que el enfoque CNN.

La Tabla 7.1 proporciona una comparación del tiempo de entrenamiento para ca-
da uno de los modelos. Aunque el número de muestras no es exactamente el mismo
en cada modelo, muestra cómo los modelos convolucionales necesitan una cantidad
considerable de tiempo en comparación con los modelos que utilizan solo caracterís-
ticas. La lógica difusa no incluye un número ya que el entrenamiento debe realizarse
manualmente, con el conocimiento de los expertos. ANFIS necesita un tiempo con-
siderablemente mayor que otros modelos basados en características, ya que utiliza
redes neuronales, pero aún es extremadamente rápido en comparación con CNN.
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Chapter 1

Introduction

Optimizing production and reducing maintenance costs of Photovoltaic (PV) sys-
tems are critical challenges for enhancing the feasibility and reliability of invest-
ments in photovoltaic energy. New technologies have been employed to address
various issues in this area, with the analysis of the surface of solar modules being
particularly important.

The majority of studies focus on analyzing the surface of solar modules by di-
viding it into individual PV cells and then applying various techniques to identify
patterns of defects that appear in the cells.

However, an alternative approach involves directly considering the production
process of the each cell. Monitoring production data can help detect when modules
are not performing as expected.

Developing a model that can estimate production based solely on an image of a
module would be highly advantageous, as it would provide a reliable measure of
performance without the need to measure the Current-Voltage (I-V) curve.

In this chapter, an in-depth discussion is provided on various pertinent topics, of-
fering comprehensive context and motivation for the thesis. It elaborates on the spe-
cific problem being addressed and clearly delineates the objectives of the research.
Additionally, the chapter outlines the structure of the remaining sections of the doc-
uments.

1.1 Motivation

Presently, we inhabit a society with a substantial demand for energy, reaching
177,000 TWh in 2022 [1] (see Fig. 1.1). This persistent escalation in demand neces-
sitates continuous investment in energy generation, further influenced by factors
such as greenhouse gas reduction goals and the depletion of fossil resources. This
prompts investment in alternative forms of energy that not only mitigate greenhouse
effects but also alleviate dependence on limited resources, namely, renewable ener-
gies. The growth of renewable energies has steadily increased in recent years, with
an anticipated expansion of up to 100 GW in production by 2030 [2], solidifying solar
energy as the most predominant form of renewable energy.
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FIGURE 1.1: Evolution of the Energy Consumption. Data adapted
from [1].

Among the various renewable energy sources, Photovoltaic systems have gained
significant prominence in recent years due to a substantial reduction in associated
costs [3]. This, coupled with their ease of installation facilitating the democratization
of energy, has made them the fastest-growing form of energy currently [3].

Photovoltaic solar energy is based on installing solar modules that absorb so-
lar energy to generate electricity. Each solar panel is composed of numerous units
known as solar cells, responsible for the energy production process. Large solar in-
stallations consist of a vast number of solar modules, and they are also installed in
urban environments or areas where supplying other forms of electrical energy may
not be feasible [3]. Different technologies are employed in the creation of modules
and cells, exhibiting variations in energy efficiency, lifespan, cost, and other charac-
teristics [4].

The maintenance of large solar farms is influenced by various factors. An in-
crease in research and investment has been observed in areas related to production
optimization and maintenance cost reduction [5]–[7].

The inspection methods are capable of detecting a significant portion of the de-
fects present in photovoltaic cells or modules. To effectively maintain large installa-
tions, it is imperative to automate the inspection process. The integration of artificial
intelligence greatly enhances the process of identifying defects or anomalies within
modules. By automating these detection tasks, AI eliminates the necessity for hu-
man personnel to manually inspect and monitor for issues. This not only improves
efficiency but also reduces the potential for human error, allowing employees to fo-
cus on more complex and value-added activities while ensuring consistent and ac-
curate detection. Additionally, AI systems can operate continuously, providing real-
time feedback and enabling faster corrective actions, further optimizing the overall
workflow.

Various approaches exist for accomplishing this task, but the most commonly
employed in the literature is direct defect detection [8]–[11]. This approach enables
the identification of faults but does not take into consideration the impact of these
faults on the energy production of the modules or cells. To assess energy production,
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it is necessary to measure the Current-Voltage (I-V) Curve, a process that can be
conducted at the panel level in the field or at the cell level in a laboratory.

Currently, there are not many proposals considering the detection of issues in
cells or modules based on the IV curve [12], [13]. This proposed approach will pro-
vide a much more accurate estimation of the state of the modules and their con-
stituent cells, as diminished energy production will serve as a clear indication that
the module needs to be replaced.

1.2 Research Hypothesis

Previous starting to work on the thesis and its objectives. It is important to settle
the hypothesis of the thesis, which will be the founding of the research. The research
hypothesis of the thesis is the following: Electroluminescence images of photovoltaic
cells provide sufficient information to estimate the production of the cells themselves using
Artificial Intelligence algorithms.

1.3 Objectives
The global objective of this thesis is to improve the production and reduce the

maintenance cost of Photovoltaic Systems by creating Artificial Intelligence (AI)
models capable of predicting the energetic production of the Photovoltaic (PV)
Cells, using Electroluminescence (EL) images from those cells.

To achieve this global objective, the IV curve of photovoltaic cells is used, which
provides information about their energy production. The development of a model
capable of estimating the energy production of cells based on patterns learned dur-
ing the training phase would be a vital tool in optimizing large photovoltaic systems.
Once applied, it could also be used at the module level, allowing for the precise
production estimation of each module for which an electroluminescence image is
available.

Based on this, the following specific objectives are proposed:

• SO1: Create datasets suitable for the experiments. These datasets need to be
composed of EL Images and the I-V Curve of the PV cells.

• SO2: Analyze the unbalance of the data and create synthetic images to solve it.

• SO3: Estimate the performance of PV Cells based on their Electroluminescence
image and their I-V Curve using AI models.

• SO4: Perform experiments with other technologies and approaches

• SO5: Perform an analysis of the effects of the problems related to Series Resis-
tance presented in the PV cells using the EL and the I-V curve.

• SO6: Improve the estimator of the output power of the cells to be suitable for
different technologies of PV cells.
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1.4 Main Contributions

This thesis has led to various contributions to the field that will be explained
during this document, they can also be found in the bibliography or by asking the
author:

• Various datasets composed of EL images of PV cells and their I-V curve has
been created. These datasets are important since most of the datasets of EL im-
ages found in the bibliography does not provide the I-V curve of the analyzed
cells. Various kinds of PV cells has been used for creating these datasets.

• An Expanded Dataset composed of synthetic images created by GANs has
been presented. This dataset works as an extension of the Polycrystalline
Dataset.

• Various models have been proposed to solve this problem:

– Feature-Extraction base model. This model extracts features that describe
the images instead of using directly the images.

– Fuzzy Classifier Model. This model provides an alternative consideration
of the problem, tackling it as a classification instead of a regression, which
makes it simpler. The fuzzy approach of the model provides a human-
understandable logic

– ANFIS Regressor Model. This model provides a hybrid between Fuzzy
Logic with its human-understandable knowledge and Neural Networks
with its high-computing power.

– Convolutional Mixture of Experts. This model provides a Convolutional
Solution to the problem, being capable of dealing with the image directly.
It also has the capacity of deal with various kinds of PV cells thanks to the
Mixture of Experts implementation.

1.5 Outline

The document is organized into eight chapters.

Chapter 1 introduces and explains the main topic of this thesis along with its
objectives. Relevant concepts are provided in Chapter 2. A comprehensive review
of related work in the state-of-the-art is presented in Chapter 3. The materials used
throughout the thesis are detailed in Chapter 4.

The methodology employed in this research is outlined in Chapter 5. Section 5.2
describes the processes of gathering, preprocessing, and labeling the data to create
the original datasets.

Experimental procedures are elaborated in Chapter 6. Specifically, Section 6.1 ex-
plains the creation of the synthetic dataset and the design of Generative Adversarial
Networks (GANs) for generating synthetic data. Section 6.2 evaluates various Ma-
chine Learning (ML) techniques for estimating the output power of PV cells based
on features extracted from images. Sections 6.3 and 6.4 propose two approaches us-
ing Fuzzy Logic. The issue of Series Resistance is examined in Section 6.5. Finally,
Section 6.6 presents a Convolutional Approach designed to handle different types of
Photovoltaic cells.



1.5. Outline 13

A discussion on the results of the various models is provided in Chapter 7, ad-
dressing the issue of Unbalance (Section 7.1), the Series Resistance Problem (Section
7.2), and the performance of the proposed models (Section 7.3).

The conclusions of the thesis are summarized in Chapter 8, which also suggests
potential future research directions. Lastly, the publications, achievements, and at-
tributions resulting from this dissertation are listed.
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Chapter 2

Theoretical Concepts

This chapter serves to introduce fundamental concepts relevant to the thesis topic,
providing readers with essential context to comprehend the document and the un-
derlying research.

The thesis is closely tied to the field of Photovoltaics, as its goal is to estimate the
production of PV cells. Consequently, Section 2.1 presents key concepts pertinent to
this domain.

Throughout the thesis, various Machine Learning algorithms have been employed
in experiments to achieve specific objectives. Section 2.2 details the Traditional Ma-
chine Learning Algorithms utilized in these experiments.

In Section 2.3, Deep Learning techniques considered during the study are pre-
sented, alongside an exploration of Generative Adversarial Networks (GANs) used
for generating synthetic data.

Section 2.4 delves into the fundamentals of Fuzzy Logic, explored as an alter-
native approach within the research. Similarly, Section 2.5 introduces the basics of
the Adaptive Neuro-Fuzzy Inference System (ANFIS), another alternative approach
examined in the study.

Lastly, Section 2.6 elucidates the principles of Wavelet Transform, which was em-
ployed for analyzing images to address problems not directly visible via Electrolu-
minescence images.

2.1 Photovoltaics

As explained before, the radiation emitted by the sun is one of the most important
energy sources available. There are different ways of using that energy, one of them
is known as Solar Thermal which harnesses solar energy to generate thermal energy.
This energy can be used in industry, residential areas, or for commercial sector [15].

Another one, known as Photovoltaic Energy transforms the light produced by
the sun into Electric Power. PV systems employ PV modules, each composed of
high amounts of small units known as PV cells [16]. These cells are in charge of
producing the conversion between solar energy and electricity.

The traditional PV cells are made with crystalline silicon but different technolo-
gies are being created to improve the performance of the PV cells[16]. The following
technologies have been used in the experiments of this research:
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• Monocrystalline Cells: These cells are made with a single silicon crystal. They
have a high efficiency but they present a high price in comparison to other
technologies

• Polycrystalline Cells: These cells are mode with multiple fragments of silicon
crystal. The impurities reduce the efficiency of the cells but also reduce their
cost.

The surface of a silicon-based cell is composed of the following elements (Fig. 2.1

• Electrical Bus Bars: Metallic thin rectangular strips presented in the front and
the back of the PV cells. The number depends on the manufacturer of the cell.
They function is to conduct the current generated in the cells.

• Fingers: Silver conductive strips perpendicular and thinner than the busbars.
They collect and send to the busbars the electric current generated in the areas
around them.

FIGURE 2.1: A Polycrystalline PV cell. The green line corresponds to
horizontal big bars, the busbar. The orange line corresponds to the

perpendicular thin lines, the fingers. Extracted from [17]

As mentioned before, different techniques have been designed in order to inspect
the surface of the modules or cells, in order to find defects or others problems:

• Visual Inspection: This method directly utilizes the visible spectrum, enabling
the detection of faults that are visible to the human eye or conventional cam-
eras. Its primary limitation is its inability to detect faults that are not visible
under these conditions, remaining imperceptible to the human eye [18].

• Thermography [19]: This technique analyzes the infrared radiation emitted by
cells, induced by their heat emissions, to identify faults in the panel. It requires
an infrared camera.

• Electroluminescence (EL) [20]: This method involves capturing a photograph
of the photons emitted by cells when subjected to electrical current injection.
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FIGURE 2.2: Different IV curves. Green circle: Max Power Point, Red
Star : Open-Circuit Voltage (VOC), Yellow Square: Short-Circuit Cur-

rent (ISC). Extracted from [11]

The emitted radiation is around the 1150 nm wavelength, allowing the detec-
tion of faults that are not visible in other spectra. A drawback of this technique
is that EL radiation can only be efficiently detected by InGaAs cameras, which
are considerably expensive.

• Photoluminescence (PL) [21]: Photovoltaic cells are capable of emitting EL ra-
diation even in the absence of injected current, as a response to the absorption
of solar photons. However, this technique shares the same limitation as EL,
requiring an InGaAs camera.

The previous inspection methods provide information about the condition of the
cell but they are not suitable for estimating the performance of the modules or cells.
It is necessary to measure the levels of Current and Voltage (I-V Curve)2.2 to find
the amount of electricity that they are producing. Usually, this process is performed
at module level in the solar installations but it is also possible to perform it at cell
level in the laboratory. The I-V Curve also depends on many external factors such as
temperature, pressure, irradiance, weather, etc.

2.2 Traditional Machine Learning Algorithms:

This section presents the Traditional ML algorithms that have been used during
the thesis

2.2.1 Support Vector Machines

Support Vector Machines (SVM) were conceived within the framework of statisti-
cal learning theory [22]. The primary objective of SVMs was to develop a robust and
adaptable machine learning algorithm capable of effectively managing both classifi-
cation and regression tasks by maximizing the margin of separation between distinct
classes of data points.
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Architecture and Operational Principles

The architecture of SVM revolves around identifying an optimal hyperplane that
can best separate data points of different classes with the maximum margin [23].
This is accomplished by transforming the input data into a higher-dimensional fea-
ture space using a kernel function. The essential components of SVM include the
hyperplane, support vectors (data points closest to the hyperplane), kernel func-
tion (used for computing inner products in the transformed space), and margin (the
distance between the hyperplane and the nearest data points of each class). The op-
timization task involves maximizing this margin while simultaneously minimizing
the classification error [24].

Applications

Support Vector Machines find applications in various domains, including text cat-
egorization and sentiment analysis [25], image recognition and object detection [26],
bioinformatics for protein classification and gene expression analysis [27], finance
for stock market prediction and risk assessment [28], and medical diagnosis and dis-
ease classification [29]. SVMs excel in scenarios where a clear separation between
classes is essential.

Advantages and Limitations

Support Vector Machines offer several advantages such as effectiveness in high-
dimensional spaces [30], versatility with different kernel functions [31], and regu-
larization to avoid overfitting. However, they can be computationally expensive for
large datasets [32], require careful selection of kernel and hyperparameters, and are
originally designed for binary classification (though extensions exist for multi-class
tasks) [33].

2.2.2 Gaussian Process Regression

Gaussian Process Regression (GPR) originates from the field of Bayesian infer-
ence and non-parametric statistics, aiming to offer a flexible and probabilistic frame-
work for regression tasks while enabling uncertainty estimation alongside predic-
tions [34]. Unlike traditional parametric models, GPR does not assume a specific
functional form for the relationship between input and output variables, making it
suitable for capturing complex patterns in data without overfitting [35].

GPR is rooted in the theory of Gaussian processes, where a Gaussian process
defines a distribution over functions, allowing GPR to model the entire space of
possible functions consistent with observed data, providing a rich representation
for regression tasks.

Architecture and Working Principles

The architecture of Gaussian Process Regression involves defining a prior over
functions using a Gaussian process. Given a set of observed input-output pairs
(X, y), where X = {x1, x2, . . . , xn} are input points and y = {y1, y2, . . . , yn} are cor-
responding outputs, the predictive distribution for a new input x∗ is computed as a
Gaussian distribution:

p(y∗ | x∗, X, y) = N (µ∗, σ2
∗ )
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where
µ∗ = k(x∗, X)[K + σ2

n I]−1y

σ2
∗ = k(x∗, x∗) − k(x∗, X)[K + σ2

n I]−1k(X, x∗)

Here, k(·, ·) is the chosen covariance (kernel) function, K = k(X, X) is the covariance
matrix of observed inputs, σ2

n is the observation noise variance, and I is the identity
matrix [34].

Applications

Gaussian Process Regression finds applications in diverse domains such as Bayesian
optimization [36], spatial modeling and geostatistics [37], machine learning and pat-
tern recognition [34], and time-series prediction [38]. GPR is particularly useful in
scenarios where uncertainty estimation and flexibility in modeling are essential.

Advantages and Limitations

Gaussian Process Regression (GPR) offers several advantages. It provides un-
certainty estimates along with predictions, making it suitable for decision-making
under uncertainty. GPR is flexible and can capture complex patterns in data with-
out explicitly defining a fixed functional form. Additionally, it offers a principled
framework for incorporating prior knowledge into the modeling process [34].

However, GPR has certain limitations. It can be computationally expensive for
large datasets due to the need to invert large covariance matrices. The choice of ker-
nel function and hyperparameters can significantly impact performance and must
be carefully selected based on the characteristics of the data. GPR is not well-suited
for very high-dimensional data due to computational constraints associated with
large covariance matrices.

2.2.3 Random Forest

Random Forest is a popular ensemble learning method developed by Leo Breiman
and Adele Cutler, aiming to enhance the predictive performance and robustness of
decision trees [39]. Decision trees often overfit on training data, leading to poor gen-
eralization to new data. Random Forest addresses this by leveraging an ensemble
approach with multiple decision trees.

Architecture and Working Principles

The architecture of Random Forest comprises an ensemble of decision trees. Each
tree is trained on a random subset of the training data and a random subset of fea-
tures. During prediction, the output of each individual tree is aggregated to produce
the final prediction. Aggregation involves averaging the predictions for regression
tasks or voting for classification tasks [39].

Applications

Random Forest is applied across various domains due to its effectiveness in han-
dling complex datasets and providing robust predictions. It has been successfully
used in bioinformatics, remote sensing, finance, and other fields. For example, in
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bioinformatics, Random Forest is employed for gene expression analysis and pro-
tein structure prediction [40]. In finance, it is used for credit scoring and stock mar-
ket prediction [41].

Advantages and Limitations

Random Forest offers several advantages. It is robust against overfitting due to
the ensemble approach, which reduces variance and improves generalization per-
formance. Additionally, Random Forest can handle high-dimensional data and large
datasets effectively, making it suitable for complex real-world applications. It also
provides feature importance ranking, aiding in feature selection and model interpre-
tation.

Despite its advantages, Random Forest has limitations. It can be computationally
expensive, especially with a large number of trees and features, requiring significant
computational resources. It may introduce bias if the majority class dominates the
dataset, resulting in skewed predictions. Lastly, the model can be less interpretable
compared to simpler models like individual decision trees, making it challenging to
understand underlying relationships.

2.2.4 Gradient Boosting

Gradient Boosting is a powerful machine learning technique developed to create
a robust predictive model by combining the predictions of multiple weak learners
[42]. The motivation behind Gradient Boosting is to sequentially enhance the perfor-
mance of a base learning algorithm by focusing on the mistakes made by preceding
models, thus reducing the overall prediction error.

Architecture and Working Principles

The architecture of Gradient Boosting involves building an ensemble of weak pre-
diction models, typically decision trees. Each subsequent model corrects the errors
of its predecessor by fitting to the residual errors (the differences between observed
outcomes and existing ensemble predictions). The final prediction is obtained by
aggregating predictions from all models in the ensemble.

Applications

Gradient Boosting is widely applied across various domains, excelling in regres-
sion, classification, anomaly detection, fraud detection, natural language processing,
ranking, and recommendation systems [42]–[44].

Advantages and Limitations

Gradient Boosting offers highly accurate predictions by sequentially improving
the model and effectively handling complex variable interactions [42], [45]. It auto-
matically manages missing data and provides feature importance ranking for inter-
pretability.

Despite its advantages, Gradient Boosting has limitations. Careful tuning of hy-
perparameters is required to avoid overfitting, and it can be computationally ex-
pensive and time-consuming, especially with large datasets [46]. Gradient Boosting
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may also struggle with noisy data or outliers, and it is generally less interpretable
compared to simpler models like linear regression.

2.3 Deep Learning Methods

This section presents the Deep Learning methods that have been used during the
thesis. It starts explaining the basis of the Multilayer Perceptron since it provides a
overview of the basis of all the ANNs. After that, it provides the basis of Recurrent
Neural Networks and Convolutional Neural Networks. Finally it presents the basis
of the Generative Adversarial Neural Networks

2.3.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a fundamental architecture in deep learning,
designed to overcome the limitations of simple perceptrons by modeling complex
and nonlinear relationships in data, such as pattern recognition and natural lan-
guage processing [47].

Architecture and Operating Principles

The MLP consists of an artificial neural network (ANN) with multiple layers of
interconnected neurons. It typically includes an input layer, one or more hidden
layers, and an output layer. Neurons apply nonlinear activation functions (e.g., sig-
moid or ReLU) to introduce nonlinearities and approximate complex functions [48],
[49].

MLP operates through forward and backward propagation. During forward prop-
agation, inputs propagate through the network, and neuron outputs are computed
by weighted input summation and activation. Backward propagation adjusts weights
to minimize the loss function via optimization algorithms like stochastic gradient
descent (SGD) [47].

Training Techniques and Areas of Application

Training an MLP involves iteratively adjusting network weights using labeled
training data to minimize prediction errors. Success depends on data quality, quan-
tity, and proper selection of architecture and hyperparameters [47].

MLP finds applications in image recognition, text classification, time series pre-
diction, and speech processing due to its ability to model complex relationships [50].

Advantages and Disadvantages

Advantages of MLP include modeling complex relationships, adaptability, and
automatic feature learning. Techniques like L1/L2 regularization, dropout, and
batch normalization enhance generalization [50].

MLP limitations include computational demands and overfitting risks with small
datasets. Proper architecture and hyperparameter selection are critical but challeng-
ing [50].
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2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were developed to address the limitations
of feedforward neural networks in processing sequential data [51]. The motivation
behind RNNs is to model temporal dependencies within sequences, making them
well-suited for tasks such as time series prediction, speech recognition, and natural
language processing. RNNs are designed to maintain a state or memory of previous
inputs, allowing them to capture context and sequential patterns.

Architecture and Working Principles

The architecture of Recurrent Neural Networks consists of recurrent connections
that enable them to exhibit dynamic temporal behavior [52]. Unlike feedforward
networks, RNNs have connections that form directed cycles, allowing information
to persist over time. At each time step, an RNN processes an input vector along
with its current internal state, producing an output and updating its internal state
based on both the current input and the previous state. This recurrent nature enables
RNNs to model sequences and learn dependencies.

Applications

Recurrent Neural Networks have been applied extensively across various do-
mains due to their ability to handle sequential data. They are commonly used for
language modeling and text generation. For instance, Sutskever, Vinyals, and Le
[53] proposed sequence-to-sequence learning with neural networks, which has been
pivotal in natural language processing tasks like machine translation. Addition-
ally, RNNs are employed in speech recognition and synthesis, as demonstrated by
Graves, Mohamed, and Hinton [54].

Moreover, RNNs find applications in time series analysis and forecasting, where
they excel in capturing temporal dependencies and patterns. In music generation
and composition, Recurrent Neural Networks have been utilized to generate novel
musical sequences based on learned patterns. They are also employed in video anal-
ysis and action recognition tasks, leveraging their capability to model sequential
data effectively.

Recurrent Neural Networks are particularly suited for tasks where the input and
output are sequences, and context or temporal information is essential.

Advantages and Limitations

Recurrent Neural Networks offer several advantages. They excel in handling in-
put sequences of variable length and are capable of capturing long-range dependen-
cies within data sequences [55]. RNNs are particularly effective in tasks requiring
context awareness and sequential pattern recognition, such as language modeling,
speech recognition, and time series analysis. Additionally, RNNs can automatically
adapt to input sequences of different lengths, making them versatile for various ap-
plications.

However, RNNs also have limitations. They can be prone to issues like vanishing
or exploding gradients during training, especially in deep architectures. This can
hinder their ability to effectively capture long-term dependencies in data sequences.
Additionally, RNNs may struggle with retaining relevant information from earlier
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time steps, which can impact their performance on tasks requiring memory over
long sequences.

Despite these limitations, Recurrent Neural Networks remain a powerful tool for
sequence modeling and have been instrumental in advancing research across do-
mains requiring sequential data processing.

2.3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were developed with the motivation to
improve the learning of hierarchical representations from raw input data, particu-
larly in the context of image recognition and computer vision tasks [47]. The primary
goal was to address the challenges of traditional neural networks in processing high-
dimensional data efficiently while leveraging spatial relationships within images.

Architecture and Working Principles

The architecture of Convolutional Neural Networks is inspired by the visual pro-
cessing mechanism of the human brain. CNNs consist of multiple layers, including
convolutional layers, pooling layers, and fully connected layers. The key idea be-
hind CNNs is to learn local feature representations through convolutions and hier-
archical abstractions through layer-wise processing [56]. Convolutional layers ap-
ply filters (kernels) across input data to extract spatial features, while pooling layers
downsample feature maps to reduce dimensionality. The extracted features are then
processed by fully connected layers for classification or regression.

