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ARTICLE INFO ABSTRACT

Keywords: The increasing occurrence of large and severe fires in Mediterranean forest ecosystems produces major ecological
LiDAR and socio-economic damage. In this study, we aim to identify the main environmental factors driving fire sever-
Vege_taﬁﬂﬂ structure ity in extreme fire events in Pinus fire prone ecosystems, providing management recommendations for reducing
Physical properties fire effects. The study case was a megafire (11,891 ha) that occurred in a Mediterranean ecosystem dominated

Fire history » by Pinus pinaster Aiton in NW Spain. Fire severity was estimated on the basis of the differenced Normalized Burn
Weather conditions

Landsat Ratio from Landsat 7 ETM +, validated by the field Composite Burn Index. Model predictors included pre-fire

CBI vegetation greenness (normalized difference vegetation index and normalized difference water index), pre-fire
vegetation structure (canopy cover and vertical complexity estimated from LiDAR), weather conditions (spring
cumulative rainfall and mean temperature in August), fire history (fire-free interval) and physical variables (topo-
graphic complexity, actual evapotranspiration and water deficit). We applied the Random Forest machine learn-
ing algorithm to assess the influence of these environmental factors on fire severity. Models explained 42% of the
variance using a parsimonious set of five predictors: NDWI, NDVI, time since the last fire, spring cumulative rain-
fall, and pre-fire vegetation vertical complexity. The results indicated that fire severity was mostly influenced by
pre-fire vegetation greenness. Nevertheless, the effect of pre-fire vegetation greenness was strongly dependent on
interactions with the pre-fire vertical structural arrangement of vegetation, fire history and weather conditions
(i.e. cumulative rainfall over spring season). Models using only physical variables exhibited a notable association
with fire severity. However, results suggested that the control exerted by the physical properties may be partially
overcome by the availability and structural characteristics of fuel biomass. Furthermore, our findings highlighted
the potential of low-density LiDAR for evaluating fuel structure throughout the coefficient of variation of heights.
This study provides relevant keys for decision-making on pre-fire management such as fuel treatment, which help
to reduce fire severity.

1. Introduction the size and severity of wildfires are expected to continue increasing in

the future, due to a combination of climate change, land use/land cover

Wildfire is a major disturbance in Mediterranean ecosystems all changes and forest management policies. Large severe fires are difficult

around the world (Gongalves and Sousa, 2017) and, particularly, in the to supress (Holden et al., 2009), cause significant socio-economic dam-

Mediterranean basin where large areas have burned in recent decades age and have major ecological consequences (Pausas et al., 2009), such
(Oliveira et al., 2012). According to Gonzalez-De Vega et al. (2016), as soil erosion and changes in dominant vegetation types.
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Mediterranean ecosystems are highly resilient to fire (Lavorel, 1999;
Calvo et al., 2008, 2012). However, the increasing frequency of extreme
fire events (San-Miguel-Ayanz et al., 2013) might exceed vegetation
adaptive thresholds (Williams et al., 2011), altering vegetation recovery
capacity (Viana-Soto et al., 2017). Particularly, pine forest is one of the
Mediterranean ecosystems most impacted by fire (Dimitrakopoulos et
al., 2011). In this fire-prone ecosystem, high fire severity might alter the
recovery capacity through increased mortality in the aerial seed bank
(Calvo et al., 2008). Additionally, soil properties, which may affect soil
seed bank survival, (Vega et al., 2008) and soil susceptibility to erosion
might be influenced by high fire severity.

Within this framework, management strategies for preserving plant
communities and soils after wildfires require in-depth knowledge of the
factors responsible for fire severity. Nevertheless, the understanding of
environmental factors controlling fire severity is still limited (Birch et
al., 2015), likely due to complex interactions among physical, weather
and vegetation variables (Lecina-Diaz et al., 2014). Prior studies have
reported strong control of topography over fire severity, since it may in-
fluence directly fire behaviour, fuel moisture and water balances; and,
indirectly, local climate and vegetation composition and structure (e.g.,
Fang et al., 2018; Harris and Taylor, 2017; Holden et al., 2009; Kane
et al.,, 2015b). Conversely, other studies, such as those by Collins et
al. (2007) and Liu and Wimberly (2015), suggest that the influence of
topography on fire severity might be overwhelmed by other environ-
mental factors like weather (Dillon et al., 2011).

Weather conditions cannot be neglected when assessing factors ex-
plaining fire severity (Storey et al., 2016). Firstly, humidity conditions
determine energy required for fuel preheating (Lee et al., 2018) and net
energy released from fuel combustion (Dillon et al., 2011). Secondly,
the amount of consumed fuels will increase under dry conditions, thus
prompting severe fire effects (Dillon et al., 2011). Thirdly, weather ele-
ments, such as wind or thermal inversions, frequently condition fire be-
haviour and severity (Estes et al., 2017). What is more, the way in which
weather influences fire severity might differ among fires and even dur-
ing a single fire event (Kane et al., 2015a).

