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Abstract—The design of both FIR and IIR digital filters is
a multi-variable optimization problem, where traditional algo-
rithms fail to obtain optimal solutions. A modified Shuffled Flog
Leaping Algorithm (SFLA) is here proposed for the design of FIR
and IIR discrete-time filters as close as possible to the desired
filter frequency response. This algorithm can be considered a
type of memetic algorithm. In this paper, simulations prove the
obtained filters outperform those designed using the traditional
bilinear Z transform (BZT) method with elliptic approximation.
Besides, results are close to, and even slightly better, than those
reported in recent bio-inspired approaches using algorithms such
as particle swarm optimization (PSO), differential evolution (DE)
and regularized global optimization (RGA).

Index Terms—FIR design, IIR design, shuffled flog-leaping
algorithm, memetic algorithm, bio-inspired algorithm

I. INTRODUCTION

Digital filters are essential components in every signal

processing system as they enhance valuable information, either

by separating it from other unwanted signals or by attenuating

the noisy components found in the raw signal.

Two types of digital filters are studied in this paper: Finite

Impulse Response (FIR) and Infinite Impulse Response (IIR)

digital filters. FIR filters produce an output that is only based

on current and past inputs, ensuring stability. On the other

hand, IIR filters produce an output based not only on its

input, but also on the previous values of the output. As a

consequence, stability is not guaranteed and is a desirable

characteristic when designing them.

IIR digital filters imply about twice as much coefficients as

the FIR filters, resulting in a better frequency response for the

same filter order, nevertheless increasing the computational

load of the proposed memetic algorithm. In addition, the

search space must be limited to ensure the stability of the filter,

introducing a number of checks that slow down convergence

speed.

Many conventional methods allow the design of digital

filters, but they only offer a limited range of parameters to be

tuned-up in order to control the impulse response of the filter

[1]. In addition, several optimization algorithms have already

been used for digital filter design, but they suffer from a great

limitation as they frequently get stuck in local minima, failing

to achieve an optimal solution [2].

One of the first bio-inspired algorithms proposed for filter

design used Genetic Algorithms (GAs) [3]. These are based

on the theory of evolution formulated by Charles Darwin and

are quite simple to implement. Genetic algorithms established

the basis for more recent memetic algorithms (MAs), which

introduce the concept of meme [2], alluding the capability of

each individual to communicate with the others.

The here proposed memetic algorithm is based on the tradi-

tional Shuffled Frog-Leap Algorithm (SFLA) initially described

in [4]. The algorithm relies on the analogy of a pond populated

by frogs leaping to different positions that represent possible

solutions to the studied problem. Various modifications have

been applied so that the algorithm tackles the filter design

challenge in a more efficient way .

Different techniques have been introduced to improve the

basic algorithm such as the one mentioned in [4], which aims

at ensuring a good population diversity, avoiding premature

convergence and taking advantage of diversified search. These

desired characteristics imply a more complex algorithm (com-

pared to the standard one) that focuses on the quality of

the final solution while sacrificing speed and computational

resources.

The rest of the paper is organized as follows: Section II

contains the literature review focused on bio-inspired algo-

rithms. Section III describes the mathematical framework for

IIR and FIR filter design. Then, Section IV outlines the main

characteristics of the proposed method. Section V presents

the results obtained by the studied SFLA together with a

comparison with those obtained by both classical and bio-

inspired strategies. Finally, conclusions are gathered in Section

VI.

II. LITERATURE REVIEW

Bio-inspired optimization algorithms have been studied

since the 50’s, but they did not gain enough importance till

the 90’s due to the lack of computers with enough processing

capability [5]. As soon as they were efficiently implemented,

results were promising due to the fact that they handle a higher

number of variables and achieve better results than traditional

methods [2].

Memetic algorithms are the descendants of genetic algo-

rithms [5] as they introduce several concepts and modifications
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in order to obtain nearly optimal results. Standard GAs suf-

fered from several limitations, such as the tendency of getting

stuck into local minima and slow convergence speed. In order

to tackle these challenges, MAs exploit the concept of meme,

where the best individuals of a certain population can share

beneficial information about the fittest solutions, allowing even

the worst individuals to follow good paths in the search space

[6].

However, the tendency of all individuals to reach the same

solution lead to local minima and premature convergence

problems. In order to avoid premature convergence and en-

hance global search, memetic algorithms like Particle Swarm

Optimization (PSO) [4], [7] introduced the concept of chaotic

movement. These MAs tackle the premature convergence prob-

lem by adding a chaotic component to individual evolution, so

the way in which the worst individuals behave is determined

by both the best ones and a certain random variable.