Applications

Convolutional Neural Networks have revolutionized various applications in com-
puter vision, image recognition, and pattern analysis. They are widely used for lan-
guage modeling and text generation. For instance, Simonyan and Zisserman [57]
demonstrated the effectiveness of very deep convolutional networks for large-scale
image recognition, achieving state-of-the-art performance on image classification
tasks. CNNs are also applied in medical image analysis, where they play a criti-
cal role in automated diagnosis and disease detection [58]. Additionally, CNNs are
employed in facial recognition systems, autonomous vehicles, and augmented real-
ity applications.

Advantages and Limitations

Convolutional Neural Networks offer several advantages. They can automati-
cally learn hierarchical representations from raw pixel data, eliminating the need
for handcrafted feature engineering. CNNs exhibit translational invariance, allow-
ing them to recognize objects regardless of their position in an image. Additionally,
CNNs can efficiently process large-scale image data using shared weights and sparse
connectivity, enabling scalability.

However, Convolutional Neural Networks have limitations. They require sub-
stantial computational resources, especially during training and inference on large
datasets. Overfitting can occur, particularly with insufficient data or complex archi-
tectures. CNNs may struggle with handling rotation, scale, and occlusion variations
in images, requiring additional techniques for robustness.
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2.3.4 Generative Adversarial Networks

The explanations of this section have been adapted and extended from [59], [60].

Generative Adversarial Networks (GANs) [61] stand as pivotal and widely uti-
lized technologies across various domains [62], offering applications in both semi-
supervised and unsupervised learning. A GAN typically comprises a pair of neural
networks engaged in a competitive dynamic.

Architecture and Working Principles

The Generator network is tasked with generating realistic new data to deceive the
other network, known as the Discriminator. The Discriminator, on the other hand,
is responsible for distinguishing between real and forged data.

Notably, the Generator lacks access to real data, a critical aspect of these algo-
rithms. Instead, it learns to create data based on feedback from the Discriminator.
The Discriminator, in contrast, has access to both real and generated data but re-
mains unaware of their origins during prediction. The networks adjust their weights
based on the outcomes of this adversarial interaction: the Generator refines its forgery
techniques, while the Discriminator endeavors to enhance its ability to discern forg-
eries. Figure 2.3 provides a diagram illustrating the behavior of this algorithm.

FIGURE 2.3: Diagram of a GAN. Extracted from [59].

The fundamental operational principle of a GAN can be articulated as a two-
player minimax game involving players D and G, characterized by a value function
VGAN(G, D), as formulated in the seminal work by Goodfellow et al. [61]. This value
function typically employs a binary cross-entropy function, a common choice for
binary classification problems:

min
G

max
D

VGAN(G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (2.1)

In Equation 2.1, the first term represents the expected value of entropy computed
by the Discriminator over real data, while the second term corresponds to the en-
tropy calculated by the Generator over the generated (fake) data.

While GANs typically consist of Deep Feed-forward Networks, more sophisti-
cated architectures, such as Convolutional Neural Networks (CNNs), are often em-
ployed to enhance the generative capabilities of the algorithm and the quality of the
synthesized data.
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Applications

Generative Adversarial Networks have found diverse applications in computer
vision, image synthesis, and generative modeling. They are widely used for lan-
guage modeling and text-to-image synthesis. For instance, Karras, Laine, and Aila
[63] proposed a style-based generator architecture for GANs that enables high-quality
image synthesis with fine-grained control over generated images. GANs are also ap-
plied in medical image synthesis, data augmentation, and video generation tasks.

Advantages and Limitations

Generative Adversarial Networks offer several advantages. They can generate
highly realistic and diverse samples that capture intricate patterns and details present
in the training data. GANs excel in tasks requiring image synthesis and data gener-
ation, outperforming traditional generative models. Additionally, GANs can learn
from unlabeled data and are capable of discovering complex data distributions with-
out explicit supervision.

However, Generative Adversarial Networks have limitations. GAN training can
be unstable and sensitive to hyperparameters, often requiring careful tuning and
monitoring. Mode collapse, where the generator produces limited varieties of sam-
ples, is a common issue. GANs may also suffer from vanishing gradients or training
divergence, affecting their convergence and quality of generated outputs. Further-
more, GANs are prone to problems such as vanishing gradients, where the gradients
become too small for the model to learn effectively. Overcoming these challenges
often requires specialized techniques and fine-tuning, adding to the complexity of
working with GANs.

Deep Convolutional GAN

Research on GANs has yielded novel and compelling architectures that signif-
icantly enhance network performance and the quality of generated data [64]. For
this study, we implemented the architecture known as Deep Convolutional GAN
(DCGAN) [65]. DCGAN is founded on convolutional layers and introduces a series
of constraints aimed at stabilizing training and improving output quality. The key
guidelines for DCGAN implementation are as follows:

• Use of batch normalization in the Generator and the Discriminator.

• Removal of fully connected hidden layers in both networks.

• Usage of convolutional transposed layers instead of the stridden convolutional
layers. This is only applied in the Generator network.

2.4 Fuzzy Logic

Fuzzy Logic was introduced by Lotfi Zadeh in 1965 [66] as a mathematical ap-
proach to deal with uncertainty and imprecision in human reasoning. Traditional
logic is based on binary (true/false) values, which are often inadequate for repre-
senting the complexity of human decision-making. The motivation behind Fuzzy
Logic was to develop a system that could handle approximate reasoning and lin-
guistic variables by allowing degrees of truth instead of strict binary values.
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Architecture and Working Principles

Fuzzy Logic extends traditional logic [67] by allowing values to range from com-
pletely true to completely false, thus overcoming the binary limitations of traditional
logic. Unlike classical logic, which operates in a binary manner, where propositions
are either true or false, Fuzzy Logic extends this paradigm by allowing for degrees
of truth between 0 and 1. This flexibility enables Fuzzy Logic to model complex sys-
tems where precise inputs and outputs are difficult to define. Fig 2.4 presents the
difference between representing the temperature in both types of logics

(A) Representation of the property Tempera-
ture with traditional logic

(B) Representation of the property Tempera-
ture with fuzzy logic

FIGURE 2.4: Comparison of the representation of the property Tem-
perature with Traditional Logic and Fuzzy Logic

The foundation of Fuzzy Logic lies in Membership Functions, which assign mem-
bership grades to elements of a universe of discourse. These functions capture the
fuzzy boundaries of linguistic variables and enable the representation of human-like
reasoning in computational systems. They yield values in the domain of [0, 1], where
0 indicates no membership to the category, and 1 signifies full membership.

One of the key strengths of Fuzzy Logic is its ability to handle uncertain and
ambiguous information in a natural and intuitive manner. This capability makes
it particularly valuable in situations where traditional approaches fail to capture
the nuances of real-world problems. Furthermore, Fuzzy Logic systems offer inter-
pretability, as their rules and decisions can be understood and validated by domain
experts, fostering trust and acceptance in practical applications.

At the heart of Fuzzy Logic lies its inference algorithms, which facilitate the trans-
lation of vague, qualitative rules into precise, quantitative decisions. These algo-
rithms enable Fuzzy Logic systems to emulate human-like reasoning processes, al-
lowing them to navigate complex, real-world scenarios with ease.

There are several Fuzzy Logic inference algorithms, each with its own strengths
and applications. One of the most widely used is the Mamdani inference method
[68], which employs fuzzy sets and linguistic variables to model human expertise
and intuition. Mamdani systems combine fuzzy rule bases with fuzzy inference
engines to generate crisp, actionable outputs from fuzzy inputs. This algorithm
is renowned for its simplicity and interpretability, making it ideal for applications
where transparency and user understanding are paramount.

Another prominent inference algorithm is the Takagi-Sugeno method [69], which
differs from Mamdani in its treatment of the consequent part of fuzzy rules. In-
stead of using linguistic variables, Sugeno systems utilize mathematical functions to
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represent the output of each rule. This approach simplifies the inference process and
can lead to more computationally efficient systems, especially in control applications
where precise numerical outputs are desired.

In addition to Mamdani and T-S, there are hybrid approaches that combine ele-
ments of both methods to leverage their respective advantages. These hybrid algo-
rithms offer flexibility and adaptability, allowing designers to tailor inference sys-
tems to specific problem domains and application requirements.

Applications

Fuzzy Logic has been applied in various domains where decision-making in-
volves uncertainty and ambiguity. It is widely used in control systems, such as fuzzy
logic controllers for industrial processes and robotics. Fuzzy Logic is also employed
in pattern recognition, image processing, natural language processing, and infor-
mation retrieval. Consumer electronics like washing machines and air conditioners
utilize fuzzy control for efficient and adaptive operation.

Advantages and Limitations

Fuzzy Logic offers several advantages. It can model and control nonlinear sys-
tems effectively, allowing for flexible and robust decision-making under uncertainty.
Fuzzy Logic systems are interpretable and can handle imprecise and incomplete in-
formation more naturally than traditional binary logic. Fuzzy Logic has been suc-
cessfully applied in diverse engineering and scientific fields.

However, Fuzzy Logic also has limitations. Designing fuzzy systems requires
expert knowledge to define appropriate fuzzy sets and rules, which can be time-
consuming and subjective. Fuzzy Logic may struggle with complex decision-making
tasks involving high-dimensional data or dynamic environments. Additionally, tun-
ing fuzzy systems for optimal performance can be challenging due to the subjective
nature of linguistic variables and rules.

2.5 ANFIS

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) were introduced by Jang in
1993 [70] as a hybrid approach that combines the adaptive capabilities of neural
networks with the interpretability of fuzzy logic systems. The motivation behind
ANFIS was to develop a framework for building adaptive fuzzy systems that can
learn from data and make accurate predictions in complex environments. ANFIS
aims to provide a flexible and efficient way to model nonlinear systems using fuzzy
rules.

Architecture and Working Principles

The Adaptive Neuro-Fuzzy Inference System (ANFIS) [71], [72] serves as a bridge
between Artificial Neural Networks and Fuzzy Logic. Rooted in Takagi-Sugeno
fuzzy logic with IF-THEN rules, this integration imparts the model with adaptability
to different scenarios, facilitated by the learning capacities of the ANN. The essential
architecture of the network, outlined in Fig. 2.5, encompasses five distinct layers:



28 Chapter 2. Theoretical Concepts

• Fuzzification Layer: In this layer, the determination of parameters occurs, en-
compassing factors such as the count, range, and kind of each input member-
ship function (such as triangle, trapezoid, generalized bell, or Gaussian). What
is more, each node demonstrates adaptability, functioning as an information
processing point.

• Rules Layer: The main function of this layer is to generate knowledge rules
that establish connections between inputs and outputs within the system. It
consists of static nodes that correspond with the firing power of each rule.

• Normalization Layer: This layer normalizes the firing strength of each rule. It
accomplishes this by dividing the firing strength of each rule by the total sum
of the firing strengths of all rules.

• Defuzzification Layer: The computed normalized firing strength of the rules
is multiplied by its consequent parameters, obtaining the weighted output for
each rule.

• Output Layer: The last step of the ANFIS model combines all the individual
rule contributions into one final result. This is done by adding up all the rule
outputs. This sum is the model’s prediction.

.

FIGURE 2.5: Diagram of the structure of an ANFIS model. Extracted
from [73].

Applications

ANFIS has been applied in various domains where complex nonlinear relation-
ships exist between input and output variables. Some common applications include
time series prediction and forecasting, system identification and control, pattern
recognition, classification tasks, and financial modeling [74], [75]. ANFIS provides
a versatile framework for building adaptive systems that can learn from data and
make accurate predictions in real-world scenarios.
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Advantages and Limitations

ANFIS offers several advantages. It can effectively model complex nonlinear sys-
tems using fuzzy rules and neural network learning, combining the strengths of
both approaches. ANFIS is interpretable due to its fuzzy rule-based structure, al-
lowing users to understand and modify the system’s behavior. Additionally, ANFIS
can adapt to changing environments and learn from data, making it suitable for dy-
namic applications.

However, ANFIS also has limitations. Designing ANFIS models requires exper-
tise in defining appropriate fuzzy rules and membership functions, which can be
challenging and subjective. ANFIS may struggle with high-dimensional data or
noisy inputs, and training complex ANFIS models can be computationally expen-
sive. Additionally, ANFIS models may not generalize well to unseen data if not
properly validated and tuned.

2.6 Wavelet Transform

Wavelet Transform is a mathematical tool that originated in the late 20th cen-
tury [76], [77]. The motivation behind the development of wavelet analysis was
to address the limitations of traditional Fourier methods in analyzing signals with
localized features. While Fourier Transform provides frequency-domain representa-
tion, it lacks time localization, which is crucial for analyzing non-stationary signals.
Wavelet Transform was designed to offer both frequency and time localization, mak-
ing it suitable for a wide range of signal processing applications.

Working Principles

The two-dimensional wavelet analysis [78], [79] serves as a mathematical tool for
image processing, enabling examination across various frequencies and resolution
scales, a principle known as multi-resolution. This facilitates the simultaneous de-
tection of spatial and frequency attributes within the image. This analysis is accom-
plished through the application of the Two-Dimensional Discrete Wavelet Transform
(2D DWT), which partitions the image pixels into two discrete approximation com-
ponents and two detail components using high-pass and low-pass filters.

Numerous wavelet filters, including Haar, Daubechies, and Symmlet, have been
developed for discrete image processing [80]. However, our primary focus will be on
the Biorthogonal wavelet (Bior) filter, chosen for processing the electroluminescence
images analyzed in this research work. The key characteristic of this filter is its
flexibility, as it consists of two wavelets with distinct regularity characteristics. This
enables each wavelet to handle different tasks effectively in image processing [81].

Wavelet analysis can be expanded to incorporate the utilization of the Continuous
Wavelet Transform in two dimensions (2D CWT), representing a logical extension of
the one-dimensional CWT. In comparison to traditional spectral analysis methods
[82], the 2D CWT stands out by providing localized spectral information across var-
ious scales. This is achieved by acting as a local scale and position filter on spatial
domain data. The 2D CWT excels in offering detailed spectral insights at specific
positions and orientations within the data, conducting a continuous analysis across
the entire spatial domain. This distinguishes it from the Two-Dimensional Discrete
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Wavelet Transform (2D DWT), which generates a condensed representation of the
analyzed dataset [79].

Different wavelets are proposed in the literature, and some can be real, complex,
isotropic, anisotropic, etc [83], [84]. The Cauchy wavelet was chosen for the analysis
of EL images in this research due to its minimal uncertainty and adaptable nature,
enabling effective examination of information at various angles .

Applications

Wavelet Transform has found widespread applications in various domains, in-
cluding signal and image processing, data analysis, and biomedical engineering. In
signal and image processing, Wavelet Transform is used for denoising, compression,
edge detection, and feature extraction. In data analysis, it facilitates time-frequency
analysis, pattern recognition, and machine learning tasks. In biomedical engineer-
ing, Wavelet Transform is applied to EEG analysis, MRI reconstruction, and biomed-
ical signal processing.

Wavelet Transform provides a versatile framework for analyzing and processing
signals efficiently across different scales and resolutions.

Advantages and Limitations

Wavelet Transform offers several advantages over traditional Fourier methods.
It provides time-frequency localization, allowing for the analysis of non-stationary
signals with localized features. Wavelet-based methods are computationally effi-
cient and offer good time-frequency resolution compared to Fourier Transform. Ad-
ditionally, Wavelet Transform is adaptable to different applications and data types,
providing robustness in handling real-world signals.

However, Wavelet Transform also has limitations. The choice of wavelet basis
and decomposition parameters can significantly impact the analysis results, requir-
ing careful selection and tuning. Wavelet-based methods may introduce artifacts,
especially in image compression applications. Interpreting wavelet coefficients and
selecting appropriate scales for analysis can be challenging in practice.
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Chapter 3

State of the Art

The explanation of the State of the art is divided into three different topics: An
overview of how Artificial Intelligence is applied to Photovoltaics, the AI techniques
used to analyze the PV cells to find defects or to estimate their condition and the
techniques used to generate synthetic data, focused in the generation of synthetic
images of PV cells.

3.1 Artificial Intelligence applied to Photovoltaic Systems

The contents of this section have been extracted from [11]. A more detailed review
of this topic can be found in that article.

Maintenance problems in PV systems have historically been addressed through
either straightforward automatic supervision methods [85] or resource-intensive hu-
man oversight.

However, a shift has occurred in recent years with the emergence of AI-based
solutions. AI techniques are now being utilized across diverse research domains and
industries to enhance services or tackle challenges that traditional methods struggle
to address [86].

These techniques can also be applied to address the challenges encountered in
PV systems. In this review, we will analyze the application of AI in the PV sector.
PV systems encounter various issues during installation and operation, as the PV
modules are susceptible to climate conditions and unpredictable events.

Several analysis of problems encountered in PV plants can be found in bibliog-
raphy[87], [88]. Additionally, the maintenance of modules is crucial for maximizing
production and enhancing installation security [89]. To narrow the scope of this re-
view, only the four most critical problems related to energy optimization and main-
tenance have been considered:

• Max Power Point Tracking (MPPT) plays a crucial role in optimizing produc-
tion.

• Output power Forecasting is critical for predicting potential production issues
related to climatic conditions.

• Parameter Estimation that is also extremely important for optimizing the pro-
duction of the PV modules.
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• Defect Detection is crucial for identifying underperforming modules or faults
that could significantly impact overall system performance and security. This
topic will be elaborated upon in Section 3.2.

3.1.1 Max Power Point Tracking

PV cells exhibit a complex relationship between their environment and the power
they generate. Along the IV curve of solar cells, there exists a point where power is
maximized, known as the Maximum Power Point (MPP). This point typically varies
depending on conditions such as irradiation, temperature, or the state of the PV cell.
These conditions can alter the curve’s shape, rendering the problem nonlinear and
time-varying due to atmospheric and load condition changes.

Tracking the maximum power point is crucial for optimizing PV systems and is
arguably the most intriguing research problem. Various techniques have been em-
ployed to address this issue, as depicted in Figure 3.1. Classical methods include
Incremental Conductance and Perturb & Observe [90], [91]. Recent trends indicate
the use of AI techniques to tackle this problem. Metaheuristics and Neural Net-
works have emerged as the most commonly utilized techniques based on literature
surveys.

FIGURE 3.1: Taxonomy of most used IA method for MPPT. Extracted
from [11].

Table 3.1 presents a summary of reviewed AI methods applied to solve the MPPT
problem. The details of each article can be found in the original review[11].
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TABLE 3.1: AI used Methods for MPPT. Adapted from [11].

Classification Method Features

Fuzzy

Fuzzy Logic (FL)
[92][93][94]
[95][96]

FLC systems offer rapid responses to changes and
minimal oscillations near the MPPT, thereby reduc-
ing power losses compared to traditional systems.
Combining FL with Fuzzy Cognitive Networks [97]
or initializing the estimation of the MPP voltage fur-
ther enhances the results.

Type-2
[98][99][100][101]

Type-2 FL offers techniques for modeling and manag-
ing uncertainties, thereby enhancing the robustness
of the system and, consequently, its outcomes.

Takagi-Sugeno (T-S)
[102][103][104]

The parallel distributed control offered by T-S FL en-
hances the performance of FL systems, resulting in
acceptable settling times, reduced oscillations, and
accurate outputs.

Combined with other
methods [105][106][107][108][109][110]

Other methods can leverage the advantages of FL
systems to enhance their outcomes in MPPT.

Metaheuristics

Genetic Algorithms (GAs)
[111][112][113]

Genetic Algorithms enhance the outcomes of other
methods such as ANN or FL

Particle Swarm Optimization
(PSO) [114][115]

PSO is utilized to optimize the learning process of
Neural Networks

Firefly Algorithm (FA) [116]
This algorithm is directly employed to solve the
MPPT, ensuring rapid convergence with minimal os-
cillations.

Artificial Bee Colony (ABC)
[117][118][119]

For MPPT, this algorithm delivers rapid convergence
and accuracy in tracking.

Ant Colony Optimization [120]
It is utilized in the learning process to adjust the
weights and biases of neural networks, thereby en-
hancing its results.

Neural
Networks

FeedForward
Neural

Network

Two networks, each with a single hidden layer con-
sisting of 20 nodes. [121]
Five nodes on a single layer, with data preprocessed
by a Genetic Algorithm. [111]
Three hidden layers with 8, 7, and 7 nodes respec-
tively, utilizing Bayesian Regulated Backpropagation
for training. [122]
A single hidden layer with 13 neurons, with data gen-
erated by a Gaussian Support Vector Machine. [123]
Structured as 2-3-3-1, with the Neural Network opti-
mized by FPSOGSA. [106]
The topology and optimal weights are optimized us-
ing a PSO algorithm. [124]
ACO is employed to optimize the neural network.
[125]

Adaptive Neural
Fuzzy System

Interface

The Bat Algorithm is employed for training the net-
work. [107]
The Crowded Plant Height Optimization algorithm
is responsible for conducting the learning process of
the network. [126]
It combines Fuzzy Logic and Neural Networks, incor-
porating three intermediate layers where the output
is determined by fuzzy rules.[127]

Recurrent
Neural Network

A hidden layer, a context layer storing the results
of the previous outputs of the hidden layer. A
metaheuristic is used to optimize the structure and
weights. [105]

Deep Reinforcement
Learning

There are four networks involved: one for comput-
ing the policy, one for the critic, and two referred to
as targets, which are utilized to stabilize the learning
procedure. [128]

The tracking of the maximum power point has been approached in various ways,
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ranging from traditional and straightforward methods to those employing sophisti-
cated technologies such as neural networks. Simple methods still hold significance,
as many systems do not require complex MPPT algorithms to optimize production.
However, in large-scale power plants with complex configurations of PV arrays,
more intricate algorithms are necessary for efficient MPP tracking.

Comparing the different techniques, it’s evident that the most commonly uti-
lized technologies are FeedForward Neural Networks and FLC systems (Fig. 3.2).
While Neural Networks outperform Logic Systems, they come with certain draw-
backs. Neural Networks are computationally intensive compared to FL systems
and require substantial amounts of data, although this is less of an issue due to the
widespread availability of data nowadays. Another challenge is the complexity in
optimizing hyperparameters, given the multitude of parameters involved in neural
networks. This challenge has been addressed through the use of optimization algo-
rithms, such as metaheuristics, to find the best parameter combinations or optimal
architectures.

Despite advancements, there is ongoing interest in improving the efficiency and
performance of complex systems. To achieve this objective, exploration of newer
technologies applied in other sectors is warranted, as evidenced by previous studies
demonstrating their effectiveness in this domain. FL methods and metaheuristics
are commonly implemented using MATLAB, while Neural Networks can also be
implemented using Python, leveraging libraries like Tensorflow [129].

FIGURE 3.2: Diagram of sectors of most used IA methods for MPPT.
Extracted from [11].

3.1.2 Output power Forecasting

Forecasting energy production in PV systems encompasses several variants of
the forecasting problem, including weather forecasting, solar irradiance forecasting,
and energy production forecasting, which estimates the energy output of the system.
This is crucial for optimizing the real-time management of systems that rely on this
type of energy, such as smart cities and villages. Electric companies prioritize this
issue as they seek a more robust and reliable system to anticipate changes in energy
loads and demands.

The time horizon for forecasting varies:
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• Short-term forecasting typically ranges from 1 hour to a week ahead and is
utilized for scheduling energy transfer, economic load dispatch, and demand
response.

• Mid-term forecasting spans from 1 month to 1 year ahead, often used for
planning near-term power plans and illustrating system dynamics within that
timeframe.

• Long-term forecasting extends from 1 year to 10 years and serves to plan power
generation plants to meet future requirements efficiently.

The amount of information and data available is crucial for precise forecasting
models. However, excessive data can sometimes introduce noise or provide mis-
leading information, impacting model performance. Each type of forecasting is typ-
ically treated as a distinct problem due to differences in data volume and precision
requirements. For more detailed information on forecasting, refer to [130].

Energy production forecasting has long been a significant challenge, even in tra-
ditional systems, and it has been addressed using various techniques, as depicted in
Fig. 3.3.

FIGURE 3.3: Taxonomy of most used IA method for forecasting. Ex-
tracted from [11].

