

Mark Ahearne *Editor*

Corneal Regeneration

Methods and Protocols

Contents

<i>Preface</i>	<i>v</i>
<i>Contributors</i>	<i>ix</i>
1 Isolation and Culture of Corneal Stromal Stem Cells	1
<i>Richard M. Nagyimbaly, Morten C. Moe, and Goran Petrovski</i>	
2 In Vitro Expansion of Corneal Endothelial Cells for Transplantation	17
<i>Kim Santerre, Isabelle Xu, Mathieu Thériault, and Stéphanie Proulx</i>	
3 Primary Culture of Cornea-Limbal Epithelial Cells In Vitro	29
<i>Finbarr O'Sullivan</i>	
4 Optimization of Human Limbal Stem Cell Culture by Replating a Single Limbal Explant.....	39
<i>Marina López-Paniagua, Teresa Nieto-Miguel, Sara Galindo, Laura García-Posadas, Ana de la Mata, Rosa M. Corrales, Margarita Calonge, and Yolanda Diebold</i>	
5 A Guide to the Development of Human CorneaOrganoids from Induced Pluripotent Stem Cells in Culture	51
<i>James W. Foster, Karl J. Wahlin, and Shukti Chakravarti</i>	
6 Gene Editing for Corneal Stromal Regeneration	59
<i>Tara Moore, Connie Chao-Shern, Larry DeDionisio, Kathleen A. Christie, and M. Andrew Nesbit</i>	
7 Preparation and Administration of Adeno-associated Virus Vectors for Corneal Gene Delivery	77
<i>Liujiang Song, Jacquelyn J. Bower, and Matthew L. Hirsch</i>	
8 The Self-assembly Approach as a Tool for the Tissue Engineering of a Bi-lamellar Human Cornea.....	103
<i>Gaëtan Le-Bel, Pascale Desjardins, Camille Couture, Lucie Germain, and Sylvain L. Guérin</i>	
9 Formation of Corneal Stromal-Like Assemblies Using Human Corneal Fibroblasts and Macromolecular Crowding	119
<i>Mehmet Gürdal, Gülinnaz Ercan, and Dimitrios I. Zeugolis</i>	
10 Preparation of Dried Amniotic Membrane for Corneal Repair.....	143
<i>Andrew Hopkinson, Emily R. Britchford, and Laura E. Sidney</i>	
11 Fabrication of Corneal Extracellular Matrix-Derived Hydrogels	159
<i>Mark Ahearn and Julia Fernández-Pérez</i>	
12 Synthesis and Application of Collagens for Assembling a Corneal Implant	169
<i>Elle Edin, Fiona Simpson, and May Griffith</i>	
13 Development and Validation of a 3D In Vitro Model to Study the Chemotactic Behavior of Corneal Stromal Fibroblasts	185
<i>Evrim Ceren Kabak, Julia Fernández-Pérez, and Mark Ahearn</i>	

14	Femtosecond Laser-Assisted Surgery for Implantation of Bioengineered Corneal Stroma to Promote Corneal Regeneration.....	197
	<i>Neil Lagali and Mehrdad Rafat</i>	
15	The Use of Animal Models to Assess Engineered Corneal Tissue	215
	<i>Robert Thomas Brady and Peter W. Madden</i>	
16	X-Ray Diffraction Imaging of Corneal Ultrastructure	231
	<i>Keith M. Meek, Andrew J. Quantock, Sally Hayes, and James Bell</i>	
	<i>Index</i>	249

Chapter 4

Optimization of Human Limbal Stem Cell Culture by Replating a Single Limbal Explant

Marina López-Paniagua, Teresa Nieto-Miguel, Sara Galindo, Laura García-Posadas, Ana de la Mata, Rosa M. Corrales, Margarita Calonge, and Yolanda Diebold

Abstract

Cultured limbal epithelial stem cell transplantation is a clinical procedure used to regenerate the corneal epithelium in patients with limbal stem cell deficiency. The protocols used to expand limbal epithelial cells in vitro need to be optimized, since the scarcity of human ocular tissue donors is limiting the potential use of this procedure. Here, we describe a method to consecutively expand a single human limbal explant. With this method it is possible to obtain up to three limbal epithelial primary cultures from the same explant, thus increasing the efficiency of the in vitro cell culture.

Key words Cornea, Corneal epithelium, Corneoscleral samples, Limbus, Limbal explant, Limbal stem cells, Limbal primary cultures, In vitro expansion

1 Introduction

Limbal epithelial stem cells (LESCs) are responsible for corneal epithelium renewal [1, 2]. Corneal epithelium integrity is paramount for maintaining the corneal transparency required for optimal vision. However, several diseases, as well as chemical or physical insults, can compromise the integrity of the corneal epithelium, causing wounds and/or opacities. In many of these cases, corneal transplantation is a solution that may be used to restore sight. However, in the case of the destruction or dysfunction of LESCs or their niche, the outcome of corneal transplantation is usually poor [3]. In these cases, it is necessary to replace the missing stem cells to regenerate the corneal epithelium. To accomplish this, clinicians carry out cultured limbal epithelial transplantation (CLET). This therapy was first developed by Pellegrini et al. in 1997 [4] and has been reproduced in various clinical trials [5–11]. Since a limiting factor of this method is obtaining of enough