
Chapter 5 
Local Invariant Hypersurfaces 
for Singular Foliations 

Felipe Cano and Beatriz Molina-Samper 

Dedicated to Dominique Cerveau 

Abstract The question of R. Thom of existence of invariant hypersurface for germs 
of holomorphic codimension one foliations is a leitmotiv in the theory. In these 
notes, we give a panorama of the state of art of this question, where the reduction 
of singularities plays a central role. We start with an elementary and detailed study 
of the final points expected after reduction of singularities, focusing the attention on 
concepts and properties concerning invariant hypersurfaces. 

5.1 Introduction 

The Theory of Holomorphic Singular Foliations has foundational papers in the 
works of Martinet and Ramis [23, 24], Malgrange [22], Mattei and Moussu [25] and 
Cerveau and Mattei [18]. The problem of existence of invariant hypersurfaces for 
germs of holomorphic singular foliations of codimension one starts with a question 
of René Thom. It is a “leitmotiv” in the Theory, from the years 1980s to the present 
time. 

There is a classical positive answer by C. Camacho and P. Sad for ambient 
dimension two [4]. When the ambient dimension is three or higher the question 
splits into two natural situations, the non-dicritical and the dicritical case. 
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In the non-dicritical case, the answer is also positive as a consequence of the 
reduction of singularities of non-dicritical foliations in dimension three [6, 8]. More 
precisely, in ambient dimension three the result is due to F. Cano and D. Cerveau 
[8] and in ambient dimension equal or bigger to four, the existence is assured by 
cohomological reasons from the three-dimensional case, as shown by F. Cano and 
J.F. Mattei [10]. 

In the dicritical case, there is a classical example of a conical foliation without 
invariant hypersurface in ambient dimension three, due to J.P. Jouanolou [21]. 
Anyway, there are situations where we can assure the existence of such invariant 
hypersurfaces, such as the toric type foliations in dimension three, as shown by F. 
Cano and B. Molina-Samper [12]. 

The reduction of singularities of germs of singular holomorphic foliations of 
codimension one in three-dimensional ambient spaces [7] is the main tool for 
approaching the problem. For this approaching, we need a good description of 
simple points obtained after reduction of singularities and the local formal or 
convergent invariant hypersurfaces around them. These points will be connected 
by means of the so called partial separatrices, in order to create a global invariant 
hypersurface in the total space obtained after desingularization. This global invariant 
hypersurface projects over a germ of invariant hypersurface thanks to the properness 
of the desingularization morphism. The above one is the main argument in the paper 
[8], that extends to certain dicritical situations. 

There are several alternative proofs for Camacho Sad result, namely [3, 15, 16, 
19, 28, 31, 34]. Also we can find other results of existence of invariant hypersurfaces 
in different settings, see for instance [29, 33]. 

These notes are divided in two parts. The first one concerns a description of 
simple points of codimension one holomorphic foliations, with almost complete 
computations, focusing in the properties concerning the invariant hypersurfaces. We 
do not include the formal classification in terms of abelian Lie algebras and we 
have tried to get the necessary statements directly from the Frobenius integrability 
condition. 

The second part is of expository nature and intends to give an idea of the state of 
the art in the problem of the existence of invariant hypersurfaces for codimension 
one holomorphic foliations. 

We are very grateful to the anonymous referee, for the valuable comments and 
suggestions that have improved the original manuscript. 

Part I: Invariant Hypersurfaces and Simple Points 

In this first part, we develop basic concepts in Singular Foliation theory and we focus 
in the description of simple points from the viewpoint of reduction of singularities.
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5.2 Codimension One Foliations 

In this section we make a quick introduction to general concepts for codimension 
one singular holomorphic foliations. 

5.2.1 Foliated Spaces 

We consider ambient spaces .(M,K) that are non-singular germs of complex 
analytic space over a compact subset .K ⊂ M . If no confusion arises, we just write 
M for the ambient space. More precisely, we are interested in ambient spaces issued 
from sequences of blowing-ups with non-singular centers 

. π : (M,K = π−1(0)) → (Cn, 0).

By a foliated space . M we mean a triple .M = (M,E,F ), where E is a normal 
crossings divisor in the ambient space M and . F is a codimension one holomorphic 
singular foliation of M . Given a point .P ∈ M , we denote by .eP E the number of 
irreducible components of E through P . 

There are several ways of defining codimension one holomorphic singular 
foliations. Without going into details, let us say that an atlas for a foliation is a 
family 

. {(ωi, Ui)}i∈I

where the . Ui define an open covering of M and the . ωi are never zero meromorphic 
differential 1-forms over . Ui such that .ωi ∧ dωi = 0, that is, they are Frobenius 
integrable. Moreover, the following property holds: 

Given .i, j ∈ I , for each .P ∈ Ui ∩ Uj there is a germ of meromorphic function . hij at P 
such that .ωi = hijωj . 

Two atlases for a foliation are compatible if their union is still an atlas. In this 
way, a codimension one holomorphic singular foliation . F is a maximal atlas or, 
equivalently, a class of compatibility of atlases. A local holomorphic generator of 
. F at a point P is a germ 

. ω = a1dx1 + a2dx2 + · · · + andxn

of holomorphic differential 1-form belonging to . F, where the coefficients . ai are 
germs of holomorphic functions without common factor. If . ω' is another local 
holomorphic generator of . F at P , then we have that .ω' = uω, where u is a unit 
in the local ring .OM,P . Conversely, for any unit .u ∈ OM,P , the germ . uω is a local 
holomorphic generator of . F at P .
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The singular locus .SingF is the closed analytic subset of M locally defined by 

. a1 = a2 = · · · = an = 0.

Note that .SingF has codimension at least two in the ambient space M . 
Take a reduced germ of holomorphic function .f ∈ OM,P . We say that the germ 

of hypersurface .f = 0 is invariant for . F when there is a germ of holomorphic 
differential 2-form . η such that 

. ω ∧ df = f η.

This definition extends without obstruction to formal hypersurfaces defined by 
reduced formal functions . f̂ in the Krull completion .-OM,P of the local ring .OM,P . 
Formal invariant hypersurfaces that are not convergent may exist, as shown by 
Euler’s foliation .(y − x)dx − x2dy = 0, where .y = Σ∞

k=0 k!xk+1 is a formal 
(divergent) invariant curve. 

Classical Frobenius’ Theorem shows that a codimension one singular holomor-
phic foliation . F defines a regular codimension one foliation on .M \SingF. A closed 
analytic hypersurface .H ⊂ M is invariant if, and only if, .H \SingF is a finite union 
of leaves. 

Given a foliated space .M = (M,E,F ), we say that an irreducible component 
D of E is dicritical if it is not invariant. The divisor E is the union of two normal 
crossings divisors .Einv and .Edic, corresponding respectively to the invariant and 
dicritical irreducible components. 

Definition 5.2.1 The adapted singular locus .Sing(F, E) = SingM is by definition 
the union of the singular locus .Sing(F) and the set of non-singular points where E 
and . F do not have normal crossings (the divisor E does not have normal crossings 
with the only invariant hypersurface of . F trough P ). 

Let N be a connected non-singular complex analytic space. Given a morphism 
.φ : N → M , one of the two following possibilities occurs: 

• .φ∗ω /= 0, for any local holomorphic generator . ω of . F around points in the image 
of . φ. We say that . φ is generically transverse for . F. 

• .φ∗ω = 0, for any local holomorphic generator . ω of . F around points in the image 
of . φ. We say that . φ is invariant for . F. 

When . φ is generically transverse we have a well defined foliation .φ∗F on N , that we 
call the transform of . F by . φ. Particularly interesting examples are the blowing-ups 
with non-singular centers. If .π : M ' → M is a blowing-up with a center . Y ⊂ M

having normal crossings with E, we have a  blowing-up of foliated spaces 

. π : (M ', E',F') → (M,E,F ),

where .F' = π∗F and .E' = π−1(E ∪ Y ). We recall that a non-singular subspace Y 
of M has normal crossings with E, when we can find local coordinates at each point 
P of Y in such a way that the components of E are coordinate hyperplanes and Y is 
an intersection of coordinate hyperplanes.
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A closed analytic subspace .Y ⊂ M is called invariant for . F at a point . P ∈
Y if each morphism .φ : (C, 0) → (M,P ) factoring through .(Y, P ) is invariant. 
We say that Y is invariant for . F when the property holds at each point .P ∈ Y . 
Being invariant at a point is an open and closed property on Y , hence, an irreducible 
subspace Y of M is invariant if, and only if, it is invariant at a point. We are mainly 
interested in blowing-ups with invariant centers. 

5.2.2 The Dimensional Type 

Let . F be a codimension one foliation on M and consider a point P in M . 
A germ . χ of holomorphic vector field at P is tangent to . F if .ω(χ) = 0 for 

the local holomorphic generators . ω of . F at P . We define .TPF to be the .C-vector 
subspace of the tangent space .TP M spanned by the tangent vectors .χ(P ), where . χ

is a germ of holomorphic vector field at P tangent to . F. The  dimensional type . τPF
of . F at P is the codimension of .TPF in .TP M . 

At a non-singular point, the foliation . F is locally given by .dx = 0, where x 
is a function belonging to a local coordinate system. In this case, we can write a 
local generator of the foliation in a single variable and the dimensional type is equal 
to one. More generally, next results give the link between the number of variables 
needed to define a foliation and its dimensional type. 

Lemma 5.2.2 Take local coordinates .x1, x2, . . . , xn at P and a germ of integrable 
holomorphic 1-form . α written as .α = Σk

i=1 bidxi , for a certain natural number 
.1 ≤ k ≤ n. Then, there is a holomorphic germ g at P such that .α = gω, with 
.ω = Σk

i=1 aidxi and the following properties hold: 

1. The coefficients . ai have no common factor, for .1 = 1, 2, . . . , k. 
2. .∂ai/∂xl = 0, for any .i = 1, 2, . . . , k and .k + 1 ≤ l ≤ n. 

Moreover, if the coefficients . bi have no common factor, then g is a unit in .OM,P . 

Proof We assume without loss of generality that the coefficients . bi have no 
common factor. By the condition .α ∧ dα = 0, we deduce that 

. ∂(bj /bs)/∂xl = 0, 1 ≤ j, s ≤ k, k + 1 ≤ l ≤ n.

Working in the field of germs of meromorphic functions, choosing a non-zero 
coefficient, say . b1, and a natural number .2 ≤ s ≤ k, we deduce that 

. bs/b1 = fs/hs, with ∂fs/∂xl = ∂hs/∂xl = 0, for k + 1 ≤ l ≤ n.

Let us denote .ã1 = | |k
l=2 hl and .ãs = ã1fs/hs , for  .2 ≤ s ≤ k. Let  . g̃ be the 

maximum common divisor of the . ̃as and put .ãs = g̃as . The vectors . (b1, b2, . . . , bk)

and .(a1, a2, . . . , ak) are proportional in the field of meromorphic functions. Since 
both are vectors of holomorphic germs without common factor, we find a unit .g ∈
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OM,P such that 

. (b1, b2, . . . , bk) = g(a1, a2, . . . , ak).

This ends the proof. nu
Proposition 5.2.3 Let .M = (M,E,F ) be a foliated space. We have the inequality 
.eP Einv ≤ τPF, for any point .P ∈ M . 

Proof Take a local coordinate system .x1, x2, . . . , xn, such that .Einv is given by 
.
| |e

i=1 xi = 0. Any tangent to . F germ of vector field . χ is also tangent to .Einv and 
thus, we can write it as 

. χ = Σe
i=1fixi∂/∂xi + Σn

i=e+1fi∂/∂xi .

We conclude that .TPF is contained in the vector space spanned by .∂/∂xi |P , for  
.i = e + 1, e + 2, . . . , n. Then .dim TPF ≤ n − e and hence .τPF ≥ e = eP Einv. nu
Proposition 5.2.4 Take a natural number k, such that .1 ≤ k ≤ n = dimM . We  
have that .k ≥ τPF if, and only if, there is a local coordinate system . x1, x2, . . . , xn

and a local generator of . F of the form .ω = Σk
i=1 aidxi , where .∂ai/∂xl = 0, for  

.1 ≤ i ≤ k and .k + 1 ≤ l ≤ n. 

Proof If there is such an .ω = Σk
i=1 aidxi , the linearly independent tangent vectors 

.∂/∂xl|P , for .k+1 ≤ l ≤ n, belong to .TPF. Conversely, let us assume that .k ≥ τPF. 
If .k = n, we are done. Let us suppose that .k < n and let us make inverse induction 
on k. By induction hypothesis, we have a local coordinate system .y1, y2, . . . , yn and 
a local generator .α = Σk+1

i=1 bidyi of . F such that 

. ∂bi/∂yl = 0, k + 2 ≤ l ≤ n.

Since .α(∂/∂yl) = 0, we have that the tangent vectors .∂/∂yl|P belong to .TPF, for  
.k + 2 ≤ l ≤ n. Recalling that .dimC TPF ≥ n − k and up to a linear coordinate 
change in .y1, y2, . . . , yk+1, we find a tangent to . F germ of vector field . χ such that 
.χ(P ) = ∂/∂yk+1|P . Up to multiplying . χ by a unit, we can suppose that 

. χ = ∂/∂yk+1 + Σ

j≤k fj ∂/∂yj + Σ

l≥k+2 fl∂/∂yl.

Now, the fact that .α(χ) = 0 is equivalent to saying that 

.bk+1 +
k

Σ

j=1

bjfj = 0. (5.1)
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For each natural number .1 ≤ j ≤ k, let us write .fj = f 0
j + hj , where . hj belongs 

to the ideal generated by .yk+2, yk+3, . . . , yn and 

. ∂f 0
j /∂yl = 0, k + 2 ≤ l ≤ n.

By Eq. (5.1), we deduce that .α(χ0) = 0, where .χ0 = ∂/∂yk+1 + Σk
j=1 f 0

j ∂/∂yj , 

just recalling that .∂bj /∂yl = 0, for .k + 2 ≤ l ≤ n. Let us rectify . χ0 by means of a 
coordinate change not concerning the variables .yk+2, yk+3, . . . , yn. In this way, we 
obtain a new local coordinate system .x1, x2, . . . , xn such that .χ0 = ∂/∂xk+1 and 

. ∂yj /∂xl = 0, 1 ≤ j ≤ k + 1, k + 2 ≤ l ≤ n.

As a consequence, we get that . α is written as .α = Σk+1
i=1 gidxi . Since . α(χ0) = 0

we have that .gk+1 = 0. Then .α = Σk
i=1 gidxi and we end by Lemma 5.2.2. nu

5.2.3 Axes and Transversal Type 

Consider a foliated space .M = (M,E,F ) and a point P in M of dimensional type 
.τ = τPF. Denote by . pr the linear projection 

. pr : (Cn, 0) = (Cτ × C
n−τ , 0) → (Cτ , 0)

over the first . τ coordinates. In view of Proposition 5.2.4, there is an isomorphism 
.φ : (M,P ) → (Cn, 0) and a foliation . G on .(Cτ , 0), such that .F = (pr ◦φ)∗G. 

Proposition 5.2.5 Consider an immersion .δ : (Cτ , 0) → (M,P ) transverse to the 
tangent space .TPF. Then .δ∗F is isomorphic to . G. 

