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1 Abstract

2 The development of improved spatial and spectral resolution sensors provides new 

3 opportunities to assess burn severity more accurately. This study evaluates the ability of 

4 remote sensing indices derived from three remote sensing sensors (i.e., Landsat 8 

5 OLI/TIRS, Sentinel-2 MSI and Deimos-1 SLIM-6-22) to assess burn severity (site, 

6 vegetation and soil burn severity). As a case study, we used a megafire (9,939 ha) that 

7 occurred in a Mediterranean ecosystem in northwestern Spain. Remote sensing indices 

8 included seven reflective, two thermal and four mixed indices, which were derived from 

9 each satellite and were validated with field burn severity metrics obtained from CBI 

10 index. Correlation patterns of field burn severity and remote sensing indices were 

11 relatively consistent across the different sensors. Additionally, regardless of the sensor, 

12 indices that incorporated SWIR bands (i.e., NBR-based indices), exceed those using red 

13 and NIR bands, and thermal and mixed indices. High resolution Sentinel-2 imagery 

14 only slightly improved the performance of indices based on NBR compared to Landsat 

15 8. The dNDVI index from Landsat 8 and Sentinel-2 images showed relatively similar 

16 correlation values to NBR-based indices for site and soil burn severity, but showed 

17 limitations using Deimos-1. In general, mono-temporal and relativized indices better 

18 correlated with vegetation burn severity in heterogeneous systems than differenced 

19 indices. This study showed good potential for Landsat 8 OLI/TIRS and Sentinel-2 MSI 

20 for burn severity assessment in fire-prone heterogeneous ecosystems, although we 

21 highlight the need for further evaluation of Deimos-1 SLIM-6-22 in different fire 

22 scenarios, especially using bi-temporal indices.

23 Keywords: Composition Burn Index, remote sensing, thermal indices, spectral indices 

24
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26 1. Introduction

27 Burn severity, defined as the magnitude of the ecological change caused by fire (Lentile 

28 et al., 2006), has been identified as one of the most critical factors determining the 

29 ecological effect of fire on ecosystems (Tanase et al., 2011). It may affect post-fire plant 

30 regeneration dynamics, community composition and structure (Wang and Kemball 

31 2003; Dzwonko et al., 2015), as well as increase degradation processes through the 

32 alteration of physical and chemical soil properties, microbial activity and soil erosion 

33 (Heydari et al., 2017). Consequently, the timely generation of reliable burn severity 

34 maps reflecting induced changes in vegetation and soil properties is of high priority for 

35 post-fire, short-term decision support (Miller et al., 2016).

36 Traditionally, burn severity evaluation has been conducted using field methods, such as 

37 the Composite Burn Index (CBI) and the GeoCBI index (Key and Benson 2006; De 

38 Santis and Chuvieco 2009). Nevertheless, field methods are usually costly and time-

39 consuming, and provide limited spatial and temporal representation of post-fire 

40 ecological effects (Chuvieco et al., 2006). Fire causes substantial spectral and thermal 

41 changes on the land surface, associated with the consumption of vegetation and the 

42 exposure of soil and charred stems, which can be captured by remote sensing sensors 

43 (Epting et al., 2005; Mallinis et al., 2018). Based on these properties, remote sensing 

44 techniques provide a cost-effective alternative to field sampling to assess and quantify 

45 burn severity (Veraverbeke et al., 2011) over a wide range of temporal and spatial 

46 scales, and areas (Schepers et al., 2014). 

47 Landsat multi-spectral sensors (30 m) provide one of the freely available, longest and 

48 most widely used collections of moderate spatial and spectral resolution imagery for 

49 monitoring burn severity (Eidenshink et al., 2007). Despite the widespread application 

50 of Landsat data, improved spatial, spectral and temporal resolution characteristics of 



51 recently available satellite sensors is attracting increasing interest among fire 

52 researchers (Mallinis et al., 2018). In this context, satellite sensors like Sentinel-2 MSI 

53 and Deimos-1 SLIM-6-22 have desirable characteristics, including a higher spatial (i.e., 

54 10-20 m and 22 m, respectively vs 30 m) and temporal (i.e., 5 days and 2-3 days 

55 respectively vs 16 days) resolution than Landsat data, which may provide better 

56 information for burn severity assessment. Recent studies by Fernández-Manso et al. 