On the other hand, vegetation composition and structure might also
exert bottom-up control on fire severity, regardless of physical and
weather settings (Agee and Skinner, 2005; Estes et al., 2017). Vegeta-
tion continuity and loading, which depend on vegetation composition,
ecosystem developmental stage and fire history, are expected to influ-
ence fire propagation and severity (Collins et al., 2007). The amount
and spatial continuity of vegetation can be modified through human in-
tervention (Lee et al., 2009). Therefore, understanding fire severity re-
sponses to vegetation features is critical for designing and implement-
ing forest management strategies and fuel treatments (Stephens et al.,
2012).

In the context of large high severity fires, structural attributes of the
vegetation may be estimated using a combination of satellite data and
plot-level field measurements. However, in certain cases, the spatial res-
olution of these data may be inadequate to accurately estimate these
attributes (Nourian et al., 2016), while being expensive and time-con-
suming (Chen et al., 2017). In fact, passive satellite sensors have lim-
itations in detecting fuel spatial complexity due to their incapacity to
penetrate the forest canopy (Keane et al., 2001). The growing devel-
opment of Airborne Light Detection and Ranging (LiDAR) data offers
opportunities to obtain high spatial resolution information on the hor-
izontal and vertical structure of the vegetation across large areas, with
greater detail and fidelity than satellite data (Hummel et al., 2011).
Three-dimensional information captured by LiDAR has been reported
to effectively determine fuel parameters, such as foliage structure (van
Leeuwen and Nieuwenhuis, 2010), vegetation height (Valbuena et al.,
2017) and forest canopy structural heterogeneity (Kane et al., 2015b).
Similarly, in recent years, LiDAR has increasingly been used to esti-
mate forest structural changes associated with fire severity (Kane et al.,
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2013; Kane et al., 2014; Montealegre et al., 2014). Therefore, mapping
forest structural characteristics from LiDAR has potential applications
for improving our understanding of how pre-fire vegetation structure, in
addition to other interacting environmental drivers, governs fire sever-
ity (Filippelli, 2016). Despite its potential advantages, the incorporation
of LiDAR measurements for this purpose is still limiting in the scientific
literature (Alonzo et al., 2017; Wulder et al., 2009).

In this study we aim to identify the environmental variables dri-
ving fire severity in a convective megafire of 11,891ha that occurred
in 2012 in a fire-prone Mediterranean ecosystem dominated by Pinus
pinaster Aiton. Specifically, our objectives were: (i) to determine how
variations in pre-fire vegetation greenness, pre-fire vegetation structure,
weather conditions, fire history and physical properties influence fire
severity; (ii) to evaluate whether LiDAR can be a valid tool for under-
standing how pre-fire vegetation structural characteristics control fire
severity; and (iii) to provide valid recommendations for forestry man-
agers to adopt appropriate strategies for reducing forest susceptibility to
fire and moderate its ecological effects.

2. Material and methods
2.1. Study site

The study site is located in the Sierra del Teleno mountain range
(North-Western Spain; Fig. 1) where altitude ranges from 840 to
2188 msal., and specifically in the study from 840 to 1500mas]. This
study area is situated in the Mediterranean pluviseasonal oceanic biocli-
matic region (Rivas-Martinez et al., 2011), with a mean annual precip-
itation of 640 mm, a mean annual temperature of 10°C and 2-3 months
of drought in summer. Wildfires are frequent in this area (free fire in-
terval between 1 and 34years), mainly associated to dry spring-sum-
mer storms (Santamaria, 2015). In 2012, a large convectivecrown-fire
affected 11,891 ha covered by a forest of Pinus pinaster with a shrubby
understory dominated by Erica australis L. and Pterospartum tridentatum
(L.) Willk (Taboada et al., 2017). Isolated woodlots of Quercus pyrenaica
Willd. and Q. ilex L. were also present in the area affected by the fire. Ex-
treme weather conditions with a heatwave episode were observed dur-
ing the week before and during the wildfire. These conditions increased
the risk of fire and facilitated the convective fire event (Quintano et al.,
2015). This fire was chosen as a case study due to its particular char-
acteristics and high levels of severity, since a large part of the burned
surface (6012ha) experienced high severity levels (Fernandez-Garcia et
al.,, 2018a). In fact, it has been included in the Reference Report by
the Joint Research Center of the European Commission: “Forest Fires in
Europe, the Middle East and North Africa 2012 as the second largest
fire in Spain and one of the largest ones at European level in that year
(Schmuck et al., 2012).