Proof It is enough to consider . δ, with target in .(Cn, 0), throughout the isomorphism 
given by . φ as above. nu

The transversal type of . F at P is any germ of foliation isomorphic to . G. 
Let us consider .π = pr ◦ φ : (M,P ) → (Cτ , 0), we say that .A = π−1(0) is an 

axis for . F at P . Note that . F has the same dimensional type and the same transversal 
type at all the points of the axis. We sometimes refer to this situation by saying that 
. F is “analytically trivial” along A. 

The projection . π is tangent to .Einv and then, we have a normal crossings divisor 
on .(Cτ , 0) by direct image. On the other hand, an immersion . δ transverse to .TPF, 
as above, has necessarily normal crossings with .Einv. Hence we obtain a foliated 
space .((Cτ , 0), δ−1(Einv), δ

∗F ), where the normal crossings divisor .δ−1(Einv) is 
invariant for . δ∗F. 

Remark 5.2.6 Consider a foliated space .M = (M,E,F ), where .E = Einv and 
.n = dimM . Let us consider an irreducible closed analytic subset .Z ⊂ M , saturated
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by the local analytic type of . M in the following sense: if .P ∈ Z and .Q ∈ M is 
another point such that the germs .MP and .MQ are isomorphic, then .Q ∈ Z. If we  
consider a point .P ∈ Z, any axis A for . F at P must be contained in Z. In particular, 
if .dimZ ≤ n − τPF, then .dimZ = n − τPF and Z is the only axis of . F at P . 

There are two examples that will be useful for our study of pre-simple and 
simple points. Both cases assume that we are looking around a point P that is 
in the intersection of all the irreducible components of E, that we denote . Ei , for  
.i = 1, 2, . . . , l (this situation may be obtained at a convenient neighborhood of P ): 

(a) We define .Z = ∩l
i=1Ei . If .τP = n − l we get that Z is the axis of . F at P . 

(b) We define .Z = ∩l
i=1Ei ∩ {Q; τQF ≥ l + 1}. If  Z is irreducible, . dimZ =

n − l − 1 and .τPF = l + 1, then Z is the axis of . F at P . 

5.3 Pre-simple Points 

Let .M = (M,E,F ) be a foliated space and consider a point P in M . Take local 
coordinates .x1, x2, . . . , xn and a local holomorphic generator .ω = Σn

i=1 aidxi of . F
at P . The  order .ordP F of . F at P is given by 

. ordP F = min{ordP (ai); i = 1, 2, . . . , n},

where .ordP (ai) denotes the usual Krull order of .ai ∈ OM,P . Note that the order 
defines an upper semi-continuous function .M → Z≥0. The open set .M \ SingF is 
given by the points P such that .ordP F = 0. 

The coordinate system is adapted to E if there is a subset A of . {1, 2, . . . , n}
such that .E = (

| |

i∈A xi = 0), locally at P . An irreducible component .xi = 0 of 
E is invariant for . F if, and only if, . xi divides . aj for any .j /= i. Let  . Ainv ⊂ A

be the set of indices corresponding to the invariant components of E at P and put 
.Adic = A \ Ainv. Write 

. η = (
| |

i∈Ainv

xi)
−1ω = Σ

i∈A bidxi/xi + Σ

i∈{1,2,...,n}\Abidxi .

The coefficients . bi are germs of holomorphic functions without common factor. 
Such an . η is called a logarithmic generator for . M at P. Given  .i ∈ A, note that . xi

divides . bi if, and only if, .i ∈ Adic. The  logarithmic order .logordP M of . M at P is 

. logordP M = min{ordP (bi); i = 1, 2, . . . , n}.

The following inequalities hold: .logordP M− 1 ≤ ordP F− #Ainv ≤ logordP M.
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Definition 5.3.1 We say that P is a pre-simple point for .M = (M,E,F ) if one of 
the following properties holds: 

(a) .logordP M = 0. 
(b) .logordP M = 1 and there are natural numbers .k, l ∈ {1, 2, . . . , n}, with . k ∈ A

and .l /∈ A, such that .∂bk/∂xl(P ) /= 0. 

Remark 5.3.2 The properties .logordP M = 0 and .logordP M = 1 are independent 
of the choice of the logarithmic generator . η and the adapted coordinates . x =
(x1, x2, . . . , xn). Let us see why the property (b) is also independent of the choice 
of . η and x. Another generator is obtained by multiplying . η by a unit, and hence the 
property (b) still holds. Let us show the independence of the adapted coordinates. 
Let us denote: 

• .JE,P ⊂ OM,P , the ideal of E at the point P . 
• .0M,P , the module of germs of vector fields at P . 
• .0M,P [logE] ⊂ 0M,P . the germs of vector fields that are tangent to E. 
• .mM,P , the maximal ideal of .OM,P . 

There is a natural mapping .π : (mM,P 0M,P )∩0M,P [logE] → OM,P /JE,P , given  
by .ξ |→ η(ξ) +JE,P . Then, condition b) holds if, and only if, .logordP M = 1 and 
there is at least an element in the image of . π of order equal to one. 

Remark 5.3.3 If .M = (M,E,F ) is a foliated space, we can consider the foliated 
space .Minv = (M,Einv,F ). We have that .logordP M ≥ logordP Minv, for any 
.P ∈ M . Thus, a pre-simple point for . M is also a pre-simple point for .Minv, since 
in the case .1 = logordP M = logordP Minv, the condition (b) only holds at indices 
corresponding to invariant components. 

Remark 5.3.4 The set of pre-simple points for the foliated space .(M,E,F ) is an 
open subset of M . 

5.3.1 Trace and Corner Pre-simple Points 

In next Proposition 5.3.5, we describe the two fundamental types of pre-simple 
points: the trace and corner type points. The number of invariant components of 
the divisor through a corner point is maximum and thus it coincides with the 
dimensional type . τ . In the case of trace type points, there are .τ − 1 invariant 
components. We end this subsection with the definition of primary residual vector, 
which is a key concept to introducing the notion of simple points. 

Along this subsection, we consider a pre-simple point P for a foliated space . M =
(M,E,F ). We denote by . τ to the dimensional type of . F at P and by . e = eP Einv
the number of invariant components of E through P .
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Proposition 5.3.5 We have that .e ≤ τ ≤ e + 1. Moreover, there are a local 
coordinate system .x1, x2, . . . , xn, a logarithmic generator . η of . M at P and a natural 
number .τ + 1 ≤ k ≤ n + 1 such that: 

1. .Einv = (
| |e

i=1 xi = 0) and .Edic = (
| |n

i=k xi = 0), locally at P (we have that 
.Einv = ∅, if .e = 0, and .Edic = ∅, if .k = n + 1). 

2. The logarithmic generator . η is written as 

. η =
{ Στ

i=1 bidxi/xi, if e = τ,

bτ dxτ + Στ−1
i=1 bidxi/xi, if e = τ − 1,

where .∂bi/∂xl = 0, for .1 ≤ i ≤ τ and .τ + 1 ≤ l ≤ n. 
3. If .e = τ , then .ordP (bi; i = 1, 2, . . . , τ ) = 0. 
4. If .e = τ − 1, then .ordP (bi; i = 1, 2, . . . , τ − 1) ≥ 1 and either .ordP (bτ ) = 0 or 

.∂bi/∂xτ (P ) /= 0, for  some .i ∈ {1, 2, . . . , τ − 1}. 
Proof Choose a local coordinate system .x = (x1, x2, . . . , xn) such that 

. Einv = (
| |e

i=1 xi = 0), Edic = (
| |n

i=k xi = 0), k ≥ e + 1.

Take a local logarithmic generator . η of the form 

. η = Σe
i=1bidxi/xi + Σk−1

i=e+1bidxi + Σn
i=kbixidxi/xi

and consider the natural number .m(x) defined by 

. m(x) = min{l; 0 ≤ l ≤ n and bl+1 = bl+2 = . . . = bn = 0}.

Note that .max{1, e} ≤ m(x) ≤ n, since . xi does not divide the coefficients . bi , for  
.1 ≤ i ≤ e. Note also that .τ ≤ m(x), in view of Lemma 5.2.2 and Proposition 5.2.4. 
Let us show that, up to making a coordinate change, we can get that . m(x) ≤ e + 1
and hence .e ≤ m(x) ≤ e + 1. In view of Proposition 5.2.3, we conclude in this way 
that .e ≤ τ ≤ e + 1. 

Assume that .m = m(x) ≥ e + 2. By Lemma 5.2.2, up to multiplying . η by a unit, 
we can suppose that the coefficients . bi of . η do not depend on the variables . xj , for  
.m + 1 ≤ j ≤ n. Let us find a new coordinate system . x', respecting the equations of 
E, such that .m(x') < m(x). We find . x' after the rectification of a germ . χ of non-
singular vector field tangent to . F (and hence tangent to .Einv), with the following 
properties: 

(i) . χ does not depend on the coordinates .xm+1, xm+2, . . . , xn, 
(ii) . χ is tangent to .xj = 0, for .k ≤ j ≤ n, with .j /= m, 
(iii) . χ is transverse to .xm = 0. 

Let us find such a vector field . χ . If .logordP M = 0, there are two cases: 

. ordP (bi; i = 1, 2, . . . , e) = 0 or ordP (bi; i = 1, 2, . . . , e) ≥ 1.
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In the first case, we have that .e ≥ 1 and there is a natural number .i ∈ {1, 2, . . . , e}, 
such that .bi(P ) /= 0. We can take .χ = bi∂/∂xm − bmxi∂/∂xi . In the second case, 
we have that .k ≥ e + 2 and there is a natural number .j /= m, with .e + 1 ≤ j < k, 
such that .(bj (P ), bm(P )) /= (0, 0). Up to exchanging . xj and . xm, we can suppose 
that .bj (P ) /= 0. We take .χ = bj ∂/∂xm − bm∂/∂xj . 

Suppose now that .logordP M = 1. We have that  .1 ≤ e, .e + 1 < k and, up 
to a reordering of the coordinates, we assume that .∂b1/∂xe+1(P ) /= 0. Note that 
.n ≥ 3, since .m ≥ e + 2 ≥ 3. The integrability condition .η ∧ dη = 0 implies that 
.0 = b1α + bmβ + be+1γ , where 

. α = ∂be+1/∂xm − ∂bm/∂xe+1,

β = ∂b1/∂xe+1 − x1∂be+1/∂x1,

γ = x1∂bm/∂x1 − ∂b1/∂xm.

We take .χ = αx1∂/∂x1 + β∂/∂xm + γ ∂/∂xe+1, noting that .β(P ) /= 0. 
When .logordP M = 0 and .ordP (bi; i = 1, 2, . . . , e) = 0, the above arguments 

allow to reduce the number m, even in the case that .m = e + 1. 
Summarizing our arguments, we get that the coefficients . bi depend only on the 

variables .x1, x2, . . . , xm and we arrive to one of the following situations: 

(a) .m = e and .logordP M = 0. In this case .τ = e = m. 
(b) .m = e + 1, .logordP M = 0 and .ordP (bi; i = 1, 2, . . . , e) ≥ 1. In particular, 

we have that .be+1(P ) /= 0. 
(c) .m = e + 1, .logordP M = 1 and .∂b1/∂xe+1(P ) /= 0. 

In the cases (b) and (c), we have .τ = e + 1. Indeed, if there is a non-singular 
vector field . χ trivializing the foliation and depending only on the coordinates 
.x1, x2, . . . , xe+1, we can take it of the form 

. χ = ∂/∂xe+1 − Σe
s=1 fsxs∂/∂xs.

This implies that .be+1 = Σe
s=1 fsbs . This is obviously not possible in case (b). 

In case (c), after rectification of . χ , we would find local coordinates . y1, y2, . . . , ye, z

adapted to .Einv, such that 

. η = g1dy1/y1 + g2dy2/y2 + · · · + gedye/ye

and .∂g1/∂z(P ) /= 0, where the . gi are without common factor, for .i = 1, 2, . . . , e, 
see Remark 5.3.2. By Lemma 5.2.2, there would be a unit u such that . uη does not 
depend on the variable z, in particular .uf1 does not depend on z and this is not 
possible. nu
Definition 5.3.6 We say that P is of trace type if .e = τ − 1 and that it is of corner 
type if .e = τ . If  P is of trace type, we say that it is a transversal saddle-node when 
.logordP M = 1 and that it is a tangent trace point when .logordP M = 0.
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In next proposition, we give a characterization of pre-simple corners: 

Proposition 5.3.7 Consider a foliated space .M = (M,E,F ) and a point .P ∈ M . 
Suppose that there is a logarithmic generator of . M of the form 

. η = Σe
i=1 bidxi/xi + Σk−1

i=e+1 bidxi + Σn
i=k bixidxi/xi,

where the invariant divisor is given by .
| |e

i=1 xi = 0. The point P is a pre-simple 
corner for . M if, and only if, .ordP (bi; i = 1, 2, . . . , e) = 0. 

Proof It follows from the proof of Proposition 5.3.5. nu
Remark 5.3.8 Let P be a pre-simple point of corner type and assume that the 
dimensional type at P is equal to .n = dimM . There are exactly n irreducible 
components of .E = Einv through P . Let  H be one of that irreducible components 
and consider the union . E' of the other ones, then .(M,E',F ) has a pre-simple point 
of trace type at P and H is an invariant hypersurface through P having normal 
crossings with . E'. 

Remark 5.3.9 When we are dealing with pre-simple points, the dicritical com-
ponents can be written in coordinates not appearing in a suitable choice of local 
generator. In order to simplify the exposition, we frequently consider the case 
.τPF = n = dimM and hence .Edic = ∅. 

Consider a coordinate system .x = (x1, x2, . . . , xn) adapted to E and a 
logarithmic generator . η of . M at P as in Proposition 5.3.5, where 

. η =
{ Στ

i=1 bidxi/xi, if P is of corner type
bτ dxτ + Στ−1

i=1 bidxi/xi, if P is of trace type

Definition 5.3.10 The primary residual vector . λ for . M at P associated to . η and 
to the chosen coordinate system x is defined by .λ = (b1(P ), b2(P ), . . . , bτ (P )), 
when P is of corner type and by 

. λ = (∂b1/∂xτ (P ), ∂b2/∂xτ (P ), . . . , ∂bτ−1/∂xτ (P ), bτ (P )),

when P is of trace type. 

Remark 5.3.11 If . λ and . λ' are primary residual vectors, then . λ' is of the form 
.λ' = αλ̃, where .α /= 0 and . ̃λ is obtained by a reordering of the entries of . λ. That 
is, the primary residual vectors are uniquely defined up to a reordering and up to 
homothety.
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5.3.2 Pre-simple Corners 

Here we give a useful structure of the coefficients of local logarithmic generators 
for pre-simple corners. As a consequence, we obtain a description of the singular 
locus and the notion of secondary residual vector. 

Let P be a pre-simple corner for a foliated space .M = (M,E,F ) such that 
.τ = τPF ≥ 2. Take a local system of coordinates .x1, x2, . . . , xn adapted to E, 
where .Einv = (

| |τ
i=1 xi = 0) and a logarithmic local generator . η for . M at P , given  

by 

. η = Στ
i=1 bidxi/xi, bi ∈ C{x1, x2, . . . , xτ }.