Finally, additional information about the search space is

used by MAs in order to achieve a faster convergence and

greater quality of solutions [8]. This is achieved by imposing

some restrictions or modifications to the initial solutions,

consequently they are not generated in a complete random

process but by a pseudorandom procedure, which allows to

achieve better solutions.

III. THEORETICAL FOUNDATION

A. Digital FIR filter design

FIR digital filters are defined by their transfer function

H(z), which only features the coefficients of the numerator

bn due to the lack of poles, consequently all denominator

coefficients are set to one:

H(z) =

N−1
∑

n=0

bnz−n (1)

Coefficients bn in Eq. (1) are the coefficients of the numerator

and determine the module and phase of each zero in the Z-

plane and N is the number of coefficients, representing the

order of the digital filter.

The zeros of the transfer function determine the position

and magnitude of the minima observed in the module of

the frequency response function. The phase of the zeros

determines the normalized frequency in which minima are

located and the module determines the magnitude.

B. Digital IIR filter design

Contrary to FIR filters, IIR filters are defined by a transfer

function H(z) given by Eq. (2), which includes both numera-
tor and denominator coefficients. The first ones determine the

zeros while the second ones specify the location of poles.

H(z) =

∑N−1

n=0
bnz−n

1 +
∑N−1

n=0
anz−n

(2)

In this transfer function, the coefficients of the denominator,

an, determine the phase and module of the poles in the Z-

plane which represent the maxima in the module of the transfer

function.

When designing IIR digital filters, stability must be ensured

by limiting the module of the poles by one. As seen in Eq. (2),

for the same filter order, IIR digital filters need twice as much

coefficients as FIR digital filter, which implies an increase

in the computational load of the algorithm (notice that, for

simplicity, we have chosen the same order in numerator and

denominator; in the general case, orders could be different).

However, for the same filter order, IIR filters obtain better

frequency response than FIR filters.

IV. DESIGN METHODOLOGY

A. Fitness function

Shuffled Frog-Leaping Algorithms are based on the be-

haviour of a pond full of frogs looking for food, each one

positioned over a rock whose position determines a solution

to the problem. In order to determine the amount of food that

a frog finds in a position, the fitness function given by

f(ω) =
1

1 + J(ω)
(3)

where J(ω) is the cost function, determined by the mean

square error (MSE) between the desired filter and the current

solution. The MSE is calculated using

MSE =
1

n

n−1
∑

ω=0

[hi(ω) − h(ω)]2 (4)

where n is the number of samples of the obtained filter, h i(ω)
represents the amplitude of the desired filter and h(ω) is the
amplitude of the obtained filter.

Higher fitness values in Eq. (3) correspond to lower MSE

values between the desired filter and the obtained one, so the

quality of a solution is proportional to its fitness value. Frogs

finding more food are the ones who represent better solutions

to the problem, in this case, filters whose response is closer

to the ideal one. The best frogs act as leaders for the rest of

the population, conditioning the direction in which the other

frogs leap.

B. Modeling the solutions

Each solution from a particular iteration is made up by an

array which contains all the filter coefficients, i.e.

w = [a0, a1, . . . , an, b0, b1, . . . , bm] (5)

This equation particularly determines the position of a frog

when designing IIR filters as two types of coefficients are used.

When FIR filters are being designed, only the bm coefficients

are used as the an coefficients have zero value, with the

exception of a0, whose value is fixed and set to one:

w = [b0, b1, . . . , bm] (6)



Fig. 1. Memeplexe generation and location of each frog in the fitness plane.

C. Memeplexe generation

In order to enhance communication and information in-

terchange between frogs, groups of memetic individuals –or

memeplexes– are created.

Each memeplexe should contain the same amount of frogs,

so the total population N must be a multiple of the number

of memeplexes M . These memeplexes are built regarding the

characteristics of each frog, so frogs with similar characteris-

tics are grouped together [9]. All frogs are represented in the

plane, as shown in figure 1, where each axis represents the cost

function of the resulting filter in both passband and stopband.

The centroid of each cluster is positioned as shown in figure

1. This way, solutions with similar fitness values are grouped

together in the same memplexe. This technique allows a better

evolution of each memeplexe as mentioned in [9].

D. Adaptation to multiobjective problems

In this paper a multiobjective problem is tackled, as the

intention is to minimize the MSE value of the obtained filter

with respect to the ideal one, in both passband and stopband,

so two objectives arise.

As two functions are used to evaluate the fitness for each

frog, determination of the best and worst frogs is not an

obvious task. In this algorithm, the module of the positioning

vector of each frog in the fitness plane determines the best

and the worst one within each memeplexe. The following

equation is used to calculate the module, so the one with the

highest module value would be considered as the best frog

(the analogous criteria is applied to the worst frog):

module =
√

(originx − fitnessx)2 + (originy − fitnessy)2

where subindex x refers to the stopband fitness axis, an the y

subindex refers to the passband fitness axis.