2.2. Fire severity

Fire severity was assessed using two Landsat 7 ETM + images ac-
quired on September 20th, 2011 (pre-fire image) and September 20th,
2012 (post-fire image) from the United States Geological Survey (USGS)
Earth Explorer server (http://earthexplorer.usgs.gov/). We selected the
available cloud-free images closest to the date of the fire in order to
avoid phenological changes in the vegetation (Lecina-Diaz et al., 2014).
The acquired images (L1T processing level) were Digital Number (DN)
products geometrically rectified. The reflective bands were radiometri-
cally corrected and converted to top-of-atmosphere (TOA) reflectance
by applying standard methodology from USGS (https://landsat.usgs.
gov/landsat-7-data-users-handbook-section-5).

On the processed images, we applied the delta Normalized Burn Ra-
tio (ANBR; Key and Benson, 2006), which is based on the Near-Infrared
(NIR) and the Short Wave Infrared (SWIR) reflective bands and esti-
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Fig. 1. Location map of the study area (Sierra del Teleno, NW Spain) representing a false color composite post-fire image (20th September 2012) obtained from Landsat 7 ETM +.

mates fire severity very effectively, especially in forest systems (Allen
and Sorbel, 2008). To account for inter-annual variations in vegetation
phenology and calibration errors, we normalized the dNBR values by
subtracting the average dNBR of unburned areas outside the fire from
the dNBR values within the fire perimeter (Miller et al., 2009). By doing
so, unburned areas were set to 0.

In order to validate the dNBR values, we calculated the Compos-
ite Burn Index (CBI) data, which informs of the magnitude of fire ef-
fects combined across strata, in 54 field plots of 30m X 30m size, ran-
domly established. CBI was estimated following the protocol described
in Fernandez-Garcia et al. (2018b), by rating several variables of five
vertical strata and obtaining a final ground severity value between 0
(unburned) and 3 (high severity). Correlation between the spectral in-
dex and site fire severity was 0.88. See Fernandez-Garcia et al. (2018b)
for further details on dNBR validation.

2.3. Environmental variables

We generated a pool of environmental variables grouped into five
categories to be used as drivers of severity: (1) pre-fire vegetation green-
ness, (2) pre-fire vegetation structure, (3) weather conditions, (4) fire
history and (5) physical variables (Table 1).

2.3.1. Pre-fire vegetation greenness

We used two complementary spectral indexes as proxies of live fuel:
the Normalized Difference Vegetation Index (NDVI) and the Normalized
Difference Water Index (NDWI). The NDVI is a normalized ratio of the
Near-Infrared (NIR) and the visible red bands (Eq. (1)), which is sen-
sitive to vegetation chlorophyll content and has been widely used to
quantify the net primary production of vegetation (e.g., Liu, 2016). The
NDWI is a Short-Wave Infrared (SWIR)-based index (Eq. (2)) related to
vegetation water content (Gao, 1996) and vegetation architectural para-
meters (Anderson et al., 2010).

Ny — NIR=RED o
NIR + RED
NIR — SWIR1
pwi = MR = SWIRL
NP = e SR &)

The NDVI index was derived from a Deimos-1 image (22m resolu-
tion) acquired on August 17th, 2012, the day before the fire, which
was previously resampled at 30m spatial resolution. The acquired im-
age (L1T processing level) was a DN product geometrically rectified,
which includes three reflective bands (NIR, red, and green). The reflec-
tive bands were radiometrically corrected to TOA reflectance by apply-
ing the standard methodology from NASA (1999). The NDWI index was
obtained from a Landsat 7 ETM + image acquired on September 20th,
2011 (the pre-fire image used for the estimation of fire severity; see
Section 2.2. for further details on image pre-processing). In both cases,
we selected the available cloud-free images closest to the date of the
fire.

2.3.2. Pre-fire vegetation structural metrics

Pre-fire vegetation structure was estimated based on LiDAR data
provided by the Spanish National Plan for Aerial Orthophotography
(PNOA; http://pnoa.ign.es/). The information was collected between
1st May and 30th September 2010, using an emission pulse frequency
of 45kHz, which produces a theoretical laser pulse density of 0.5 first
returns per square meter and a maximum of four returns per pulse.

LiDAR data was processed using the US Forest Service’s FUSION
software package (http://forsys.cfr.washington.edu/fusion/fusionlatest.
html; McGaughey, 2018). The z-value of the laser pulse returns might
provide information on ground or canopy elevation. To retain the real
height information concerning laser pulse returns, LiDAR data needs
to be normalized (Kwak et al., 2014). To this end, a Digital Elevation
Model (DEM) was created from the ground returns with a spatial reso-
lution of 10m. The height of LiDAR returns above ground surface was
then obtained through DEM subtraction.