We know that . xi does not divide . bi , for any natural number .i = 1, 2, . . . , τ . Define 
the subsets . J1 and . J2 of .{1, 2, . . . , τ } by 

. J1 = {i; bi(P ) /= 0}, J2 = {1, 2, . . . , τ } \ J1.

We know that .J1 /= ∅, since .logordP M = 0. Moreover, it is possible that .J2 = ∅, 
in this case all the coefficients . bi are units. The primary residual vector is given by 
.λ = (λi)

τ
i=1, where .λi = bi(P ), for any .i = 1, 2, . . . , τ . 

Recall that the integrability condition .η ∧ dη = 0 is equivalent to say that 

. 0 = bk

(

xj ∂bl/∂xj − xl∂bj /∂xl

) + (5.2)

bj (xl∂bk/∂xl − xk∂bl/∂xk) +
bl

(

xk∂bj /∂xk − xj ∂bk/∂xj

)

,

for any indices .j, k, l ∈ {1, 2, . . . , τ }. 
Lemma 5.3.12 We have that . xk divides .bj |xj =0, for any .j ∈ J2 and .k ∈ J1. 

Proof Up to multiplying . η by a unit, we assume that .bk = 1. Given a germ of 
function .f ∈ C{x1, x2, . . . , xτ }, let us denote .f̄ = f |xj =0. Since .ordP (bj ) > 0, we  
have that . xk divides . b̄j if, and only if, . xk divides .∂b̄j /∂xl, for any . l ∈ {1, 2, . . . , τ }\
{k, j}. If  .τ = 2, we are done. If .τ ≥ 3, by restriction of Equation (5.2) to .xj = 0, 
we find that 

.xl∂b̄j /∂xl = xk(b̄l∂b̄j /∂xk − b̄j ∂b̄l/∂xk) (5.3) 

and we are done. nu
Proposition 5.3.13 If .J2 /= ∅, there are a monomial .m = | |

k∈J1
x

qk

k , with . qk ≥ 1
for any .k ∈ J1 and decompositions 

.bj = μjmuj + xjfj , uj = φ + gj , j ∈ J2,
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satisfying the following properties: 

1. The germ of function . φ is a unit in .C{(xk)k∈J1}, with .φ(P ) = 1. 
2. The coefficients . μj are non-zero scalars. 
3. The germs of function .gj ∈ C{(xi)

τ
i=1} are in the ideal generated by .{xl}l∈J2 and 

we have that .∂gj /∂xj = 0. 

Moreover, the primary residual vector .λ = (λk)k∈J1 is proportional to .(qk)k∈J1 . 

Proof Up to a reordering of the coordinates, there is a natural number s, with . 1 ≤
s < τ , such that 

. J1 = {1, 2, . . . , s}, J2 = {s + 1, s + 2, . . . , τ }.

If .τ = 2, the results follows, since . x2 does not divide . b2. Assume that .τ ≥ 3. 
If the result is true for a given . η, it is also true up to multiplying . η by a unit 
in .C{x1, x2, . . . , xτ }. This allows us to assume that .b1 = 1. Consider a natural 
number .j ∈ {s + 1, s + 2, . . . , τ }. Since . xj does not divide . bj , there is a unique 
decomposition 

. bj = mj uj + xjfj , mj = | |τ
i=1,i /=j x

αj,i

i ,

where .uj /= 0, .∂uj /∂xj = 0 and there is no . xl dividing . uj . Moreover, by 
Lemma 5.3.12, we know that .αj,k ≥ 1, for any .1 ≤ k ≤ s. 

First Step: . uj Is a Unit We do the proof in the case that .j = τ . Recall that . uτ ∈
C{x1, x2, . . . , xτ−1}. Since . x1 does not divide . uτ , we can write .uτ = ϕ1 + v1, 
where . x1 divides . v1, and .0 /= ϕ1 ∈ C{x2, x3, . . . , xτ−1}. Let  t be the maximum of 
the natural numbers . l, with .2 ≤ l ≤ τ , for which we have a decomposition 

. uτ = ϕl−1 + vl−1,

where .0 /= ϕl−1 ∈ C{xl, xl+1, . . . , xτ−1} and .vl−1 belongs to the ideal .Jl−1 gene-
rated by .x1, x2, . . . , xl−1. As we have seen, such a natural number t exists. If .t = τ , 
then . uτ is a unit, since .ϕτ−1 must be a non-zero scalar. Let us show that .t = τ . 
Assume that .t < τ , in order to find a contradiction. Write .uτ = ϕt−1 + vt−1 as 
before. Let us decompose 

. ϕt−1 = ϕt + xtψ,

where .ϕt ∈ C{xt+1, xt+2, . . . , xτ−1}. If  .ϕt /= 0, we contradict the maximality of 
t , since in this case we can put .uτ = ϕt + vt , where .vt = xtψ + vt−1. Let us 
show that the property .ϕt = 0 leads also to a contradiction. Thus, we suppose that 
.ϕt−1 = xtψ /= 0.



5 Local Invariant Hypersurfaces for Singular Foliations 165

For any .f ∈ C{x1, x2, . . . , xτ }, we take the notation .f̄ = f |xτ =0 and .f ∗ = f |Zt , 
where . Zt is given by .x1 = x2 = · · · = xt−1 = 0. Note that we have 

. f̄ ∈ C{x1, x2, . . . , xτ−1}, f̄ ∗ ∈ C{xt , xt+1, . . . , xτ−1}.

By the integrability condition, as in Eq. (5.3), we obtain that 

.xt∂b̄τ /∂xt = b̄t x1∂b̄τ /∂x1 − b̄τ x1∂b̄t /∂x1. (5.4) 

Note that .b̄τ = mτ uτ /= 0. Substituting . b̄τ by .mτ uτ in Eq. (5.4) and dividing by 
. mτ , we get 

.ατ,tuτ + xt∂uτ /∂xt = b̄t (ατ,1uτ + x1∂uτ /∂x1) − x1uτ ∂b̄t /∂x1. (5.5) 

Up to a restriction to . Zt and dividing by . xt , we obtain that 

.(ατ,t + 1)ψ + xt∂ψ/∂xt = b̄∗
t ατ,1ψ. (5.6) 

Let us expand .ψ = Σ

s≥d ψsx
s
t , where we have that .∂ψs/∂xt = 0 and .ψd /= 0. 

Write also .b̄∗
t = Σ∞

s=0 Bsx
s
t , where the conditions .∂Bs/∂xt = 0 hold. Looking at 

the coefficient of . xd
t in Eq. (5.6), we get 

. (ατ,t + 1 + d)ψd = ατ,1B0ψd.

Thus, we get that .B0 = bt (P ) = (ατ,t + 1 + d)/ατ,1 ∈ Q>0. Now, we write 
.uτ = f + xtg with .∂f/∂xt = 0. Note that .f /= 0, since . xt does not divide . uτ . If we  
make .xt = 0 in Eq. (5.5), we obtain 

. ατ,tf = (b̄t |xt=0)(ατ,1f + x1∂f/∂x1) − x1f ∂(b̄t |xt=0)/∂x1.

Let us write .f = Σ

s≥ρ fsx
s
1, with .fρ /= 0 and .∂fs/∂x1 = 0. Looking at the 

coefficient of . xρ
1 as above, we get that .bt (P ) = ατ,t /(ατ,1 + ρ). We obtain the 

contradiction .ατ,t /(ατ,1 + ρ) = (ατ,t + 1 + d)/ατ,1. 

Second Step: .mj ∈ C{x1, x2, . . . , xs} It is enough to show that .bj /∈ I, where . I is 
the ideal of .C{x1, x2, . . . , xτ } generated by .xs+1, xs+2, . . . , xτ . Let us prove it for 
.j = τ . If  .s = τ − 1, we are done, since . xτ does not divide . bτ . Suppose now that 
.s ≤ τ − 2. Assume, by contradiction, that . bτ belongs to . I. Write any . bt as a formal 
series 

. bt = Σ

r=(r1,r2,...,rs )
bt,r (xs+1, xs+2, . . . , xτ )x

r1
1 x

r2
2 · · · xrs

s .

By Lemma 5.3.12, we know that . xk divides .bτ |xτ =0 for all .1 ≤ k ≤ s. This implies 
that .bτ,0|xτ =0 is identically zero and hence . xτ divides . bτ,0. Since . xτ does not divide
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. bτ , there is .m = (m1,m2, . . . , ms) ∈ Z
s
≥0 and .1 ≤ κ ≤ s satisfying the following 

properties: 

• . xτ divides . bτ,r , for any .r = (r1, r2, . . . , rs) such that .rl ≤ ml, for all .1 ≤ l ≤ s. 
• . xτ does not divide .bτ,m' , where . m' is given by .m'

l = ml, for  .l /= κ and . m'
κ =

mκ + 1. 

If we multiply . η by a unit, the above properties still hold, thus, we may assume that 
.bκ = 1 (we lose, for a moment, the hypothesis that .b1 = 1). Given .s+1 ≤ l ≤ τ−1, 
by the integrability condition we obtain that 

.xτ ∂bl/∂xτ − xl∂bτ /∂xl = −blxκ∂bτ /∂xκ + bτ xκ∂bl/∂xκ . (5.7) 

Looking at the coefficient of . xm'
in this equation, restricted to .xτ = 0, we see that 

.xl∂b̄τ,m'/∂xl = mκb̄l,0b̄τ,m' , (5.8) 

where .f̄ = f |xτ =0 as before. Recall that we are assuming that .bτ,m' ∈ I and hence 
.b̄τ,m' has positive order. Noting that .b̄l,0 is not a unit, the only positive order solution 
of Eq. (5.8) is .b̄τ,m' = 0. This is the desired contradiction. 

Third Step: .ml = mτ and There Is . φ such that .ul = μlφ+gl, for any . s+1 ≤ l ≤ τ

We obviously assume that .s ≤ τ − 2 and .l < τ . Consider 

. Z = (xs+1 = xs+2 = · · · = xτ = 0)

and put .φt = bt |Z , for  .s + 1 ≤ t ≤ τ . We know that .φt = mtψt , where . ψt is a 
unit in .C{x1, x2, . . . , xs}. Hence, we have that .φt /= 0. Let us show now that . φl/φτ

is a non-null constant meromorphic series. Since we know that .φl /= 0 /= φτ , it is  
enough to show that 

.φτ ∂φl/∂xk − φl∂φτ /∂xk = 0, k = 1, 2, . . . , s. (5.9) 

By restriction of Eq. (5.7) to Z, we directly obtain Eq. (5.9). We find the equality of 
monomials .ml = mτ and also we get a non-null series .φ = φτ and a scalar .μl /= 0, 
with .ψl = μlφ. 

Fourth Step: The Vectors .(λ1, λ2, . . . , λs) and .(q1, q2, . . . , qs) Are Proportional 
One to Each Other If .s = 1, the result is straightforward. Assume that . s ≥ 2
and take a natural number .2 ≤ k ≤ s. As in Eq.  (5.7), we have that 

.xτ ∂bk/∂xτ − xk∂bτ /∂xk = −bkx1∂bτ /∂x1 + bτ x1∂bk/∂x1. (5.10) 

By taking initial parts of degree d in the restriction of Eq. (5.10) to Z, we conclude 
that 

.xk∂m/∂xk = λkx1∂m/∂x1.
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This implies that .qk = λkq1, for  .k = 2, 3, . . . , s. Since .λ1 = 1, we get the desired 
proportionality. 

nu
Corollary 5.3.14 Given a pre-simple corner P for .M = (M,E,F ), the singular 
locus .SingF is given, locally at P , by the union of the two by two intersections of 
invariant components of E through P . 

Proof Let Q be a point near P . If  .Q ∈ M \ Einv the fact that .J1 /= ∅ implies that 
.Q /∈ SingF. Take an irreducible component .xi = 0 of .Einv. We have that  

. SingF ∩ (xi = 0) = (xi = 0) ∩ (bi

| |

j /=i xj = 0).

Now, the result follows if we show that .(xi = 0) ∩ (bi = 0) is contained in 
.
| |

j /=i xj = 0. When .i ∈ J1, we conclude by noting that . bi is a unit. In the case 
.i ∈ J2, we have that .bi |xi=0 = μimui and we are done, since . ui is a unit. nu
Definition 5.3.15 The vector .μ = (μj )j∈J2 obtained in Proposition 5.3.13 is the 
secondary residual vector attached to . η and the chosen coordinates. 

The secondary residual vector is well defined for . M at the pre-simple corner P 
up to reordering and to homothety. 

In next sections we will see that primary and secondary residual vectors are 
useful to characterize simple points. 

5.3.3 Complete Pre-simple Trace Points 

In this section, we consider a pre-simple trace point P of dimensional type . τ for a 
foliated space .M = (M,E,F ). 

Definition 5.3.16 We say that P is a complete pre-simple trace point if, and only 
if, there is a unique non-singular formal hypersurface . Ĥ through P invariant for . F, 
such that .Ĥ /⊂ E and .Einv ∪ Ĥ defines a formal normal crossings divisor at P . 

Let us recall that .e = τ − 1, where e denotes the number of irreducible invariant 
components ofE through P . Along this section we assume for simplicity that .τ = n, 
where n is the dimension of the ambient space M . 

5.3.3.1 Some Complete Trace Points 

Take coordinates .x1, x2, . . . , xn at P such that .Einv = (
| |n−1

i=1 xi = 0). Fix  also  a  
local logarithmic generator 

.η = bndxn + Σn−1
i=1 bidxi/xi
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of . M at P . Recall that .ordP (b1, b2, . . . , bn−1) ≥ 1 and one of the following holds: 

(a) .ordP (bn) ≥ 1 and .∂bj /∂xn(P ) /= 0, for a certain natural number j with . j ∈
{1, 2, . . . , n − 1}. This is the transversal saddle-node case. 

(b) .ordP (bn) = 0. This is the tangent pre-simple trace case. 

The point P is a complete pre-simple trace point if, and only if, there is a unique 
formal series .f ∈ C[[x1, x2, . . . , xn−1]] of order greater or equal than one, such 
that the formal hypersurface .xn = f is invariant. This is equivalent to say that the 
equation 

.bi(x1, x2, . . . , xn−1, f ) = −bn(x1, x2, . . . , xn−1, f )xi∂f/∂xi (5.11) 

holds, for any .i = 1, 2, . . . , n − 1. 

Proposition 5.3.17 If P is a transversal saddle-node, then it is a complete pre-
simple trace point. 

Proof Take a natural number j such that .1 ≤ j ≤ n − 1 and .∂bj /∂xn(P ) /= 0. 
Recalling that .ordP (bn) ≥ 1 and following the method of indeterminate coefficients, 
we see that Eq. (5.11) has a unique formal solution f in .C[[x1, x2, . . . , xn−1]], with 
.ordP (f ) ≥ 1, for the natural number .i = j . Let us see that f gives also a solution 
of Eq. (5.11) for any .i = 1, 2, . . . , n − 1. Let us put .ẑ = xn − f and write . η as 

.η = bndẑ + Σn−1
i=1 (bi + bnxi∂f/∂xi)dxi/xi . (5.12) 

We know that . ̂z divides .bj + bnxj ∂f/∂xj . Since .∂bj /∂xn(P ) /= 0, there is a formal 
unit . ̂u such that .ẑ = û(bj + bnxj ∂f/∂xj ). Let us put .η̂ = ûη, where we write 

. η̂ = b̂ndẑ + ẑdxj /xj +
n−1
Σ

i=1,i /=j

b̂idxi/xi .