Table 3.2 presents a summary of the reviewed AI methods applied to solve the
forecasting problem. The details of each article can be found in the original review
[11].
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TABLE 3.2: Models for forecasting. Adapted from [11]

Type Features

FeedForward
Neural

Network

9 inputs, with 20 hidden nodes on a single layer. [131]
9 inputs, with two hidden layers having 6 and 4
nodes respectively. Trained using a hybrid PSO GA
algorithm. [132]
Utilizes 2 inputs, creating ensembles of neural net-
works. [133]
Incorporates 2 inputs, with 1 hidden layer and Con-
jugate Gradient as the learning rule. [134]
Employs 3 neural networks, each designed for a spe-
cific type of weather. Utilizes Extreme Learning to
optimize the parameters and architecture. [135]
Applies Fuzzy Logic as a filter to the input data. Fea-
tures 7 inputs, with 2 hidden layers consisting of 9
and 5 nodes respectively. Trained using a hybrid of
PSO and GA. [136]
Utilizes Big Data. Implements a multi-step method-
ology to decompose the problem into sub-problems.
[137]

Convolutional
Neural Networks

Utilizes 2 inputs, with parameters selected by testing
different combinations. [138]

Dendritic
Neural Networks

Aided by Wavelet Transform, providing better con-
vergence speed and better fitting ability. [139]

Radial
Basis

Network

Utilizes 2 inputs, aided by Wavelet Transform to pre-
process the input data. [140]
Employs high-resolution time series as input, aided
by Wavelet Transform for data preprocessing and
PSO for neural network optimization. [141]

Recurrent
Neural

Network

Aided by Wavelet Transform to address fluctuation
in time series input data. [142]
Utilizes preprocessed and normalized high-
resolution time series as input, with two hidden
layers consisting of 35 neurons. [143]
Tests different RNN architectures, with LSTM using
previous time steps found to be the best. [144]
Utilizes Echo State Networks aided by Restricted
Boltzmann Machine, Principal Component Analysis,
and DFP quasi-Newton Algorithm for network opti-
mization. [145]

Support
Vector

Machines

Utilizes 2 inputs, with a parameter to tune the num-
ber of SVM during training. [146]
Compares SVM with KNN, with SVM found to be
better. [147]
Implements multi-input SVM, with different combi-
nations of inputs tested, and 3 inputs found to be the
best. [148]
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Forecasting poses a significant challenge in PV systems, with the estimation of
energy production from Solar Plants predominantly treated as a regression prob-
lem in the literature. Given the abundance of data available, neural models have
emerged as highly suitable solutions for this task (Fig. 3.4). There is a notable trend
towards employing the latest neural architectures while optimizing their parameters
and architecture using methods such as metaheuristics. While an increase in net-
work complexity has been observed to enhance results, it is not the sole avenue for
performance improvement. Integration with other systems, such as Wavelet Trans-
form, has shown to enhance reliability. Moreover, alternative network systems like
Recurrent Networks or Dendritic Networks have demonstrated further enhance-
ments over traditional Neural Networks. However, there remains ample room for
improvement in this field, given the inherent complexity of forecasting, which relies
on a multitude of variables. For future research, exploring novel combinations of
parameters, enhancing datasets, or leveraging innovative technologies used in simi-
lar domains could yield promising results. While much of the research is conducted
using MATLAB, there is a growing presence of Python in recent years, attributed to
the availability of Deep Learning Libraries.

FIGURE 3.4: Diagram of sectors of most used IA methods for
forescasting. Extracted from [11].
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3.1.3 Parameter Estimation

The simulation of PV systems plays a crucial role in optimizing their production
in real-world applications. It’s widely acknowledged that any PV system can be
effectively modeled and represented by an equivalent electric circuit, where the pa-
rameters govern the predicted or estimated operation of the PV cell or module [149],
[150].

Determining the parameters of PV models is crucial for simulating their behav-
ior and optimizing production. This task, characterized by the identification of un-
known parameters to optimize output power, has been tackled using various tech-
niques, predominantly metaheuristics, as depicted in Figure 3.5.

FIGURE 3.5: Taxonomy of most used metaheuristics for Parameter
Estimation.

Table 3.3 presents a summary of the reviewed AI methods applied to estimate the
parameters of the models. The details of each article can be found in the original
review [11].
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TABLE 3.3: Models for Parameter Estimation. SD: Single Diode, DD:
Double Diode, MC: Monocrystalline, PC: Polycrystalline. Adapted

from [11].

Type Features Error

ABC
and
CE

This method combines Extremal Optimization
with ABC. When the global optimum is not im-
proving, Extremal Optimization is introduced
in ABC. However, EO has a high computation
cost. [149]

RMSE:
SD: 1.1678·10−3

DD: 1.1479·10−3

CMA-ES

This evolutionary algorithm achieves a good
balance between exploration and exploitation,
making it competitive with other methods.
[151]

RMSE:
SD: 9.8603·10−4

DD: 9.8402·10−4

WOA
and
LM

A variant of RLWOA changes the parameter
update rule and relies on the Logistic Model to
balance exploration and exploitation. [152]

RMSE:
SD: 9.8602·10−4

DD: —

CBSA
Combines the exploratory capacities of WOA
with the convergence capacities of Social Group
Optimization. [153]

RMSE:
SD:9.8602·10−4

DD:

GWO
This method improves basic GWO with a
new bridging mechanism and opposition-
based learning. [154]

MAE:
SD-MC: 4.65·10−13

DD-MC: 1.07·10−12

SD-PC: 8.50 ·10−12

DD-PC: 1.95·10−12

GWO and PSO
This method combines the social capability of
PSO with the local search ability of GWO. [155]

RMSE:
SD: 3.06·10−3

DD: —

CSO
CSO is improved by a Spiral Movement Strat-
egy to enhance the results. [156]

RMSE:
SD: 1.1678·10−3

DD: —

JAYA

This method enhances basic JAYA with an im-
proved evolution operator, control of the pop-
ulation size, and generalized opposition-based
learning. [157]

RMSE:
SD: 9.8602·10−4

DD: 9.8248·10−4

MPA
The algorithm extracts the parameters faster
and with high reliability and robustness. [158]

RMSE:
SD: 7.73·10−4

DD: 7.65·10−4

POA
Proposes an extension of standard POA. The
results show that the method produces high-
quality solutions. [159]

RMSE:
SD: 9.8606·10−4

DD: 9.8256·10−4

GA,PSO, DE and others
Compares different algorithms and crossover
between them, with Differential Evolution as-
sisted by Tabu Search found to be the best. [160]

RMSE:
SD: —
DD: —

Estimating the parameters of PV models has been approached using a plethora
of different algorithms, with a majority belonging to the family of metaheuristics
(Fig. 3.6). Interestingly, the results exhibit similarity across these algorithms in terms
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of error (Fig. 3.7), suggesting that further minimizing the error may not yield sig-
nificant benefits. Some of the most promising works combine various metaheuris-
tics, leveraging different algorithms to address the limitations or weaknesses of each
other. Moving forward, the focus of research should shift towards identifying al-
gorithms with lower computational costs while maintaining comparable error lev-
els. It’s worth noting that the majority of these methods are implemented in MAT-
LAB[161].

FIGURE 3.6: Diagram of sectors of most used IA methods for param-
eter estimation. Extracted from [11].

(A) Single Diode (B) Double Diode

FIGURE 3.7: RMSE of the different models for parameter estimation.
Extracted from [11]

3.2 Analysis of the state of the PV cells of modules

The contents of this section have been adapted from [11], [17], [162].

The analysis of the surface of the PV modules or cells is another key problem
in the photovoltaic field. Analyzing the state of the PV cells is one of the most
discussed problems, due to the complexity of the problem. This is usually aided
by using different techniques to obtain more information about the surface such as
Thermography or Electroluminescence or Photoluminescence (Section 2.1)
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3.2.1 Defect Detection

Most of the works tackle this issue by finding patterns of defects in the surface of
the modules. Fig 3.8. presents the most used IA techniques used for this topic.

FIGURE 3.8: Most used IA method for Defect Detection. Extracted
from [11].

Classical methods, as described in [163], aimed to identify defects in solar mod-
ules using image processing techniques. They employed the first derivative of the
statistical curve to locate division lines between individual chips, followed by the
Otsu method to generate a binary image. Subsequently, the algorithm analyzed the
geometry of the resulting image to determine the module’s state. This approach
yielded promising results, with recognition rates of 80% for cracked modules, 95%
for fragmented modules, and 99% for modules in good condition. Notably, the al-
gorithm demonstrated efficient processing. The implementation and application of
these algorithms were carried out using MATLAB.

Another method, outlined in [164], integrated image processing techniques with
SVMs. The dataset consisted of 13,392 EL images of solar cells, which underwent
preprocessing to reduce spatial noise and highlight crack pixels. Subsequent bi-
nary processing was performed, followed by feature extraction. Various SVMs were
employed to classify the cells, with the SVM utilizing penalty parameter weight-
ing identified as the best performer, achieving a correct detection rate of 91% with
specificity and accuracy exceeding 97%. The experiments were conducted using
MATLAB.

In [165], a comparison between CNN and SVM was conducted. The SVM was
trained on data from the ELPV dataset, consisting of 2624 EL images of solar cells,
with features extracted using various descriptors. Meanwhile, a pre-trained VGG19
CNN, with its upper layers modified and trained on provided examples, was em-
ployed. Both classifiers were assessed on mono-crystalline and poly-crystalline mod-
ules, showing effectiveness in visual inspection with an average accuracy of 82.4%.
The algorithms were implemented in Python, using Keras for the Neural Network.

Similarly, [166] adopted a comparable approach, employing SVM and CNN. The
CNN architecture included two convolutional layers with leaky ReLU and max-
pooling, augmented by two leaky ReLU dense layers and an output layer. The
SVM was trained on diverse image features extracted from a dataset of 90 images
of full-size commercial modules, segmented to obtain 540 cells. Both methods ex-
hibited similar performance, achieving an accuracy of 98%. Additionally, the study
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explored unsupervised learning by attempting to cluster images based on two fea-
tures, resulting in a model capable of correctly assigning labels in 66% of cases. The
algorithms were implemented in Python, utilizing TensorFlow and OpenCV.

The study in [167] introduces a Convolutional Neural Network (CNN) featuring
13 convolutional layers, adapted from the VGG16 architecture. Data for training was
acquired by capturing images of solar modules measuring 6x12 cells using an EL
camera. The network underwent training with oversampling and data augmenta-
tion techniques to mitigate errors. Results indicated optimal performance when both
oversampling and data augmentation were applied, achieving a Balance Error Rate
of 7.73% in binary classification tasks, along with rapid convergence. The method
was implemented using Keras, with preprocessing conducted using OpenCV.

Meanwhile, authors in [168] propose new models trained not only on images of
cracked modules but also those exhibiting corrosion. Images were captured using
EL techniques, and segmentation was performed to obtain a dataset comprising 5400
images. The models employed include Support Vector Machines (SVM) and CNN,
with the latter comprising two convolutional layers. SVM parameters were opti-
mized through a Grid Search. Results showcased a precision of 99%, representing
an enhancement over previous methodologies. The experiments were conducted
using Keras and TensorFlow.

In [169], a novel approach is presented with a Multi-channel Convolutional Neu-
ral Network (CNN). This network employs distinct convolutional layers for various
types of inputs, accommodating inputs of different sizes. After each convolutional
layer, a dense layer is applied, and a final dense layer amalgamates all preceding
data to classify the image. This Multi-channel CNN enhances feature extraction
compared to single-channel CNNs. The dataset comprises 8301 distinct EL images of
cells, yielding an accuracy of 96.76%, significantly higher than the 86% achieved by
single-channel CNNs. The algorithms were implemented using Python, with Keras.

The model introduced in [170] consists of six convolutional layers employing
various regularization techniques such as batch optimization. Utilizing the ELPV
dataset containing 2624 images, the resulting network, despite its lightweight archi-
tecture, achieved high performance with an accuracy of 93%. The experiments were
conducted using TensorFlow.

In an effort to further enhance results, [171] proposes a new approach utilizing
Fully Convolutional Neural Networks (FCNN). An FCNN, unlike traditional CNNs,
lacks dense layers. The model employed, namely the U-net, previously applied in
biomedical image problems with limited data, operates with a dataset comprising
542 EL images. It consists of 21 convolutional layers of varying sizes. Results suggest
accepting a slight performance decrease to improve system speed. The algorithms
were implemented using Python, with Keras and TensorFlow.

Wavelet Transform (WT) is applied in [172], combining Discrete WT and Sta-
tionary WT to extract textural and edge features from preprocessed solar cell im-
ages. The dataset consists of 2300 EL images. Two classifiers, Support Vector Ma-
chine (SVM) and Feedforward Neural Network (FFNN), are employed, with FFNN
achieving the best performance at 93.6% accuracy, surpassing the 92.6% accuracy of
SVM.

In [173], the authors introduce the Complementary Attention Network (CAN),
comprising a Channel-wise attention sub-network and a spatial attention sub-network.
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CAN can be integrated with any Convolutional Neural Network (CNN), with Fast
R CNN chosen for experimentation. Two datasets, one comprising 2029 images and
another of 2129 EL images, are utilized for classification and detection tasks, yielding
an accuracy of 99.17% for classification and a mean average precision of 87.38%. The
network demonstrates faster processing and similar parameter number compared
to other methods. The algorithms were implemented using Python.

A notable approach is presented in [174], termed Deep Feature-Based, which ex-
tracts features via convolutional neural networks (CNNs) and subsequently clas-
sifies them using SVM, KNN, or FNN. This method integrates features from dif-
ferent networks, combining them with minimum redundancy and maximum rel-
evance for feature selection. Utilizing the ELPV dataset with 2624 images, CNNs
such as ResNet-50, VGG-16, VGG-19, and DarkNet-19 are employed for feature ex-
traction. The SVM model, incorporating 2000 selected features, achieves an accuracy
of 94.52% in binary classification and 89.63% in four-class classification scenarios.

TABLE 3.4: Models for detection of faults. Extracted from [11].

Type Features Accuracy Dataset Size

Technique Description Accuracy (%) Dataset Size
Image Processing

Techniques
Segmentation + Obtention of binary Image + Classi-
fication. [163]

80% to 99% —

SVM + Image Processing
Techniques

Images are preprocessed and features are extracted.
Used with an SVM with penalty parameter weight-
ing. [164]

97% 13392

SVM and CNN

Pre-trained VGG19 with different feature descriptors.
Similar results for both methods. [165]

82.4% 2624

CNN composed of 2 layers using leaky-relu. SVM
trained with different features. Similar behavior in
both models. [166]

98% 540

CNN with 2 convolutional layers. SVM parameters
optimized by search grid. [168]

96% 2840

CNN

13 convolutional layers, adaptation of VGG16. Uses
oversampling and data augmentation. [167]

Uses a different measurement 5400

Multi-channel CNN. Accepts inputs of different sizes.
Improves feature extraction. [169]

96.76% 8301

6 convolutional layers. Regulation techniques like
batch optimization. [170]

93% 2624

Fully Convolutional Neural Network. Pretrained u-
net, composed of 21 convolutional layers. [171]

Uses a different measurement 542

CNN aided by a Complementary Attention Network.
Usable with different CNN architectures. [173]

99.17% 2300

WT + SVM
and FFNN

Combines discrete WT and stationary WT to extract
features. SVM and FFNN classify them. [172]

93.6% 2029

CNN + SVM, KNN,...
Extracts features from different networks, combines
them for feature selection. Uses Resnet-50, VGG-16,
VGG-19, and DarkNet-19. [174]

94.52% 2624

Analyzing the state of modules or cells has always been important for optimizing
production since damaged modules are not as productive as they should be. This
problem has primarily been applied at the cell level, involving the segmentation of
images taken of solar modules. Only few authors have provided open datasets to
test models with a more regular amount of data. The main challenge of this problem
lies in its nature. Most models are trained with unbalanced datasets, as the number
of damaged modules is usually considerably smaller than that of good-state mod-
ules.

To improve neural models, researchers have explored the use of pre-trained neu-
ral networks like VGG-19 to leverage patterns found in other datasets. Despite their
challenges, a considerable number of models have been presented in the literature
and have achieved good results (Fig. 3.10), with Convolutional Neural Networks
being the most commonly used (Fig. 3.9). However, there is still much to be done in
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this area. Most models only utilize Electroluminescence images, but the incorpora-
tion of other techniques such as Thermography could provide additional informa-
tion and improve model performance.

Another promising approach could involve addressing the imbalance in the data.
Some studies have attempted to use simple methods such as flips or rotations, but
more complex algorithms are needed to generate images that can effectively train
the models.

Deep learning methods are predominantly implemented with TensorFlow, while
OpenCV is commonly used for image preprocessing. MATLAB is utilized for tradi-
tional methods.

FIGURE 3.9: Diagram of sectors of most used IA methods for Defect
Detection. Extracted from [11].

FIGURE 3.10: Accuracy of the different models for detection.Ex-
tracted from [11].

3.2.2 Estimation of the performance

Another way of tackling this problem is to directly consider their performance
when analyzing the PV cells of modules. As explained before in the introduction
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(Chapter 1), this is the main approach of this thesis since the datasets have informa-
tion about the I-V curve of each sample.

Only a few studies have addressed this issue. The works by Hoffman aim to
predict the Module Power using EL images [13] or PL [12].

In these studies, Hoffman et al. employed Deep Learning techniques, particularly
Residual Neural Networks, to develop predictive models. Despite the complexity of
the task, their models achieved promising results. Specifically, they reported mean
absolute errors (MAE) of 4.4% and 3.7% for predicting Module Power from EL and
PL images, respectively.

However, it’s important to note that these works focus primarily on predicting
at module-level rather than individual cell-level. While their results demonstrate
the effectiveness of Deep Learning in analyzing solar module images, the proposed
approach differs in its finer granularity, targeting cell-level analysis.

3.3 Synthetic Data Generation

The contents of this section have been adapted from [59], [60].

Data augmentation serves as the predominant approach for addressing image
data scarcity, involving the introduction of slight modifications (such as rotations,
flips, and minor deformations) to original images to generate new ones [171], [174],
[175]. However, recent research has advocated for the adoption of more advanced
AI techniques, notably Generative Adversarial Networks (GANs), to produce syn-
thetic images [176], [177]. GANs are regarded as state-of-the-art algorithms for data
generation [178], and their application extends to various domains, including pho-
tovoltaic (PV) systems, where they have been employed to tackle diverse challenges
[179].

The concept of generating synthetic EL images of PV cells using GANs has also
been explored in other studies [176], [177]. These investigations introduce synthetic
datasets created with different GAN architectures trained on EL images of cells ex-
hibiting various defects. Although the datasets from these studies have not been
publicly released, it is apparent that the synthetic images are labeled based on visual
inspection to train standard defect/normal classifiers. However, it is important to
note that the synthetic cell’s energy output performance cannot be measured, as it is
simulated.

The work presented in [180] also tackles the issue of generating images but in
their case, they use a commercial software known as "Griddler-Pro". However, the
generation is based in the creation of new defects in the original ones since the study
is focused in defect detection.

3.4 Main Findings

The application of AI in addressing various challenges within the PV sector has
been extensively demonstrated. One of the most significant topics in this field is the
analysis of PV modules or cells through their images, as evidenced by the substantial
number of research papers focusing on this issue.
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Most studies use EL images as their primary input because these images provide
more detailed information about the modules compared to other techniques. How-
ever, as will be explained in its section, it has been observed that EL images are not
capable of directly showing all kinds of problems in PV cells (Objective SO5). The
predominant approach to analyzing PV modules involves identifying defects on the
surface of PV cells, treating this as a classification task. Depending on the study, this
may involve binary or multiclass classification. Additionally, some research also
addresses the detection of defect locations.

There are only a few studies that do not focus on defect detection. These stud-
ies align with the main objective of this thesis: to estimate the performance of PV
modules based on their images (Objective SO3). However, most of these studies
concentrate on the module level rather than individual PV cells. This scarcity of re-
search may be attributed to the difficulty in obtaining IV curves of PV cells, which
are necessary to label data for training AI models. While most research relies on
deep learning methods, this thesis will explore alternative approaches that could
also be suitable for solving this problem (Objective SO4).

Another limitation of the majority of works is that the models created for one
kind of PV module or cell are not tested with other kinds. This limitation reduces
the utility of the models since they could underperform with other technologies.
Therefore, testing with various kinds of PV cells is essential (Objective SO6).

The lack of research is further highlighted by the absence of a public dataset of
EL images that includes information about the energy production of each sample.
Existing datasets are primarily designed for defect detection, providing only defect-
related information for each sample. This issue can be addressed by creating public
datasets comprising both measured and synthetic data (Objective SO1).

GANs have been previously utilized to generate synthetic EL images of PV cells
and represent the state of the art in synthetic data creation across various fields.
However, there is no public dataset available that includes labels related to the the-
oretical performance of these synthetic PV cells (Objective SO2).
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Chapter 4

Materials

The main work of the thesis has been performed by manually collecting the data,
creating various datasets, and developing the models for problems. This divides the
materials needed into four different categories: The PV cells and masks used, the
materials needed for measuring the I-V curve of the cells, the ones needed for cap-
turing the EL image of the cells, and the materials used in the processes of creating
the models.

4.1 Photovoltaic Cells and Masks

The PV cells used in the experiments can be classified according to their tech-
nology and number of busbar bars. Fig. 4.1 presents a sample of each kind of PV
cell.

(A) Polycrystalline with 4 bus-
bar (Poly-4).

(B) Monocrystalline with 3
busbar (Mono-3).

(C) Monocrystalline with 4
busbar (Mono-4).

FIGURE 4.1: Different Kinds of PV cells used in the experiments.

The cells that were measured were originally brand-new cells, most of them did
not present any defects. To improve the data, it was necessary to create artificial
masks that imitated defects or shadows presented in cells installed in operating
farms. These masks are capable of absorbing sun irradiation since they were cre-
ated by combining cardboard with foil.
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4.2 Materials for measuring the I-V curves of the cells

The measuring of the I-V curves was performed using a Three Quadrants I-V
tracer capable of measuring at the Cell Level. According to its specifications, it has a
resolution of 25 mA in current and 1 mV in Voltage. More details can be found in its
original paper [181].

The PV cells were illuminated by LED array composed of 42 infrared LEDs. (Fig.
4.2)

FIGURE 4.2: Led Array used in the experiments

Fig. 4.3 presents the setting used for these measurements.
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FIGURE 4.3: Setting used to measure the I-V Curves of the PV cells.
Extracted from [59].

Some additional tools were needed to perform correctly the measurements:

• Insulated Box

• Power Supplies for the LED Array and the I-V tracer.

• Multimeters.

• Wire.

• Soldering station for connecting the I-V tracer with the PV cells with wire.

• Fan used to cool the LED array and the PV cell.

• A computer used to communicate with the I-V tracer.

4.3 Materials for Capturing the EL image of the cells

The EL images were obtained using a silicon detector camera, specifically the
InGaAs C12741-0, equipped with an 8 mm focal length lens and an f number of 1.4.
Fig 4.4 presents the setting used for obtaining these images.
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FIGURE 4.4: Setting used to capture the EL image of the PV cells.
Extracted from [182].

Some additional tools were needed to perform correctly the measurements:

• Power Supplies for the PV cells and the camera.

• Multimeters.

• Wire.

• Soldering station for connecting the Power Supply with the PV cells with wire.

• A computer to communicate with the camera.

4.4 Materials used in the processes of creating the models

The experiments were run in a laptop with an AMD Ryzen 7 5800H CPU, 16 GBs
of RAM memory, and a Nvidia Geforce GTX 1650 as GPU.

The preprocessing and labeling of the Data have been conducted using Python,
using scientific libraries such as Matplotlib, OpenCV, Numpy and SkImage.

The experiments and analysis of the results have been performed using Python
with libraries such as Tensorflow, Sklearn and Matlab with applications such as
Fuzzy Designer, Wavelet Image Analyzer, Regression Learner, and Classification
Learner.
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Chapter 5

Methodology

To achieve the objectives outlined in the thesis, an experimental research method-
ology inspired by classical methodologies [183], [184] has been adopted. This method-
ology is divided into several phases:

1. Identifying the Research Problem: The process initiates with pinpointing the
issues that need to be addressed.

2. Literature Review: A comprehensive review of state-of-the-art research about
the identified issues is conducted to grasp the context and establish a robust
theoretical foundation.

3. Objective Setting: Specific objectives are defined to steer the research and guide
the experiments that will be undertaken.

4. Experiment Design: Experiments are meticulously designed to fulfill the es-
tablished objectives, adhering to an appropriate methodological approach.

5. Data Collection: The methodology for acquiring the necessary data is carefully
planned and implemented.

6. Execution of Experiments: The experiments are conducted according to the
designed protocols.

7. Analysis of Results: The outcomes of each experiment are scrutinized to eval-
uate their alignment with the objectives. In cases where expectations are not
met, adjustments are made to the experimental approach, and experiments
may be repeated.

8. Publication of Findings: The most significant results are disseminated and
published in scientific journals or presented at conferences.

5.1 Methodology Overview

After defining the global objective and the first analysis of the State of the art
was performed, it was necessary to start the procedure of obtaining of the data since
there were not any available datasets suitable for the experiments. This procedure
was divided into two different processes: capturing the EL images and measuring
the I-V curves of the Polycrystalline PV cells. They will be explained in Section 5.2.
This completed objective SO1, however, the gathering of data continued during all
the whole thesis.
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During the creation of the dataset, it was evident that the nature of the problem
provoked an unbalance in the data. It is known [62], [185], [186] that underrepre-
sented classes have problems when they do not have enough samples of the data.
To solve this issue, a review of the state of synthetic images was performed and it
was found that Generative Adversarial Networks are capable of creating synthetic
images while maintaining the characteristics of the original images. The following
experiment was planned:

• Creation of a Synthetic Dataset using Generative Adversarial Networks (Ex-
plained in chapter 6.1) :

– Objective: Improve the amount of available data (Objective SO2)

– Expected Result: A synthetic dataset with labeled data similar to the orig-
inal dataset.