A set of LiDAR metrics, identified in previous studies (Kane et al.,
2013; Lefsky et al., 2005) as highly correlated with vegetation struc-
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Table 1

Groups of environmental predictors used for fire severity assessment: Pre-fire vegetation
greenness, pre-fire vegetation structure, weather conditions, fire history and physical prop-
erties. Variables in bold were considered as predictors in Random Forest models after fil-
tering. for multicollinearity.

Group of Environmental

variables variable Data source

Pre-fire NDVI index Deimos-1 image (22 m spatial resolution),

vegetation acquired on August 17th, 2012
greenness
NDWI index Landsat 7 ETM + image (30 m spatial
resolution), acquired on September 20th,
2011
Pre-fire Coefficient of LiDAR data provided by the Spanish
vegetation  variation (CV) of National Plan for Aerial Orthophotography
structure LiDAR return (PNOA; http://pnoa.ign.es/), collected
heights (m) between the 1st May and 30th September
2010
Total returns
Canopy density
(strata 0.5-2, 2-4,
4-7 and >7 m)
Weather Cumulative Meteosat Second Generation (MSG) -2
conditions rainfall in spring satellite (at 3km spatial resolution),
(mm) acquired from March to May and August
2012
Mean temperature
in August (°C)

Fire history Number of fires Landsat 2, MSS sensor; Landsat 4 and 5,
TM sensor; and Landsat 7, ETM + sensor
images (30 m spatial resolution), covering
the period 1975-2012

Fire —free interval
(time since the last
fire)

Physical Slope (degrees) Digital Elevation Model (DEM) at 25m

properties spatial resolution
Solar radiation (W/
m?2)
Topographic
complexity
(degrees)
Actual Landsat 7 ETM + image (30 m spatial
evapotranspiration resolution), acquired on 12th March 2012
(mm) Meteosat Second Generation (MSG) -2
Water deficit (mm) satellite (3 km spatial resolution), acquired

from March to May 2012

ture, were calculated from all non-ground LiDAR returns (height > 0m)
and aggregated within 30m X 30m buffers around each sampling point
to achieve a spatial resolution comparable to that of Landsat 7 ETM +
products. This set of metrics accounted for two types of structural at-
tributes: (i) Vertical structural complexity of the vegetation, estimated
from the vertical distribution of LiDAR returns as the coefficient of vari-
ation (CV) of vegetation heights (Kwak et al., 2014); (ii) Canopy cover,
estimated as the total amount of all returns and as the canopy density
within different vegetation strata. Canopy density was quantified as the
proportion of LiDAR returns within a stratum divided by the total num-
ber of returns within that stratum and below (Kane et al., 2013). We
considered four strata (0.5-2, 2-4, 4-7 and >7m), aiming to discrimi-
nate tall scrubs, small trees and understory cover below the tree crown,
which can act as ladder fuels, and tree crowns, respectively.

2.3.3. Weather conditions

Weather conditions are expected to impact indirectly on fire severity
by influencing fuel moisture conditions (van Mantgem et al., 2013) and
fuel accumulation (Lecina-Diaz et al., 2014). We calculated the cumu-
lative rainfall over the spring season (March-May) and the mean tem-
perature in August (the month when the fire occurred). We selected
these time periods since rainfall over the spring season largely deter-
mines biomass growth and fuel accumulation, while temperature con-
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ditions over the summer period might influence vegetation dryness and,
consequently, fuel flammability (Gouveia et al., 2012; Russo et al.,
2017). Metrics were obtained by averaging decadal information derived
from the Meteosat Second Generation (MSG) -2 satellite (at 3km spatial
resolution) and acquired at 10-day intervals from March to May and Au-
gust 2012.

2.3.4. History of fire

The number of fires and the fire-free interval (time since the last fire)
are fire regime parameters commonly used as indicators of potential
fuel availability across the landscape, since they affect vegetation com-
position and structure (e.g., Parks et al., 2014a). Both variables were
computed from a map of fire scars manually digitalized at scale 1:5000
(minimum mapping unit of 0.01 km?), which was obtained by visual in-
terpretation and manual digitalization of 80 Landsat images covering
the period 1975-2012. When Landsat images were not available, or-
thophotography was applied as complementary data to identify the fire
scars. Orthophotographs were also used as a support for imagery with
low spatial resolution (MSS imagery resampled to 60m). The resulting
map of fire scars was validated with spatial data provided by the official
fire reports (1978-2012) made by the Nature Protection Section of the
Regional Administration. See Fernandez-Garcia et al. (2018a) for further
details on fire history estimations.