Equation (5.11) holds for the natural number i if, and only if, the formal series . ̂z
divides . b̂i . Looking at the coefficient of .dxi ∧dxj ∧dẑ in the integrability condition 
.η̂ ∧ dη̂ = 0, evaluated in .ẑ = 0, and denoting .βi = b̂i |ẑ=0, .βn = b̂n|ẑ=0, we obtain 
that 

. βi = βixj ∂βn/∂xj − βnxj ∂βi/∂xj .

The only solution of this equation is .βi = 0, since .ordP (βn) ≥ 1. Hence . ̂z divides 
. b̂i as desired. nu

Assume now that P is a tangent trace point. We normalize . η by assuming that 
.bn = 1, that is, we write 

.η = dxn + Σn−1
i=1 bidxi/xi . (5.13)
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In this situation, we say that P is binary-resonant if there is a natural number . i ∈
{1, 2, . . . , n − 1} such that .λi ∈ Z<0, where .λi = ∂bi/∂xn(P ). 

Proposition 5.3.18 If P is a tangent trace point that is not binary-resonant, then it 
is complete. 

Proof We look for an invariant hypersurface of the form .xn = f as before. Recall 
that it is invariant if, and only if, the formal series f satisfies the conditions of 
Eq. (5.11), where .bn = 1, for any .i = 1, 2, . . . , n − 1, that is 

.bi(x1, x2, . . . , xn−1, f ) + xi∂f/∂xi = 0, i = 1, 2, . . . , n − 1. (5.14) 

We do a decomposition .bi = βi + xn(λi +φi), where .∂βi/∂xn = 0 and . ordP (φi) >

0. Put .λ' = (λ1, λ2, . . . , λn−1). We separate two cases .λ' /= 0 and .λ' = 0. 
Suppose first that .λ' /= 0. Up to a reordering, we can assume that .λ1 /= 0. 

Substituting the previous decomposition in Eq. (5.14) for .i = 1, we obtain that 

. (λ1 + φ1(x1, x2, . . . , xn−1, f ))f + x1∂f/∂x1 = −β1.

This equation has a unique formal solution .f (x1, x2, . . . , xn−1), since we have the 
hypothesis .ordP (φ1) ≥ 1 and .λ1 /∈ Z≤0. If  .n = 2, we are done. Let us assume 
.n ≥ 3, denote .ẑ = xn − f and write 

. η = dẑ + Σn−1
i=1 b̂idxi/xi,

where we know that .b̂1 = ẑ(λ1 + φ̂1), with .ordP (φ̂1) ≥ 1. Let us see that . ̂z divides 
. b̂i , for .i = 2, 3, . . . , n−1. Write .b̂i = β̂i + ẑ(λi + φ̂i ) as before. By the integrability 
condition, we have that 

. x1∂b̂i/∂x1 − xi∂b̂1/∂xi − b̂1∂b̂i/∂ẑ + b̂i∂b̂1/∂ẑ = 0,

for any .i ∈ {2, 3, . . . , n − 1}. Doing .ẑ = 0, we obtain the equation 

. x1∂β̂i/∂x1 + β̂i (λ1 + φ̂1|ẑ=0) = 0.

It has the only solution .β̂i = 0, since .λ1 /∈ Z≤0 and .ordP (φ̂1) ≥ 1. Thus . ̂z divides 
all the coefficients . b̂i , for  .i = 1, 2, . . . , n − 1. Hence .ẑ = 0 is the desired formal 
invariant hypersurface. 

Assume now that .λ' = 0. Let us perform a change of coordinates 

. z = xn − O(x1, x2, . . . , xn−1),

where .O /= 0 is homogeneous of degree .k ≥ 1. Write 

.η = dz + Σn−1
i=1 b̃idxi/xi, b̃i = bi + xi∂O/∂xi.
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Let us decompose .b̃i = β̃i (x1, x2, . . . , xn−1) + zφ̃i , where .ordP (φ̃i) ≥ 1. Now, we  
put .d = ordP (β1, β2, . . . , βn−1) ≥ 1. By a direct verification we see that 

. If k < d, then d̃ = k,

If k > d, then d̃ = d,

If k = d, then d̃ ≥ d,

where .d̃ = ordP (β̃1, β̃2, . . . , β̃n−1). Thus, in order to show the existence and 
uniqueness of f satisfying Eq. (5.14), it is enough to show that there is a unique 
. O homogeneous of degree d such that .d̃ > d. Let us do it. Denote by . Bi the 
homogeneous part of degree d of . βi , for .i = 1, 2, . . . , n− 1. We have that .d̃ > d if, 
and only if, the following equation holds: 

. Bi + xi∂O/∂xi = 0, i = 1, 2, . . . , n − 1.

Doing .xn = 0 in the integrability condition 

. xj ∂bi/∂xj − xi∂bj /∂xi = bj ∂bi/∂xn − bi∂bj /∂xn

and taking the homogeneous components of degree d, we obtain that 

. xj ∂Bi/∂xj = xi∂Bj/∂xi, 1 ≤ i, j ≤ n − 1.

The differential 1-form .o = −Σn−1
i=1 Bidxi/xi is exact and, by a logarithmic ver-

sion of Poincaré Lemma, we see that it is the differential of a unique homogeneous 
. O. nu

5.3.3.2 Singular Locus and Secondary Residual Vectors 

Let P be a complete pre-simple trace point for .M = (M,E,F ). Let  . Ĥ be the 
invariant formal hypersurface at P , mentioned in Definition 5.3.16. We can consider 
the formal foliated space .-MP = (M̂P ,E ∪ Ĥ ,F ). By Definition 5.3.1, we see  
that P is a (formal) pre-simple corner for .-MP . Let us consider local coordinates 
.x1, x2, . . . , xn at P and assume that . Ĥ is given by .ẑ = 0, where . ̂z = xn −
f (x1, x2, . . . , xn−1). A consequence of the arguments leading to Corollary 5.3.14, 
is that the singular locus .SingF is given by 

. SingF =
(

Un−1
i=1 (ẑ = xi = 0)

)

U

(

U

1≤i<j≤n−1(xi = xj = 0)
)

.

Since the irreducible components of .SingF are convergent, the formal subspaces 
.ẑ = xi = 0 are convergent ones. In this situation, up to a convergent coordinate
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change in . xn, we may assume that 

. (ẑ = xi = 0) = (xn = xi = 0), 1 ≤ i ≤ n − 1.

That is, we may assume that the convergent coordinates are adapted to the singular 
locus in the above sense. 

Remark 5.3.19 When .x1, x2, . . . , xn is adapted to the singular locus, the formal 
invariant hypersurface .xn = f (x1, x2, . . . , xn−1) satisfies that . xi divides f , for  
any .i = 1, 2, . . . , n − 1. Then, for another coordinate system . x1, x2, . . . , xn−1, x

∗
n

adapted to the singular locus, we have that .x∗
n − xn is divisible by . xi , for any 

.i = 1, 2, . . . , n − 1. 

Let us look for the primary and secondary residual vectors. We can write 
a convergent logarithmic generator . η for . M at P in the formal coordinates 
.x1, x2, . . . , xn−1, ẑ as follows 

. η = ẑ
(

b̂ndẑ/ẑ + Σn−1
i=1 b̂idxi/xi

)

.

The primary residual vector, considered as a formal pre-simple corner, is given by 
.(λi)

n
i=1, where .λi = b̂i (P ). It coincides with the primary residual vector defined for 

pre-simple trace points in Sect. 5.3.1, having in mind that we can exhibit the formal 
trace point as 

.η = b̂ndẑ + Σn−1
i=1 ẑb̂idxi/xi . (5.15) 

Let us decompose .{1, 2, . . . , n} = J1 ∪ J2, where 

. J1 = {k; λk /= 0}, J2 = {j ; λj = 0}

as usual. If .J2 = ∅, there is no secondary residual vector. Assume that .J2 /= ∅. By  
considering P as a formal corner, there is a secondary residual vector .(μj )j∈J2 that 
we define to be the secondary residual vector for . M at the complete trace point P . 
It depends on the ordering of the coordinates and it is defined up to homothety. 

Let us see now how to visualize the residual vectors in convergent coordinates. 
Let .η = bndxn+Σn−1

i=1 bidxi/xi be a local logarithmic generator of . M at P , written 
in coordinates adapted to the singular locus. Let us perform the coordinate change 
.ẑ = xn − f as before, that allows to write . η as in Eq. (5.15). We have that 

.ẑb̂i = bi + bnxi∂f/∂xi, i = 1, 2, . . . , n − 1; b̂n = bn. (5.16) 

In particular, the primary residual vector .(λi)
n
i=1, where .λi = b̂i (0), may be read as 

.λn = bn(P ); λi = ∂bi/∂xn(P ), 1 ≤ i ≤ n − 1.
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Let us describe how to read the secondary residual vector in convergent 
coordinates. Thus, we assume that .J2 /= ∅. We know that .(λk)k∈J1 is proportional 
to a vector .(qk)k∈J1 , where the . qk are positive integer numbers. Moreover, there is a 
monomial 

. -m = | |

k∈J1
x̂

qk

k , x̂n = ẑ, x̂j = xj , 1 ≤ j ≤ n − 1,

with the properties expressed in Proposition 5.3.13. Let us apply Eq. (5.16) to the 
structural results in Proposition 5.3.13. Noting that . xi divides f for any . 1 ≤ i ≤
n − 1, we obtain the following expressions: 

.bi =
⎧

⎨

⎩

xnλiui + xigi, when i ∈ J1 \ {n},
λnun + xngn, when i = n ∈ J1,

xnμimui + xigi, when i ∈ J2 \ {n},
(5.17) 

where .m = | |

k∈J1
x

qk

k , .∂ui/∂xi = 0 and .ui(P ) = 1. 
In the case that .J2 /= {n}, we also have that  

.bn = μnmun + x1x2 · · · xn−1h + xngn, when n ∈ J2, (5.18) 

where we require that .∂h/∂xn = 0 and that . m does not divide any monomial in the 
expression of .x1x2 · · · xn−1h. 

Lemma 5.3.20 Assume that .J2 /⊂ {n} and that we have a presentation of the 
coefficients of . η as in Equations (5.17) and (5.18), with respect to a monomial 
.m' = | |

k∈J1
x

rk
k with .rk ≥ 1, for  .k ∈ J1. Then, this presentation is exactly the 

one in Eqs. (5.17) and (5.18). In particular, we have that .m' = m and we detect the 
primary and secondary residual vectors from it. 

Proof Given . m', there is a unique possible way for writing a decomposition of the 
coefficients as in Eqs. (5.17) and (5.18). Noting that .J2 /⊂ {n}, there are no two 
possible monomials for obtaining the decomposition. nu
Remark 5.3.21 When .J2 = {n}, we have an automatic knowledge of the secondary 
residual vector, since it has a single entry. On the other hand, in this case, the 
statement of Lemma 5.3.20 would not be true. In fact, we may have several possible 
monomials . m and . m' to get an expression of . bn as in Eq. (5.18), or even there is no  
such presentation. Take the example given by 

. η = z̃ (pdx/x + qdy/y) + (z̃ − xpyq)dz̃, p, q ≥ 2.

If we do the coordinate change .z = z̃−μxy, the coefficient b of dz in the coordinates 
.x, y, z is .b = μxy(1 − xp−1yq−1) + z = −xpyq + μxy + z. Thus, we can take 
.m = xpyq and .m' = xy. If we do the change .z∗ = z̃ − xpyq , the coefficient . b∗
of .dz∗ is .b∗ = z∗ and there is no presentation. Anyway, if we take a coordinate
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. z' where the order of .z̃ − z' is greater than .p + q, we get a presentation with the 
monomial .xpyq , that is the one associated to the corner. 

5.3.4 Invariability of Residual Vectors 

In this subsection we show that the primary and secondary residual vectors are 
invariant by isomorphisms, up to a reordering or a homothety. More precisely, we 
have the following result: 

Proposition 5.3.22 Let P be a pre-simple corner or a complete pre-simple trace 
point for the foliated space .M = (M,E,F ). Consider a biholomorphism . F :M→
M' between foliated spaces. Then, the primary and secondary residual vectors for 
. M' at .P ' = F(P ) are the same ones as for . M at P . 

Proof We assume without loss of generality that the dimensional type of . F at P 
is equal to .n = dimM and that F is a coordinate change in P that respects the 
components of the divisor. In the trace case, we can add the formal hypersurface to 
the divisor and consider a formal coordinate change. This unify the complete trace 
case with the corner case, thus we deal only with corners. The coordinate change is 
given by 

. x'
i = uixi, i = 1, 2, . . . , n,

where the . ui are units. A local logarithmic generator expressed in the coordinates 
.x = (x1, x2, . . . , xn) produces residual vectors .(λi)

n
i=1 and .(μj )j∈J2 . If we look 

for the expression of the same local logarithmic generator in the coordinates . x', we  
obtain the residual vectors .(λi)

n
i=1 and .(μj/c)j∈J2 , where . c = | |

k∈J1
u

qk

k (P ) /= 0
(see the structure of the coefficients given in Proposition 5.3.13). nu

5.4 Simple Foliated Spaces 

Simple points define a class of pre-simple points with an added requirement of “non-
resonance”, that we explain in this section. The reduction of singularities is intended 
to obtain foliated spaces where all the points are simple. 

Given a vector .λ = (λ1, λ2, . . . , λτ ) ∈ C
τ , the  space of .Q-resonances 

.ResQ(λ) of . λ is the .Q-vectorial subspace of .Qτ whose elements are the . q =
(q1, q2, . . . , qτ ) ∈ Q

τ such that .
Στ

i=1 qiλi = 0. We say that: 

• . λ is resonant, if .ResQ(λ) ∩ Q
τ
≥0 /= {0}. 

• . λ is strictly resonant, if .ResQ(λ) ∩ Q
τ
>0 /= ∅.
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Remark 5.4.1 A vector .λ = (λi)
τ
i=1 is not resonant if, and only if, the vector 

given by .λJ = (λi)i∈J is not strictly resonant, for any non-empty subset . J ⊂
{1, 2, . . . , τ }. 
Definition 5.4.2 Let .M = (M,E;F) be a foliated space and let P be a pre-simple  
point for . M with .τPF = τ and primary residual vector . λ. If  .τ = 1, the point P is 
simple for . M. If  .τ ≥ 2, the point P is simple if . λ is not strictly resonant and there 
exists an open neighborhood U of P such that any .Q ∈ U with .τQF < τ is simple. 

Proposition 5.4.3 Consider a foliated space .M = (M,E,F ) and a pre-simple 
point P with .τPF = n = dimM ≥ 2. There is an open subset .U ⊂ M with .P ∈ U , 
such that .τQF < n, for any .Q ∈ U with .Q /= P . 