E. Leaping process

Each iteration, N of the worst frogs would leap towards a

new position searching for a better solution to the problem

[10]. First, each frog leaps according to Eq. (7), then, the

new position is evaluated against the previous position. If an

improvement is achieved, the new position is saved:

x′

w = xw + C · rand(0, 1)[wb − xw] (7)

where xb is the position of the best frog of the leaping frog

memeplexe, and xw is the position of the leaping frog. If

the new position does not match requirements, a new leap

is performed based on the global best frog, according to

x′

w = xw + C · rand(0, 1)[wg − xw] (8)

where xg is the position of the global best frog. In both Eqs.

(7) and (8), an scaled random variable is introduced, denoted

as C · rand(0, 1), so each leap is scaled by a random number

from a uniform distribution in the interval [0, 1] multiplied by
the factor C. This factor decreases linearly from its maximum

in the first iteration towards its minimum value in last iteration.

This technique allows horizontal (explorative) search at the

beginning of the process and a more exploitative search during

last iterations [11].

The above allows the algorithm to look for solutions in a

wider area of the search space at the beginning, and to fine-

tune solutions in the last iterations enhancing local search,

so small changes are applied to each frog during the latest

iterations [11]. Thirdly, if any improvement is made after

applying both leaps, a new random frog is generated, which

substitutes the previous worst frog as mentioned in [9].

F. Diversity control

The lack of diversity of solutions found during the opti-

mization process can lead to local minima due to premature

convergence. To ensure that diversity is maintained along

iterations a new entropy-based method is here proposed.

By calculating the Shannon entropy of the vector containing

the distances from one frog to the others following Eq. (9),

diversity can be quantified, so that solutions that get a lower

entropy value are usually better distributed (with higher diver-

sity) in the solutions space. In contrast, those sets of potential

solutions with a higher entropy value have a more evenly

distributed vector of distances, thus lowering the diversity of

the population [12]. This entropy is calculated as

H(x) = −

n−1
∑

i=0

p(xi) log2 p(xi) (9)

where n is the length of the distances vector and xi are the

values of the calculated distances.

To maintain a higher diversity among the first and the

second best frogs, the one with a lower entropy value is chosen

as the fittest.

V. RESULTS

This section shows the results of the numerical simulations

carried out with Matlab® and the performance of the proposed

filter design method. First, the obtained IIR filter is compared

with the one obtained using the BZT method with elliptic



approximation. Then, properties of our designed FIR filters

are compared to filters obtained using the windowing method.

Finally, performance of the proposed SFLA is compared to

the results reported in [13].

Regarding FIR and IIR design, different filter orders have

being used in order to test the evolution of the customized

SFLA when parameters are modified. In addition, before any

comparison is made, parameter tuning has been carried out in

order to obtain the highest fitness value. Optimal parameter

values are next shown in Table I.

TABLE I
BEST EMPIRICAL PARAMETER VALUES.

Parameter Value

Max. iterations 500

Number of leaps 8

Number of memeplexes 5

Total population 40

A. IIR filter design

When testing the proposed algorithm, passband and stop-

band ripples are measured, then an elliptic filter is generated

imposing the same values of the mentioned metrics. Finally, a

fitness value is calculated for both filters, comparing them to

an ideal low-pass filter (LPF), setting ω = 0.25 as normalized

cut-off frequency. Numerical results are shown in Table II,

where all ripple values are given in dB.

TABLE II
IIR DESIGN RESULTS FOR PROPOSED SFLA MEMETIC ALGORITHM AND

BZT WITH ELLIPTIC APPROXIMATION.

SFLA Elliptic Passband Stopband SFLA Elliptic
order order ripple ripple fitness fitness

5 2 0.708 14.095 0.9783 0.9750

10 3 0.536 21.072 0.9918 0.9904

15 4 0.73 22.2 0.9958 0.9931

20 5 0.872 29,02 0.9971 0.9947

25 4 0.805 23.267 0.9979 0.9929

As shown in Table II, fitness values corresponding to the

filters generated by the proposed MA are greater than those

using the BZT with the elliptic approximation. However, when

using the BZT method, a lower filter order is required and a

narrower transition band is obtained. The reason for the elliptic

method to obtain a lower fitness value is a constant stopband

and passband ripple, as the filters obtained by the proposed

SFLA present a decreasing ripple in both bands as shown in

Figure 2, which is a desired feature in certain applications.