After creating the synthetic dataset, the next step was the creation of the first
working model capable of fulfilling the objective SO3. After researching the topic,
an approach based on features extracted from the images was proposed with the
following experiment:

• Creation of a estimator based on features (Explained in chapter 6.2) :

– Objectives: Creation of models capable of estimating the output power
of PV cells (Objective SO3). Analysis of the unbalance of the data in the
problem (Objective SO2).

– Expected Result: Models capable of providing an estimation with low
error.

The obtained models were capable of solving the problem and fulfilling the ob-
jective SO3. However, objective SO4 required the creation of additional models in
order to explore new approaches and methods for the problem. The following ex-
periments were planned:

• Creation of a Classifier based on Fuzzy Logic (Explained in chapter 6.3) :

– Objective: Test other technologies or approaches for the problem (Objec-
tive SO4). FL systems provides the rules of the reasoning made by the
algorithm

– Expected Result: A Fuzzy Logic model capable of solving the problem as
a classification.

• Creation of an estimator based on Adaptive Neuro Fuzzy Inference System
(ANFIS) 6.4) :

– Objective: Test other technologies or approaches for the problem (Objec-
tive SO4). This technology combines FL and NN and is capable of solving
problems and providing easy-to-understand rules.

– Expected Result: An ANFIS model capable of solving the problem as a
classification.

These two proposals provide two different alternatives that while do not provide
the same performance as the original models, they have other advantages instead,
completing the objective SO4.
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Another issue observed in the analysis of the data is that some cells presented a
clear discrepancy between their EL images and their I-V curve. A study about this
problem was performed with the following experiment.

• Analysis of the connection Failures(Explained in chapter 6.5) :

– Objective: Analyze the causes of the problems presented by several PV
cells that are not visible directly with their EL image (Objective SO5).

– Expected Result: A technique capable of detecting these kinds of defects
and how they are presented in the PV cells.

This experiment revealed that certain cells exhibited a sequence of resistance de-
fects that were not directly observable in EL images but became apparent when ap-
plying wavelet transform to the EL image. This analysis fulfills the objective SO5.

To achieve objective SO6, a new dataset consisting of Monocrystalline PV cells
was created concurrently with the experiments described in the preceding para-
graph. Following the creation of this dataset, a novel model was developed to ac-
commodate various types of PV cells with the following experiment:

• Improve the estimation with various kinds of PV cells. (Explained in chapter
6.6) :

– Objective: Analysis of the effects of various kinds of PV cells in the per-
formance of the models. (Objective SO6).

– Expected Result: Create a model capable of dealing with various kinds of
PV cells.

This model successfully met the criteria outlined in objective SO6, fulfilling the
final objective that was planned for the thesis. Fig. 5.1 presents a diagram of the
workflow used during this thesis.

FIGURE 5.1: Diagram of the methodology used during the thesis.
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5.2 Dataset preparation

This section explains the processes (gathering of the data, preprocessing, feature
extraction) that have been performed to create the datasets.

5.2.1 Data Gathering

As explained before, it was necessary to obtain two different things from the PV
cells: the EL image and the IV curve. Each one needed a different process.

Calibration of the currents for the LED array and the PV cells

Before taking the measurements it was necessary to determine the irradiance val-
ues that were going to be used and what current were needed to be supplied to the
LED array and the PV cells to obtain the ideal conditions.

• Current for the LED array: An analysis of the injected current was performed,
trying different values of current while measuring the irradiance produced by
the LED array. This experiment was conducted using the Insulated Box cre-
ated for the measurements. All the measurements were taken with a similar
temperature in the LED array since its internal heating can reduce its light pro-
duction. Fig 5.2 presents the tendency line obtained from the measurement,
with an irradiance of 1000 W/m2 when using 2.53 A.

FIGURE 5.2: Relationship between the current provided to the LED
array and the produced irradiance

Since 1000 W/m2 is considered the standard condition, the following values
have been considered.

– 1.27 A: Corresponds with an irradiance of 500 W/m2 (50%)

– 1.52 A: Corresponds with an irradiance of 600 W/m2 (60%)

– 1.78 A: Corresponds with an irradiance of 700 W/m2 (70%)

– 2.03 A: Corresponds with an irradiance of 800 W/m2 (80%)
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– 2.28 A: Corresponds with an irradiance of 900 W/m2 (90%)

– 2.53 A: Corresponds with an irradiance of 1000 W/m2 (100%)

• Current for the PV cell for the EL image: These values were chosen based on
the Short Circuit Current Value of the cells (7.5 A) that was provided by the
manufacturer: 7.5 A (100%), 6.75 A (90%), 6 A (80%), 5.25 A (70%), 4.5 A (60%)
and 3.75 A (50%).

EL images

The EL images were captured using the InGaAs Camera and the setting presented
in Section 4.3. The images were taken in the same conditions of pressure and tem-
perature, varying the values of current injected (7.5 A, 6.75 A, 6 A, 5.25 A, 4.5 A and
3.5 A) in the PV cells to simulate different values of irradiance. Three different kinds
of PV cells have been used, Fig. 5.3 presents a sample of an EL image of each one.

(A) Polycrystalline with 4 bus-
bar (Poly-4).

(B) Monocrystalline with 3 bus-
bar (Mono-3).

(C) Monocrystalline with 4 bus-
bar (Mono-4).

FIGURE 5.3: EL Images of the PV cells used in the experiments.

The various masks (More information in Section 4.3) were applied to the surface
of the PV cells to simulate various kinds of defects or shadows that appear in real in-
stallations on the surface of the PV modules. These masks mostly intend to simulate
soiling defects [18]. Fig 5.4 presents a sample of each type.
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(A) No defects (B) Vertical Line (C) Horizontal Line

(D) Big Circle in the Center (E) Small Circle in the Center (F) Two small circles

(G) Big Circle in a corner

FIGURE 5.4: Samples of EL images with each kind of shadow or de-
fect presented in the dataset

As it can be seen. The obtained images suffer from various problems that will be
fixed in the preprocessing.

I-V Curves

The I-V curves were measured with the IV tracer and the setting presented in
Section 4.2. The measurements were taken in the same conditions of pressure and
temperature, varying the current injected (1.27 A, 1.78 A, 2.03 A, 2.28 A, 2.53 A) in
the LED array to simulate different values of irradiance.

These various values of irradiance were applied along the several masks that have
been explained before. Fig. 5.5 presents the various I-V curves of a single cell, it can
be seen how the values depend on the kind of mask used and the current used in
the LED array.
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FIGURE 5.5: All the I-V curves of a single PV cell. (Polycrystalline
Cell 5)

5.2.2 Image Preprocessing

Removing the luminous noise and dead pixels of EL images

The images present some pixels that present lighter colors due to light leaks pro-
duced by limitations of the insulated setting that was used and Dead pixels of the
lens of the camera (See Fig. 5.6). These pixels reduce the quality of the captured EL
images since they provide bright pixels that do not exist in the real cell.
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FIGURE 5.6: EL image with some strange pixels. The red circles indi-
cate where are samples of these pixels.

To solve this problem, it has been necessary to capture an image with the camera
before capturing each EL image. This image captures the light leaks and the dead
pixels of the lens (See Fig. 5.7).



5.2. Dataset preparation 59

FIGURE 5.7: Image taken before the EL image. The red circles indicate
zones with dead pixels or light leaks.

After that, a subtraction between the EL image and the previous image is per-
formed, this removes any bright pixel that appears on the "dark" image from the EL
image (See Fig. 5.8).

FIGURE 5.8: A zone of an EL image before and after the noise removal

Fixing the Luminosity

Another critical issue of the images is that images are extremely dark. It can be
seen in Fig. 5.9 how the histogram of the image is stacked to the left since it only
uses a range (from 0 to 256) of the values available (from 0 to 65536).
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(A) An EL Image before the luminosity fix

(B) The luminous histogram of the same EL image cell.

FIGURE 5.9: An EL image and its histogram before the luminosity fix

This is fixed by performing a histogram standardization of the images, widening
the histogram to all of the available values. Fig. 5.10 presents an EL image and its
histogram after performing the explained standardization.
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(A) An EL Image after the luminosity fix

(B) The luminous histogram of the same EL image cell.

FIGURE 5.10: An EL image and its histogram after the luminosity fix

Removing the black surrounding areas

The final problem presented by these images is that the images have black ar-
eas surrounding the PV cells. These areas correspond to the walls of the box that
was created for insulating the PV cells, however, they do not provide any kind of
information about the PV cells.

To solve this issue, it is necessary to be able to detect the cell in the images and
remove the other areas. This is obtained by following these steps:

• Binarize the image using several filters to remove the details from the images,
leaving only the most important characteristics. The filters used are Sharpen
Filter, Denoise Filter, Gaussian Filter, Color Reducer, and Closing (See Fig.
5.11). More information about these kinds of processes can be found in the
bibliography [187].
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FIGURE 5.11: An EL image during the process of applying the filters
to binarize the image and calculate the Convex Hull

• Calculate the Convex Hull of the binarized image. (See Fig. 5.11).

• Detect the slope and extreme points of the borders of the Convex Hull by using
Hough Lines. (Fig. 5.12)

• Find the corners of the cell by finding the intersection between the detected
borders. (Fig. 5.12)

FIGURE 5.12: An EL image during the process of detecting the bor-
ders and the corners

• Perform a fix in the position corners depending on the kind of shadow pre-
sented in the EL image.

• Fix the perspective of the image according to the corner points.

• Crop the surrounding areas of the PV cell according to the points

After finalizing this algorithm, the images have been reduced only to the surface
of the cell. (Fig. 5.13) presents to original input and the output for one EL image.
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(A) EL image before the border removal (B) EL image after the border removal

FIGURE 5.13: An EL image before and after the removal of the sur-
rounding areas.

The obtained images are suitable for AI models and visual inspection. Fig. 5.14
presents a sample of each kind of shadow that appears in the dataset after applying
the preprocessing.
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(A) No defects (B) Vertical Line (C) Horizontal Line

(D) Big Circle in the Center (E) Small Circle in the Center (F) Two small circles

(G) Big Circle in a corner

FIGURE 5.14: Samples of EL images with each kind of shadow or
defect presented in the dataset after being preprocessed

5.2.3 Feature Extraction

One of the most important limitations of traditional AI methods such as FL lies
in their inability to process images directly. To overcome this limitation, it is im-
perative to identify and extract pivotal features from the images. This extraction
process involves discerning the most relevant characteristics that effectively repre-
sent the information contained within the images. The forthcoming section delves
into the selection of such features and elucidates the methodologies employed for
their extraction.

Two different methods for Feature Extraction have been developed, a manual
feature extraction based on the histogram and an automatic extraction based on a
Resnet Network [188]. Not every experiment has used all the available features, as
will be explained in each corresponding section.
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Manual Extraction

The features, after being selected manually, have been extracted automatically
from each image. The features chosen are the following:

• Mean, Median, Mode, and Variance values. These values are obtained by tak-
ing into account all the values of the pixels of each image.

• Number of dark pixels, gray pixels, and white pixels presented in the images.
The process for obtaining these features involves partitioning the histogram
into several subgroups and calculating the pixel count within each subgroup
(see Fig. 5.15):

– The color histogram of each image is obtained and accumulated into the
general histogram of all images.

– The minimum point between the first and second peaks is used to sepa-
rate the black area from the gray area.

– The minimum point between the second and third peaks is used to sepa-
rate the gray area from the white area.

– The mean between all of the values of each minimum point is computed.
These values are rounded an used for the limit of each group (0.35 and
0.7). Fig 5.15 presents a cell and its histogram where the 3 different peaks
can be seen, the divisions between the three groups are also presented.

– The amount of pixels of each group is divided by the total amount of
pixels of each image.

FIGURE 5.15: A PV cell and its histogram. Red dots represent the
peaks. The green lines represent the division between the groups for

calculating the features. Extracted from [189].

• Roughness of the histogram of the image, computed by taking into account the
Inflection Points found in the histogram.

• Number of Peaks in the histogram. Only the important important peaks are
considered, The curve has been softened to avoid false peaks provoked by the
irregularities of the histogram.
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• Distance between the two highest peaks. These two peaks correspond with the
peaks of black pixels and the peak of white pixels in the majority of the images

• Height and Width of the two previously explained highest peaks

Resnet Extraction

Pre-trained convolutional networks are widely utilized for feature extraction across
various domains, showcasing excellent performance. In the context of EL images of
solar cells, they have demonstrated promise. Research indicates that models trained
on datasets like ImageNet [190] offer significant advantages due to their remarkable
ability to extract features from diverse images and address different problems [191],
[192]. Among the popular architectures, ResNet [188] stands out, featuring config-
urations ranging from 18 to 152 layers. For the specific problem at hand, ResNet50
was chosen, leveraging its implementation available in the TensorFlow Library [129].
To extract features, the measurements were converted into RGB images and resized
to align with the network’s specifications.

5.2.4 Data Labelling

The I-V curves of the cells provide information about their values of current and
voltage. However, this does not provide direct information about the performance
of the cells.

The Max Power Point (MPP) of the cell provides the best indicator about the
performance its performance, this point corresponds with the maximum value of
power in the Power-Voltage (P-V) Curve. This curve can be computed with the
values of current and Voltage (Power = Voltage ∗ Current), Fig. 5.16 presents a
Current-Voltage curve of a PV cell and the Power-Voltage with the MPP remarked.
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(A) I-V curve of a PV cell

(B) The correspondent P-V curve computed from the values of the I-V
curve. The MPP is marked with a red dot.

FIGURE 5.16: I-V and P-V curves of a PV cell.
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However, the MPP depends on the irradiance presented in the measuring of the
I-V curves. It has been seen in Fig. 5.5 how higher values produce higher values of
Current which results in higher values of Power. This is an issue since the problem
needs a value that is independent of external conditions of the cell such as irradia-
tion. The solution to this issue embarks on standardizing the values of MPP, making
them independent of the irradiance. Two different proposals have been tackled for
this standardization:

• First Proposal: Min Max Normalization with the 5 highest values. This pro-
posal provides an output with a domain [0, 1.1] since there are cells that can
outperform the computed MPP ideal value.

– The MPP values for each measurement are computed.

– The MPP values are divided into six different groups depending on the
irradiance used to take the measures. The following steps will be repeated
for each one.

– The mean of the 5 highest values is considered, this value will represent
the ideal MPP of the cell of that group.

– Each MPP value is divided by the ideal value.

• Second Proposal: Combination of Z-normalization and Min-Max normaliza-
tion. This proposal provides an output with a domain of [0, 1] independent of
the irradiance.

– The MPP values for each measurement are computed.

– The MPP values are divided into six different groups depending on the
irradiance used to take the measures. The following steps will be repeated
for each one.

– A Z-normalization using the mean and the standard deviation is per-
formed on the MPP values.

– A min-max normalization is performed in the z-normalized values.

The processes were performed for each one of the three different kinds of PV cells
that were available. The domain of the output value for each one of the proposals
has been divided into three different intervals (See Table 5.1), this made it possible
to tackle the problem as a classification problem (Chapter 6.3).

TABLE 5.1: Intervals of each one of the classes that have been used to
tackle the problem as a classification

Cells with
good performance

(Class 0)

Underperforming
Cells

(Class 1)

Severely
underperforming Cells

(Class 2)
First Proposal [1.1, 0.825] (0.825, 0.725) [0.725, 0]

Second Proposal [1, 0.75] (0.75, 0.65) [0.65, 0]

The first proposal was proposed with the idea of comparing the MPP values of
each cell with an ideal MPP value that a cell in good condition should have. The
idea of computing the mean of the best values also reduced the problems of extreme
values due to measuring errors. However, it was found that this proposal had some
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drawbacks: The domain was not completely settled, since some cells could have
values bigger than 1. Another problem is that the majority of the values were con-
centrated between 0.6 and 1. (Fig. 5.17). This proposal was used in the experiments
explained in Sections 6.1 and 6.2.

FIGURE 5.17: Histogram of distribution of the output values for both
proposals

The second proposal fixed the problems of the first proposal, since it provides a
domain of [0, 1] with values distributed along all the domain (See Fig. 5.17). This
proposal was used in the experiments explained in Sections 6.3, 6.4, 6.56.6

5.2.5 Obtained Datasets

The processes of gathering of data, preprocessing and labeling the data have re-
sulted in the following datasets composed of the EL images and the output power
values of each sample:

• Poly-4: Composed of 785 samples of Polycrystalline Cells with 4 busbars.

• Mono-3: Composed of 398 samples of Monocrystalline Cells with 3 busbars.

• Mono-4: Composed of 168 samples of Monocrystalline Cells with 4 busbars.

• Mono-Combined: Composed of the 566 samples of Monocrystalline cells (Mono
3 + Mono 4).

• Poly-4 Reduced: Poly 4 reduced to the size of Mono-Combined (566 samples).
The objective of this dataset is simple, having a dataset of the same dimensions
of the Mono-Combined provides a more valid comparison between the models
trained with them.
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• Mono + Poly: Composed of all the 1351 samples available (Poly-4 + Mono-
Combined)

• Mono + Poly Balanced: Dataset comprising all the images from Mono-Combined
and an equivalent number from Poly-4 (Poly-4 Reduced).

Fig. 5.18 shows each one of the explained datasets and the relationship between
them.

FIGURE 5.18: Diagram of the datasets used in the experiments during
developing of the thesis

The datasets are divided into three distinct sets in most of the experiments de-
scribed in the following sections. The allocation percentages for each set are deter-
mined to ensure sufficient samples for training the models to capture all patterns in
the data while retaining enough data for meaningful validation and testing of the
models.
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Chapter 6

Experiments

This chapter presents the experiments conducted throughout the thesis, detailing
the objectives, the data used, model specifications, and outcomes of each experi-
ment. Additionally, a concise summary accompanies each experiment, encapsulat-
ing its key findings and implications.

6.1 GAN generated dataset

The work explained in this section has derived into two publications: one in the
Congress V ICSC-CITIES 2023 in the article [60] and another in the Journal JCR Q2
Sustainability [59].

6.1.1 Objective

The limitation of data is one of the biggest problems with DL models since these
kinds of algorithms need high amounts of data to obtain a good performance. More-
over, it was observed that our datasets had another limitation: they were unbal-
anced. This unbalance of the data was shown in a high amount of cells with an
output power of 0.6-0.8 (based on the first proposal of labeling) (5.2).

This section presents the solution to these two problems: An synthetic dataset.
This dataset increases the number of samples available to train the models (Objective
S01). It also can be used to reduce the difference in number of samples between the
different values. The creation of this Synthetic Dataset was produced using a Deep
Convolutional Generative Adversarial Network (DCGAN) [65].

6.1.2 Structure

The section is structured in the following manner: initially, it provides an intro-
duction to the data employed for training the GAN network. Following this, it delin-
eates the architectures of both the generative and discriminator networks. Lastly, it
describes the training and labeling process and conducts several analyses to demon-
strate their quality.

6.1.3 Data

The GAN model was trained using the polycrystalline Dataset with the first la-
beling method presented in Chapter 5.2 since it was the only one available at that
moment.
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6.1.4 Model

This section presents the architecture and hyperparameters of the two networks
composing the GAN model. It also presents the obtained synthetic images.

Generative Network

The generative network was developed adhering to the principles of the DCGN.
It incorporates three distinct Convolutional Transpose Layers (Deconvolutional) to
generate patterns. The utilization of these layers in conjunction with batch normal-
ization [193] enhances the generative capabilities of the network and improves the
stability of the training process. Leaky Relu [194] is employed as the activation func-
tion, as it typically yields superior performance compared to standard Relu. The
architecture of this network is illustrated in Fig. 6.1. The input to the network (Fig.
6.2a) comprises a random noise array sampled from a normal distribution, while the
output is a 200 × 200 image (Fig. 6.2b). This size selection aims to reduce the com-
putational burden of the algorithm while still producing images with a substantial
amount of information. Further crucial hyperparameters can be found in Table 6.1.

FIGURE 6.1: Architecture of the generative network. Extracted from
[59].

(A) Output image before training. (B) Output image after training.

FIGURE 6.2: Images generated by the GAN before and after training.
Extracted from [59].
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TABLE 6.1: Hyperparameters for both networks. Extracted from [59].

Activation
Function

Loss Function
Learning

Rate
Epochs

Batch
Size

Output
Size

Leaky Relu Cross Entropy 5 ∗ 10−5 800 4 200x200

Discriminator Network

The Discriminator network also adheres to the principles of DCGAN. Utilizing
various Convolutional Neural Networks, the network identifies patterns within the
images. The conventional feed-forward component of the network is omitted, leav-
ing only the output layer. Dropout layers and batch normalization are incorporated
to enhance the network’s generalization capacity and stabilize the training process.
The architecture is depicted in Fig. 6.3. Input consists of a 200 × 200 image, while
the output yields a binary value indicating whether the image represents a real cell
or a forgery. The remaining important hyperparameters are consistent with those of
the Generator and can be found in Table 6.1.

FIGURE 6.3: Architecture of the Discriminator network. Extracted
from [59].

Training

The training was conducted concurrently in both networks using all available
samples. The training process initiates with the Generator Network creating syn-
thetic images using random seeds. Subsequently, a mix of real and synthetic images
is presented to the Discriminator for training. The loss is computed for each net-
work based on the Discriminator’s evaluation results. The evolution of loss for both
networks is depicted in Fig. 6.4. Initially, the loss of the Discriminator network is
notably high during the first epochs as it has not yet learned the patterns of the orig-
inal images, thus unable to distinguish between real and forged images, even when
the forged images closely resemble noise. As the Discriminator gradually learns to
differentiate real images, its loss decreases, leading to an increase in the Generator’s
loss. Subsequently, the Generator’s loss steadily diminishes as it learns to generate
images akin to the originals. By epoch 400, both networks reach critical points in
their loss evolution. Further changes in values are negligible thereafter, indicating
the optimal conclusion of training at that point.
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FIGURE 6.4: Evolution of the Generator and Discriminator loss. Ex-
tracted from [59].

The training was performed with a CPU AMD Ryzen 7 5800H, 16 GB of RAM,
and a GPU Nvidia Geforce GTX 1650. It took 2 hours and 41 min to complete the
training.

Following the conclusion of training, the Generator network was employed to
generate the synthetic dataset. A total of 10,000 distinct images were generated, each
utilizing a unique random seed. Fig. 6.5 showcases a selection of these generated
images.

FIGURE 6.5: Samples of the synthetic images generated by our GAN-
based method. Extracted from [59].
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6.1.5 Labelling of the Synthetic Images

Labeling the synthetic dataset presented a unique challenge. As previously ex-
plained, the values of the original images were determined based on their IV curve,
a process unattainable for synthetic images due to their lack of real-cell representa-
tion, thereby rendering measurement impossible.

To overcome this obstacle, the problem was reframed as a regression task solv-
able through a machine-learning model. The model was trained using the complete
dataset of original images alongside their normalized power (MPP) derived from IV
curves, as detailed in the preceding subsection (comprising 602 samples). The Ran-
dom Forest model was selected for its demonstrated low error rate on the original
dataset and remarkable generalization capabilities in associating MPP with synthetic
images.

The implementation of the algorithm leveraged the Sklearn library for this pur-
pose. Hyperparameter tuning for the RF model was conducted utilizing the Grid
Search method available in the Sklearn library (GridSearchCV), resulting in the de-
termination of optimal values outlined in Table 6.2.

TABLE 6.2: Estimation of Random Forest hyper-parameters using
GridSearchCV. Extracted from [59].

Parameter Range Optimum value
n_estimators [20, 500] 200
max_depth [0, 10] 10
min_samples_split [1, 10] 1
min_samples_leaf [1, 10] 1
min_weight_fraction_leaf [0, 0.8] 0

Since Random Forest is not suitable to work directly on raw images, some fea-
tures were extracted from the images. The features are based on typical statistics
(mean, standard deviation, etc.) and other characteristics directly extracted from the
histogram (amounts peaks, peaks width, peaks height, amount of colors, etc.) (More
information in Chapter 5.2). A complete list can be found in Table 6.3.

TABLE 6.3: Features for Random Forest Regressor. Extracted from
[59].

mean median mode variance std
roughness blacks burned whites others peaks_number

peaks distance peak 0 height peak 0 width peak 1 height peak 1 width

Feature selection (FS) is an important step in the preparation of machine learning
models. We used correlation-based FS. As depicted in Fig. 6.6, the cross-correlation
between all the original sets of features shows that almost no feature is highly cor-
related with the others, except for the standard deviation and the variance, which
are completely dependent on each other, meaning one of them can thus be safely
removed from the final set of features.
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FIGURE 6.6: Correlation Heatmap of the initial set of features. Ex-
tracted from [60].

The dataset underwent division into two subsets: training (67%) and validation
(33%). This decision was made owing to constraints stemming from data limitations,
necessitating a simplified approach. The target variable was defined as the relative
power of each cell, which was standardized to fall within the range of 0 to 1.