Proof The pre-simple property being open, all the points in U are pre-simple if U is 
small enough. Consider first the case where P is of corner type. Take a logarithmic 
generator .η = Σn

i=1 bidxi/xi of . M at P . Up to a permutation of coordinates, we 
can assume that .1 ∈ J1. The vector fields .ξi = bix1∂/∂x1 − xi∂/∂xi are non-
singular for points in .xi /= 0, for any .i = 2, 3, . . . , n. Hence the dimensional type 
drops around P , except maybe at the curve Y given by .x2 = x3 = · · · = xn = 0. 
If there is a coefficient . bi not belonging to the ideal . I generated by the coordinates 
.x2, x3, . . . , xn, then . ξi is non-singular at the points of Y different from P and the 
dimensional type drops. If .#J1 ≥ 2, we are done since . bk is a unit, with .k ∈ J1 \ {1}, 
and then .bk /∈ I. If .J1 = {1}, we apply Proposition 5.3.13 to conclude. 

Assume now that P is of trace type. We take . η as follows: 

. η = bndxn + Σn−1
i=1 bidxi/xi, ordP (b1, b2, . . . , bn−1) ≥ 1.

In view of Proposition 5.3.5, we see that the dimensional type drops except maybe 
at the points of the curve Z given by .x1 = x2 = . . . = xn−1 = 0. When P is 
a transversal saddle-node, we have that .ordP (bn) ≥ 1 and, up to a reordering and 
multiplying . η by a unit, we can assume that 

. b1 = xn − g(x1, x2, . . . , xn−1).

Let us place us at a point .Q /= P , such that .xi(Q) = 0 for .i = 1, 2, . . . , n − 1 and 
.xn(Q) = ε /= 0, with . ε being small enough. The tangent vector field 

. bnx1∂/∂x1 − b1∂/∂xn

is non-singular at Q and hence the dimensional type drops. 
Assume now that . bn is a unit, that is P is a tangent trace point. Without loss of 

generality, we suppose that .bn = 1. The vector fields .ξi = xi∂/∂xi − bi∂/∂xn are 
tangent to the foliation, for .i = 1, 2, . . . , n− 1. Thus, the dimensional type drops at 
a generic point of Z if, and only if, there is a coefficient . bi , with .1 ≤ i ≤ n − 1, not 
belonging to the ideal . J generated by .x1, x2, . . . , xn−1. Let us see that we obtain a 
contradiction if . bi belongs to . J, for all .i = 1, 2, . . . , n − 1. If  .n = 2, we are done,
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since . x1 does not divide . b1. Assume that .n ≥ 3. For each .i = 1, 2, . . . , n − 1, let us 
write 

. bi = Σ∞
s=0 Bi,s, Bi,s ∈ C{xn}[x1, x2, . . . , xn−1],

where the .Bi,s are homogeneous polynomials of degree s, with coefficients in .C{xn}, 
in the variables .x1, x2, . . . , xn−1. Note that .Bi,0 = 0, since .bi ∈ J, for any natural 
number .i = 1, 2, . . . , n − 1. In particular . x1 divides .B1,0. Since . x1 does not divide 
. b1, there is a maximum .d > 0, such that . x1 divides .B1,d ' , for any .0 ≤ d ' < d. Let  
us find a contradiction with the maximality of d, by showing that . x1 must divide 
.B1,d . Noting that .B1,d ∈ J, it is enough to see that . x1 divides .∂B1,d/∂xj , for any 
.j = 2, 3, . . . , n − 1. By the integrability condition .η ∧ dη = 0, we have that 

.bj ∂b1/∂xn − b1∂bj /∂xn = xj ∂b1/∂xj − x1∂bj /∂x1. (5.19) 

Looking at the homogeneous component of degree d (with respect to the variables 
.x1, x2, . . . , xn−1) in Eq.  (5.19), we deduce that . x1 divides 

. xj ∂B1,d/∂xj − x1∂Bj,d/∂x1

and hence . x1 divides .∂B1,d/∂xj , as desired. nu
Corollary 5.4.4 Being a simple point is an open property. 

Proof The result follows from the proposition and the properties of the dimensional 
type given in Sect. 5.2.3. nu

5.4.1 Formal Normal Forms 

In these notes we intend to focus on the properties concerning invariant hypersur-
faces. The formal classification of simple singularities is another very interesting 
subject. Anyway, here you have a list of formal normal forms for simple singularities 
of codimension one singular foliations. This list can be found in [8, Introduction, 
Proposition 4.4] for the case of three-dimensional ambient: 

Dimensional type two (or one): 

(i) .xy(dx/x + λdy/y), .λ ∈ C \ Q<0. 
(ii) .xyys(dx/x + (ε + (1/ys))dy/y), .ε ∈ C, .s ≥ 1. 
(iii) .xy(xpyq)s(dx/x + (ε + (1/(xpyq)s))(pdx/x + qdy/y)), .ε ∈ C, .s ≥ 1 and 

.g. c. d(p, q) = 1. 

Dimensional type three: 

(iv) .xyz(αdx/x + βdy/y + dz/z), and there are no resonances .mα + nβ + r = 0, 
where .(m, n, r) ∈ Z

3
≥0 \ {0} (in particular, we have .αβ /= 0).
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(v) .xyzzs(dx/x + βdy/y + (ε + (1/zs))dz/z), .ε ∈ C, .s ≥ 1 and . β ∈ C \ Q≤0.

(vi) .xyz(ypzq)s(dx/x + βdy/y + (ε + (1/(ypzq)s))(pdy/y + qdz/z)), .ε ∈ C, 
.s ≥ 1 and .g. c. d(p, q) = 1. 

(vii) . xyz(xpyqzr)s(dx/x + βdy/y + (ε + (1/(xpyqzr)s))(pdx/x + qdy/y +
rdz/z)), .ε ∈ C, .s ≥ 1 and .g. c. d(p, q, r) = 1. 

The expressions, for ambient dimensions greater or equal than four, can be deduced, 
in a straightforward way, from the above ones. 

5.4.2 Resonances and Simple Points 

In this subsection we give a characterization of simple points, in terms of non-
resonance conditions for the primary and secondary residual vectors. 

Proposition 5.4.5 Binary-resonant tangent trace points are not simple. 

Proof Take a simple tangent trace point P , a local system of coordinates and a local 
logarithmic generator of . M at P as in Eq. (5.13). For simplicity, we can consider 
.τ = n. Let us show that .λi /∈ Z<0, for any .i = 1, 2, . . . , n − 1. Take  . i = 1
and suppose that .λ1 /= 0. If the coordinate subspace Z given by .x1 = xn = 0 is 
contained in .SingF, we are done by looking at the transversal type at a generic point 
of Z. Let us see that we always can choose the coordinates in such a way that Z is 
contained in .SingF. Let us decompose . b1 as follows: 

. b1 = ψ(x2, x3, . . . , xn−1) + x1f + xng, g(P ) = λ1.

By Weierstrass preparation, there is a unit .u(x2, x3, . . . , xn) such that 

. b1|x1=0 = u · (xn − φ(x2, x3, . . . , xn−1)).

We finish by performing the coordinate change .x̃n = xn − φ. nu
Let P be a pre-simple point for a foliated space .M = (M,E,F ) that is not a 

binary-resonant tangent trace point. If P is a trace type point, then it is complete, 
in view of Propositions 5.3.17 and 5.3.18. Let  . τ be its dimensional type. Consider 
a local coordinate system .x1, x2, . . . , xn adapted to the singular locus and a local 
logarithmic generator . η of . M at P that we write as follows: 

.η =
{ Στ

i=1 bidxi/xi, if P is of corner type
bτ dxτ + Στ−1

i=1 bidxi/xi, if P is of trace type
(5.20) 

where .bj ∈ C{x1x2, . . . , xτ }, see Proposition 5.3.5. Recall that the singular locus is 
the union of the coordinate sets .xi = xj = 0, for .1 ≤ i < j ≤ τ .
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Remark 5.4.6 The foliation of .(Cτ , 0) defined by the expression of . η as in 
Eq. (5.20) is the transversal type of .Minv at P. 

Working in a small enough neighbourhood of P , we can stratify the space 
accordingly to the coordinates .x1, x2, . . . , xτ . The strata . SJ are labelled by the 
subsets .J ⊂ {1, 2, . . . , τ }, with the property that 

. SJ = n

i∈J (xi = 0), SJ = SJ \ U

J '⊃J,J ' /=J SJ ' .

In the case of a corner point, the stratification is determined by .Einv. In the trace 
case, the strata . S∅ and .S{τ } depend on the coordinate choice, but all the other strata 
are independent of the particular choice of coordinates. 

Recall the structure results, the sets of indices . J1 and . J2 and the notations given 
in Sects. 5.3.2 and 5.3.3, particularly in Eqs. (5.17) and (5.18). Then, we have a 
primary residual vector .(λi)

τ
i=1 and a secondary one .(μj )j∈J2 (when .J2 /= ∅), 

defined at the point P . 
Taking notations as in Remark 5.4.1, we denote .αJ = (αj )j∈J , for a given . α =

(αj )
τ
j=1 and a non-empty .J ⊂ {1, 2, . . . , τ }. 

Theorem 5.4.7 Let P be a pre-simple point for .M = (M,E,F ) that is not a 
binary-resonant tangent trace point. Take local coordinates . x = (x1, x2, . . . , xn)

adapted to the singular locus, where the transversal type of . F depends only on 
the first . τ coordinates. Let .λ = (λi)

τ
i=1 and .μ = (μj )j∈J2 be the primary and 

secondary residual vectors (the secondary one is defined only when .J2 /= ∅). 
Consider the stratification associated to the coordinate system and take a point 
.Q ∈ SJ , with .#J ≥ 2. Then, the dimensional type of . F at Q is .τQF = #J and 
. SJ is an axis for . F at Q. Moreover, we obtain residual vectors at Q as follows: 

(a) If .J ⊂ J1, a primary residual vector is . λJ . There is no secondary residual 
vector. 

(b) If .J ⊂ J2, a primary residual vector is . μJ . There is no secondary residual 
vector. 

(c) If .J ∩ J1 /= ∅ /= J ∩ J2, the point Q is not a binary-resonant tangent trace, a 
primary residual vector is . λJ and a secondary residual vector is .μJ∩J2 . 

Proof We assume without loss of generality that .τ = dimM = n. Write .Q = Qε, 
where .xl(Qε) = εl /= 0, for  .l ∈ J c = {1, 2, . . . , n} \ J and .xj (Qε) = εj = 0, for  
.j ∈ J . Let us take local coordinates at . Qε given by .x∗

j = xj −εj , for . j = 1, 2, . . . , n
and the transversal subspace at Q given by .Aε = (xl = εl; l ∈ J c). 

Corner Case We assume that P is a pre-simple corner. The local expression of . η at 
. Qε is given by 

. η = Σ

j∈J bj dxj /xj + Σ

k∈J c bkdx∗
k /(x∗

k + εk).

Let us see that . Qε is a pre-simple corner by applying Proposition 5.3.7. If there is 
.j0 ∈ J ∩ J1, we have that .bj0(Qε) /= 0; if  .J ⊂ J2, then, the monomial .m(Qε)
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given in Proposition 5.3.13 is a non-null scalar and .bj (Qε) /= 0, for any .j ∈ J . In  
both cases, we apply Proposition 5.3.7 to see that . Qε is a pre-simple corner. Since 
there are exactly . #J invariant irreducible components of E through . Qε, we have  
that .τQεF = #J (the dimensional type of a pre-simple corner is equal to the number 
of invariant irreducible components of the divisor through it). We conclude that . SJ

is the axis for . F at . Qε, in view of Remark 5.2.6. The transversal type of . M at the 
points of . SJ is represented by the transversal section 

. η|Aε = Σ

j∈J bj |Aεdxj /xj .

Let us consider now the cases (a), (b) and (c) in the statement. 
Case (a). If .J ⊂ J1, the coefficients . bj are units in .P = Q0 and we have that 

.bj (Q0) = λj /= 0, for  .j ∈ J . Recalling that . ε is small enough, we also have 
that .bj (Qε) /= 0, for any .j ∈ J . Moreover, since . SJ is an axis for that points, the 
transversal type is the same one for each . ε. In view of Proposition 5.3.22 and taking 
a natural number .j0 ∈ J , the quotients 

. λε
j,j0

= (bj /bj0)|Aε(Qε) = (bj /bj0)(Qε), j ∈ J,

are independent of . ε. Then .λε
j,j0

= (bj /bj0)(Q0) = λj/λj0 and we are done. 
Case (b). If .J ⊂ J2, considering the structure of the coefficients given in 

Proposition 5.3.13, we have that .bj (Qε) = μjFj (ε), where 

. 0 /= Fj (ε) = m(Qε)
(

φ(Qε) + gj (Qε)
)

, j ∈ J.

Reasoning as before, the quotients .μjFj (ε)/μj0Fj0(ε) are constant functions, that 
is, their values do not depend on . ε. Recalling that .gj (Qε) → 0 when .ε → 0, we  
conclude that each quotient .μjFj (ε)/μj0Fj0(ε) is equal to .μj/μj0 . 

Case (c). Assume now that .J ∩ J1 /= ∅ /= J ∩ J2. Let us write 

. m = mJ∩J1mJ1\J , mJ∩J1 = | |

k∈J∩J1
x

qk

k .

We have that .bk(Qε) /= 0 and .bk(Qε) → λk , when .ε → 0, for .k ∈ J∩J1. Moreover, 
for .j ∈ J ∩ J2, we have that 

. bj |Aε = [

μjmJ1\J (Qε)
]

mJ∩J1(φ|Aε + gj |Aε) + xjfj |Aε .

Then, a primary residual vector is .(λε
i )i∈J , where .λε

j = bj (Qε) = 0 = λj , for  
.j ∈ J ∩ J2 and .λε

k = bk(Qε) /= 0, for  .k ∈ J1. Moreover, we have a secondary 
residual vector .(με

j )j∈J∩J2 , where 

.με
j = μjmJ1\J (Qε)(φ(Qε) + gj (Qε)).
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Applying Proposition 5.3.22 as before, the quotients .με
j /μ

ε
j0

and .λε
k/λ

ε
k0

are 
independent of . ε. We conclude that .(λi)i∈J and .(μj )j∈J∩J2 are, respectively, 
primary and secondary residual vectors for the transversal type of . M, hence for 
. M, at  Q. 

Trace Case We assume that P is a pre-simple trace point and that it is not a binary-
resonant tangent trace. In particular, we know that P is a complete trace point. The 
local expression of . η at . Qε is given by 

. η = bndx∗
n + Σ

j∈J\{n} bjdxj /xj + Σ

k∈J c\{n} bkdx∗
k /(x∗

k + εk).

Let us recall the structure of the coefficients . bi given in Eqs. (5.17) and (5.18). We  
distinguish the cases .n ∈ J c and .n ∈ J . 

• Suppose first that .n ∈ J c. Let us see that . Qε is a corner. If there is a natural 
number .j0 ∈ J ∩ J1, we have that 

. bj0(Qε) = εnλj0uj0(Qε) /= 0.

Otherwise, if .J ⊂ J2, then we have that .bj (Qε) = εnμjm(Qε) /= 0, for any 
.j ∈ J . In both cases, applying Proposition 5.3.7, we see that . Qε is a pre-simple 
corner. We deduce as above that . #J is the dimensional type of . F at .Qε = Q and 
that . SJ is the axis of . F at Q. Primary and secondary residual vectors are obtained 
as in the precedent corner type case. 