2.3.5. Physical properties

The physical properties were characterized by means of topographic
and water balance metrics. We selected topographic variables that are
well known to influence fire severity (Estes et al., 2017; Verbyla et al.,
2008), such as slope, solar radiation and topographic complexity (com-
puted as the slope standard deviation). They were derived from a DEM
at 25m spatial resolution obtained from the Spanish Geographic Insti-
tute (www.ign.es), previously re-sampled at the resolution of Landsat 7
ETM + imagery (30 m).

The potential influence of water balance on fire severity has been
demonstrated previously (Kane et al., 2015a). In this study, we calcu-
lated the actual evapotranspiration (AET) and the climatic water deficit
(WD) as metrics of water balance. AET is a measure of real water con-
sumption (Courault et al., 2003), which is strongly correlated with po-
tential biomass production (Novak, 2011) and hence, with the amount
of fuel. AET was computed from a Landsat 7 ETM + imagery acquired
on 12th March 2012 from the USGS Earth Explorer server. Specifically,
we transformed the Landsat thermal band into land surface tempera-
ture by applying a modification of the energy balance equation intro-
duced by Seguin and Itier (1983). We used the method described by
Fernandez-Garcia et al. (2018b) consisting of the conversion of DN val-
ues to radiance values using brightness temperature (radiometric cal-
ibration), atmospheric correction -emissivity adjustment- and transfor-
mation to temperature in Kelvin degrees (K). WD allows for estimat-
ing vegetation drought-stress and can be associated with fuel moisture
and flammability (Parks et al., 2014b). In this study, WD was calcu-
lated for the period March-May, as the difference between the Potential
Evapotranspiration (PET) and AET (Parks et al., 2014b), where PET and
AET were estimated by averaging decadal information obtained from
an MSG evapotranspiration product at 10-day intervals acquired from
March to May 2012. The theoretical limit of plant photosynthesis is re-
lated to potential evapotranspiration (PET) (Katerji and Rana, 2011).
Nevertheless, when soil moisture is not enough to meet transpiration
and evaporative demands, PET is reduced to AET (Marini et al., 2017).

2.4. Statistical analysis
First, we addressed a data exploratory analysis in order to detect

multicollinearity and spatial autocorrelation. Potential multicollinear-
ity among predictors was assessed by applying Pearson’s correlation
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coefficient. The threshold of (2 > |0.7|) was used as the criterion for
identifying pairs of highly correlated variables. From each pair, the vari-
able with the least ecological meaning was removed for further analy-
ses. Thus, the original set of variables was reduced to 14 variables,
which were considered as predictors in further modelling analysis (see
Table 1). We also calculated Moran’s Index to evaluate the existence of
global spatial autocorrelation in the predictors and the response variable
by using the ‘spdep’ package (Bivand and Piras, 2015) for R, indicating
no existence of spatial autocorrelation (Moran’s I < 0.1; Diniz-Filho et
al., 2011).

We applied Random Forests (Breiman, 2001), a variant of Classifica-
tion and Regression Trees (CART), to assess the ability of pre-fire vege-
tation greenness, pre-fire vegetation structure, weather conditions, fire
history and physical properties to predict fire severity. This is a machine
learning approach that uses bootstrap aggregation (bagging) techniques
to fit multiple CARTSs, which are combined to improve predictive perfor-
mance and reduce overfitting commonly present in single CART mod-
els (Cutler et al., 2007). In the Random Forest method, the variance
explained by the models reflects how well the model fits a particular
dataset. We assessed the predictive power of Random Forests based on
internal out-of-bag error rates (Kane et al., 2015a and b), using a ran-
dom sampling subset of 1000 pixels (1% of pixels from the image) to
build the model. Random Forest requires two parameters to be defined
a priori: the number of trees to run (ntree) and the number of input pre-
dictors tried at each split (mtry). In order to obtain stable results, we set
the number of ntree to 1000. The mtry parameter was fixed via initial
tuning experiments. To minimize stochastic errors and produce stable
model outputs, we ran 100 replicate Random Forest models, providing
the average as the final result.

The relative importance of each predictor was measured following
the mean decrease in the accuracy (% IncMSE) criterion (Grémping,
2009). To identify a parsimonious set of informative predictors for fire
severity that can still achieve a good model performance, we ran a
model selection routine (Kane et al., 2015a) consisting of two steps. We
initially established a full model including the 14 uncorrelated variables
(Table 1) and ranked those variables according to their importance.
We then selected the most important predictor from the full model and
gradually added all the remaining ones, one at a time, aiming to identify
which predictor best improved modelling results based on the variance
explained and the error rate, hence constituting the new set of parsi-
monious predictors. We iteratively repeated this routine with each new
set of parsimonious predictors until no improvement of the variance ex-
plained by more than 2% could be achieved. Additionally, we devel-
oped separate models for each single category of predictors: pre-fire veg-
etation greenness, pre-fire vegetation structure, weather conditions, fire
history and physical variables. The dependency relationships between
individual variables and fire severity was explored by means of partial
dependence plots that were only reported for those variables included in
the most parsimonious model. Random Forest model were run using the
‘randomForest” package (Liaw and Wiener, 2002) for R (R Core Team,
2017).