The model obtained a Mean Absolute Error (MAE) of 0.041 and a Mean Squared
Error (MSE) of 0.0038 in the validation dataset. The distribution of the predictions
of the model can be found in Fig. 6.7. The low error and the similarity in the dis-
tribution confirm the validity of the model. It can also be observed the distribution
of the prediction for the synthetic dataset. Finally, the images were divided into two
groups, according to their predicted power (class 0 > 0.8 and class 1 <= 0.8). 6963
images were classified as class 0 and 3037 as class 1.
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FIGURE 6.7: Histograms of real and predicted normalized power of
the original and generated dataset. Extracted from [60].

6.1.6 Results

The resulting dataset was divided into two different folders, one for each class:
Class 0 (6963 samples, Fig. 6.8a) represented the images whose relative power is at
least 0.8, and the images in that class can be considered as functional PV cells. Class
1 (3037 samples, Fig. 6.8b) represented the images with a power of less than 0.8, and
the images in that class can be considered as underperforming PV cells.

(A) Sample of images of class 0 (B) Sample of images of class 1

FIGURE 6.8: Sample of images of both classes. Extracted from [60].

Visual Analysis

To ensure the quality and similarity of the images, two distinct methods are pro-
posed: an analysis based on visual characteristics and histograms in this section, and
an analysis based on different metrics in the subsequent section.

As illustrated in Fig. 6.8, the generated images exhibit a comparable structure
while introducing new patterns of shadows different from the original ones. This
notable feature is a consequence of the generative capacity of the GAN, enabling it
to amalgamate various types of shadows observed in the original images to create
novel patterns, thereby enhancing the diversity of shadows within the dataset.
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Fig. 6.9 illustrates the distribution of previously selected features for labeling (re-
fer to Table 6.3). For each feature, the relationship between its values and the relative
power of the cell is presented. Synthetic images are denoted by orange dots, while
original images are represented by blue dots. In most features, the original dataset
images appear as a subset of the synthetic dataset, with exceptions primarily arising
from underrepresented cases. This suggests that synthetic images not only encap-
sulate the characteristics of the original images but also introduce new instances
of defects or shadows while preserving the most significant attributes. This phe-
nomenon is primarily attributed to the generative capabilities of the GAN, which
can generate novel patterns by combining input data patterns, thereby enhancing
dataset diversity. This augmentation potentially leads to improved performance in
machine learning methods leveraging this dataset.

Another noteworthy observation is the absence of the most underrepresented
cases in the original data within the synthetic data. This occurrence is also induced
by the properties of the GAN, as it necessitates a substantial volume of samples to
discern patterns.

FIGURE 6.9: Distribution of the Relative power generated by a cell as
a function of the value of each of the sixteen features used to charac-
terize the images Orange dots: Synthetic Images, Blue dots: Original

Images. Extracted from [60].
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Histogram Analysis

The histogram of images provides valuable insights into their characteristics. Fig.
6.10a displays the mean histogram of all images belonging to class 0 in the original
dataset, alongside the mean for all images of class 0 in the synthetic dataset.

Observing class 0 images, it’s evident that they predominantly consist of light
gray to white pixels (values near 200), with occasional minor defects or shadows
indicated by the presence of black pixels (values near 0). Notably, a discrepancy
between the two datasets is apparent: the synthetic dataset’s images exhibit higher
but narrower peaks and sometimes appear slightly shifted to the left.

Similarly, Fig. 6.10b presents analogous information for images in class 1. These
images are characterized by a significant presence of dark pixels attributable to de-
fects and shadows, with fewer lighter pixels. In the synthetic images, the peak of
black pixels is higher, but its width is narrower. The light pixels in synthetic images
closely resemble those in the original dataset.

(A) Histogram of the images of class 0 (B) Histogram of the images of class 1

FIGURE 6.10: Histograms of the images of each class. Extracted from
[60].

As observed, the histograms of both datasets exhibit a strikingly similar appear-
ance. Any minor disparities are primarily attributable to the augmented variety of
patterns of defects and shadows.

Fig. 6.11 showcases two different cells from class 1: one original and one syn-
thetic, both displaying similar characteristics. Upon visual examination of their
histograms, it’s evident that they share a comparable structure, featuring the same
number of peaks and even positioned similarly. However, synthetic images tend to
exhibit a more symmetrical histogram and a shift from maximum to lower intensi-
ties, as extreme intensity values are less prevalent than in real images.
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(A) A defective synthetic cell with its histogram

(B) A defective original cell with its histogram

FIGURE 6.11: Comparison of a defective synthetic cell and a defective
original cell. Extracted from [60].

Fig. 6.12 depicts the same comparison for two images belonging to class 0. These
images exhibit minimal apparent defects. Their histograms share similar shapes,
evident from the comparable number of peaks and their placement.
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(A) A good synthetic cell with its histogram

(B) A good original cell with its histogram

FIGURE 6.12: Comparison of a good synthetic cell and a good original
cell

Fig. 6.13b illustrates a comparison of histograms depicting the position of the
maximum, predominantly found in the right half of the histograms (gray/white
colors). Both histograms exhibit a similar shape, indicating consistency between the
datasets.

In Fig. 6.13b, histograms of the number of pixels with low values (up to 10%
of the maximum values) are presented. Notably, synthetic images do not entirely
replicate the distribution observed in the original images.

Similarly, Fig. 6.13c displays histograms of the number of pixels in the last decile,
showcasing a similarity in shape with a slight shift to the left. This observation
suggests that while the overall patterns are preserved, the GAN method may have
some limitations in accurately capturing patterns around the most extreme values.
While not critical, this indicates areas where improvement may be warranted in the
GAN methodology.
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(A) Histogram of the position of the peak of
gray/white colors for both original and syn-

thetic images

(B) Histogram of the number of dark pixels
(First Decile) for both original and synthetic

images

(C) Histogram of the number of white pixels
(Last Decile) for both original and synthetic

images

FIGURE 6.13: Comparison of the different aspects of the histograms
of both original and synthetic images

Image Quality Metrics

Previous studies on the synthetic generation of EL images of PV cells have typi-
cally overlooked the crucial aspect of ensuring data quality by employing objective
metrics. The Inception Score (IS) and the Fréchet Inception Distance (FID) emerge
as key metrics for assessing the quality of synthetic images. Below, we elaborate on
both metrics and present their results.

Inception Score

The Inception Score, introduced in 2016 [195], is utilized for evaluating the qual-
ity of generated artificial images. It relies on a pretrained InceptionV3 model [196]
applied to the generated images. This score is maximized under two conditions: the
entropy of the label distribution is minimized, indicating uniformity, and the images
exhibit diversity across all possible labels.

For our analysis, we employed a custom Python implementation based on Ten-
sorFlow. Three datasets were compared: the original dataset, the synthetic dataset,
and a dataset comprising only noise. Each dataset was split into 10 subsets, and the
IS was computed for each subset to calculate the mean and standard deviation. This
approach reduces memory costs and randomization effects.

The mean IS for the original dataset was 2.1440 with a standard deviation of
0.0559, while for the synthetic dataset, it was 2.3418 with a standard deviation of
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0.4079. The noise dataset yielded a mean IS of 1.0506 with a standard deviation of
0.0026. Although neither dataset achieved exceptional results with this metric, they
outperformed the noise dataset. Notably, the similarity between the IS values of
both datasets suggests a high degree of similarity. This underscores the quality of
the synthetic dataset while highlighting areas for improvement.

Fréchet Inception Distance

The Fréchet Inception Distance, introduced in 2017 [197], compares the distribu-
tion of synthetic data with that of original data, assessing the similarity between the
two datasets.

Similarly, a custom implementation based on Python and TensorFlow was em-
ployed for comparison across the same three datasets. Each dataset was divided into
two halves, shuffled, and compared five times to mitigate randomization effects. The
results indicated minimal distances between each dataset with itself. Additionally,
the distance between the original and synthetic datasets was notably lower than that
between either dataset and the noise dataset. This indicates a substantial similarity
between the original and synthetic datasets, suggesting that differences primarily
arise from new patterns of shadows and defects generated through the combination
of different shadows in the original images, facilitated by the generative capacity of
DCGAN models.

Metric Mean Score Std.
IS (O) 2.144 0.055
IS (S) 2.341 0.407
IS (N) 1.050 0.002

FID (O-O) 0.431 0.095
FID (S-S) 0.150 0.025

FID (N-N) 2.511 0.016
FID (O-S) 15.80 0.075
FID (O-N) 293.8 0.366
FID (S-N) 296.7 0.735

TABLE 6.4: Metrics for ensuring the quality of the synthetic dataset.
Original: O, Synthetic: S, Noise: N. Extracted from [59].

6.1.7 Summary

This experiment resulted in the creation of a synthetic dataset which helped to
reduce the problem of data scarcity and imbalance of the data (Objective S01). The
synthetic images were proved to be similar to the original images by analyzing their
histogram and by several similarity metrics. The labeling of the synthetic dataset
was performed using a Random Forest Algorithm.
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6.2 Feature Regressor

The work explained in this section resulted in a publication in the Journal Q2
Solar Energy [162].

6.2.1 Objective

This section presents the first proposal for solving the problem of estimating the
output power of the PV cells using their EL images (Objective SO3) which is the next
step after preparing the data.

The models in this work do not use the images directly, they work with various
features that were extracted from the data. Another issue explored in this section is
the effect of improving the performance of the models by solving the unbalance of
the data (Objective SO2).

6.2.2 Structure

The structure of this section is as follows: first, it introduces the dataset used in
this study. Next, it introduces the methodology used to balance the data. After that,
outlines the developed models. Finally, it delves into the results attained by these
models and offers an analysis of the effects of the unbalance in the data.

6.2.3 Data

The models were trained only with the Polycrystalline Dataset (Section 5.2 and
some data from the Synthetic Dataset (Section 6.1).

6.2.4 Feature Extraction

The two methods for extracting features have been applied in this work: The
manual extraction with every feature and the Resnet Extraction. The synthetic im-
ages have been also processed to obtain their features.

6.2.5 Balacing of the Data

As depicted in Fig. 6.14a, the distribution of cells based on their maximum power
is not evenly balanced. This disparity is inherent to the problem itself. It is typically
easier to encounter cells in a somewhat eroded state or exhibiting minor defects,
compared to cells that are completely broken or in perfect condition.

As observed in other studies [62], [185], [186], dataset imbalance is a prevalent
issue in machine learning that necessitates tailored strategies for resolution. To ad-
dress this challenge, synthetic images were introduced. The process employed can
be summarized in the following steps:

• The original dataset is segmented into four distinct subgroups based on their
power levels: Group 0 (x < 0.7), Group 1 (0.7 ≤ x < 0.8), Group 2 (0.8 ≤ x ≤
0.9), and Group 3 (x > 0.9) (refer to Fig. 6.14b).

• For each group, synthetic images with power values falling within the same
range as the others within the group are incorporated until all groups reach
the size of the largest group.
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(A) Distribution of the power
(B) Distribution of the groups before the aug-

mentation

(C) Distribution of the groups after the aug-
mentation

FIGURE 6.14: Histogram of the distribution of the images before and
after the balancing. Extracted from [162].

This approach aids in achieving a more balanced dataset (refer to Fig. 6.14c).
Various combinations of groups and sizes were experimented with, revealing that
utilizing four groups at the maximum size yielded the most favorable outcomes in
our evaluations. It’s important to note that this balancing technique was solely ap-
plied to the data that was used to train the models.

6.2.6 Models

This section introduces several models developed to identify the most suitable
approach for addressing the problem at hand and the process used to optimize their
performance

Traditional Methods

This section presents a baseline method for predicting power from a single EL
image. Various traditional techniques commonly employed for regression problems
[198] were considered. Among the multitude of available techniques, Random For-
est [199] and Gradient Boosting [200] were selected based on their promising perfor-
mance in preliminary tests and their relatively low computational requirements.

The algorithms were trained with features extracted from the EL images. The im-
plementation used can be found in the Sklearn [201] library for both of the methods.

Hyperparameter Tuning: Tuning hyperparameters is crucial in machine learning
problems as it can significantly enhance model performance. This process becomes
particularly vital in models with a high number of parameters, as finding the right
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adjustments can be complex. Various algorithms have been developed to automate
this task. In this study, GridSearchCV from the Sklearn library [201] was utilized.
GridSearch conducts an exhaustive search over specified parameters, evaluating re-
sults based on the metrics of the model. The optimization results for Random Forest
(RF) can be found in Table 6.5, and for Gradient Boosting (GB) in Table 6.6.

TABLE 6.5: Best hyperparameters found for Random Forest: n_es-
timators ∈ [100, 1000], max_depth ∈ [2, None] , min_samples_leaf
∈ [1, 10] ,min_samples_leaf∈ [1, 10],min_weight_fraction_leaf ∈

[0, 0.8]. Extracted from [162].

n_estimators max_depth min_samples_leaf min_samples_leaf min_weight_fraction_leaf
750 None 1 3 0

TABLE 6.6: Best hyperparameters found for Gradient Boosting: n_es-
timators ∈ [100, 500], max_depth ∈ [2, None] , learning_rate ∈

[0.01, 0.001]. Extracted from [162].

n_estimators max_depth learning_rate
275 None 0.08

Recurrent Neural Networks

Two methods based on Recurrent Neural Networks (RNN) were tested. These
networks are characterized by nodes that can form cycles, allowing them to demon-
strate temporal dynamic behavior. One of the methods utilizes Long Short-Term
Memory (LSTM) [202], while the other is based on Gated Recurrent Unit (GRU)
[203] [204]. The implementation was carried out using TensorFlow [129].

Optimization The optimization of hyperparameters is a highly intricate process
in the design of deep learning models. Manual tuning is impractical due to the
vast number of parameters and their possible values. To address this challenge, the
Keras-Tuner library [205] was selected.

This library offers different optimizers, including the Bayesian Optimization Tuner
[206]. This algorithm leverages past evaluation results when selecting the hyperpa-
rameter to evaluate next, thereby improving the search within the most promising
regions of the search space. It also disregards less promising areas, reducing the
iterations required to find the optimal set of parameters.

Several parameters were chosen for optimization: the learning rate, batch size,
number of hidden layers, and number of nodes in each layer (with an increment
of 16 nodes each time). The optimization process was conducted for 32 iterations.
Adam was used as the optimizer. The best results can be found in Table 6.7.

TABLE 6.7: Best hyperparameters found for Recurrent
Neural Networks: num_layers ∈ [2, 3, 4, 5, 6], num_units
∈ [16, 32, 64, 125, 256, 512], batch_size ∈ [16, 32, 64, 80, 96, 112, 128],

learning_rate ∈ [0.001, 0.00001]. Extracted from [162].

RNN num_layers num_units batch_size learning_rate
LSTM 6 512 16 0.000219
GRU 2 16 16 0.001
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Architecture The architecture of the best model according to the tuning process
can be found in Fig. 6.15.

(A) LSTM network (B) GRU network

FIGURE 6.15: Final Architectures of the Recurrent Networks. Ex-
tracted from [162].

Convolutional Neural Networks

This section introduces a CNN-based approach for predicting the power of a cell
based on its EL image. CNNs are well-suited for image-related tasks as they can
effectively perform feature extraction using their convolutional layers. The imple-
mentation of these models is carried out using TensorFlow.

Architecture The architecture of the neural network was selected through a man-
ual process. The networks were trained for 500 epochs, and the best-performing
model from each option was deemed the final one. The investigation revealed that
the optimal architecture comprised two convolutional layers with 64 and 128 units
respectively, followed by a dense layer with 256 units (refer to Fig. 6.16).

This architecture was determined after conducting a trial-and-error process with
various architectures, aiming to minimize validation error. Due to hardware limita-
tions during experimentation, automatic optimization methods were not feasible.
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FIGURE 6.16: Final Architecture for the Convolutional Network, Ex-
tracted from [162].

Optimization Bayesian Tuner from Keras-Tuner was also applied in the experi-
ments involving CNNs, optimizing parameters such as the learning rate and batch
size. The optimization process was executed for 32 iterations, utilizing Adam as the
optimizer. The best results obtained from these experiments can be found in Table
6.8.

TABLE 6.8: Best hyperparameters found for Convolutional Neu-
ral Networks: batch_size ∈ [16, 32, 64, 80, 96, 112, 128], learning_rate

∈ [0.001, 0.00001]. Extracted from [162]

batch_size learning_rate
16 0.00005

6.2.7 Results

This section evaluates the performance of various methods for predicting the
power of a cell by comparing different approaches based on their performance met-
rics. Each experiment was repeated five times using the parameters identified dur-
ing hyperparameter optimizations. This approach ensured the stability and quality
of the results for each method.

Training only with original images

The results of the experiments using only the original dataset are provided in
Table 6.9.
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TABLE 6.9: Results using the polycrystalline dataset. Extracted from
[162].

Metric MAE MSE
Data Train Validate Test Train Validate Test
GB 0.00222 0.03674 0.03667 ± 0.00148 4.67e-05 0.00224 0.00290 ± 0.00006
RF 0.01432 0.03821 0.03721 ± 0.00179 0.00287 0.00227 0.00285 ± 0.00002
LSTM 0.03682 0.04602 0.04397 ± 0.00386 0.00257 0.00343 0.00354 ± 0.00027
GRU 0.03805 0.04615 0.04637 ± 0.00402 0.00258 0.00343 0.00386 ± 0.00008
CNN 0.01181 0.03328 0.03630 ± 0.00160 0.00039 0.00202 0.00301 ± 0.00005

The results demonstrate that CNN exhibits superior performance in terms of
MAE, while RF outperforms others when considering MSE. However, methods based
on Recurrent Networks show considerably poorer performance compared to other
approaches. Despite encountering the challenge of unbalanced data, notably good
results were achieved across all methods. These findings will be further elaborated
and discussed in subsequent analyses.

Training with original + synthetic images

The results of the experiments balancing the original dataset with synthetic im-
ages are presented in Table 6.10.

TABLE 6.10: Results using the balanced dataset. Extracted from [162].

Metric MAE MSE
Data Train Validate Test Train Validate Test
GB 0.00233 0.03647 0.03708 ± 0.00316 8.62e-05 0.00206 0.00282 ± 0.0006
RF 0.00980 0.03712 0.03747 ± 0.00394 0.00980 0.002155 0.002935 ± 0.0001
LSTM 0.01998 0.04497 0.04068 ± 0.00340 0.00114 0.00332 0.00349 ± 0.00008
GRU 0.02582 0.04601 0.04870 ± 0.00439 0.00149 0.00357 0.00430 ± 0.00004
CNN 0.01071 0.03255 0.03407 ± 0.00255 0.00034 0.00192 0.00284 ± 0.00005

The results of the experiments with both the original dataset and the balanced
dataset show similarities. In methods utilizing features, there is a slight increase in
both errors, while in CNN, which operates directly on images, there is a slight de-
crease in errors. From these findings, two conclusions can be drawn: either manual
feature extraction is insufficient for this problem, or the imbalance in the original
dataset does not significantly impact the performance of the models. To validate the
first hypothesis, we will further investigate the feature extraction methods outlined
in the methodology section.

Using Resnet

For this experiment, only the two most promising feature-based methods from
the previous section are considered. (GB and RF). The results of both methods are
compared using both the original dataset and the balanced dataset.

TABLE 6.11: Results of using Resnet for feature extraction (R): Origi-
nal Dataset, (S): Balanced Dataset. Extracted from [162].

Metric MAE MSE
Data Train Validate Test Train Validate Test
GB (R) 0.001000 0.032786 0.034277 ± 0.00293 1.63e-05 0.003078 0.002271 ± 0.0001
RF (R) 0.009926 0.035272 0.034684 ± 0.00251 0.000202 0.003469 0.002332 ± 0.0001

GB (S) 0.001957 0.032993 0.034143 ± 0.00307 5.12e-05 0.003183 0.002116 ± 0.0001
RF (S) 0.009926 0.034884 0.034559 ± 0.00248 0.000202 0.003444 0.002319 ± 0.0001
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As depicted in Table 6.11, both Gradient Boosting (GB) and Random Forest (RF)
exhibit superior performance with this feature extraction method. Their results even
surpass those of CNN in terms of Mean Squared Error (MSE), albeit slightly under-
performing in terms of Mean Absolute Error (MAE).

GB is considered the best model for two primary reasons: First, MSE is deemed
a more suitable metric than MAE in this problem, as it places greater emphasis on
outliers. This property of MSE is beneficial for dealing with problems characterized
by data imbalance. Second, the computational cost of GB [207] is considerably lower
than that of CNN [208], even after utilizing ResNet for feature extraction.

Fig. 6.17 presents a summary of all the experiments.

FIGURE 6.17: Box Diagram of the Experiments. Extracted from [162].

It is also notable that the utilization of synthetic images for balancing the dataset
does not significantly alter the performance of the models; however, it does not
worsen their performance either. From this observation, it can be inferred that
the problem of dataset imbalance does not detrimentally affect the models’ perfor-
mance. Moreover, this reaffirms the quality of the synthetic images.

Fig. 6.18 illustrates the relationship between the actual values and predictions.
It is observed that the majority of samples exhibit a distance within the range of
[−0.1, 0.1], with only a few outliers at the extreme ends. This indicates that the
method is not biased toward specific values and demonstrates a balanced predic-
tion distribution across the dataset.
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FIGURE 6.18: Relation between the values and error. Extracted from
[162].

6.2.8 Summary

This experiment resulted in the comparison of various models (Objective S01),
resulting in CNN and Gradient Boosting being the ones with better results. This
work has also explored various feature extraction methods, with the use of a Resnet
as a extractor the best one. Finally, it has proven that the effects of unbalance in the
data are not critical in this problem.
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6.3 Fuzzy Classifier

The work explained in this section resulted in two papers: One presented in the
congress VI ICSC-CITIES 2024 in the article [189], another work is still in publica-
tion process [209].

6.3.1 Objective

The following step after obtaining a working model was to test other technologies
and approaches (Objective S04).

This section elucidates a different way of analyzing the condition of photovoltaic
cells, changing the proposal of estimating the output power into a classification.
Moreover, a Fuzzy Logic model is proposed for it, which is capable of solving the
problem by analyzing the distribution of the intensity of the pixels of the EL Images.
The FL also provides easy-to-understand rules for humans and its requirements are
considerably lower than other methods such as Neural Networks.

6.3.2 Structure

This section is organized as follows: initially, it introduces the dataset utilized in
this study. Subsequently, it describes the developed models. Finally, it details the
results achieved by these models and provides a comparative analysis with several
other learning methods.

6.3.3 Data

The FL model was trained originally only using the Polycrystalline dataset but
the work performed to extend the article included the inclusion of the Monocrys-
talline dataset using the second labeling method that was presented in Chapter 5.2.
The images that presented Series Resistance problems were not included in the ex-
periments.

6.3.4 Feature Extraction

FL models have an important limitation since they are not capable of dealing
directly with images. As explained before, several features have been extracted from
the images to make them suitable for these algorithms.

Only three manual features have been chosen for these FL models, that will be
work as their inputs: The proportion of white pixels, the proportion of gray pixels,
and the proportion of black pixels. More information can be found in Chapter 5.2.

6.3.5 Model

This section introduces several FL Models employing the Mandami Inference
System. Each model has been trained with a different dataset: One model for the
Polycrystalline and another for the Monocrystalline. As previously outlined, the
primary aim of this study is to categorize PV cells based on their performance crite-
ria. FL models offer notable advantages for this task, as they generate interpretable
rules directly comprehensible to humans. Additionally, FL models do not necessitate
high-end computational resources.
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The Mandami Inference System was chosen among the other kinds of inference
systems since it shows a high expressive power while providing rules that are easily
understandable by humans.

The models presented herein were developed using the Fuzzy Logic Designer
tool in Matlab. Design parameters were fine-tuned through a combination of expert
knowledge and iterative refinement, optimizing the accuracy of the model outputs.

FIGURE 6.19: Structure of the designed Fuzzy Logic model with its
three inputs (Black, Grays, Whites) and the 2 outputs (Classification

Results and Warning Signal). Extracted from [209].

The models retain the same basic structure (see Fig. 6.19) using the extracted
features as inputs and providing two outputs: The results of the classification and
an output that works as a warning about inputs that are not logical in this context
(proportions not adding 100% or really high values in an input such as grays 100%).

Membership Functions

Each input (Blacks, Grays, and Whites) is characterized by three membership
functions corresponding to the proportion of pixels of that type in the image: Low,
Medium, and High. These functions were meticulously designed through a manual
process using the knowledge of experts and aiming to enhance the performance
of each model on its respective training dataset. The membership functions have
varied on the dataset used (refer to Fig. 6.20).
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(A) Membership functions of the input variable: Proportion of Black pixels

(B) Membership functions of the input variable: Proportion of Gray pixels

(C) Membership functions of the input variable: Proportion of White pixels

FIGURE 6.20: The membership functions for the three different in-
puts of the Fuzzy Logic Model. Green Values shows the values for
the Monocrystalline dataset and Green Values of the Polycrystalline

dataset. Extracted from [209].
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The classification output is also represented by three distinct membership func-
tions, each associated with the amount of power produced by the cell and its perfor-
mance (see Fig. 6.21): High (Class 0, cells with good performance), Medium (Class 1,
cells that do not meet expected performance), and Low (Class 2, cells with extremely
low performance). These membership functions are consistent across both models.

FIGURE 6.21: Membership functions obtained for the classification
output of the Fuzzy Model. Extracted from [209].