• Suppose now that .n ∈ J . Let us see that . Qε is not a corner, then it is a pre-simple 
trace point and then the dimensional type is equal to . #J . Looking at the first and 
third lines in Eq. (5.17), we have that  .bj (Qε) = 0, for any .j ∈ J \ {n}. Hence 
. Qε is a pre-simple trace point. By Part b) of Remark 5.2.6 applied to .S̄J\{n}, we  
have that . SJ is the axis of . F at . Qε. The transversal type of . M at the points of . SJ

is represented by the transversal section 

. η|Aε = bn|Aεdxn + Σ

j∈J\{n} bj |Aεdxj /xj .

Let us consider now the cases (a), (b) and (c) in the statement. 
If .J ⊂ J1, a primary residual vector is .(λε

j )j∈J , where .λε
j = λjuj (Qε). The  

quotients are constant and independent of . ε and thus .(λj )j∈J is a primary residual 
vector. If .J ⊂ J2, a primary residual vector is .(με

j )j∈J , where 

. με
j = μjm(Qε)uj (Qε).

As above, the quotients are constant and independent of . ε and thus .(μj )j∈J is a 
primary residual vector. 

Assume now that .J ∩ J1 /= ∅ /= J ∩ J2. We distinguish the two possibilities 
.J ∩ J2 /= {n} and .J ∩ J2 = {n}.
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– Suppose that .J ∩ J2 /= {n}. Write .m = mJ∩J1mJ1\J as in the corner case. 
Looking at Equations (5.17) and (5.18), we have a primary residual vector given 
by .(λε

j )j∈J , where .λε
j = 0, if  .j ∈ J2 ∩ J , and .λε

j = λjuj (Qε), if  .j ∈ J1 ∩ J . 
As before, we see that .(λj )j∈J is a primary residual vector for . F at . Qε. Let us 
separate the cases .n ∈ J1 and .n ∈ J2. 

Assume that .n ∈ J1. We have that .Qε is not a binary-resonant tangent 
trace, then, we are working with a complete trace type pre-simple point. In 
particular, Eqs. (5.17) and (5.18) apply to the transversal section and we can 
see the secondary residual vector from it. Note that 

. bj |Aε = xn(μjmJ1\J (Qε))mJ1∩J uj |Aε + xjgj |Aε , j ∈ J ∩ J2.

Hence, a secondary residual vector is 

. (μjmJ1\J (Qε)uj (Qε))j∈J∩J2 .

As before, by analytic triviality and taking limits, we see that it is proportional to 
.(μj )j∈J∩J2 . Then .(μj )j∈J∩J2 is a secondary residual vector for the transversal 
type, as wanted. 

Assume that .n ∈ J2 ∩ J . We see that . Qε is a transversal saddle-node trace 
for the transversal section and hence Equations (5.17) and (5.18) apply to the 
transversal type. We detect the secondary residual vectors as before. 

– Suppose that .J ∩J2 = {n}. If we can assure that .bn(Qε) = 0, we detect a primary 
residual vector by analytic triviality as before and the secondary residual vector 
is automatically equal to . (1). To assure that, take .j0 ∈ J ∩ J1 and note that the 
quotients 

. bn(Qε)/λj0uj0(Qε),

does not depend on . ε. Recalling that .λn = bn(P ) = 0 and taking limits when 
.ε → 0, we obtain that .bn(Qε)/λj0uj0 = 0/λj0 . Then .bn(Qε) = 0 and we are 
done. 

nu
Corollary 5.4.8 Let P be a pre-simple point for a foliated space . M = (M,E,F )

that is not a binary-resonant tangent trace point. Let . τ be the dimensional type of . F
at P , denote by .λ = (λi)

τ
i=1 a primary residual vector. Put .J2 = {j ; λj = 0} and 

let .μ = (μj )j∈J2 be a secondary residual vector, when . J2 is not empty. Then P is a 
simple point if, and only if, one of the following statements holds: 

(a) .J2 = ∅ and . λ is not resonant. 
(b) .J2 /= ∅ and . μ is not resonant. 

Proof Assume first that .J2 = ∅ and that P is a simple point. Let us consider a 
subset .J ⊂ {1, 2, . . . , τ }, with .#J ≥ 2. The transversal type of . M at the stratum . SJ

is simple and it has . λJ as primary residual vector. Hence . λJ is not strictly resonant.
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In view of Remark 4.1, we see that . λ is not resonant. The converse statement goes 
similarly. 

Assume now that .J2 /= ∅. Let us put .J1 = {1, 2, . . . , τ } \J2, as usual. The vector 
. λJ1 is proportional to a vector with strictly positive integer entries, hence it is not 
resonant. The rest of the proof follows similarly to the previous case. nu
Remark 5.4.9 Note that if .J2 /= ∅, we know that .(λk)k∈J1 = λJ1 is automatically 
not resonant. Hence, we can state the above result by saying that the point is simple 
if, and only if, both . λJ1 and . μ are not resonant. 

As we have seen, we have two possibilities for a simple point P in a foliated 
space: there is a secondary residual vector or not. The first case is related with the 
existence of saddle-nodes in bidimensional sections. When there is no secondary 
residual vector, and hence all the coefficients of the primary residual vector are non-
null, we say that P is complex hyperbolic. 

5.4.3 Invariant Hypersurfaces Through Simple Points 

We show that a simple corner has only the invariant components of the divisor 
as invariant hypersurfaces. Up to add a formal invariant hypersurface, a simple 
trace point is a simple corner and hence we find a single new formal invariant 
hypersurface, added to the invariant components of the divisor. The technique for 
obtaining these results is to show the stability of simple corners under blowing-ups 
with center at the axis. 

Proposition 5.4.10 Let P be a simple corner for a foliated space .M = (M,E,F ). 
Let .π :M' →M be the blowing-up of . M with center A, where A is the axis of . F
at P . Any point . P ' belonging to .π−1(A) is a simple corner for . M'. 

Proof It is enough to work in the case that the dimensional type is equal to 
.n = dimM . In this situation .A = {P }. We label .E1, E2, . . . , En the (invariant) 
components of E through P . Take local coordinates .x1, x2, . . . , xn, with . Ei = (xi =
0), for any .i = 1, 2, . . . , n. Consider a local logarithmic generator . η for . M at P that 
we write as follows: 

. η = Σn
i=1 bidxi/xi .

The primary residual vector attached to . η is .λ = (λ1, λ2, . . . , λn), where . λi =
bi(P ), for any .i = 1, 2, . . . , n. We define, as usual, the subsets . J1 = {i; λi /= 0}
and .J2 = {i; λi = 0}. Recall that, when .J2 /= ∅, there is a secondary residual 
vector .μ = (μj )j∈J2 . By Corollary 5.4.8, we know that . λJ1 and . μ are non-resonant 
vectors.
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Let .E'∞ = π−1(A) and write . E'
i to denote the strict transform of . Ei by 

. π , for each .i = 1, 2, . . . , n. Up to a reordering, we can take local coordinates 

.x'
1, x

'
2, . . . , x

'
n at . P ' such that: 

1. The blowing-up . π is given by .x1 = x'
1 and .xi = (x'

i + εi)x
'
1, for .i = 2, 3, . . . , n. 

2. There is a natural number s, with .1 ≤ s ≤ n, such that .εi /= 0, for all . 2 ≤ i ≤ s

and .εi = 0, for all .s + 1 ≤ i ≤ n. 

Note that .E'
i = (x'

i = 0), for all .s + 1 ≤ i ≤ n and .E'∞ = (x'
1 = 0). A local 

logarithmic generator for . M' at . P ' is given by 

. η' = b'
1dx'

1/x
'
1 + Σs

i=2 b'
idx'

i + Σn
i=s+1 bidx'

i/x
'
i ,

where .b'
1 = Σn

i=1 bi and .(x'
i + εi)b

'
i = bi , for .i = 2, 3, . . . , s. Note that 

. b'
1(P

') = Σn
i=1 bi(P ) = Σn

i=1 λi = λ'
1

and .λ'
1 /= 0, otherwise we would find a resonance for . λJ1 . Hence . b

'
1 is a unit. Then 

.E'∞ is invariant and, in view of Proposition 5.3.7, we have that . P ' is a pre-simple 
corner. In particular, the dimensional type of . F' at . P ' is .n − s + 1. 

We look now for primary and secondary residual vectors at . P ' in order to 
conclude that . P ' is simple, thanks to Corollary 5.4.8. 

Consider first the case .s = 1. The primary residual vector for . M' at . P ' is . λ' =
(λ'

1, λ2, . . . , λn) and the new sets . J '
1 and . J '

2 are given by 

. J '
1 = J1 ∪ {1}, J '

2 = J2 \ {1}.

Given a resonance for . λ'
J '
1
, we obtain in a direct way a resonance for . λJ1 , thus . λ

'
J '
1

is not resonant. Moreover, the new secondary residual vector is .μJ '
2
and hence it is 

not resonant (when .J '
2 /= ∅). 

In the general case .1 ≤ s ≤ n, we note that 

. B = E'∞ ∩ E'
s+1 ∩ E'

s+2 ∩ · · · ∩ E'
n

is the axis of . F' at . P '. Since the residual vectors are invariant by isomorphisms 
(see Proposition 5.3.22), we can look for the residual vectors at . P ' at a point close 
enough to .O1 = E'∞ ∩E'

2 ∩E'
3 ∩· · ·∩E'

n. Applying the case .s = 1 and Proposition 
4.3, the new sets . J̃1 and . J̃2 are given by 

. J̃1 = J '
1 ∩ {1, s + 1, s + 2, . . . , n}, J̃2 = J '

2 ∩ {s + 1, s + 2, . . . , n}

and the residual vectors are .λ'{1,s+1,s+2,...,n} and .μ'
J̃2

= μ
J̃2
. In this way we get the 

non-resonance properties. nu
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Corollary 5.4.11 Let P be a simple corner for .M = (M,E,F ). The only formal 
invariant hypersurfaces through P are the components of .Einv through P . 

Proof Assume the existence of another formal invariant hypersurface . Ĥ at P . Then, 
there is a formal invariant curve . r not contained in any of the invariant components 
of E. Let us see that this is not possible. We do it by induction on the dimensional 
type and by applying repeatedly blowing-ups with center the axis at the infinitely 
near points of . r. In this situation, we can reduce ourselves to the case where the 
dimensional type is .n = dimM and after the blowing-up at the point P the curve . r

passes through a point of dimensional type equal to n, and so on. This is not possible. 
Indeed, in view of the classical reduction of singularities of curves, the infinitely 
near points of . r pass asymptotically through points with only one component of the 
exceptional divisor. Thus, we reduce the problem to the case of a one dimensional 
corner, where the result becomes evident. nu

Consider the case that P is a simple trace point for . M. Since it is complete, there 
is a formal irreducible invariant hypersurface . Ĥ at P different from the irreducible 
components of .Einv. We know that it is unique under the additional conditions that 
. Ĥ is non-singular and that it has normal crossings with E. Recall that P is a simple 
corner for .(M̂P ,E ∪ Ĥ ,F ). Hence, the invariant hypersurface . Ĥ is actually unique, 
with the only condition that it is nor contained in E. Moreover, any formal invariant 
curve at P not contained in E is necessarily contained in . Ĥ . 

5.5 Formal Transversality of Invariant Hypersurfaces 

Let us consider a simple trace singular point P for a foliated space .M = (M,E,F ). 
In view of Propositions 5.3.17 and 5.4.5, we know that there is a unique irreducible 
formal invariant hypersurface . Ĥ at P not contained in .Einv. Moreover, we have that 
.Einv ∪ Ĥ is a formal normal crossings divisor. For any invariant component D of 
E through P , we know that .D ∩ Ĥ is an irreducible component of the singular 
locus .SingF. In particular .D ∩ Ĥ is convergent, despite the fact that . Ĥ may be 
only of formal nature. In this section we will see that . Ĥ actually defines a formal 
invariant hypersurface at the points of .D ∩ Ĥ near P . This property is called formal 
transversality. In [1] the reader can found more details about the ringed spaces built 
with the transversely formal functions, also called formal Zariski functions. 

Let us give a quick presentation of the transversely formal functions. This 
concept does not need of the foliation. Hence, we consider a point .P ∈ M and 
we choose local coordinates .x1, x2, . . . , xn at P such that .E = (

| |e
α=1 xα = 0). 

Recall that 

.OM,P = C{x1, x2, . . . , xn} ⊂ C[[x1, x2, . . . , xn]] = ÔM,P .
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Given a formal function .f̂ ∈ ÔM,P and a natural number .1 ≤ α ≤ e, we can write 

. f̂ = Σ∞
k=0 gα

k xk
α, gα

k ∈ C[[x1, x2, . . . , xα−1, xα+1, . . . , xn]],

We say that . f̂ is transversely formal with respect to E if the formal series . gα
k are 

convergent and they have a common ray of convergence for all .k = 0, 1, 2, . . . and 
.1 ≤ α ≤ e. Take a point .Q ∈ (xα = 0), close to P . Put .εi = xi(Q), for any 
.i = 1, 2, . . . , n, and take local coordinates .yi = xi − εi at Q. If  . f̂ is transversely 
formal with respect to .xα = 0, we get a well-defined formal series 

. f̂Q = Σ∞
k=0 g

α,Q
k yk

α,

where .g
α,Q
k is obtained from . gα

k by substituting . xi by .yi +εi , for any natural number 

.i ∈ {1, 2, . . . , n} different from . α. Note that .f̂Q ∈ C[[y1, y2, . . . , yn]] = ÔM,Q. We  
select here one of the main properties of transversely formal functions, without an 
explicit proof: 

If . f̂Q converges for any .Q ∈ E close to P , with .Q /= P , then . f̂ converges. 

Many classical results as the ones on proper direct images (cf. [20, 30]) apply 
to the ringed spaces built by using transversely formal functions as fibers of 
the structural sheaf [1]. We see in next propositions that all the formal invariant 
hypersurfaces that occur after desingularization are transversely formal with respect 
to the non-dicritical components of the divisor. In the non-dicritical case (and in 
certain dicritical situations), this property allows us to project them by the morphism 
of reduction of singularities. 

Proposition 5.5.1 If P is a simple transversal saddle-node, then . Ĥ is transversely 
formal with respect to E. 

Proof We work, for simplicity, in the case .τPF = n = dimM . Take a local 
coordinate system .x1, x2, . . . , xn adapted to the singular locus .SingF. Consider also 
a local logarithmic generator 

. η = bndxn + Σn−1
i=1 bidxi/xi, ordP (b1, b2, . . . , bn) = 1

for . M at P . The formal hypersurface . Ĥ is of the form .xn = f (x1, x2, . . . , xn−1). 
Up to a reordering of coordinates, let us show that f is transversely formal with 
respect to .x1 = 0. That is, if we write 

. f = Σ∞
k=1 φk(x2, x3, . . . , xn−1)x

k
1 ,

we have to show that the series . φk are convergent with a common ray of 
convergence.
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We recall that f is the unique solution to the system of equations 

.bi(x1, x2, . . . , xn−1, f ) = −bn(x1, x2, . . . , xn−1, f )xi∂f/∂xi, (5.21) 

for .i = 1, 2, . . . , n − 1. Since the coordinate system has been chosen adapted to the 
singular locus, we note that . x1 divides f and .b1|xn=0. We must consider the cases 
.1 ∈ J1 and .1 ∈ J2, where . J1 and . J2 are defined in the usual way. 