57 (2016) and Navarro et al. (2017) successfully assessed burn severity based on Sentinel-2 

58 data. Similarly, Gómez-Sánchez et al. (2017) showed a relatively good performance of 

59 Deimos-1 to evaluate burn severity. To our knowledge, this is the only study that has 

60 analyzed the potential of Deimos-1 imagery for monitoring post-fire effects. Moreover, 

61 the number of studies using Sentinel-2 for burn severity assessment remains limited. 

62 Therefore, despite earlier promising results, evaluation of such sensors is still a relevant 

63 area of research to refine and improve the generalization of remotely sensed measures 

64 of post-fire effects.

65 Most of the satellite-based burn severity studies use methods based on remote sensing 

66 indices due to their computational simplicity and straightforward application 

67 (Veraverbeke et al., 2012). Nevertheless, differences in the sensitivity of each spectral 

68 region to changes in soil and vegetation may result in different capabilities of remote 

69 sensing indices to discriminate fire effects (Chuvieco et al., 2006; Veraverbeke et al., 

70 2011). Spectral indices based on the Near Infrared (NIR) and Short Wave Infrared 

71 (SWIR) bands, specifically the Normalized Burn Ratio (NBR) and its bi-temporal 

72 approaches, such as the differenced Normalized Burn Ratio (dNBR) and the Relativized 

73 differenced Normalized Burn Ratio (RdNBR), have been identified as optimal burn 

74 severity measures (Miller et al., 2009; Veraverbeke et al., 2010). Nevertheless, some 

75 authors (Roy et al., 2006; Escuin et al., 2008) have found those indices suboptimal in 



76 describing burn severity. Other reflective indices like the Normalized Difference 

77 Vegetation Index (NDVI), the Soil Adjusted Vegetation Index (SAVI), the Enhanced 

78 Vegetation Index (EVI) and their bi-temporal counterparts have also shown good 

79 correlation with burn severity, even higher than NBR-based indices (Harris et al., 2011; 

80 Wu et al., 2015). Additionally, recent studies have begun to successfully incorporate 

81 thermal data for burn severity evaluation (Quintano et al., 2015, 2017) and for 

82 enhancing reflective indices’ performance (Holden et al., 2005; Harris et al., 2011). 

83 Consequently, despite the numerous remote sensing indices developed in the literature 

84 to assess burn severity and the previous studies evaluating the potential of alternative 

85 sensors to Landsat for this purpose, there is no consensus about the optimal remote 

86 sensing indices and satellite sensor alternative (Mallinis et al., 2018). This fact 

87 highlights the need for further studies that evaluate the suitability of spectral indices and 

88 satellite sensors against field data for adequate burn severity assessment (Lentile et al., 

89 2006).

90 The aim of this study was to evaluate the potential of Landsat 8 OLI/TIRS, Sentinel-2 

91 MSI and Deimos-1 SLIM-6-22 imagery to quantitatively assess burn severity, using as a 

92 case study a megafire of 9,939 ha that occurred in a heterogeneous, forest-shrubland 

93 Mediterranean ecosystem in Spain. Specifically, we aimed: (i) to identify the most 

94 suitable sensor to assess site (vegetation plus soil), vegetation and soil burn severity; (ii) 

95 to detect the most capable remote sensing index from each sensor to discriminate site 

96 burn severity levels, as well as vegetation burn severity and soil burn severity 

97 individually, based on comparison with burn severity field measurements.

98

99
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101 2. Material and methods

102

103 2.1. Study site

104 The study was conducted in the Cabrera mountain range (northwestern Spain; Figure 1) 

105 where 9,939 ha burned in August, 2017 (between 21th and 27th). This area is in the limit 

106 of the Mediterranean biogeographic region (Rivas-Martínez et al., 2011), with its 

107 climate classified as temperate, with maximum annual temperatures ranging from 8.7 to 

108 29.4 ºC and a mean annual precipitation of 600-1500 mm. It has a rough and 

109 heterogeneous orography with altitudes ranging from 836 to 1,938 m.a.s.l. Soils are 

110 acidic, mainly originating from siliceous lithology such as slates. The area affected by 

111 the megafire was mainly covered by shrublands dominated by Erica australis and 

112 Genista hystrix, and forest dominated by Quercus pyrenaica. The fire occurred under 

113 relatively extreme weather conditions, with maximum temperatures of 35 ºC, low 

114 relative humidity values (35 %), and after a two-month drought episode. These extreme 

115 weather conditions increased the risk of fire and facilitated fire spread, resulting in large 

116 areas of high-severity effects. 