Figure 2 shows the frequency response of the proposed

SFLA filter in blue and the elliptic filter in red, proving that the

mean ripple in both bands obtained with the proposed method

is better. Further testing was carried out using high-pass, band-

pass and stop-band filters, obtaining similar results as the ones

achieved in the low-pass case.

w/π

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
a
in

 (
n
.u

)

0

0.2

0.4

0.6

0.8

1

1.2

δ
s

Fig. 2. LPF obtained by the proposed SFLA memetic algorithm (blue) and
BZT with elliptic approximation (red), for order 25.

B. FIR filter design

For more detailed results regarding performance, FIR LPFs

were also generated. To calculate the cut-off frequency ω p, the

passband ripple was established at 1 dB, while ripple in the

stopband is set by the filter with the highest value. Table III

shows the fitness values obtained for different filter orders with

both the proposed SFLA and the windowing method (with a

Blackman-Tuckey window).

TABLE III
FIR DESIGN RESULTS FOR SFLA MA AND WINDOWING METHOD

(BLACKMAN-TUCKEY).

Filter Stopband SFLA Windowed SFLA Windowed
order attenuation cut-off cut-off fitness fitness

(dB) frequency frequency

5 15.488 0.157 0.181 0.9702 0.9568

10 20.258 0.202 0.109 0.9829 0.9568

15 17.278 0.22 0.152 0.9876 0.9754

20 16 0.232 0.203 0.9903 0.9834

Results in Table III show that fitness values obtained with

SFLA are far superior than the ones for the windowing

method. However, as the filter order increases, fitness values

for both methods tend to match. For further testing, the

transition band width was also measured for both methods,

showing up the superiority of the proposed method as much

lower values were achieved.

TABLE IV
TRANSITION BANDWIDTH FOR PROPOSED SFLA AND WINDOWING

METHODS.

Order Proposed SFLA Windowing

5 0.224 0.329

10 0.143 0.263

15 0.09 0.17

20 0.062 0.099
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Fig. 3. FIR filter comparison between: ideal one (green), proposed SFLA
(blue) and windowing (red).

C. Comparison with other optimization algorithms

In order to compare the obtained results with the ones

presented by Upadhyaya et al. in [13], a 5th-order LPF filter

was approximated by a 4th-order filter using the proposed

memetic algorithm. Eq. (10) represents the frequency response

of the objective filter.

H(z) = 0.1084+0.5419z−1
+1.0837z−2

+1.0837z−3
+0.5419z−4

+0.1084z−5

1+0.9853z−1+0.9738z−2+0.3864z−3+0.1112z−4+0.0113z−5

(10)

For both algorithms, five independent runs were carried

out, using the MSE value as indicator. The MSE values

for the proposed SFLA and the three bio-inspired methods

compared –differential evolution (DE), particle swarm opti-

mization (PSO), and regularized global optimization (RGA)–

are shown in Table V.

TABLE V
MINIMUM SQUARE ERROR (MSE) VALUES FOR SEVERAL COMPARED

ALGORITHMS.

Execution DE PSO RGA Proposed SFLA

1 6.88E-04 0.0277 0.0356 7.249E-4

2 1.40E-03 0.0103 0.0507 5.807E-4

3 2.20E-03 0.0068 0.0991 7.4292E-4

4 9.72E-04 0.0177 0.0307 0.001

5 1.60E-03 0.0035 0.0556 6.3074E-4

As shown in Table V, the proposed SFLA MA outperforms

all the three algorithms compared, in terms of mean squared

error (MSE).

VI. CONCLUSIONS

In this paper we have presented a metaheuristic optimization

method based on the standard SFLA with several modifications

in order to improve filter design performance of the resulting

memetic algorithm. The main aim of the proposed method is

the efficient design of digital filters (both FIR and IIR) using

two objective functions.

First, a memeplexe generation method, based on the objec-

tive function plane, establishes the center of each memetic

subgroup in order to improve the convergence speed. Ad-

ditionally, a mutation mechanism is introduced on the best

solutions that come into play when stagnation into local

optima is detected. This way, convergence is maintained and

quality of final solution improves. The proposed algorithm has

been adapted to multiobjective problems in order to control

which characteristics of the solutions are important in the

optimization process.

Experimental results are promising as an improvement has

been made with regards to solution quality and adaptability

to different problems. However, some drawbacks raised in

relation to computational load as the proposed SFLA takes

more time than traditional methods in order to reach the final

solution. Consequently, a trade-off between solution quality

and running time must be established by properly adjusting

parameters. This situation was observed for IIR design when

BZT was used for comparisons. On the other hand, results

with our SFLA were better in FIR design whichever method

was used for comparison (traditional or bio-inspired).
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