Assume first that .1 ∈ J1, that is .∂b1/∂xn(P ) /= 0. Up to multiplying . η by a 
convergent unit, we can suppose that .b1 = xn − g, where g is a convergent series 
.g ∈ C{x1, x2, . . . , xn−1} and . x1 divides .g = b1|xn=0. Let us write 

. g = Σ∞
k=1 gk(x2, x3, . . . , xn−1)x

k
1 ,

bn = Σ

j,l ψjl(x2, x3, . . . , xn−1)x
j

1xl
n.

Let .ẑ = xn − f . Applying Lemma 5.3.12 to . η/ẑ, we conclude that . x1 divides 
.bn|xn=f . As a consequence, we have that .ψ00 = 0. Then, the coefficient of . xk

1 in 
Eq. (5.21) for .i = 1, is given by 

. φk = gk + Pk({ψjl}j+l<k, {φr}k−1
r=1}),

where the . Pk are polynomials with integer coefficients. The functions . gk and . ψjl

have a common ray of convergence, for all the natural numbers .k, j, l. This ray of 
convergence is also a ray of convergence for all the . φk . 

Assume now that .1 ∈ J2. Taking into account Eqs. (5.17) and (5.18), we have  
that .b1 = xnμ1mu1 + x1f1 and .bn = μnmun + x1x2 · · · xn−1h + xnfn. In view  
of Corollary 5.4.8, we know that .μ1/μn /∈ Q<0. Let us decompose . b1 and . bn as 
follows: 

. b1 = Σ

j,l ξjl(x2, x3, . . . , xn−1)x
j

1xl
n,

bn = Σ

j,l ψjl(x2, x3, . . . , xn−1)x
j

1xl
n,

Looking to the coefficient of . xk
1 in Eq. (5.21) for .i = 1, we obtain that 

. (ξ01 − kψ00)φk = Qk({ξjl}j+l<k, {ψjl}j+l<k, {φr}k−1
r=1),

where the . Qk are polynomials with integer coefficients. Noting that 

. ξ01 = μ1mu1|xn=0, ψ00 = μnmun|x1=0, μ1 − kμn /= 0,

we conclude that the common ray of convergence for the . φjl and .ψjl is also a ray 
of convergence for the . φk . nu
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Remark 5.5.2 Asking P to be simple is essential in order to have formal transver-
sality. More precisely, we need to assure .μ1/μn /∈ Z<0 in the case .1 ∈ J2 above. 
The following example illustrates the reason. Consider .(C3, 0) and . E = Einv =
(xy = 0). The foliation generated by 

. (z − xy)dx/x + xzdy/y − xdz

is pre-simple but not simple, since .(1,−1) is a secondary residual vector. The unique 
irreducible formal invariant surface having normal crossings with E is .z = ϕ(x)y, 
where .ϕ(x) = Σ∞

k=0 k!xk+1. But .ϕ(x)y is not formally transversal along .y = 0. 

Proposition 5.5.3 Assume that P is a simple tangent trace point. The irreducible 
formal invariant hypersurface . Ĥ is convergent. 

Proof Again, we work in the case .τPF = n = dimM . If  .n = 2 the result is a 
direct consequence of Briot-Bouquet’s Theorem; for more details, the reader can 
see [9]. Assume now that .n ≥ 3. Take local coordinates .x1, x2, . . . , xn adapted to 
the singular locus and let 

. η = dxn + Σn−1
i=1 bidxi/xi

be a logarithmic generator for . M at P . We are going to use the following “blowing-
up criteria” appearing, for example, at [8, 25]: 

Let .π : M ' → M be the blowing-up of M centered at P . A formal power series . g ∈ ÔM,P

is convergent if, and only if, the pull-back .(π∗g)P ' is convergent at a given point . P ' ∈
π−1(P ). 

Let us write . Ĥ as .xn = f (x1, x2, . . . , xn−1), where we know that the monomial 
.x1x2 · · · xn−1 divides f . We have to prove that f is convergent. 

Let us perform the blowing-up .π : M' → M centered at P . Take a point . P '
belonging to .π−1(P ) and in the strict transform of . Ĥ , but not in the strict transform 
of any irreducible component of E. We have local coordinates . x' at . P ' given by the  
relations .x1 = x'

1, .xn = x'
nx

'
1 and 

. xi = (x'
i + εi)x

'
1, εi /= 0, i = 2, 3, . . . , n − 1.

A logarithmic generator for the foliated space . M' at the point . P ' is .η' = π∗η/x'
1. 

We write . η' as follows: 

. η' = dx'
n + b'

1dx'
1/x

'
1 + Σn−1

i=2 b'
idx'

i ,

where .x'
1b

'
1 = Σn−1

j=1 bj + x'
1x

'
n and .x'

1b
'
i = bi/(x

'
i + εi). Note that . x'

n divides . b'
1. 

Then, in view of Proposition 5.3.7, we see that . P ' is a tangent trace type singularity 
with .τP 'F' = 2. Moreover, the strict transform . Ĥ ' of . Ĥ is a formal invariant 
hypersurface at . P '. Applying the result for the case .n = 2, we know that . Ĥ ' is
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a convergent hypersurface given by 

. x'
n = (π∗f )P '/x'

1.

Thus, the series .(π∗f )P ' is convergent and hence f converges. nu

Part II: The Existence of Invariant Hypersurfaces 

In the second part of this text, we give, in an expository way, the main lines for 
the proofs of the known results of existence of invariant hypersurface for a germ 
of singular codimension one foliation on .(Cn, 0). We stand out the idea of partial 
separatrix that is useful when the dimension of the ambient space is greater or equal 
than three. 

5.6 Partial Separatrices 

In this section we describe foliated spaces having only simple points, paying special 
attention to the extension of convergent or formal invariant hypersurfaces along the 
“trace components” of the singular locus. 

We consider a foliated space .M = (M,E,F ), where the ambient space is a 
germ .(M,K) along a compact analytic subset .K ⊂ E. We suppose that all the 
points .P ∈ K are simple points for . M. Moreover, we assume that K is a union of 
irreducible components of E. We say that a foliated space with these properties is a 
simple foliated space. 

Remark 5.6.1 Simple foliated spaces are the expected objects obtained by reduc-
tion of singularities of a germ of foliation over .(Cn, 0). When the first blowing-up of 
the reduction of singularities morphism is centered at the origin, the condition that 
K is a union of components of E is reached. This condition is not strictly necessary, 
but we keep it for simplicity of the exposition. 

We say that an irreducible component D of E is a compact component when 
.D ⊂ K . We denote by .Ec

inv the union of the compact invariant components of E 
and by .Ec

dic the union of the compact dicritical components. Thus, we have that 
.K = Ec

inv ∪ Ec
dic. 

5.6.1 The Singular Trace Set 

The set .TrM ⊂ SingF of trace type singular points is a finite union of non-
singular codimension two irreducible closed analytic subsets of .(M,K) having
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normal crossings with the divisor E (including dicritical components). This fact 
is a consequence of the local description of the singular locus given in Part I. More 
precisely, around a trace type singular point .P ∈ K of dimensional type . τ , there is 
a local system of coordinates .x1, x2, . . . , xn such that .Einv = (

| |τ−1
i=1 xi = 0), with 

. TrM = Uτ−1
i=1 (xi = xτ = 0) ⊂ Einv.

Moreover .Edic = (
| |n

i=k xi = 0), for certain natural number k, with .τ + 1 ≤ k ≤ n. 
Let us denote by .TrcM the union of the irreducible components of .TrM that are 

contained in K . We call them compact components of .TrM. That is, the compact 
components of .TrM are exactly the irreducible components of .TrcM. 

Definition 5.6.2 A partial separatrix S for . M is a maximal connected union of 
compact components of .TrM. In other words, partial separatrices are the connected 
components of .TrcM. 

We take a partial separatrix S and a point .P ∈ S. Since P is a simple trace point, 
there is a unique (formal) invariant hypersurface . Ĥ for . M at P which is not an 
invariant component of E. We know that . Ĥ is transversely formal in the sense of 
[1]. This allows us to build a formal space .(ĤS, S), where the germ of . ĤS at any 
point .Q ∈ S is the corresponding invariant formal hypersurface. 

Remark 5.6.3 The formal space .(ĤS, S) converges if, and only if, there is a point 
.Q ∈ S such that the germ of .(ĤS, S) at Q converges. This property follows by 
formal transversality and taking into account the structure of the foliation around a 
simple point. 

Let us note that .S ⊂ ĤS ∩ K . The immersion .(ĤS, S) |→ (M,K) is said to 
be closed if we have the equality .ĤS ∩ K = S. As a consequence of the local 
description of .TrM and thanks to the fact that K is a union of components of E, the  
following two statements are equivalent: 

(a) .ĤS ∩ K = S, that is, the immersion .(ĤS, S) |→ (M,K) is closed. 
(b) The intersection between . S and .Ec

dic is empty. 

This equivalence justifies next definition: 

Definition 5.6.4 A partial separatrix S is complete if, and only if, the equivalent 
statements (a) and (b) below hold. 

The Direct Image Theorems in [1] and [8] give us the following result: 

Proposition 5.6.5 Assume that there is a morphism 

. π :M = ((M,K),E,F ) → ((Cn, 0),∅,F0)

obtained by composition of a finite sequence of blowing-ups with invariant centers. 
If S is a complete partial separatrix for . M, then its image .π(ĤS) is a formal 
invariant hypersurface of . F0.
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5.6.2 Extended Partial Separatrices 

Here we extend the concept of partial separatrix to take into account the influence 
of compact dicritical components of . M in order to assure the existence of invariant 
hypersurfaces supported by them. 

The irreducible components of .TrM are some of the irreducible components 
of .SingF and hence they have codimension two and are non-singular. We need to 
extend this class of objects with some subspaces not contained in the singular locus. 
More precisely, we introduce the following concept: 

Definition 5.6.6 Let .Z ⊂ K be a closed irreducible subspace of codimension two. 
We say that Z is a compact trace subspace Z for . M if it is invariant for . F and all 
the points in Z are of trace type. 

Let us note that any compact component of .TrM is a compact trace subspace 
(with all the points being singular), but we can have more compact trace subspaces. 
More precisely, a compact trace subspace Z is generically contained in a single 
compact component D of E. When D is invariant, we have that .Z ⊂ TrcM. When 
D is dicritical, the generic points of Z are non-singular points of . F (its dimensional 
type is one). 

Definition 5.6.7 An extended partial separatrix . E for . M is a maximal finite 
connected union of compact trace subspaces. 

The maximality required in the definition of extended partial separatrix implies 
that there is at most one of them containing a given trace subspace, however the 
existence is not assured. Anyway, we have the following result: 

Proposition 5.6.8 A complete partial separatrix S for . M is also an extended 
partial separatrix for . M. 

Let . E be an extended partial separatrix for . M. There is a unique germ . (ĤE,E)
of formal invariant hypersurface along . E such that .ĤE /⊂ E. Let us recall that . ĤE is 
transversely formal. Moreover, if there is a point .P ∈ E such that the germ of . ĤE
at P converges, then the formal hypersurface . ĤE converges at any point of . E (see 
Remark 5.6.3). In particular, if the extended partial separatrix . E contains at least 
one compact trace subspace not contained in .TrcM, then .(ĤE,E) is a convergent 
invariant hypersurface. 

The immersion .(ĤE,E) → (M,K) is closed if, and only if, .E = ĤE ∩ K . This  
property may be read only with the datum of the extended partial separatrix. More 
precisely, the following statements are equivalent: 

(a) The immersion .(ĤE,E) → (M,K) is closed. 
(b) For any point .P ∈ E and any compact component D of E with .P ∈ D, there is 

a compact trace subspace .Z ⊂ E, with .Z ⊂ D and .P ∈ Z. 

Definition 5.6.9 An extended partial separatrix . E for . M is said to be complete if, 
and only if, the above equivalent statements (a) and (b) hold.
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There is a bijection .E |→ (ĤE,E) between the set of complete extended partial 
separatrices for . M and the set of closed formal hypersurfaces 

. (Ĥ , Ĥ ∩ K) ⊂ (M,K)

that are not contained in E and that are invariant for . F. The complete extended 
partial separatrix associated to .(Ĥ , Ĥ ∩ K) is given by .E

Ĥ
= Ĥ ∩ K . Applying 

again the Direct Image Theorems, if there is a morphism 

. π : ((M,K),E,F ) → ((Cn, 0),∅,F0)

obtained by a finite sequence of blowing-ups with invariant centers, there is a 
bijection between the set of complete extended partial separatrices and the formal 
invariant hypersurfaces of . F0. 

Remark 5.6.10 If S is a complete partial separatrix for . M, then it is also complete 
considered as an extended partial separatrix. On the other hand, given a complete 
extended separatrix . E, either .E ⊂ TrcM or .E /⊂ TrcM. If  .E ⊂ TrcM, we have  
that . E is a complete partial separatrix. If .E /⊂ TrcM, the connected components of 
.E ∩ TrcM are non-complete partial separatrices. 

5.6.3 Invariant Hypersurfaces and Reduction of Singularities 

Let us consider a foliated space .M0 = ((M0,K0), E0,F0). A  reduction of 
singularities of .M0 is a morphism 

. π :M→M0, M = ((M,K),E,F ),

obtained by the composition of a finite sequence of blowing-ups with invariant 
centers, where . M is a simple foliated space. 

There are results of existence of reduction of singularities when the ambient 
space dimension is equal to 2 (see [32]), or equal to 3 (see [7]). There are other 
special cases in higher dimension having reduction of singularities (for instance, 
the Newton non-degenerate cases [26]). Anyway, the existence of reduction of 
singularities for ambient dimension bigger or equal than 4 is an open problem. 

Let us focus our attention in the case that the ambient space is .(Cn, 0) and assume 
that we have a reduction of singularities 

. π :M = ((M,K),E,F ) → ((Cn, 0),∅,F0).

In this situation, the problem of finding an invariant hypersurface for . F0 is reduced 
to detect a complete extended partial separatrix for . M, such that the corresponding 
hypersurface is convergent.
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5.7 Invariant Curves in Dimension Two 

Let us consider a two-dimensional foliated space .M0 = ((C2, 0),∅,F0). The clas-
sical result of Seidenberg [32], implies the existence of a reduction of singularities 

.π :M = ((M,K),E,F ) → ((C2, 0),∅,F0), (5.22) 

where . π is a finite composition of blowing-ups centered at points. The exceptional 
divisor .E = π−1(0) is a union of compact components, each one isomorphic to a 
complex projective line. Two components meet at most at a single point. 

If there is some dicritical component, say D, we get infinitely many convergent 
invariant curves just by projecting the transverse curves to D. Indeed, any given 
point P in D is necessarily a non-singular point of . F and then, the invariant curve 
through P is transverse to D. Moreover, since . F has normal crossings at the points 
of D, the dicritical component D does not meet any other dicritical component. 