117
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131 Figure 1. Location map of the study area (Sierra de la Cabrera, NW Spain) representing 

132 a false color composite post-fire image (10th October, 2017) obtained from Landsat 8 

133 OLI/TIRS.

134

135 2.2. Field estimation of burn severity

136 Field data to measure burn severity were collected three months after the fire event. 

137 Fifty-three field plots of 30 m x 30 m size were distributed in fairly homogeneous 

138 patches across the study area, following a stratified random sampling design by type of 

139 vegetation (i.e., heathlands, gorse shrub lands and oak forests) to encompass all types of 

140 vegetation affected by fire. The sampling size was proportional to the extent covered by 

141 each type of vegetation, resulting in 20 plots in heathlands, 11 plots in gorse shrublands 

142 and 23 plots in oak forest. We further established 19 plots in unburned areas, which 



143 were used as controls. Plot locations were georeferenced with a GPS receiver in post-

144 processing mode (accuracy better than 0.50 m).

145 Assessment of site field burn severity was obtained following the protocol described by 

146 Fernández-García et al. (2018), which is an adaptation of the original CBI protocol 

147 developed by Key and Benson (2006). The procedure consisted on rating several 

148 variables from 0 (unburned) to 3 points (high severity) across five strata, to compute an 

149 average site burn severity using the average burn severity obtained per strata. Burn 

150 severity of vegetation and soil strata were also separately evaluated. See Fernández-

151 García et al. (2018) for further details on the adapted CBI protocol.

152

153 2.3. Remote sensing imagery and preprocessing

154 Remote sensing information to estimate burn severity was obtained from three different 

155 data sources: the Landsat 8 OLI/TIRS, the Sentinel-2 MSI and the Deimos-1 SLIM-6-

156 22 sensors. Landsat 8 OLI/TIRS imagery, at 30 m spatial resolution, includes nine 

157 reflective bands (i.e., three visible bands, two near-infrared [NIR] and short wave 

158 infrared bands [SWIR], one panchromatic band and two bands for describing aerosol, 

159 water vapor and cirrus clouds) and two thermal bands (United States Geological Survey 

160 2015). Meanwhile, Sentinel-2 MSI has thirteen reflective bands (i.e., four 10 m visible 

161 and NIR bands; six 20 m red edge, NIR and SWIR bands; and three 60 m bands for 

162 characterizing aerosol, water vapor correction and cirrus clouds) (European Space 

163 Agency 2015). Deimos-1 SLIM-6-22 imagery is a 22 m spatial resolution product with 

164 three reflective bands (NIR, red, and green bands; 

165 https://earth.esa.int/documents/10174/2605161/DEIMOS-1-Imagery-User-Guide) 

166 (Figure 2).
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176 Figure 2. Comparison of spectral bands of Landsat 8 OLI/TIRS (L8-OLI and L8-

177 TIRS), Sentinel-2 MSI and Deimos-1 SLIM-6-22 sensors.

178

179 Selected images to estimate burn severity included the available cloud-free pre- and 

180 post-fire images closest to the date of the fire, aiming to avoid phenological changes in 

181 the vegetation and to allow comparison among remote sensing products. Landsat 8 

182 OLI/TIRS scenes were acquired on August 11th, 2017 (pre-fire image) and October 10th, 

183 2017 (post-fire image) from the USG Earth Explorer server (United States Geological 

184 Survey, 1879); Sentinel 2 MSI scenes (C1-processing level) on August 13th, 2017 (pre-

185 fire image) and September 2nd, 2017 (post-fire image) from the Copernicus server 

186 (European Space Agency 1975); and Deimos 1 SLIM-6-22 scenes on July 25th, 2017 

187 (pre-fire image) and September 8th, 2017 (post-fire image).

http://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home


188 The reflective bands of the three remote sensing products were atmospherically 

189 corrected and converted to at-surface reflectance using the ATCOR atmospheric 

190 correction model (Richter and Schläpfer 2018) included in the PCI GEOMATICS 2018 

191 software. Furthermore, the thermal band (B10) of Landsat 8 was pre-processed and used 

192 to obtain the Land Surface Temperature (LST) product following the method described 

193 in Fernández-García et al. (2018). 