The Warning output is represented by a pair of membership functions: Negative
and Positive (Refer to Fig. 6.22).

FIGURE 6.22: Membership function obtained for the Warning Output
designed to detect invalid combinations of inputs. Extracted from

[209].
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Ruleset of the models

The rules were devised based on the expertise of professionals in the field, who
comprehended the impact of defects on cell performance and the nuances of the
I-V curve’s output power. This knowledge was utilized to formulate rules for cat-
egorizing images into their respective classes, aiming to enhance the accuracy of
classification within the training set.

It’s worth noting that the warning output is not factored into the training metrics,
as its purpose is to flag incorrect values in the inputs. The process of determining
the optimal parameters was entirely manual, a departure from other algorithms like
Machine Learning methods.

As mentioned earlier, neither of the two models incorporated the validation set
into their training processes, ensuring potential biases are minimized during testing.

Rule Black Gray White
Classification

Output
Warning

Signal
1 L L L L (0) +
2 L L M H (2) -
3 L L H H (2) -
4 L M L H (2) -
5 L M M H (2) -
6 L M H H (2) -
7 L H L M (1) -
8 L H M H (2) -
9 L H H H (2) +
10 M L L L (0) +
11 M L M M (1) -
12 M L H M (1) -
13 M M L M (1) -
14 M M M M (1) -
15 M M H M (1) +
16 M H L L (0) -
17 M H M L (0) +
18 M H H L (0) +
19 H L L L (0) -
20 H L M L (0) -
21 H L H L (0) -
22 H M L L (0) -
23 H M M L (0) -
24 H M H L (0) -
25 H H L L (0) +
26 H H M L (0) -
27 H H H L (0) +

TABLE 6.12: Fuzzy Ruleset of both models. Black, Gray, and White
are the inputs. Classification output and Warning Signal the outputs.
H: High; M: Medium; L: Low; +: Positive; -: Negative. Extracted from

[209].
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Figure 6.23 illustrates a 3D surface diagram depicting the relationship between
the classification output and two inputs: Black and Gray. This diagram visually
represents how the input values correlate with the output. For instance, lower values
of Blacks correspond to an output of Class 0, while Class 1 is associated with Blacks
ranging between 20

FIGURE 6.23: 3D surface diagram illustrating the impact of inputs
Black and Gray on the output. Extracted from [209].

6.3.6 Results

This section presents the performance evaluation of the models on the validation
sets, along with a comparative analysis against alternative methods created using
the Classification Learner tool in Matlab.

The model achieved an accuracy of 99.11% on the Validation set of the Polycrys-
talline dataset. Figure 6.24 illustrates the classification results, including the confu-
sion matrix and accuracy for each class. The results indicate high accuracy across all
classes, although Class 1 exhibits a slightly lower accuracy. Notably, classification
errors only occur between adjacent classes, with no instances of misclassifying an
image from Class 0 as Class 2 or vice versa.

FIGURE 6.24: Confusion Matrix and Accuracy of the classification of
the FL model for Polycrystalline cells on the Validation Set. Extracted

from [209].
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The results on the validation set of the Monocrystalline model (Fig. 6.25) show
a slightly lower accuracy compared to the previous case, achieving an accuracy of
98%. Similar to the Polycrystalline dataset, there are no miss-classifications between
Classes 0 and 2.

FIGURE 6.25: Confusion Matrix and Accuracy of the classification
of the FL model for Monocrystalline cells on the Validation Set. Ex-

tracted from [209].

A variety of algorithms were chosen for comparative analysis with the method
presented in this study, all of which are available in the Classification Learner appli-
cation of Matlab. These algorithms include Decision Trees, Discriminant Analysis,
Logistic Regression Classifiers, Naive Bayes Classifiers, Support Vector Machines,
Nearest Neighbor Classifiers, and Ensemble Classifiers. Notably, Decision Trees
and Ensemble Classifiers showed the highest results across both Polycrystalline and
Monocrystalline datasets.

Refer to Table 6.13 for a comprehensive presentation of the results of the selected
algorithms. While they exhibited commendable classification capabilities, their per-
formance still falls behind the proposed method, as evidenced by the observed accu-
racy metric. This highlights the importance of incorporating fuzzy logic to address
the complexities of the problem effectively.

TABLE 6.13: Accuracy of the proposed FL models versus the best-
performing ML tested method. Extracted from [209].

Fuzzy Model Ensemble Classifiers Decision Trees
Polycrystalline 99,11% 98,32% 96,45%

Monocrystalline 98,12% 96,27% 97,17%

6.3.7 Summary

This experiment resulted in the creation of a Fuzzy Logic classifier (Objective S04)
capable of solving the problem. The classification approach reduces the complexity
of the problem but it also reduces the amount of information. However, the Fuzzy
Logic provides additional information about how the logic was used to perform the
classifications.
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6.4 ANFIS Regressor

The work explained in this section resulted in two articles: One was presented
in the congress VI ICSC-CITIES 2024 in the article [210], and another one is still in
publication process [73].

6.4.1 Objective

As in the previous experiment, another alternative to the original proposal has
been considered (Objective S04), in this case using a combination of Deep Learning
and Fuzzy Logic which reduces the limitations of Fuzzy Logic while still provides
the an understable knowledge.

Two different models are created, a basic one using only the features obtained
by the images and an improved model that uses an additional input based on the
results of the FL classifiers that were explained in Section 6.3.

6.4.2 Structure

.

This section is organized as follows: initially, it introduces the dataset utilized
in this study and the methodology employed for extracting information from im-
ages. Subsequently, it describes the developed models. Finally, it details the results
achieved by these models and provides a comparative analysis with several other
learning methods.

6.4.3 Data

The ANFIS models were trained only using the Polycrystalline dataset using the
second labeling method that was presented in Chapter 5.2. The images that pre-
sented Series Resistance problems were not included in the experiments.

The data is divided into three different sets: Training, Validation, and Testing.
Only training and validation are used in the training phase.

6.4.4 Feature Extraction

ANFIS algorithms are incapable of processing directly images. As in Section 6.3,
it is necessary to obtain the most important characteristic that effectively represents
those images.

The process to obtain these features is the same as in Section 5.2, the pixels of
each image are divided into three groups and the proportion of pixels in each group
is computed for every image. This provides three features: The proportion of black
pixels, the proportion of white pixels and the proportion of gray pixels.

6.4.5 Models

The models were implemented using the Neuro-Fuzzy Designer application in
Matlab, providing a user-friendly platform for model development, optimization,
and visualization. Through this tool, architects could efficiently create, fine-tune,
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and analyze models using diagrams and graphical representations. They were de-
signed using the Takegi-Sugeno inference system.

The architectural design of the models was meticulously executed to optimize the
performance metrics, particularly focusing on Mean Absolute Error (MAE), Mean
Square Error (MSE), and Root Mean Square Error (RMSE) during training and tun-
ing. This iterative process involved extensive experimentation with critical parame-
ters like training epochs and the count and type of input membership functions. The
objective was to strike a delicate balance that mitigates overfitting while achieving
an optimal number of rules, all within computational constraints.

The models have been trained using data from two sets: Training and Validation.
The testing set is not taken into account in the construction and tuning of the models.
The optimization process encompasses the integration of backpropagation for the
input membership functions and least squares for the outputs, with the overarching
goal of minimizing the RSME for the output.

Optimization of input membership functions was carried out methodically, com-
bining manual selection with automatic adjustment. In the manual phase, deliber-
ate decisions were made regarding the shape and count of membership functions
for each input. Concurrently, during network training, an automatic process fine-
tuned the intervals’ size and intersections. Various shapes, including Phi-Shaped,
Trapezoidal, Triangular, Simple Gaussian, and Double Gaussian, underwent thor-
ough testing. Notably, the Double Gaussian function demonstrated superior perfor-
mance compared to others.

ANFIS model

This section presents the details of the basic model, its architecture, the evolution
of the metrics during the training phase, and the obtained membership functions
and rulesets.

Model and Architecture The model comprised three inputs, each corresponding to
one of the extracted features. The determination of the number of functions for each
input involved a manual exploration. It was found that the optimal configuration
consisted of 2 functions for the Blacks feature, 4 functions for the Grays feature,
and 5 functions for the Whites feature. This meticulous optimization process aimed
to strike a delicate balance, mitigating the risk of overfitting while maintaining a
manageable number of rules without imposing undue computational burdens.

The finalized model encompasses a total of 40 if-then rules, derived from the
integration of unique input membership functions. These functions consist of 2 for
Blacks, 4 for Grays, and 5 for Whites, collectively yielding 40 rules. The architectural
configuration of the model is visually depicted in Fig. 6.26.

Training The training was conducted over 1000 epochs. Fig. 6.27 illustrates the
progression of the RMSE throughout the training process. Notably, around epoch
600, the validation error reaches its lowest point (0.0911). However, beyond this
epoch, the error consistently rises, indicating a clear instance of overfitting.

Fig. 6.28 illustrates the membership functions of the inputs that were obtained
after the manual tunning and the training process
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FIGURE 6.26: Architecture of the model. Black, Grays, and Whites
are the inputs. Estimation Result is the output. Extracted from [73].

FIGURE 6.27: Changes in training and validation errors throughout
the training process. Extracted from [73]

Rules As detailed earlier, the rules are automatically acquired in the course of the
training process. Table 6.14 provides a comprehensive overview of the 40 rules gov-
erning the system, outlining each conceivable combination of inputs.

3D surface graphs elucidate the correlations between input features and outputs,
providing a graphical depiction of the internal logic within the Fuzzy models. In
Fig. 6.29, the impact of Whites and Grays on power estimation is showcased. This
visualization underscores how alterations in both variables significantly affect the
system’s output.

Improved Model

This section presents the details of the improved model, its architecture, the evo-
lution of the metrics during the training phase, and the obtained membership func-
tions and rulesets.
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(A) Membership functions after training for input: Blacks

(B) Membership functions after training for input: Grays

(C) Membership functions after training for input: Whites

FIGURE 6.28: The membership functions for the three different inputs
of the ANFIS model. A combination of manual optimization and the
automatic training process was performed to obtain them. Extracted

from [73].

The main improvement of this method is that it has an additional input. This
new input called "Fuzzy Class" is obtained from the classifier presented in Section
6.3. This new input helps the estimator to improve its prediction. Details about the
FL model can be found in its section.

Model and Architecture .

The number and shape of membership functions for the original inputs (Blacks,
Grays, Whites) have been retained in the extended model. The Fuzzy Classifica-
tion input is characterized by three Double Gaussian membership functions. Fig.
6.30 illustrates the ANFIS model’s architecture, featuring 4 inputs, 14 membership
functions, 120 rules resulting from the combination of all membership functions
(2 × 4 × 5 × 3 = 120), and a single output.
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TABLE 6.14: Fuzzy Rules of the model. Black, Gray, and White are
the inputs. Estimation is the output. H: High; M: Medium; L: Low;
LH: Low High; LM: Low Medium; LH: Low High. Extracted from

[73]

Rule Black Gray White
Estimation

Output
Rule Black Gray White

Estimation
Output

1 L L LL 21 H L LL
2 L L L 22 H L L
3 L L LM 23 H L LM
4 L L LH 24 H L LH
5 L L H 25 H L H
6 L LM LL 26 H LM LL
7 L LM L 27 H LM L
8 L LM LM 28 H LM LM
9 L LM LH 29 H LM LH

10 L LM H 30 H LM H
11 L LH LL 31 H LH LL
12 L LH L 32 H LH L
13 L LH LM 33 H LH LM
14 L LH LH 34 H LH LH
15 L LH H 35 H LH H
16 L H LL 36 H H LL
17 L H L 37 H H L
18 L H LM 38 H H LM
19 L H LH 39 H H LH
20 L H H 40 H H H

FIGURE 6.29: 3D surface diagram illustrating the impact of inputs
White and Gray on the output.

Training The model undergoes the same training process as the original one. Fig.
6.31 illustrates the dynamic evolution of errors throughout the training phase, at-
taining its minimum in the validation set during the final epoch with an RMSE of
0.0874.

Figure 6.32 depicts the membership functions of this extended model. As ob-
served, the functions for Blacks, Whites, and Grays closely resemble those of the
original model.
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FIGURE 6.30: Architecture of the model. Black, Grays, Whites, and
Fuzzy Class are the inputs. Estimation result is the output. Extracted

from [73].

FIGURE 6.31: Changes in training and validation errors throughout
the training process

Rules Table 6.15 and Table 6.16 present the 120 obtained during the training phase,
for each combination of the inputs.

In Fig. 6.33, the 3D diagrams of the surface of the rules are presented. Specifically,
Fig. 6.33a illustrates the relationship between the output, Cell Class, and Whites,
while Fig. 6.33b displays the relationship between the output, Grays, and Blacks.
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(A) Membership Function of the input: Blacks

(B) Membership Function of the input: Grays

(C) Membership Function of the input: Whites

(D) Membership Function of the input: Fuzzy Class.

FIGURE 6.32: The membership functions for the four different in-
puts of the improved ANFIS model. A combination of manual opti-
mization and the automatic training process was performed to obtain

them. Extracted from [73].

6.4.6 Results

This section addresses the capabilities of the developed models, examining their
performance and identifying potential weaknesses. Initially, the performance of
models is evaluated across the different sets. After that, a comparative analysis is
conducted to assess how the model performs in comparison to other ML models.



106 Chapter 6. Experiments

TABLE 6.15: Fuzzy Rules 1-60 of the model. Black, Gray, and White
are the inputs. Estimation is the output. H: High; M: Medium; L:
Low; LL: Low Low; LM: Low Medium; LH: Low High. Extracted

from [73].

Rule Black Gray White
Fuzzy
Class

Estimation
Output

Rule Black Gray White
Fuzzy
Class

Estimation
Output

1 L L LL 0 31 L LH LL 0
2 L L LL 1 32 L LH LL 1
3 L L LL 2 33 L LH LL 2
4 L L L 0 34 L LH L 0
5 L L L 1 35 L LH L 1
6 L L L 2 36 L LH L 2
7 L L LM 0 37 L LH LM 0
8 L L LM 1 38 L LH LM 1
9 L L LM 2 39 L LH LM 2
10 L L LH 0 40 L LH LH 0
11 L L LH 1 41 L LH LH 1
12 L L LH 2 42 L LH LH 2
13 L L H 0 43 L LH H 0
14 L L H 1 44 L LH H 1
15 L L H 2 45 L H H 2
16 L LM LL 0 46 L H LL 0
17 L LM LL 1 47 L H LL 1
18 L LM LL 2 48 L H LL 2
19 L LM L 0 49 L H L 0
20 L LM L 1 50 L H L 1
21 L LM L 2 51 L H L 2
22 L LM LM 0 52 L H LM 0
23 L LM LM 1 53 L H LM 1
24 L LM LM 2 54 L H LM 2
25 L LM LH 0 55 L H LH 0
26 L LM LH 1 56 L H LH 1
27 L LM LH 2 57 L H LH 2
28 L LM H 0 58 L H H 0
29 L LM H 1 59 L H H 1
30 L LM H 2 60 L H H 2

Results in the different sets for the proposed models Table 6.17 provides an overview
of the performance metrics of the models, illustrating their consistency across the
three datasets. It is evident that both models exhibit low errors, with the improved
model consistently outperforming the basic model across all datasets. A slight de-
crease in performance is observed in the testing set, which is anticipated as this data
was not utilized during the model training phase.

Fig. 6.34 illustrates the output diagram for the testing set, revealing the close cor-
respondence between actual and predicted values in the majority of cases. Notably,
the enhanced model exhibits even smaller deviations, confirming the commendable
performance of both models. Furthermore, the occurrence of outliers with signifi-
cant deviations from their labels is minimal, with the majority closely aligning with
the actual values.

Comparison of the performance of the models with other ML algorithms While
the results underscore the effectiveness of both methods in achieving low error rates,
a critical evaluation involves comparing their performance against alternative ap-
proaches. Given the absence of prior works specifically addressing the prediction of
a cell’s output power using EL images, direct comparisons are intricate. Nonethe-
less, Table 6.18 offers a comparative analysis between the proposed ANFIS models
and traditional ML methods. These ML methods were implemented using Python,
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TABLE 6.16: Fuzzy Rules 60-120 of the model. Black, Gray, and White
are the inputs. Estimation is the output. H: High; M: Medium; L:
Low; LL: Low Low; LM: Low Medium; LH: Low High. Extracted

from [73].

Rule Black Gray White
Fuzzy
Class

Estimation
Output

Rule Black Gray White
Fuzzy
Class

Estimation
Output

61 H L LL 0 91 H LH LL 0
62 H L LL 1 92 H LH LL 1
63 H L LL 2 93 H LH LL 2
64 H L L 0 94 H LH L 0
65 H L L 1 95 H LH L 1
66 H L L 2 96 H LH L 2
67 H L LM 0 97 H LH LM 0
68 H L LM 1 98 H LH LM 1
69 H L LM 2 99 H LH LM 2
70 H L LH 0 100 H LH LH 0
71 H L LH 1 101 H LH LH 1
72 H L LH 2 102 H LH LH 2
73 H L H 0 103 H LH H 0
74 H L H 1 104 H LH H 1
75 H L H 2 105 H H H 2
76 H LM LL 0 106 H H LL 0
77 H LM LL 1 107 H H LL 1
78 H LM LL 2 108 H H LL 2
79 H LM L 0 109 H H L 0
80 H LM L 1 110 H H L 1
81 H LM L 2 111 H H L 2
82 H LM LM 0 112 H H LM 0
83 H LM LM 1 113 H H LM 1
84 H LM LM 2 114 H H LM 2
85 H LM LH 0 115 H H LH 0
86 H LM LH 1 116 H H LH 1
87 H LM LH 2 117 H H LH 2
88 H LM H 0 118 H H H 0
89 H LM H 1 119 H H H 1
90 H LM H 2 120 H H H 2

TABLE 6.17: Results based on the model across different sets, pre-
senting various metrics: Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Square Mean Error (RSME). Extracted from

[73].

Original Model Improved Model
Metric Training Validation Testing Training Validation Testing

MSE 0.00871 0.00830 0.00940 0.00697 0.00763 0.00732
MAE 0.05878 0.06416 0.06474 0.04854 0.04942 0.05352
RSME 0.09297 0.09112 0.09695 0.08350 0.08740 0.08560

leveraging the Sklearn library, which provides several easy-to-configure models ready
to be trained.

The tabulated results highlight the substantial superiority of ANFIS models over
Linear Regression and Support Vector Machines, particularly evident in the signif-
icantly lower errors across various metrics. Although Gradient Boosting exhibits
comparable performance in terms of MAE, ANFIS outperforms it in both MSE and
RMSE. The notable improvement in performance is underscored by the enhanced
ANFIS model, surpassing all other methods in every metric. Notably, ANFIS distin-
guishes itself by providing more robust outcomes through the transparent presenta-
tion of the rule set employed for inference.
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(A) 3D surface diagram illustrating the impact of inputs White and Cell Class on the output.

(B) 3D surface diagram illustrating the impact of inputs Gray and Black on the output.

FIGURE 6.33: 3D surface diagrams illustrating the effects of inputs on
the output. Extracted from [73].

TABLE 6.18: Comparison between various traditional ML models
and the proposed ANFIS methods, presenting various metrics. Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root Square
Mean Error (RSME), Linear Regression (LR), Support Vector Ma-
chines (SVM), Gradient Boosting Regressor(GBR). Extracted from

[73].

Metric
Original
ANFIS

ANFIS
Improved

LR SVM GBR

MSE 0.00940 0.00732 0.02153 0.01291 0.01058
MAE 0.0647 0.05352 0.09169 0.06830 0.05933
RSME 0.09695 0.08560 0.14673 0.11362 0.10285

While the ANFIS system demonstrates promising results, it is important to ac-
knowledge its limitations. Presently, its inability to operate in real-time applica-
tions beyond the cell level raises practical concerns. Extensive testing across diverse
PV cell types is imperative to evaluate and enhance its generalization capabilities.
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(A) Results of the Original Model in the Testing set.

(B) Results of the Improved Model in the Testing set

FIGURE 6.34: Diagramas of the predictions from the models and the
original values across the testing set. Blue dots correspond to the
original data, while red stars indicate the output from the models.

Extracted from [73].

Moreover, it is essential to recognize that the training process of ANFIS demands
more computational resources compared to traditional ML methods, although it still
maintains a notable advantage in speed over deep learning methods.

6.4.7 Summary

This experiment has resulted in the creation of an ANFIS estimator capable of
solving the problem (Objective SO4). The ANFIS exhibits a good performance while
providing understandable rules.



110 Chapter 6. Experiments

6.5 Detection of Connection Failures

The work explained in this section has resulted in an article that is still in the
publication process [182].

6.5.1 Objective

While performing the measurements and previous experiment it was observed
that some cells presented an anomalous behavior, since their energetic production
was adjusted to their EL image, since they did not provide a good performance even
if their EL image did not present any kind of defect. An undetected defect was
reducing the performance of the cells. This problem appeared in around 1% of the
samples.

This section presents a Spatial Frequency Analysis of the EL images of PV cells
using a Two-dimensional discrete analysis with a Biorthogonal Filter, applied to the
detection of connection failures in the Busbar of Poly-Si Photovoltaic Cells Using
Two-Dimensional Wavelet Analysis of Electroluminescence Images. This analysis is
complemented with a continuous analysis using a Cauchy Wavelet.

This analysis provides additional information about defects related with series
resistance that are not directly visible in EL images (Objective S05).

6.5.2 Structure

This section is organized as follows: initially, it introduces the dataset utilized in
this study and the problem. Subsequently, it describes the techniques used in the
analysis.

6.5.3 Data

The analysis has been conducted using both Polycrystalline and Monocrystalline
PV cells.

6.5.4 Problem

While performing the measurements and first experiments for the works pre-
sented in previous sections, it was noted that certain PV cells exhibited EL images
devoid of significant defects (Fig. 6.35, yet their corresponding IV curves yielded
notably lower MPP values compared to other PV cells under identical conditions
6.36.
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FIGURE 6.35: EL image of four different crystalline silicon cells, PS1
(a), PS2 (b), MS1 (c) and MS2 (d). Extracted from [182].
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FIGURE 6.36: I-V curve of PS1 cell applying minimum irradiance
(1.27 A) (a), PS2 cell applying minimum irradiance (b), MS1 cell ap-
plying intermediate irradiance (1.53 A) (c), MS2 cell applying inter-

mediate irradiance (d). Extracted from [182].

The histograms of the EL images also showed that there was not a clear difference
between the cells of each type since their shape is extremely similar. (Fig. 6.37). This
showed an important limitation of the EL images since they did not provide directly
enough information to identify these underperforming PV cells.
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FIGURE 6.37: a) Histogram of the EL image of the PS1 cell (dark green
bars) , b) histogram of the EL image of the PS2 cell (dark blue bars) ,
c) histogram of the EL image of the MS1 cell (light purple bars) and

d) the histogram of MS2 (light red bars) . Extracted from [182].

6.5.5 3D diagrams of the EL images

Since the usual algorithm was not enough, a different way to analyze the image
was considered: a 3D diagram of each image using the mesh function available in
Matlab. This method provides a color scale according to the surface illumination.
Whereby, the dark blue color indicates the lowest level of illumination and the dark
red the highest.
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FIGURE 6.38: 3D diagram of the EL image of PS1 (a), PS2 (b), MS1
cell (c) and MS2 cell (d). Extracted from [182].

In Fig. 6.38a, we present a 3D representation of the EL image of the PS1 cell. As
anticipated from the EL image histogram and the normalized maximum power anal-
ysis, this cell showcases favorable surface illumination, with the central region emit-
ting the highest intensity of light according to the surface illumination scale. Nev-
ertheless, toward the periphery, an intermediate level of illumination is noticeable,
with the right segment of the cell exhibiting comparatively lower energy generation.
Fig.6.38b illustrates the 3D diagram of the PS2 cell, revealing that the central region
exhibits the highest illumination. However, in the left portion of the cell surround-
ing the first busbar, a region with diminished illumination is observed, as indicated
by the surface illumination scale. The diminished energy output in this region may
correlate with the normalized low power readings compared to the PS1 cell. Further
examination of Fig. 6.38b indicates a reduced current flow on that specific busbar
compared to others.

Similarly, Fig. 6.38(c, d) depict the 3D diagrams of cells MS31 and MS2, demon-
strating comparable trends. The MS1 cell exhibits uniform and elevated surface illu-
mination, except for the lower surface illumination observed at the right extremity of
the cell, as indicated by the color scale. Conversely, the MS2 cell displays predom-
inantly high surface illumination, except for the edges where there are regions of
reduced light emission. Analysis of these 3D diagrams suggests that certain struc-
tural factors may be impeding the surface illumination of the cells during the EL
tests.

6.5.6 2D discrete wavelet analysis

The analysis of EL images in the spatial domain was extended into the frequency
domain using the two-dimensional discrete wavelet transform. This method allows
for the segmentation of color change rates among different image pixels based on the
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selected filtering level. Specifically, we applied a Biorthogonal (Bior) wavelet filter
of order 4.4 to decompose the images into two levels.