3. Results
3.1. Relative influence of the environmental variables on fire severity

Over the study site, moderate and high fire severity accounted for
more than 80% of the burned area (42% and 40%, respectively). Mean-
while, areas burned at low severity or not affected by fire just covered
17% and 1%, respectively.

The most parsimonious model explained almost the same percent-
age of variance as the full model (R? = 0.419 and 0.429, respectively;
Fig. 2). The relative importance of the individual predictors included in
the most parsimonious model was in descending order: NDWI, NDVI,
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Fig. 2. Fire severity variance explained by Random Forest models using different cate-
gories of predictors: pre-fire vegetation greenness, pre-fire vegetation structure, weather
conditions, fire history, physical properties. The figure shows the results of both the most
parsimonious model and the full one.

time since the last fire, spring cumulative rainfall and CV of vegetation
heights (Fig. 3).

The variance explained by the pre-fire vegetation greenness model
(based on NDVI and NDWI) was R? = 0.285, which corresponds to one
half of the variance explained by both the full and the most parsimo-
nious models. Furthermore, both vegetation greenness predictors were
ranked as the two most important influencing fire severity [imp (%
IncMSE) = 59.18 and 55.31, respectively] in the most parsimonious
model (Figs. 2 and 3). The physical predictors explained fire sever-
ity less consistently. When these variables were modelled alone, they
explained approximately the same level of variance (R? = 0.227) as
pre-fire vegetation greenness predictors (R? = 0.285) (Fig. 3). Neverthe-
less, the physical variables were dropped from the most parsimonious
model. Pre-fire vegetation structure (i.e., CV of heights), weather condi-
tions (i.e., spring cumulative rainfall) and fire history (i.e., fire-free in-
terval) models explained low levels of variance (R? = 0.0004 to 0.025).
However, they were important predictors of fire severity in combina-
tion with pre-fire vegetation greenness and physical variables. Their in-
clusion in the full model, as well as in the most parsimonious one, al-
lowed for an increase in the model predictive power by approximately
16% and 13%, respectively (Fig. 2). In fact, the time since the last fire
was identified as the third most important predictor in the parsimonious
model (Fig. 3).

3.2. Specific influence of the individual environmental variables on fire
severity

Overall, fire severity increased with NDVI and NDWI indexes, which
might suggest higher probabilities of highly severe fires in areas with
dense live biomass. Nevertheless, results showed that very high NDVI
values might reduce fire severity (Fig. 3a and b). Furthermore, moder-
ate to high fire severity occurred in situations of great structural vertical
complexity of the vegetation, as fire severity increases with increasing
CV of heights (Fig. 3e). The response pattern of fire severity to spring
cumulative rainfall was inconsistent, although very high values of spring
cumulative rainfall clearly exhibited a positive influence on fire sever-
ity (Fig. 3d). In contrast, increasing time since the last fire reduced fire
severity, especially when this return period was longer than 15years
(Fig. 3c). Additionally, the relationships between individual environ-
mental predictors and fire severity were mostly nonlinear, thus suggest-
ing possible thresholds to the general detected patterns.
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Fig. 3. Partial dependence plots showing the relationship between fire severity and each explanatory variable included in the most parsimonious model. Numbers within each plot show

the normalized importance of each variable in the model measured as % IncMSE (imp=).
4. Discussion
4.1. Environmental predictors of fire severity

In our study area, fire severity patterns were a complex function of
several environmental variables, rather than the result of control ex-
erted by any particular environmental factor alone, as also found by
Lydersen et al. (2014) and Kane et al. (2015a). The combination of
a parsimonious set of different environmental variables (NDWI, NDVI,
time since the last fire, spring cumulative rainfall, and CV of vegeta-
tion heights) improved the performance of the most explicative individ-
ual model and performed nearly as well as the full one. These results
indicated that fire severity is mainly influenced by interactions among
pre-fire vegetation greenness, pre-fire vegetation structure, fire history
and weather conditions.