194

195 2.4. Burn severity spectral indices

196 Among the wide range of existing remote sensing metrics described in the literature, we 

197 evaluated the performance of fourteen reflective, thermal and mixed (combining 

198 reflective and thermal bands) spectral indices (Table 1). Specifically, selected indices 

199 included: (i) seven reflective indices (NDVI, dNDVI, SAVI, NBR, dNBR, RdNBR, 

200 EVI and dEVI – difference Enhanced Vegetation Index-); (ii) two thermal indices (LST 

201 and dLST); and (iii) four mixed indices (NDVIT, SAVIT, (LST/EVI) and d(LST/EVI)). 

202 NDVI, dNDVI and SAVI were calculated for Landsat 8 OLI/TIRS, Sentinel-2 MSI and 

203 Deimos-1 SLIM-6-22. Concerning the Sentinel-2 MSI sensor, these indices were 

204 created using the narrow NIR band (B8a) that has a high spectral correspondence with 

205 the NIR band of Landsat 8 OLI (Figure 2). The SAVI index adds a soil calibration 

206 constant (L) to the formula of NDVI to account for background effects (Schepers et al., 

207 2014). In our case, we considered a L value of 0.5, as this value has been recommended 

208 for most environmental conditions (Epting et al., 2005). 

209 The NBR, the dNBR and the RdNBR, as well as the EVI and the dEVI indices could 

210 not be calculated with the Deimos-1 sensor because it does not capture data over blue 

211 and SWIR regions (Figure 2). For the Sentinel-2 MSI sensor, these indices were derived 



212 using the narrow NIR band (B8a) and the longer SWIR band (B12) to facilitate direct 

213 comparison among sensors (i.e., Landsat 8 OLI and Sentinel-2; Figure 2). Moreover, the 

214 spatial resolution of Sentinel-2 bands was homogenized by rescaling the SWIR band 

215 from 20 m to 10 m spatial resolution using the Nearest Neighbor rule. Thermal 

216 information was only available using the Landsat 8 OLI/TIRS sensor (Figure 2).

217 With the aim of enabling comparative analyses among satellites, values of spectral 

218 indices corresponding to each CBI plot were obtained by averaging the values extracted 

219 from raster pixels using 900 sampling points systematically distributed within each 30 

220 m x 30 m CBI plot, according to the procedure described in Picotte and Robertson 

221 (2011). 

222



223 Table 1. Spectral indexes evaluated and calculation algorithms, using Landsat 8 OLI/TIRS, Sentinel-2 MSI and Deimos-1 SLIM-6-22 spectral 
224 bands. 

Spectral Index Landsat 8 OLI/TIRS formula Sentinel-2 MSI formula Deimos-1 SLIM-6-22 formula Reference

NDVI (𝜌5 ‒ 𝜌4)/(𝜌5 + 𝜌4) (𝜌8𝐴 ‒ 𝜌4)/(𝜌8𝐴 + 𝜌4) (𝜌1 ‒ 𝜌2)/(𝜌1 + 𝜌2) Rouse et al. (1973)

dNDVI (𝑁𝐷𝑉𝐼𝑝𝑟𝑒 ‒ 𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡) (𝑁𝐷𝑉𝐼𝑝𝑟𝑒 ‒ 𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡) (𝑁𝐷𝑉𝐼𝑝𝑟𝑒 ‒ 𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡) Zhu et al. (2006)

SAVI  with (1 + 𝐿)[(𝜌5 ‒ 𝜌4)/(𝜌5 + 𝜌4 + 𝐿)] L = 0.5  with (1 + 𝐿)[(𝜌8𝐴 ‒ 𝜌4)/(𝜌8𝐴 + 𝜌4 + 𝐿)] L = 0.5  with (1 + 𝐿)[(𝜌1 ‒ 𝜌2)/(𝜌1 + 𝜌2 + 𝐿)] L = 0.5 Huete (1988)

NBR (𝜌5 ‒ 𝜌7)/(𝜌5 + 𝜌7) (𝜌8𝐴 ‒ 𝜌12)/(𝜌8𝐴 + 𝜌12) López-García and 
Caselles (1991)

dNBR 1000 (𝑁𝐵𝑅𝑝𝑟𝑒 ‒ 𝑁𝐵𝑅𝑝𝑜𝑠𝑡) 1000 (𝑁𝐵𝑅𝑝𝑟𝑒 ‒ 𝑁𝐵𝑅𝑝𝑜𝑠𝑡) Key (2006)