FIGURE 6.39: Second-level vertical detail coefficients of the EL image
of PS1cell (a), coefficients of the EL image of the PS2 cell (b), coeffi-
cients of the EL image of the MS1 cell (c) and MS2 cell (d). Extracted

from [182].

In Fig. 6.39a, the second-level vertical detail coefficients derived from the discrete
wavelet transform of the EL image of the PS1 cell are depicted. Notably, several dark
red areas are discernible above four of the busbars. These areas represent the energy
density emitted by the current flowing through the respective busbars at the time of
EL image capture, directly correlating with cell illumination. Fig. 6.39 b highlights
that the first busbar, from left to right, exhibits minimal to no red-colored areas (as in-
dicated by yellow marks). The associated vertical detail wavelet coefficients appear
white, suggesting a lower energy density compared to other busbars. This eluci-
dates the observed lower surface illumination surrounding this busbar in Fig. 6.39b.
Further examination revealed defective soldering between the cell and the conduc-
tor, which can increase the series resistance of the cell and impede the current flow
through that particular busbar.

Figs. 6.39(c, d) present the 2D DWT of the EL images for two monocrystalline
cells, each equipped with three busbars. In Fig. 6.39 c, a notable reduction in energy
density is observed in the last busbar on the right side of the MS1 cell, resulting
in diminished surface illumination around that area, as depicted in Fig. 6.39c. Fig.
6.39d displays a similar phenomenon, but in the first busbar of the MS2 cell, affecting
the surface illumination in that region of the cell. Upon closer physical inspection,
welding defects between the cell and the busbar were discovered, contributing to
the observed phenomenon in the 2D wavelet analysis conducted.
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6.5.7 2D continuous wavelet analysis

FIGURE 6.40: Coefficients of the 2D continuous wavelet transforma-
tion of the EL image of PS1 cell (a), 2D CWT coefficients of the EL
image of PS2 cell (b), 2D CWT coefficients of the EL image of MS1 cell
(c) and 2D CWT coefficients of the EL image of MS2 cell (d). Extracted

from [182].

To extend the analysis into the frequency domain, the 2D Continuous Wavelet
Transform (2D CWT) was applied to the EL images of PS1, PS2, MS1, and MS2
cells across various current levels. The Cauchy anisotropic mother wavelet was
chosen for its sensitivity to wave orientation and image features. Additionally, its
extended support compared to isotropic (non-directional) wavelets enables the cap-
ture of finer details during the transformation process. Given its complex nature,
only the wavelet modulus is depicted graphically.

Fig. 6.40a illustrates the graphical representation of the wavelet modulus of the
PS1 cell’s EL image, with an orientation angle of radians (180ř) and a two-level de-
composition scale. At this orientation, the mother wavelet facilitates the observation
of the squared magnitude wavelet coefficients on scale 2, corresponding to the en-
ergy generated by current flow through the cell’s busbars during the EL test. The 3D
plot, along with its color scale, reveals lower current flowing through the rightmost
busbar compared to the others, resulting in reduced illumination around that area
(refer to Fig. 6.38).

This observation mirrors the previously identified behavior in the 2D Discrete
Wavelet Transform representation. The phenomenon can be attributed to a poten-
tial electrical contact failure between the electrode and the cell during the welding
process, leading to increased series resistance over time and ultimately restricting
current flow across that region of the cell. Fig. 6.40b showcases the 2D CWT spatial
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frequency representation of the PS2 cell’s EL image, analyzed with the same pa-
rameters ( radians angle and scale 2). This figure reveals a similar situation for the
first busbar on the far left of the cell. The 2D wavelet coefficients exhibit a lighter
yellow color (marked with black indicators), indicating lower current flow through
the busbar compared to others based on the color scale. This translates to reduced
illumination in that specific region of the cell, as observed in Figure 10b.

Fig. 6.40(c, d) depicts the 2D DWT of monocrystalline cells with four busbars,
MS1 and MS2, respectively. The spectral energy density of the MS1 and MS2 cells
exhibits variations on certain busbars (areas marked with black ovals). These varia-
tions manifest as reduced surface illumination and lower peak power output, repli-
cating the issues observed in the discrete wavelet analysis and other analyzed cells.

6.5.8 Summary

This experiment has provided an analysis of the EL images using various tech-
niques (Objective S05. The analysis based on Wavelet Transform has provided infor-
mation about the energetic distribution of the cell and how some cell presents defects
in their busbar bar that augment the series resistance of the cells which reduces their
performance.
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6.6 Convolutional Mixture of Experts

The work explained in this Section has resulted in an article that is still in the
publication process. [17].

6.6.1 Objective

The final objective of the thesis is to improve the estimation in order to include
various kinds of PV cells (Objective S06).

The section introduces an innovative approach for assessing the performance
state of a PV cell based on its EL image. The method involves training models by
integrating EL images with information derived from the I-V curves of the PV cells.
This approach is applied across cells of different technologies, including Monocrys-
talline and Polycrystalline cells, with an analysis conducted to evaluate the impact
of these technologies on the performance of various Machine Learning models. Ad-
ditionally, a Mixture of Experts model is introduced, which leverages pretrained
convolutional models to enhance the performance of simpler models.

6.6.2 Structure

The paper follows the following structure: it begins by presenting the utilized
data, followed by an explanation of the models employed. Finally, it details the
obtained results.

6.6.3 Data

All the seven presented original datasets (Section 5.2 are taken into consideration
in this work: Polycrystalline, Polycrystalline balanced, Monocrystalline 3 busbar,
Monocrystalline 4 busbar, Monocrystalline complete, Mono+Poly and Mono+Poly
balanced.

6.6.4 Feature Extraction

Feature extraction has been needed in the case of the traditional methods, all
the extracted features from the manual approach have been considered (Section 5.2.
CNNs have used the images directly.

6.6.5 Models

Various AI methods have been employed to assess the performance differences
for each dataset. Each method has been optimized to fulfill its specific task while
maintaining a capacity for generalization.

The datasets utilized have been partitioned into three distinct sets: Training (60%),
Validation (20%), and Test (20%). Only the Training Dataset and Validation set are
utilized during the training process.

CNN model

Convolutional Neural Networks are currently considered the state-of-the-art method
for processing images [211], including within the field of photovoltaics [11]. CNNs
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are capable of directly processing input images without the need for prior feature
extraction. The experiments related with CNNs were conducted in Python, utilizing
the Tensorflow library [129].

Preprocessing The images, additionally to the steps explained in Section 5.2 un-
dergo a reduction of their size based on a scale factor, which serves as a hyperpa-
rameter. This reduction aims to mitigate algorithmic costs arising from hardware
limitations.

Architecture The design of the model architecture was conducted manually, ad-
justing the complexity based on training process metrics. The final architecture com-
prises 13 layers, incorporating Convolutional 2D, Max Pooling, Flatten, and Dense
layers. Figure 6.41 illustrates this architecture. This design process utilized the Mono
+ Poly dataset as the input dataset, as it encompasses samples from various types of
PV cells.

FIGURE 6.41: Architecture of the CNN model. Extracted from [17].

Hyperparameter Optimization Neural Networks, including CNNs, suffer from a
significant drawback as they heavily rely on their hyperparameters. However, the
vast number of possible configurations makes manually finding the best configura-
tion nearly impossible. To address this challenge, the Keras Tuner library [205] has
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been utilized. This library offers various methods to optimize the hyperparameters
of NN models. The chosen algorithm, Bayesian Optimization Tuner [206], lever-
ages information from previous trials to inform the selection of subsequent values,
thereby improving the exploitation of the search space. This optimization process
was conducted using the Mono + Poly dataset as the input dataset for the same rea-
sons mentioned previously.

TABLE 6.19: Optimal Hyperparameters found for Convolutional
Neural Networks: batch_size ∈ [8, 16, 32, 64], learning_rate ∈
[0.01, 0.0001],scale_factor in [0.5, 1],optimizer: Adam, Nadam, SGD.

Extracted from [17].

model batch_size learning_rate scale_factor optimizer
Mono 8 0.00025 0.66 Adam

Mono-3 8 0.0005 0.66 Adam
Mono-4 8 0.00025 0.66 Adam

Poly-Complete 8 0.00025 0.66 Adam
Poly-Reduced 8 0.00025 0.66 Adam
Mono + Poly 8 0.001 0.66 Adam

Mono + Poly Balanced 8 0.001 0.66 Adam

Training The seven distinct datasets were utilized to train seven separate networks,
employing the architecture and hyperparameters detailed in previous sections.

The training process spanned 500 epochs, with the model achieving the lowest
MAE being saved as the final model. Figure 6.42 depicts the evolution of MAE in
both the training and validation sets for each model. The discrepancy in perfor-
mance across the various datasets will be discussed further in the results section.
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(A) Training set.

(B) Validation set.

FIGURE 6.42: Evolution of the Mean Absolute Error in the training
process of the CNN models. Extracted from [17].

Feature-Based Methods

Traditional machine learning methods have been widely applied for regression
tasks across various fields [198], owing to their low computational demands and
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satisfactory performance. The following algorithms have been implemented in Mat-
lab utilizing the Regression Learner application: Bagged Trees, Gaussian Process
Regression, Support Vector Machine, and Neural Networks.

Model Selection and Hyperparameter Optimization The process of selecting the
best models was conducted using the Mono+Poly Dataset, which encompasses sam-
ples from every type of PV represented. All the algorithms described were trained
with their hyperparameters optimized using a Bayesian Optimizer, conveniently
available directly within the application. Table 6.20 presents the results of the top
5 models along with their hyperparameters. Notably, Exponential GPR emerged as
the best algorithm in terms of both MAE and MSE.

TABLE 6.20: Results of various Machine Learning methods in the
Mono+Poly dataset. GPR: Gaussian Process Regression. SVM: Sup-
port Vector Machines. NN: Neural Network. MAE: Mean Absolute

Error. MSE: Mean Squared Error. Extracted from [17].

Validation Hyperparameters

Bagged Trees
MAE 0.0729
MSE 0.0110

Minimum leaf size : 8
Number of learners: 30

Rational Quadratic GPR
MAE 0.0718
MSE 0.0100

Basis Function: Constant
Kernel Function : Rational Quadratic

Exponential GPR
MAE 0.0698
MSE 0.0095

Basis Function: Constant
Kernel Function : Exponential

Medium Gaussian SVM
MAE 0.0822
MSE 0.0119

Kernel Function : Gaussian
Kernal Scale: 3.9

Trilayered NN
MAE 0.0856
MSE 0.0148

Number of layers: 3
Size of the layers : [10, 10, 10]

Activation Function: Relu

Feature Selection Parameter selection is a crucial step in identifying the optimal
configuration of input features. Table 6.21 presents all the features after applying
the F-test algorithm [212] to rank them based on their relevance. Table 6.22 displays
the performance of the chosen model with varying numbers of features. Interest-
ingly, it demonstrates how removing features enhances performance, with eleven
features yielding the best results. Moving forward, only these eleven features will
be considered in the experiments.

TABLE 6.21: F-type-based raking of the features. Extracted from [17].

Feature Blacks Grays Mean Kurtosis
Peak 0
Height

Roughness Variance Median

F-Type
Score

440.83 405.62 302.85 245.48 190.62 189.67 138.90 60.22

Feature
Peak 1
Width

Whites Mode
Peaks

Distance
Peak 1
Height

Peak 0
Width

Peaks
Number

- -

F-Type
Score

29.47 21.88 21.06 18.73 13.96 6.71 1.61 - -
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TABLE 6.22: Results in the Validation set of the GPR-Exponential
method using Feature Selection to remove different amounts of fea-

tures. Extracted from [17].

Number of Features 15 13 11 9
MAE 0.0698 0.0678 0.0652 0.0680
MSE 0.00950 0.00907 0.00830 0.00901

Convolutional Hierarchical Mixture of Experts

The Mixture of Experts [213] is a machine learning technique employed to parti-
tion a problem into distinct subproblems. This approach proves highly beneficial for
the discussed problem, as each type of PV cell can be viewed as a separate subprob-
lem. Among the various Mixture of Experts frameworks, the Hierarchical Mixture
of Experts [214] is utilized. Given that the models employed are Convolutional Net-
works, the proposed model is referred to as Convolutional Hierarchical Mixture of
Experts (CHME).

Preprocessing The images are processed, as in the case of the simple CNN models.
This model uses directly the images since it is based on convolutional models.

Architecture This approach entails a Tree-Structured architecture (refer to Fig. 6.43).
At the highest level, a Discriminator model is situated, which discerns the type of
input. Subsequently, at the next level, a distinct regression model is selected based
on the discriminator model’s decision. The architecture of the discriminator model
was meticulously chosen through a manual process, iterating on the architecture to
optimize model performance. The final architecture is depicted in Fig. 6.44. The
CNN models maintain their respective architectures and hyperparameters.
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FIGURE 6.43: Architecture of the Convolutional Hierarchical Mixture
of Experts. Cell_kind represents the output of the discriminator net-
work. M3 represents a Convolutional network trained only with the
Mono3 dataset. M4 represents a Convolutional network trained only
with the Mono4 dataset. MP represents a Convolutional network

trained only with the Poly dataset. Extracted from [17].
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FIGURE 6.44: Architecture of the Discriminator Model. Extracted
from [17].

Hyperparameter Optimization The parameter optimization process for the net-
works was also executed using Keras Tuner. Table 6.23 provides an overview of
the hyperparameters for all networks, with the regression networks retaining their
original hyperparameters.

TABLE 6.23: Optimal Hyperparameters found for Convolutional
Neural Networks: batch_size ∈ [8, 16, 32, 64], learning_rate ∈
[0.01, 0.00001],scale_factor in [0.5, 1],optimizer: Adam, Nadam, SGD.

Extracted from [17].

model batch_size learning_rate scale_factor optimizer
Discriminator 8 0.00001 0.66 Adam

M3 8 0.0005 0.66 Adam
M4 8 0.00025 0.66 Adam
MP 8 0.00025 0.66 Adam

Training The training of the four networks was conducted individually. Detailed
training procedures for M3, M4, and MP can be found in Section 6.6.5. The discrimi-
nator network underwent training for 20 epochs utilizing Binary Cross Entropy [215]
as the loss function, with accuracy serving as an additional metric. The evolution of
both metrics throughout the training process is depicted in Fig. 6.45. Notably, the
model demonstrates the capability to classify various types of PV cells with 100%
accuracy and high confidence, as evidenced by its low Binary Cross Entropy. In-
terestingly, the training process necessitates fewer epochs compared to the regressor
models. Furthermore, the absence of overfitting is apparent, as indicated by the close
alignment between training and validation values in the final epochs.
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(A) Evolution of the Accuracy.

(B) Evolution of the Binary Cross Entropy.

FIGURE 6.45: Evolution of the metrics in the discriminator network
during its training process. Extracted from [17].

6.6.6 Results

This section evaluates the performance of the proposed models across each dataset.
Firstly, the CNN models will be evaluated, followed by an assessment of the feature-
based methods. Finally, the CNN-based ensemble of experts will be compared with
the other methodologies.

Comparison of the CNN models trained with different datasets

The experiments were structured according to the methodology outlined previ-
ously. Each model underwent testing with diverse datasets, ensuring that no sample
used in the training or validation sets appeared in these tests. The results (Table 6.24)
reveal several noteworthy observations.
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• As evident from the results, the performance on the Test sets closely mirrors
that of the Validation sets, affirming the models’ capacity for generalization.

• The Mono Complete model exhibits proficiency in handling Monocrystalline
cells from the dataset, achieving an MAE of 0.0194. This underscores its ability
to discern crucial patterns during training for processing such images effec-
tively. However, its performance diminishes notably when confronted with
Polycrystalline images, evident from the elevated MAE of 0.2169 in the Poly
dataset. This discrepancy suggests a lack of adaptability in predicting output
power for Polycrystalline PV cells.

• The Mono-3 model demonstrates proficiency in processing images of Monocrys-
talline cells with 3 busbars, yielding an MAE of 0.0211. However, its perfor-
mance diminishes notably when presented with images of Mono-4 cells, as
reflected in the higher MAE of 0.1283. While not optimal for handling every
Monocrystalline PV cell type in the dataset, it still delivers acceptable perfor-
mance, as evidenced by its MAE of 0.0758 in the Mono Complete dataset. In-
terestingly, its performance with the Polycrystalline dataset mirrors that of the
previous model.

• The Mono-4 model exhibits a behavior akin to its predecessor, demonstrating
commendable performance for Mono-4 cells with an MAE of 0.0216, and ac-
ceptable performance for Mono-3 cells with an MAE of 0.1190. While capable
of handling various Mono PV cell types, it may not yield optimal outcomes.
Its performance with Polycrystalline cells remains consistent with that of the
preceding models.

• The Poly Complete model demonstrates impressive performance in its test set,
achieving an MAE of 0.0337. However, this result falls short of the Mono Com-
plete model’s performance. This discrepancy could be attributed to the greater
irregularities in the surface of Polycrystalline PV cells, as depicted in Fig. 4.1.
Conversely, when applied to the Mono-Complete dataset, the model’s perfor-
mance is subpar, as it struggles to handle Monocrystalline cells due to their
distinct patterns (MAE = 0.2228). This trend persists across both Mono-3 (MAE
= 0.2030) and Mono-4 (MAE = 0.2628) PV cell types.

• The performance of Poly Reduced closely mirrors that of the Complete model,
with an MAE of 0.0339. In the Mono datasets, its performance is akin to that
of the Complete model, with MAEs of 0.2167 for Mono Complete, 0.1919 for
Mono-3, and 0.2690 for Mono-4.

• The combination of Monocrystalline and Polycrystalline achieves an MAE of
0.0288. For Monocrystalline cells, the model achieves an MAE of 0.0265, with
0.0259 for Mono-3 and 0.0281 for Mono-4. In the Polycrystalline dataset, the
model achieves an MAE of 0.0288. The consistent performance across all datasets
suggests that combining both datasets in training allows the network to learn
the various patterns necessary to handle all available types of PV cells.

• The results of the Mono+Poly balanced dataset are similar to the non-balanced
dataset, with a Test MAE of 0.298. For Monocrystalline cells, the MAE is 0.0312,
with 0.0295 for Mono-3 and 0.0351 for Mono-4. The MAE for Polycrystalline
cells is 0.0288. These results closely resemble those of the previous model,
albeit slightly lower due to the reduced number of Polycrystalline cell samples
during the training phase.
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TABLE 6.24: Results of CNN-based models. Extracted from [17].

Validation Test Mono
Complete

Mono
Busbar-3

Mono
Busbar-4 Poly Mono + Poly

Mono
Complete

MAE 0.0207
MSE 0.0010

MAE 0.0194
MSE 0.0006

MAE 0.0194
MSE 0.0006

MAE 0.0221
MSE 0.0009

MAE 0.0255
MSE 0.0010

MAE 0.2159
MSE 0.0639

MAE 0.1195
MSE 0.0340

Mono
Busbar-3

MAE 0.0184
MSE 0.0008

MAE 0.0214
MSE 0.0008

MAE 0.0758
MSE 0.0124

MAE 0.0211
MSE 0.0008

MAE 0.1283
MSE 0.0239

MAE 0.1668
MSE 0.0439

MAE 0.1488
MSE 0.0307

Mono
Busbar-4

MAE 0.0216
MSE 0.0008

MAE 0.0215
MSE 0.0007

MAE 0.0753
MSE 0.0122

MAE 0.1190
MSE 0.0223

MAE 0.0215
MSE 0.0007

MAE 0.2351
MSE 0.0786

MAE 0.1913
MSE 0.0586

Poly
Complete

MAE 0.0313
MSE 0.0019

MAE 0.0337
MSE 0.0022

MAE 0.2228
MSE 0.0728

MAE 0.2030
MSE 0.0617

MAE 0.2628
MSE 0.0960

MAE 0.0341
MSE 0.0024

MAE 0.1211
MSE 0.0351

Poly
Reduced

MAE 0.0435
MSE 0.0042

MAE 0.0339
MSE 0.0021

MAE 0.2167
MSE 0.0700

MAE 0.1919
MSE 0.0551

MAE 0.2688
MSE 0.1014

MAE 0.0339
MSE 0.0021

MAE 0.1290
MSE 0.0345

Mono
and
Poly

MAE 0.0281
MSE 0.0015

MAE 0.0288
MSE 0.0015

MAE 0.0265
MSE 0.0012

MAE 0.0259
MSE 0.0011

MAE 0.0281
MSE 0.0013

MAE 0.0301
MSE 0.0018

MAE 0.0288
MSE 0.0015

Mono
and
Poly

Balanced

MAE 0.0246
MSE 0.0012

MAE 0.0298
MSE 0.0018

MAE 0.0312
MSE 0.0016

MAE 0.0285
MSE 0.0012

MAE 0.0351
MSE 0.0019

MAE 0.0305
MSE 0.0019

MAE 0.0298
MSE 0.0018

As evidenced, the efficacy of the models diminishes when applied to alternative
types of PV cells. This phenomenon can be attributed to the structural divergences
among the various cell types. As depicted in Fig. 4.1, variations in the number of
busbars significantly alter the fundamental architecture of the cell. Additionally, the
surface characteristics of Monocrystalline and Polycrystalline cells differ markedly,
with Monocrystalline cells exhibiting greater homogeneity compared to Polycrys-
talline cells.

Comparison of the feature-based models trained with different datasets

The primary aim of the feature-based models is to mitigate the impact of cell
structure on the generalization capabilities of the models. As elucidated earlier, these
features are derived from a thorough analysis of the most pertinent characteristics of
the images and their histograms. The models have undergone training and testing
using identical samples as in the preceding section. Table 6.22 provides an overview
of the outcomes derived from these experiments.

TABLE 6.25: Results of the best feature-based method. Extracted from
[17].

Validation Test Mono
Complete

Mono
Busbar-3

Mono
Busbar-4 Poly Mono + Poly

Mono
Complete

MAE 0.0662
MSE 0.0081

MAE 0.0648
MSE 0.0071

MAE 0.0648
MSE 0.0071

MAE 0.0699
MSE 0.0081

MAE 0.0531
MSE 0.0037

MAE 0.2114
MSE 0.0634

MAE 0.1724
MSE 0.0476

Mono
Busbar-3

MAE 0.0651
MSE 0.0075

MAE 0.0581
MSE 0.0058

MAE 0.0591
MSE 0.0068

MAE 0.0581
MSE 0.0055

MAE 0.0604
MSE 0.0053

MAE 0.2092
MSE 0.0639

MAE 0.1771
MSE 0.0532

Mono
Busbar-4

MAE 0.0668
MSE 0.0044

MAE 0.0458
MSE 0.0036

MAE 0.0654
MSE 0.0076

MAE 0.0853
MSE 0.0124

MAE 0.0458
MSE 0.0036

MAE 0.2151
MSE 0.0706

MAE 0.1846
MSE 0.0526

Poly
Complete

MAE 0.0540
MSE 0.0056

MAE 0.0521
MSE 0.0051

MAE 0.1881
MSE 0.0536

MAE 0.1406
MSE 0.0330

MAE 0.2515
MSE 0.0813

MAE 0.0540
MSE 0.0056

MAE 0.1534
MSE 0.0416

Poly
Reduced

MAE 0.0524
MSE 0.0058

MAE 0.0530
MSE 0.0059

MAE 0.1897
MSE 0.0543

MAE 0.2523
MSE 0.0806

MAE 0.2688
MSE 0.1014

MAE 0.0524
MSE 0.0058

MAE 0.1442
MSE 0.0375

Mono
and
Poly

MAE 0.0698
MSE 0.0095

MAE 0.0748
MSE 0.0108

MAE 0.0864
MSE 0.0119

MAE 0.0777
MSE 0.0093

MAE 0.1000
MSE 0.0162

MAE 0.0698
MSE 0.0095

MAE 0.0748
MSE 0.0108

Mono
and
Poly

Balanced

MAE 0.0778
MSE 0.0113

MAE 0.0681
MSE 0.0092

MAE 0.0677
MSE 0.0083

MAE 0.0664
MSE 0.0078

MAE 0.0712
MSE 0.0095

MAE 0.0686
MSE 0.0103

MAE 0.0681
MSE 0.0092

Overall, it is evident that the feature-based models generally yield inferior results
compared to the CNN models. Nonetheless, the obtained results still demonstrate
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satisfactory performance, with a mean MAE of 0.06. Notably, there is a significant
disparity observed between the performance of the Mono-3 and Mono-4 models,
indicating the efficacy of the patterns learned during their training phase for clas-
sifying other types of PV cells. This underscores the capability of feature-based re-
gression to mitigate the influence of PV cell structure on performance. However, a
noticeable distinction persists between the Mono and Poly models, highlighting the
inability of the feature-based approach to completely mitigate the impact of PV cell
surface characteristics.

Convolutional Hierarchical Mixture of Experts

As demonstrated, achieving satisfactory performance necessitates training mod-
els with images representing all types of PV cells. While employing an abstraction
method like feature extraction somewhat alleviates this reliance, it also significantly
diminishes model performance. The inherent specialization of the models poses a
challenge, as they struggle to handle other types of PV cells effectively. However,
this characteristic can be harnessed to develop a more sophisticated model capable
of better handling diverse PV types. This can be accomplished by training the model
with a combination of images representing various PV cell configurations.