In particular, we detected a significant influence of biomass pro-
ductivity and the phenological state of the pre-fire vegetation, evalu-
ated through NDVI and NDWI indexes, in fire severity in pine fire-prone
ecosystems. In general terms, both parameters determine the live bio-
mass loads that could be burnt (Parks et al., 2014a). Likewise, high
NDWI values are not just related to high fuel moisture content, but also
to dense live vegetation (Roberts et al., 2003). Therefore, their positive
relationship with fire severity might be further explained by the pres-
ence of dense live biomass for combustion. These results are in agree-
ment with the positive correlations between greater volume of live veg-
etation and higher fire severity obtained in other studies carried out in
pine forests (Arkle et al., 2012; Cocke et al., 2005). Live fuel is especially
important in pine ecosystems as the particular chemical properties and
structural characteristics of the needles make live material more flam-
mable, releasing more energy when it burns than other vegetation types
(Calvo et al., 2003).

The inclusion of the coefficient of variation (CV) of heights, as a
proxy of structural vertical complexity, in the most parsimonious model
might suggest, however, that high fire severity does not depend only
on the existence of dense live biomass accumulations, but also on

the vertical structural arrangement of those fuels. The availability of
dense biomass will likely determine fire sustainment, but the verti-
cal fire propagation reaching the crown layer is influenced by vertical
structural complexity (Agee and Skinner, 2005). In this study, our re-
sults showed that increasing complexity of vertical structure of vege-
tation produced high fire severity, as also observed in other research
(Baker, 2014). The stratified architecture of the pine crown and ex-
istence of ladder fuel frequently enhance vertical fire development in
pine forests, causing high severity crown fires (Broncano and Retana,
2004; Fernandes and Rigolot, 2007). In our study area, the complexity
of the vertical structure of the vegetation is the result of (i) a tall (up to
1.5m height) shrubby understory with Erica australis, Pterospartum tri-
dentatum and Halimium lasianthum, and (ii) the accumulation of ladder
fuels (especially low branches of the trees) due to the lack of silvicul-
tural treatments since the cessation of resin tapping activities in the 90s
(Santamaria, 2015).

Several studies have associated vegetation structure parameters mea-
sured from ground plots, such as plant canopy cover, tree density and
size and fine fuel accumulations, to fire severity (Kuenzi et al., 2008;
Lentile et al., 2006; Lezberg et al., 2008). Nevertheless, studies using Li-
DAR data at high pulse densities for modeling forest structure patterns
(Kane et al., 2015a; Wulder et al., 2009) have not yet found this factor
to be one of the most important predictors of fire severity. Despite using
LiDAR data produced at low pulse densities, our study is the first re-
search in which a structural parameter from LiDAR (i.e., the CV of veg-
etation heights) can be related to fire severity in pine fire-prone ecosys-
tems. These results indicate the applicability of using pre-fire vegeta-
tion structure measurements from LiDAR for predicting fire severity, as
a valid complement to spectral satellite measurements. These findings
also suggest that increasing pulse density of LiDAR does not necessarily
imply improving accuracy and performance of structural metrics, as was
also underlined by Jakubowski et al. (2013).

We found fire severity to be a function of cumulative rainfall in the
spring season. Weather conditions partially influence fire severity by
conditioning primary productivity and, thus, biomass growth and accu-
mulation in terms of quantity and continuity (Lecina-Diaz et al., 2014),
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as we also detected in our study. These results corroborated previous
findings for the Iberian Peninsula, where the availability of water over
winter and spring months constrained fuel loads during the fire season
and, therefore, the levels of fire damage (Gouveia et al., 2012; Russo et
al., 2017). Relationships between fire severity and weather conditions
are, therefore, likely to be partially shaped by fuel conditions on a tem-
poral scale (Pausas and Paula, 2012). Nonetheless, one limitation of our
study, in which weather metrics were based on decadal information,
would be the lack of data specifically for the days of the fire, which are
important determinants of fire severity (Dillon et al., 2011; Estes et al.,
2017).

Fire history, measured as the fire-free interval (time since the last
fire), also influenced fire severity, although interacting with pre-fire
vegetation conditions. We identified the highest fire severity in areas
with a short fire return interval (time since the last fire < 15years),
which is contrary to general assumptions regarding the occurrence
of high severity fires when time since the last fire is long. Odion
and Hanson (2008) and Odion et al. (2009) obtained similar findings,
mainly attributable to high pyrogenic pioneer species that established
after fire. In our case, possible explanations might be related to high
post-fire pine tree regeneration associated to a previous fire occurred in
1998 in the area (Calvo et al., 2013; Taboada et al., 2017). The stud-
ied maritime pine population is highly adapted to frequent crown fires
with more than 95% of the mature trees bearing serotinous cones that
can persist in the canopy bank up to 40years containing viable seeds
for 30years (Tapias et al., 2004), resulting in a large number of re-
cruited seedlings after fire. Dense areas of small trees may favor high
pyrogenic combustible and fire propagation, making them more prone
to burn with high fire severities (Fernandes and Rigolot, 2007; Lentile
et al., 2006). Moreover, recurrent fires in the study area promoted py-
rogenic resprouter shrub species (mainly Erica australis and Pterospartum
tridentatum) (Calvo et al., 2008), highly tolerant to short between-fire
intervals and capable of fast post-fire regeneration (Calvo et al., 2012).