Hence, in dimension two, the problem of existence of convergent invariant curve 
concentrates the difficulty in the non-dicritical case: when .E = Einv. This problem 
was solved by C. Camacho and P. Sad in [4]. The result may be stated as follows: 

Theorem 5.7.1 (Camacho-Sad) Assume that the reduction of singularities . π of 
Eq. (5.22) does not have any dicritical component. Then, there is at least one simple 
tangent trace point .P ∈ E. 

Recall, in view of Proposition 5.5.3, that the invariant curve obtained at a tangent 
trace point is convergent. Then, as a consequence of the previous theorem, we can 
project the invariant curve at the tangent trace point in order to obtain the desired 
invariant curve for . F0. 

The proof of Camacho-Sad theorem is based on a control of the behaviour under 
blowing-ups of an invariant called Camacho-Sad Index. For a short proof, the reader 
may see [9, 16]. 

There is a refined version of Camacho-Sad theorem established in [3, 28], that 
implies the following statement: 

Proposition 5.7.2 There is at least one tangent trace point in each (non-empty) 
connected component of .Einv. 

In [11], the authors find similar results on the distribution of invariant hypersur-
faces in higher dimension, concerning the non-dicritical case. 

5.8 Dicriticalness and Jouanolou’s Examples 

As we have seen, when the ambient space has dimension two, there are always 
invariant curves for a germ of foliation on .(C2, 0). Recall that we find essentially 
two different situations:
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(a) The dicritical case. That is, there is a generically transversal irreducible 
component of the exceptional divisor after a reduction of singularities. Here the 
argument is obvious, by taking one of the infinitely many transversal invariant 
curves to the dicritical component. 

(b) The non-dicritical case. That is, all the irreducible components of the excep-
tional divisor after a reduction of singularities are invariant for the transformed 
foliation. In this situation, we need to apply the argument of Camacho-Sad 
to find a simple tangent trace point defining a convergent invariant curve 
transversal to the exceptional divisor. This curve is projected over an invariant 
curve of the original germ of foliation. 

In higher ambient dimension, the “dicritical” situation may give an obstruction 
to the existence of invariant hypersurface. This fact is visible in the example given 
by Jouanolou in [21], which we present here. Consider the “conic” foliation . F0 on 
.(C3, 0) defined by the differential 1-form 

. ω = (zx − y2)dx + (xy − z2)dy + (yz − x2)dz.

By conic we mean that it is tangent to the radial vector field .x∂/∂x+y∂/∂y+z∂/∂z. 
Let us perform the blowing-up of the origin 

. σ : ( -(C3, 0), E0) → (C3, 0), E0 = σ−1(0) = P
2
C
.

The exceptional divisor . E0 is dicritical, then, the restriction . G of the transform of 
. F0 to . E0 gives a foliation on the complex projective plane. This foliation . G has no 
algebraic invariant curve, hence Jouanolou’s foliation has not a germ of invariant 
surface (nor a formal one). Indeed, the tangent cone of a potential invariant surface 
should define an algebraic invariant curve for . G. Let us consider a reduction of 
singularities 

. π : ((M,K),E,F ) → ((C3, 0),∅,F0),

obtained by performing seven additional blowing-ups centered at the seven lines of 
singularities transverse to . E0. Denote by . Ei each one of the respectively exceptional 
divisors, and let . Ẽ0 be the strict transform of . E0 by . π . The new divisor E is then 
given by the union 

. E = Ẽ0 ∪ U7
i=1 Ei

and .K = π−1(0) = Ẽ0 = Edic. There are no compact invariant curves contained 
in the only compact component . Ẽ0 of E. Then, there are no extended partial 
separatrices for the foliated space .((M,K),E,F ).
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5.8.1 Dicritical Foliations 

The concept of dicritical foliation, that we introduce below, is given by making a 
two-dimensional test. 

Definition 5.8.1 Let . F be a foliation on a complex analytic space M and P a point 
in M . We say that . F is dicritical at P if there is a map .φ : (C2, 0) → (M,P ), such 
that .φ−1F = (dx = 0) and the subspace .φ(y = 0) is invariant for . F. 

In ambient dimensions two and three, this definition is equivalent to the fact 
that there is a generically transversal component of the exceptional divisor after a 
morphism of reduction of singularities. 

Let us note at this point that any germ of foliation having a holomorphic first 
integral is non-dicritical. Indeed, consider the foliation . F given by .df = 0 and 
assume that it is dicritical, that is, there is a map .φ : (C2, 0) → (M,P ) as in the 
previous definition. The pull-back of . F by . φ is given by .d(f ◦φ) = 0. Since it is the 
foliation .dx = 0, it means that the function .f ◦φ is of the form .f ◦φ = ψ(x). Now  
the fact that .φ(y = 0) is invariant means that . ψ is a constant function, contradiction. 

5.9 Invariant Hypersurfaces for Non-dicritical Foliations 

The general positive answer to Thom’s question about the existence of invariant 
hypersurfaces in the non-dicritical case is stated as follows: 

Theorem 5.9.1 Let . F0 be a germ of non-dicritical foliation on .(Cn, 0). Then, there 
is a germ .(H, 0) ⊂ (Cn, 0) of analytic hypersurface invariant for . F0. 

The proof of this theorem is given by Camacho-Sad, when .n = 2 (see [4]), as 
we have seen. It is due to Cano-Cerveau, for the case .n = 3 (see [8]) and to Cano-
Mattei, for the case .n ≥ 4 (see [10]). 

Let us point out the main ideas in the proof, for the case .n = 3. The  most  
important tool is the existence of a reduction of singularities. In [6] and [8], the 
authors prove the existence of reduction of singularities for non-dicritical germs of 
foliation on .(C3, 0). Consider a non-dicritical germ of foliation . F0 over .(C3, 0) and 
take a reduction of singularities 

. π :M = ((M,K),E,F ) → ((C3, 0),∅,F0), K = π−1(0).

Since . F0 is non-dicritical, we have that .E = Einv, that is, there are no dicritical 
components in E. In this situation, the extended partial separatrices coincide with 
the partial separatrices. Moreover, all the partial separatrices are complete. Then, 
the only thing we have to do is to detect a partial separatrix S such that .HS is 
convergent. Recall that the convergence can be read at any generic point of S and 
that a generic point of S has dimensional type equal to two. In order to detect this
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kind of partial separatrices, we apply Camacho-Sad Theorem to a two-dimensional 
transversal section of . F0. Then, we show that the convergent curve given by this 
result lifts to a convergent curve in a generic point of a partial separatrix. In this way, 
we obtain the convergent invariant hypersurface by taking the projection .π(HS). 

The case .n ≥ 4, proved in [10], is reduced to the three-dimension case as 
follows. By taking a three-dimensional transversal section . A, we obtain a surface 
.HA ⊂ A through the origin, invariant for . F|A. By means of equidesingularization 
arguments, we see that .HA extends locally to hypersurfaces . HP , invariant for . F, 
locally at the points P not belonging to a given subset of codimension three. 
These local extensions allow us to build a hypersurface . H̃ , invariant for . F, in  
the restriction to a poly-annulus of . Cn, whose intersection with . A is contained in 
. HA. By cohomological triviality, the hypersurface . H̃ extends to a hypersurface H , 
invariant for . F, of the whole ambient space. We see that H passes through the origin, 
since it is “guided” by . HA. 

5.10 Extensions to Dicritical Situations (Dimension Three) 

We restrict ourselves in this section to three-dimensional ambient spaces. We are 
going to describe some situations where the existence of invariant hypersurface is 
assured for a germ of foliation . F0 in .(C3, 0). 

We present here two criteria of completeness for extended partial separatrices 
and we apply them to find invariant hypersurfaces. 

5.10.1 Rational First Integrals in Dicritical Components 

Let us consider a simple foliated space .M = ((M,K),E,F ) of dimension three. 
The following criterion is essentially the same one used in [29]: 

Proposition 5.10.1 Assume that the restriction .F|D has a rational first integral, for 
each compact dicritical component D of E. Then every extended partial separatrix 
is complete. 

Proof Let . E be an extended partial separatrix and take a point P in . E contained 
in a compact irreducible component .D∗ of E. Assume that .D∗ is an invariant 
component. Then, there is a trace compact curve Y in .TrcM with .P ∈ Y ⊂ D∗, 
thus .Y ⊂ E. Assume now that . D∗ is a dicritical component. Then, there is a unique 
invariant branch .(r, P ) ⊂ (D∗, P ) invariant for .F|D∗ and not contained in any other 
component of E. Since .F|D∗ has a rational first integral, the branch .(r, P ) extends 
to a compact trace curve .Y ⊂ D∗. Hence .Y ⊂ E and we are done. nu

Note that the existence of extended partial separatrix can fail when two compact 
dicritical components meet and it appears an infinite chain of invariant trace curves 
of these two components. This phenomenon breaks the finiteness needed in the
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definition of extended partial separatrix. To avoid this situation, we can ask that 
two dicritical components never meet. Then, we can state the following result: 

Proposition 5.10.2 Assume that the restriction .F|D has a rational first integral, 
for each compact dicritical component D of E. Suppose also that two compact 
dicritical components never meet. Then, each trace point in E is contained in a 
complete extended partial separatrix. 

Corollary 5.10.3 Assume that .π : M → ((C3, 0),∅,F0) is a reduction of 
singularities and that . M is a simple foliated space satisfying the hypothesis of the 
proposition. Then . F0 has a convergent invariant surface. 

Proof Similarly to the non-dicritical case, it is enough to make a two-dimensional 
transversal section for . F0 and to lift a convergent invariant curve. In this way, we 
detect a complete extended partial separatrix . E such that . HE converges. nu

5.10.2 Prolongation of Isolated Branches 

The property of prolongation for isolated branches has been studied in [27]. In order 
to introduce it, we need to develop first the concept of isolated branches for two-
dimensional foliated spaces. This concept can be implicitly found in [2]. 

Let .X = (X,D,G) be a foliated surface. Consider a (maybe formal) branch of 
curve .(r, P ) in .(X, P ), not contained in D. We say that .(r, P ) is an isolated branch 
for . X when the following statement holds: 

Given a composition .σ : X' = (X',D',G') → X = (X,D,G) of a finite sequence 
of blowing-ups, the strict transform of the branch .(r, P ) passes through a non-simple 
regular point for . X' or a singular point of . G', that is, passes through a point belonging 
to .Sing(G',D'). 

Remark 5.10.4 An isolated branch for . X is, in particular, an invariant branch of . G. 

Definition 5.10.5 The foliated surface . X has the property of prolongation for 
isolated branches if, for each isolated branch .(r, P ), the following properties hold: 

1. There is a (unique) closed irreducible curve .Y ⊂ X extending .(r, P ). 
2. Moreover, all the branches .(ϒ,Q) ⊂ (Y,Q) are isolated, for each .Q ∈ Y ∩ D. 

If all the points in X are simple points for . X, there is a bijection between trace 
type singularities and isolated branches. Indeed, we associate to each singular trace 
point P the only invariant branch .(rP , P ) through it not contained in D. Under this 
assumption, the following statements are equivalent: 

(a) The prolongation property for isolated branches holds for . X. 
(b) For each trace type (simple) singularity P in . X, there is a (unique) closed 

irreducible curve .Y ⊂ X extending .(rP , P ). Moreover Y does not meet the 
dicritical part .Ddic of D.
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We take now a foliated space .M = (M,E,F) of dimension three. Given a 
dicritical component X of E, it makes sense to consider the foliated surface .M|X, 
obtained by restriction of . M to X. We say that . M has the prolongation property 
for isolated branches if the property holds in the restriction .M|X, for each dicritical 
component X of the divisor E. This prolongation property for isolated branches 
assures the completeness of some extended partial separatrices, as we see in the 
following proposition: 

Proposition 5.10.6 (See [12]) Let .M = (M,E,F ) be a simple three-dimensional 
foliated space satisfying the prolongation property for isolated branches. Then, any 
extended partial separatrix containing singularities of . F is complete. 

5.10.3 Invariant Surfaces for Toric Type Foliations 

Here we present the class of toric type foliations, introduced in [5, 12]. We show the 
existence of invariant hypersurface for this family of foliations. 

Let . F be a foliation defined on a complex analytic space M . We say that . F is a 
toric type foliation if there are a normal crossings divisor E on M and a reduction 
of singularities morphism 

. π : (M ', E',F') → (M,E,F )

given by composition of a finite sequence of combinatorial blowing-ups. Roughly 
speaking, by combinatorial blowing-up we mean that it is centered at an intersection 
of components of the corresponding divisor. 

We say that the toric type foliation . F is complex hyperbolic when the reduction 
of singularities . π satisfies that all the points in .(M ', E',F') are complex hyperbolic. 
Under this assumption, we have that any formal invariant surface converges. 

Theorem 5.10.7 (See [12]) Every complex hyperbolic toric type foliation on 
.(C3, 0) has an invariant surface. 

Let us give some ideas on the proof. Take a germ of complex hyperbolic foliation 
. F0 on .(C3, 0). Assume that . F0 is of toric type with respect to a normal crossings 
divisor . E0 and fix a combinatorial reduction of singularities 

.π :M = ((M, σ−1(0)), E,F) → ((C3, 0), E0,F0). (5.23) 

Note that, if . E0 has some invariant component, we are trivially done. Thus, we 
assume that . E0 has only dicritical components. We remark also that . E0 must 
have three components, in order to be allowed to blow-up the origin. Recall 
that, in this situation, we assure that .π−1(0) is a union of components of E. 
In Proposition 5.10.8, the existence of a complete extended partial separatrix . E
is assured. The associated hypersurface .HE converges in view of the complex
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hyperbolicity of . F0. We finish by taking the hypersurface .π(HE), that is invariant 
for . F0. 

Proposition 5.10.8 The next statements hold for the foliated space . M =
(M,E;F). 

(a) . M has the prolongation property for isolated branches. 
(b) There is at least one trace type singularity for . M. 

Part (a) follows by seeing that every compact component X of E is a non-
singular projective toric surface. The restriction .E|X is recovered in a natural way 
as the union of non-dense orbits of the torus action on X. The study done in [27] 
for foliated spaces defined in toric surfaces is applied to assure that . M has the 
prolongation property for isolated branches. The main tool to prove part (b) is the 
refined version of Camacho-Sad theorem stated as in Proposition 5.7.2. 

Remark 5.10.9 In the definition of simple foliated space given in this text, we have 
asked the germification compact K to be a union of irreducible components of the 
divisor E. This property is not strictly necessary in many of the results presented 
here, for instance the ones that can be found in the paper [12]. 

5.11 Local Brunella’s Alternative 

A natural question is to ask for a property of the germs of foliation in .(C3, 0)without 
invariant surface that represents in some sense the “limit” to the transcendence of 
solutions imposed by the analyticity of the foliation. A similar phenomenon has 
been described by M. Brunella for foliations of . P3

C
(see [17]). A local way for 

presenting this question is as follows: 

A germ of foliation . F in .(C3, 0) without invariant hypersurface satisfies that all the “leaves” 
contain a germ of analytic curve at the origin. 

This statement has a positive answer for certain classes of foliations [13, 14], but 
the general question is open. 
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