The Convolutional Hierarchical Mixture of Experts (CHME) model is structured
around training specialized networks with their corresponding datasets while main-
taining a tripartite division into Train, Validation, and Test sets. Evaluation across all
Test sets derived from the utilized datasets (Mono-3, Mono-4, and Poly Complete)
yielded an MAE of 0.0262 and an MSE of 0.0012. These metrics exhibit a slight im-
provement over the results achieved by the Mono+Poly model as documented in
Table 6.24. Fig. 6.46 depicts the Box Plot model comprising all CNN-based mod-
els alongside the CHME model, showcasing fewer outliers in comparison to the
Mono+Poly and Mono+Poly balanced models, with generally reduced values (ex-
cluding one instance), thereby reinforcing its superior performance. The CHME
model excels in attaining the optimal performance from each individual model,
leveraging them only when the discriminator deems them appropriate. Moreover,
it offers several notable advantages, including the capability to assimilate new data
without necessitating complete model retraining. In such scenarios, only the dis-
criminator network necessitates retraining, a process shown to be efficient, along
with the corresponding network. Introducing a novel PV cell type would require
the creation of a new network.
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FIGURE 6.46: Box Plot comparing the distance between predictions
and real values of all the CNN-based models and the CHME model.
The Mean Absolute Error for each model is also provided. Extracted

from [17].

6.6.7 Summary

The experiment has led to the development of multiple models aimed at deter-
mining the optimal approach for assessing the performance of different types of PV
cells based on their electroluminescence images. It has been noted that these models
are highly specialized, as they are designed to handle specific PV cell technologies
used during their training. By leveraging this specialization, it becomes feasible to
create a unified model known as the Convolutional Mixture of Experts, which can
achieve superior performance compared to a single model trained on diverse types
of PV cells.
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Chapter 7

Discussion

This chapter explains the conclusions obtained from the experiments that have
been performed and explained in Chapter 6. This analysis is divided into three dif-
ferent issues: The imbalance in the data that was observed while gathering the data,
observing how it affects to the problem. The problem of the Series Resistance Prob-
lem that was observed is also discussed. Finally, the performance of the various
models proposed are compared.
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7.1 Effects of the Unbalance in the data

The issue of the unbalance in the data was observed during the gathering of the
data (Chapter 5.2), it was observed that a high percentage of labels of the data were
between 0.6 and 0.8, giving a low presence to the other values of the domain.

The creation of synthetic data (Chapter 6.1 ) was conceived to solve this issue, pro-
viding new examples of underrepresented values. These images have been shown
as similar to the original ones performing an analysis or the histogram and with sim-
ilarity metrics such as Inspection Score (IS) and Fréchet Inception Distance (FID).

Although the synthetic images were proved to be of high quality, it has been seen
in the experiments of the feature-based regressor (Chapter 6.2 how their inclusion
does not have a critical improvement in the performance of the models. The best
model (Gradient Boosting) was found to provide an MSE of 0.00265 while using only
the original data versus an MSE of 0.00282. This showed two important facts: It was
possible to create a model that provides good performance for the problem (This
will be detailed in Section 7.3) and that improvement after including the synthetic
data was quite limited.

There are several reasons for the lack of improvement. First of all, these mod-
els are quite capable of solving the problem since they provide low error metrics,
so it seems that the issue of the unbalance of the data does not impede them from
performing well. Another reason of the lack of improvement is that GAN creates
data based on the the input data [14], trying to find the patterns to replicate them as
exactly as possible. This proves that this kind of method is not suitable for generat-
ing new patterns, creating synthetic data too similar to the original, which does not
provide new information in the training processes of the models.

The lack of improvement showed that it was not necessary to consider the issue
of the unbalance in the following experiments, for this reason, the other models do
not use the synthetic dataset. However, it is planned to return to this issue in the
future, to try other technologies capable of generating data.
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7.2 Effects of the Series Resistance Problem

The issue of unexpected values of output power was observed during the rec-
ollection of the data (Chapter 5.2). It was seen how cells that did not present any
defects or shadows presented unusually low values. After performing the analy-
sis presented in Chapter 6.5, it was concluded that this problem was caused because
those PV cells present a higher Series Resistance than the usual values which reduces
their performance.

The Wavelet analysis performed provides a new way to analyze the images, since
it can detect problems that are not directly visible in the EL image. It has been seen
how both CTW analysis and DTW analysis also provided information about Power
Spectral Density in each busbar bar. The cells with low MPP exhibited busbars with
low density since few electrons are being emitted in those areas.

It was also discovered that the Series Resistance Problem in our datasets were
provoked by some incorrect weldings between the PV cells and their busbar bars.
This kind of defects was presented in the cells since their manufacture since some
new cells also presented this problem.

However, this problem is not extremely critical, since it is only presented in few
cells . At that point of the research, it was decided that it was not feasible to include
this new problematic in the models trying to solve the problem since it would need
to change completely the planning of the experiments. However, it will be important
to return to this issue in the future, trying to add information about the resistance to
the models in order to improve their performance.
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7.3 Comparison of the result of the different models

The estimation of the output power of the PV cells was the main objective of the
thesis, and all the specific objectives have been chosen to complete it. Two different
approaches have been tackled: Considering the problem as a Classification (Chapter
6.3) and as a Regression (Chapters 6.2,6.4,6.6).

7.3.1 Classification Approach

The Fuzzy classification was the only algorithm proposed to solve this approach.
Of the two proposed models, the Polycrystalline showed an accuracy of 99% and
the Monocrystalline an accuracy of 98%. Their results are clearly higher than other
tested Machine Learning methods such as Ensemble Classifiers or Decision Trees.
This model also has provided several understandable rules that can be used by
workers to perform a manual visual inspection of the rules.

It is important to remark that the classification approach reduces severely the
complexity of the problem. The amount of information provided by the classification
is quite limited in comparison with the information provided a by full estimation of
the output power. However, this model is still useful due to its good results and its
transparent logic.

7.3.2 Regression Approach

The regression Approach was the main focus of the research. The first models that
tackled it were the Feature-based models which used manually-configured features
obtained from the images to estimate the output power. The best model presented
an MAE of 0.0341 and an MSE of 0.0021. It showed that it was possible to solve
the problem with a good performance since an MAE of 0.0341 presents an error of
around 3.4%, which is an acceptable low value in our context. This model, however,
was only tested in the Polycrystalline dataset, since it was the only one available at
that moment.

The second wave of models proposed was based on the ANFIS concept combin-
ing the capacities of Neural Networks and the transparent logic from Fuzzy Models.
It was also based on the manually configured features but limited to three features.
The best model obtained an MAE of 0.0535 and an MSE of 0.0073. It could be con-
sidered that its performance is considerably low than the previous one, however, it
is important to take into account that that model used the first proposal of labelling
(See Chapter 5.2). The first proposal had the values extremely focused on certain
values, which reduced the real domain of the problem. This model and the follow-
ing ones use the second proposal, which provides a better-distributed output. This
model also provided important information that can be useful for manual inspection
or to find new patterns of error in the cells. Similarly to the previous case, only the
Polycrystalline set was used.

The last proposed wave of models was based on Convolutional Neural Networks
(Chapter 6.6), analyzing the performance of the models depending on the data that
was used to train them. The results showed that the models were not capable of ob-
taining good results with kinds of PV cells different from the ones used in the train-
ing process. For example, a model trained only with the Monocrystalline dataset
obtained an MAE of 0.0194 in its testing set but it performed an MAE of 0.2159 in
the Polycrystalline dataset. This behavior was presented with all the different kinds
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of PV cells, showing that it was necessary to train a model in one kind of technology
to obtain good results with that technology. The Mixture of Experts approach pre-
sented in the same Chapter which combines models trained with each kind of PV
cells was able to obtain an MAE of 0.0262 in the Mono+ Poly Dataset. This showed
how this model was capable of solving the problem for each of the presented tech-
nologies of PV cells, and it had the advantage that it was easily retrainable if new
technologies of PV cells were included.

The CNN approach has been found as the best-performing method, however, the
other approaches are not useless. The feature-based method provides good perfor-
mance with a low computer cost in comparison with the approaches that are based
on Neural Networks. The ANFIS approach still does not provide a performance at
the level of the CNN approach but it provides the basis of its logic with understand-
able rules. These rules can be used to analyze directly how shadows and defects
impact in the production of the PV cells. It is also less computer-demanding than
the CNN approach.

Table 7.1 provides a comparison of the time for training for each one of the mod-
els. Although the number of samples is not exactly the same in every model it shows
how the convolutional models need a considerable amount of time in comparison to
the models that use only features. Fuzzy logic does not include a number since the
training needs to be done manually, with the knowledment of the experts. ANFIS
need a considerable higher time than other feature based models since it uses neural
networks but it is still extremely fast compared to CNN.

TABLE 7.1: Comparison of the time needed to train each model. Ev-
ery experiment was conducted in the same computer.

model
Random

forest
Gradient
Boosting

Fuzzy
Logic

ANFIS CNN

Time 1 seg 2 segs Manual 120 seg 120 mins
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Chapter 8

Conclusions

In this thesis, we have addressed the issue of estimating the performance of PV
cells of various types using their EL images. Some other issues have been tackled
along the main objective such as the analysis of the effects of the unbalance in the
data and the analysis of the Series Resistance problem that was found. Several solu-
tions have been tested to find the most suitable method for solving the problem.

This chapter contains the main conclusions that have been derived from the re-
search and its main contributions to the field. It also provides some ideas for future
work that could be done to obtain better models to solve the problem. Finally, it
presents a list of the main achievements and attributions obtained during the thesis.

8.1 Conclusions

In this thesis, it has been proved that it is possible to create Artificial Intelligence
models trained with EL images and information about the energetic production of
PV cells to estimate the production of other PV cells. The results have shown that the
better-performing method is the CNN-based, however, this method requires a high
amount of data and is extremely computer-demanding needing even a GPU for the
training process. Other tested methods have other advantages despite their lower
performance that could be useful in certain situations.

The tested methods have an important limitation since they are only capable of
working with technologies of PV that have been used in the training process. The
approach of creating a Mixture of Experts partially deals with this issue, simplifying
the retraining when new kinds of PV cells are added but the problem itself remains
the same. However, the model is still vulnerable to the lack of data and has a high
computational cost.

The analysis of the unbalance of the data has proved that the unbalance is not
a critical issue in our problem and its effect is minimal in the performance of the
models. The analysis of the resistance series problem that was observed in some
cells showed that it was caused by bad welding between the busbars and the PV
cell, this analysis performed with wavelet Transforms provided more information
about the the current distribution in the busbar bars than the original EL image.

Another important contribution of this thesis are the datasets that have been
created during this thesis. These datasets are important since there are not other
datasets in the bibliography that relate the EL image of a PV cell with its energetic
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production. The datasets are available for anyone who requests them and include
various types of PV cells.

8.2 Future Directions

This research still has potential for improvement on several fronts. Firstly, ad-
dressing the challenge of incorporating new types of PV cells not encountered dur-
ing the training phase remains a non-trivial task. While complex, resolving this issue
would enhance the versatility of the models.

The issue of unusual power values stemming from series resistance in certain
cells has been acknowledged. Currently, it is not factored into the models, and a new
approach is required. This involves extracting not only the MPP from the curves but
also the resistance value. Models can then be trained to estimate resistance in new
cells.

Furthermore, there is a need for more focused attention on the creation of syn-
thetic data. Although our data exhibits similarity to real-world scenarios, this sim-
ilarity also presents a challenge, as it doesn’t introduce enough new information to
significantly enhance model performance. Exploring novel techniques to diversify
synthetic data and improve its impact on the models is crucial.

The logical next would be addressing this issue in a PV module. It would not
be a problem to programally segment a whole module into the various PV that it
possesses but it is necessary to determine the way that the performance of each cell
impacts the performance of the whole module.

Other interesting possibilities would be the inclusion of new kinds of PV cells, the
further optimization of the models using metaheuristics, or improving the system to
make it suitable to work a Real Time which is extremely important to apply it in real
installations.

8.3 Achievements and Attributions

Below is a compilation of contributions to international journals and conferences
affiliated with this thesis.

8.3.1 Journal Publications

• JCR Q2 Mateo Romero, H.F.; González Rebollo, M.Á.; Cardeñoso-Payo, V.;
Alonso Gómez, V.; Redondo Plaza, A.; Moyo, R.T.; Hernández-Callejo, L. Ap-
plications of Artificial Intelligence to Photovoltaic Systems: A Review. Appl. Sci.
2022, 12, 10056. https://doi.org/10.3390/app121910056 [11]

• JCR Q2 Mateo Romero, H.F.; Hernández-Callejo, L.; Rebollo, M.Á.G.; Cardeñoso-
Payo, V.; Gómez, V.A.; Bello, H.J.; Moyo, R.T.; Aragonés, J.I.M. Synthetic Dataset
of Electroluminescence Images of Photovoltaic Cells by Deep Convolutional Genera-
tive Adversarial Networks. Sustainability 2023, 15, 7175. https://doi.org/10.
3390/su15097175 [59]

• JCR Q2 Héctor Felipe Mateo Romero, Luis Hernández-Callejo, Miguel Ángel
González Rebollo, Valentín Cardeñoso-Payo, Victor Alonso Gómez, Jose Ig-
nacio Morales Aragonés, Ranganai Tawanda Moyo, Optimized estimator of the

https://doi.org/10.3390/app121910056
https://doi.org/10.3390/su15097175
https://doi.org/10.3390/su15097175
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output power of PV cells using EL images and IV curves, Solar Energy, Volume 265,
2023, 112089, ISSN 0038-092X https://doi.org/10.1016/j.solener.2023.
112089 [162]

• Accepted article in process of publication Héctor Felipe Mateo Romero,Mario
Carbonó deal Rosa, Luis Hernández-Callejo, Miguel Ángel González Rebollo,
Valentín Cardeñoso-Payo, Victor Alonso Gómez, Sara Gallardo Saavedra, Jose
Ignacio Morales Aragonés. Enhancing Photovoltaic Cell Classification through
Mamdani Fuzzy Logic: A Comparative Study with Machine Learning Approaches
Employing Electroluminescence Images [209]

• Article in process of publication Héctor Felipe Mateo Romero,Mario Carbonó
deal Rosa, Luis Hernández-Callejo, Miguel Ángel González Rebollo, Valen-
tín Cardeñoso-Payo, Victor Alonso Gómez, Óscar Martinez-Sacristán,Sara Gal-
lardo Saavedra , Adalberto José Ospino Castro. Enhancing Photovoltaic Cell Per-
formance Evaluation: An Adaptive Neural Fuzzy Inference Modeling Approach. [73]

• Article in process of publication Héctor Felipe Mateo Romero, Luis Hernández-
Callejo, Miguel Ángel González Rebollo, Valentín Cardeñoso-Payo, Victor Alonso
Gómez, Leonardo Cardinale Villalobos, Jose Ignacio Morales Aragonés,Sara
Gallardo Saavedra,Abel Méndez Porras,Mario Carbonò dela Rosa. Analyzing
the effect of different technologies of Photovoltaics cells for predicting the output power
from their Electroluminiscence images using Machine Learning. [17]

• Article in process of publication Mario Eduardo Carbonó dela Rosa, Héctor
Felipe Mateo-Romero, Luis Hernandez-Callejo, Victor Alonso-Gómezd, Vic-
tor Ndeti Ngungu, Rocío Nava, José Ignacio Morales Aragonés, Alberto Re-
dondo Plaza, Miguel Ángel González-Rebollo and Valentín Cardeñoso-Payo
Detection of Connection Failures in the Busbar of Poly-Si Photovoltaic Cells Using
Two-Dimensional Wavelet Analysis of Electroluminescence Images. [182]

8.3.2 Conference Publications

• Mateo-Romero, H.F. et al. (2022). Photovoltaic Cells Defects Classification by
Means of Artificial Intelligence and Electroluminescence Images. In: Nesmach-
now, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2021. Com-
munications in Computer and Information Science, vol 1555. Springer, Cham.
https://doi.org/10.1007/978-3-030-96753-6_3 [216]

• Mateo-Romero, H.F. et al. (2023). Synthetic Dataset of Electroluminescence Images
of Photovoltaic Cells by Deep Convolutional Generative Adversarial Networks. In:
Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2022.
Communications in Computer and Information Science, vol 1706. Springer,
Cham. https://doi.org/10.1007/978-3-031-28454-0_1 [60]

• Mateo-Romero, H.F. et al. (2024). Estimation of the Performance of Photovoltaic
Cells by Means of an Adaptative Neural Fuzzy Inference Model. In: Nesmach-
now, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2023. Com-
munications in Computer and Information Science, vol 1938. Springer, Cham.
https://doi.org/10.1007/978-3-031-52517-9_12 [210]

• Mateo-Romero, H.F. et al. (2024). Enhancing Solar Cell Classification Using Mam-
dani Fuzzy Logic Over Electroluminescence Images: A Comparative Analysis with
Machine Learning Methods. In: Nesmachnow, S., Hernández Callejo, L. (eds)

https://doi.org/10.1016/j.solener.2023.112089
https://doi.org/10.1016/j.solener.2023.112089
https://doi.org/10.1007/978-3-030-96753-6_3
https://doi.org/10.1007/978-3-031-28454-0_1
https://doi.org/10.1007/978-3-031-52517-9_12
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Smart Cities. ICSC-Cities 2023. Communications in Computer and Informa-
tion Science, vol 1938. Springer, Cham.
https://doi.org/10.1007/978-3-031-52517-9_11 [189]

8.3.3 Attendances and Participation in Conferences and Workshops

• International Conference (Online Assistance) . ICSC-CITIES 2021. IV Ibero-
American Congress of Smart Cities CANCUN CENTER, Cancún, México. 29
Nov. to 1 Decem. 2021. http://2021.icsc-cities.com/index.html

• International Conference (Presential Assistance). ICSC-CITIES 2022. V Ibero-
American Congress of Smart Cities Campus Balzay, Cuenca, Ecuador. 28-30
Nov. 2022. http://2022.icsc-cities.com/index.html

• International Conference (Presential Assistance). ICSC-CITIES 2023. VI Ibero-
American Congress of Smart Cities Mexico City and Cuernavaca, Mexico. 13-
17 Nov. 2023. http://2023.icsc-cities.com/index.html

• National Workshop (Presential Assistance). "Jornada: Reto de las energías
renovables, eficiencia energética y biodiversidad en el mundo agropecuario"
2022. Campus Duques de Soria, Soria, Spain. 11 July. 2022. http://2023.
icsc-cities.com/index.html

• International Workshop (Online Assistance). "Jornadas Agenda Urbana" 2023.
Tecnologico of Costa Rica, San Carlos, Costa Rica. 17 October. 2022.
http://2023.icsc-cities.com/index.html

8.3.4 Research Stays

• International Stay (3 Months)

– Start Date: 02/09/2023

– End Date: 05/12/2023

– Financing Entity: "Erasmus+ Prácticas" Program Universidad de Val-
ladolid

– Host Institution: Campus de San Carlos Técnologico de Costa Rica, San
Carlos, Costa Rica.

– Summary: The objective of the stay was to create an Artificial Intelligence
model based on Machine Learning capable of calculating the performance
of photovoltaic cells regardless of the cell type. In contrast to other works
found in the literature, this method was trained with different types of
photovoltaic cells to create a model that can identify the energy produc-
tion of a cell based on its electroluminescence (EL) image.

• National Stay (3 Months)

– Start Date: 01/05/2024

– End Date: 31/07/2024

– Financing Entity: Predoctoral short-term fellowship 2024 from the Uni-
verdad de Valladolid (Movilidad doctorandos ayudas para estancias breves
en el desarrollo de tesis doctoralesConvocatoria 2024)

https://doi.org/10.1007/978-3-031-52517-9_11
http://2021.icsc-cities.com/index.html
http://2022.icsc-cities.com/index.html
http://2023.icsc-cities.com/index.html
http://2023.icsc-cities.com/index.html
http://2023.icsc-cities.com/index.html
http://2023.icsc-cities.com/index.html
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– Host Institution: Facultad de Informática. Universidad de Murcia, Es-
paña.

– Summary: The objective of the stay was to create an Artificial Intelligence
model based on Machine Learning capable of calculating the performance
of photovoltaic cells regardless of the cell type. In contrast to other works
found in the literature, this method was trained with different types of
photovoltaic cells to create a model that can identify the energy produc-
tion of a cell based on its electroluminescence (EL) image.

• International Stay (5 days)

– Start Date: 30/05/2022

– End Date: 03/06/2022

– Financing Entity: Erasmus+ K107 Grants for Research Stays of 5 days
outside the European Union)

– Host Institution: Universum College, Kosovo.

– Summary: The objective of the stay was to meet experts of the field in
the country, learn about how they use certain Artificial Intelligence Tech-
niques and create contacts.

• International Stay (5 days)

– Start Date: 12/12/2023

– End Date: 16/12/2023

– Financing Entity: Erasmus+ K131 Grants for Research Stays of 5 days in
the European Union)

– Host Institution: Instituto Politenico de Bragança, Bragança, Portugal.

– Summary: The objective of the stay was to engage with experts in the
field within the country, gain insights into their utilization of specific Arti-
ficial Intelligence techniques, and tech the students of the university about
the topic of the thesis.

• International Stay (5 days)

– Start Date: 15/05/2023

– End Date: 19/05/2023

– Financing Entity: Erasmus+ K107 Grants for Research Stays of 5 days
outside the European Union)

– Host Institution: University Donja Gorica, Montenegro.

– Summary: The objective of the stay was to engage with experts in the
field within the country, gain insights into their utilization of specific Ar-
tificial Intelligence techniques, and establish professional connections.
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8.3.5 Attributions

• One of the best articles at VI Ibero-American Congress of Smart Cities Mex-
ico City and Cuernavaca, Mexico. 13-17 Nov. 2023: Estimation of the Perfor-
mance of Photovoltaic Cells by Means of an Adaptative Neural Fuzzy Infer-
ence Model. http://2023.icsc-cities.com/index.html

8.3.6 Funding

The research carried out during this thesis has been facilitated by the following
research projects and grants:

• Title: Predoctoral Research Contracts 2020 from the Universidad de Valladolid

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 01/11/2021

– End Date: 31/10/2025

– Financing Entity: Universidad de Valladolid (Spain)

• Title: Doctor-PV

– Beneficiary: Miguel Ángel Gonzalez Rebollo and Óscar Martínez Sac-
ristán

– Project Number: RTC-2017-6712-3

– Start Date: 01/07/2018

– End Date: 31/12/2021

– Financing Entity: Ministerio de Economia, Industria y Competitividad

• Title: Ayudas a la investigation desarrollada en el curso 2021-2022

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 01/11/2021

– End Date: 30/07/2022

– Financing Entity: Catedra Ciencia e Innovacion Caja Rural de Soria (Spain)

• Title: Grant to attend to congresses during the development of the thesis (AYUDAS
MOVILIDAD DOCTORADO 2022)

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 28/11/2022

– End Date: 30/11/2022

– Financing Entity: Universidad de Valladolid (Spain)

• Title: Erasmus+ Practicas grant for international stays in companies or universities

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 02/09/2023

– End Date: 05/12/2023

– Financing Entity: Universidad de Valladolid (Spain)

http://2023.icsc-cities.com/index.html
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• Title: Grant to attend to congresses during the development of the thesis (AYUDAS
MOVILIDAD DOCTORADO 2023)

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 13/11/2023

– End Date: 17/11/2023

– Financing Entity: Universidad de Valladolid (Spain)

• Title: Erasmus + K107 Grants for 1 week stays outside the European Union 2021-
2022

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 30/05/2022

– End Date: 03/06/2022

– Financing Entity: Universidad de Valladolid (Spain)

• Title: Erasmus + K131 Grants for 1 week stays in the European Union 2022-2023

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 12/12/2022

– End Date: 19/12/2022

– Financing Entity: Universidad de Valladolid (Spain)

• Title: Erasmus + K107 Grants for 1 week stays outside the European Union 2022-
2023

– Beneficiary: Héctor Felipe Mateo Romero

– Start Date: 15/05/2023

– End Date: 19/05/2023

– Financing Entity: Universidad de Valladolid (Spain)

8.3.7 Datasets

The following datasets have been created and are available to the public at previ-
ous request:

• Dataset of Polycrystalline Cells: Composed of 785 EL images of Polycrys-
talline cells with 4 busbars. Information about their production with the two
different labeling methods is also provided.

• Dataset of Monocrystalline Cells with 3 busbars: Composed of 398 EL im-
ages of Monocrystalline cells with 3 busbars. Information about their produc-
tion with the two different labeling methods is also provided.

• Dataset of Monocrystalline Cells with 4 busbars: Composed of 168 EL im-
ages of Monocrystalline cells with 4 busbars. Information about their produc-
tion with the two different labeling methods is also provided.
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• Synthetic dataset of Polycrystalline Cells: Composed of 10000 EL images of
Polycrystalline cells with 4 busbars. Information about their production with
the first labeling method is also provided.
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