Several studies have identified a strong link between fire severity
and physical properties, including topography and evapotranspiration
(Dillon et al., 2011; Kane et al., 2015a). Physical predictors could influ-
ence fire severity by affecting vegetation composition, fuel and weather
conditions or past fire history (Estes et al., 2017; Fang et al., 2018; Kane
et al., 2015b). In our study, physical variables influenced fire severity,
but only when they were modeled alone, not contributing significantly
to the most parsimonious model. This suggests that the main way in
which physical properties may influence fire severity is not by govern-
ing pre-fire vegetation greenness, pre-fire vegetation structure, weather
conditions or fire history. Moreover, it seemed that the combined effect
of these four types of environmental predictors overwhelmed the influ-
ence of the physical properties on fire severity. Explanations could be
related to the fact that convective fires like the one in our study area, are
mainly limited by the amount of biomass available for burning and by
fuel continuity (Lecina-Diaz et al., 2014), rather than by physical prop-
erties. Additionally, this could be a problem of scale. In this way, during
convective fires, physical properties (mainly topography) operate at a
macro-scale (Costa et al., 2011) and consequently, physical predictors
simply may not properly match the scale at which fire severity patterns
and physical properties correlate.

4.2. Management implications

The reduction and/or abandonment of land uses since the middle
of the last century in the study area have favored fuel accumulation
and continuity (Santamaria, 2015), which have very likely increased the
susceptibility of pine forest ecosystems to high severity fires, similarly
to other fire-prone areas in the Mediterranean basin (Fernandes and
Rigolot, 2007; Gonzélez-De Vega et al., 2016). According to our results,
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dense live fuel accumulations and vertical structural continuity of these
fuels are important factors influencing fire severity. Therefore, pre-fire
management strategies should seek to reduce live fuel accumulations
and modify fuel structural patterns, as the control of these factors may
lead to a reduction in fire severity in future fire events. Such fuel treat-
ments might be especially relevant in pine forest areas where the ho-
mogeneity of the vegetation might exacerbate fire severity effects (Lee
et al., 2009). Given these premises, pre-fire silvicultural operations in-
tended to reduce canopy bulk density, as well as to prune and remove
ladder fuels, would be advisable to break fuel continuity and, thus,
hamper potential fire spread and severity (Lininger, 2006). Further-
more, retaining or creating several open stands with large trees would
also be desirable, as they are the most fire-resistant trees due to their
taller crowns and thicker barks (Agee and Skinner, 2005; Fernandes
and Rigolot, 2007). Studies carried out in southern Spain showed how
less dense pine forest systems tend to present lower fire severities
than closed stands, likely because of a lower susceptibility to crown-
ing (Gallegos et al., 2003). Nevertheless, since the development of a
shrubby understory is more prone under open forest canopies, periodic
surface fuel treatments would also be necessary (Fernandes and Rigolot,
2007).

Our findings further evidenced the great vulnerability to high fire
severity of fire-prone areas with short fire return intervals, especially
those post-fire regenerated pine ecosystems where the density of small
trees is very high. This reflects the importance of implementing post-fire
management actions in naturally regenerated pine forest stands af-
ter wildfires. Selective thinning prescription or retention of the largest
among the young trees regenerated after fire could be recommended in
these dense pine areas, aiming to break fuel continuity, reduce canopy
bulk density and enhance tree regrowth (Corona et al., 2014).

5. Conclusions

This study highlights how live biomass accumulations are the main
factor driving severity of crown-convective fires in pine forests, while
other environmental drivers, such as the physical properties, play a less
determining role. Nevertheless, our results demonstrated that the effect
of biomass accumulation is strongly dependent on interactions with the
pre-fire vertical structural arrangement of vegetation, fire history and
weather conditions. Effective management actions to reduce fire risk
and fire damage should be based on the understanding of the key deter-
minants of fire behavior and severity. Forest managers’ actions should
prioritize pre- and post-fire fuel treatments aiming at breaking verti-
cal and horizontal fuel continuity and reducing live fuel accumulations.
The modification of tree stands and landscape structure towards a more
open canopy would enhance resistance to fire damage and susceptibil-
ity to crowning. Our study further endorses the potential of low-density
LiDAR for the structural analysis of the vegetation in fire management
and fuel treatment applications, especially in areas prone to megafires,
at relatively low cost-efficacy compared to high-density LiDAR data.
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