RdNBR (𝑑𝑁𝐵𝑅/(|𝑁𝐵𝑅𝑝𝑟𝑒|0.5) (𝑑𝑁𝐵𝑅/(|𝑁𝐵𝑅𝑝𝑟𝑒|0.5) Miller and Thode 
(2007)

EVI 2.5[(𝜌5 ‒ 𝜌4)/(𝜌5 + 6𝜌4 ‒ 7.5𝜌2 + 1)] 2.5[(𝜌8𝐴 ‒ 𝜌4)/(𝜌8𝐴 + 6𝜌4 ‒ 7.5𝜌2 + 1)] Gao et al. (2000)

dEVI (𝐸𝑉𝐼𝑝𝑟𝑒 ‒ 𝐸𝑉𝐼𝑝𝑜𝑠𝑡) (𝐸𝑉𝐼𝑝𝑟𝑒 ‒ 𝐸𝑉𝐼𝑝𝑜𝑠𝑡) Zhu et al. (2006)

LST LST in Kelvin from B10 - Yu et al. (2014)

dLST (𝐿𝑆𝑇𝑝𝑟𝑒 ‒ 𝐿𝑆𝑇𝑝𝑜𝑠𝑡) - Zheng et al. (2016)

NDVIT (𝜌5 ‒ 𝜌4 ∗ 𝜌10)/(𝜌5 + 𝜌4 ∗ 𝜌10) - Smith et al. (2007)

SAVIT  (1 + 𝐿)[(𝜌5 ‒ 𝜌4 ∗ 𝜌10)/(𝜌5 + 𝜌4 ∗ 𝜌10 + 𝐿)]
with  L = 0.5

- Smith et al. (2007)

LST/EVI (𝐿𝑆𝑇 ‒ 273.15)/𝐸𝑉𝐼 - Zheng et al. (2016)

d(LST/EVI) (𝐿𝑆𝑇/𝐸𝑉𝐼)𝑝𝑜𝑠𝑡 ‒ (𝐿𝑆𝑇/𝐸𝑉𝐼)𝑝𝑜𝑠𝑡) - Zheng et al. (2016)



225 2.5. Statistical analyses

226 Statistical correlations between field burn severity (i.e., site, vegetation and soil burn 

227 severity) and remote sensing indices derived from each satellite (Table 1) were 

228 estimated by fitting separated Ordinary Least Squares (OLS) models, following the 

229 approaches of previous studies (Epting et al., 2005; Quintano et al., 2015; Fernández-

230 García et al., 2018). This procedure resulted in twenty-five models per site, vegetation 

231 and soil burn severity. Residuals of OLS models were graphically checked to ensure the 

232 appropriateness of models (i.e., assumptions of normal residuals’ distribution, 

233 independence and homoscedasticity). The coefficient of determination (R2) and the 

234 statistical significance of OLS models were used to compare the performance of the 

235 different spectral indexes, as well as the performance of the different remote sensing 

236 satellites. OLS model were run using the statistical software R (R Core Team, 2017).

237

238

239 3. Results

240 Comparing remote sensing satellites, Sentinel-2 MSI data, with the highest spatial 

241 resolution, slightly improved the performance of Landsat 8 OLI/TIRS to assess site, 

242 vegetation and soil burn severity, although only for indices including the SWIR and 

243 NIR bands. The availability of Landsat 8 thermal bands did not contribute to improving 

244 burn severity evaluation. Deimos-1 imagery only enabled the assessment of spectral 

245 indices based on the NIR and red bands. Additionally, it showed some limitations using 

246 bi-temporal indices (Table 2, 3 and 4).

247

248



249 Table 2. Coefficients of determination (R2) and significance (p) of linear regression 

250 models between remote sensing indices derived from Landsat 8 OLI/TIRS, Sentinel-2 

251 MSI and Deimos-1 SLIM-6-22 sensors and site burn severity estimated as CBI values. 

252 Maximum R2 values for each satellite are in bold.

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267 Significance of the correlations are represented as * p < 0.05; ** p < 0.01; *** p < 0.001 

268

269

270

271

272

273

Remote sensing indices Site burn severity

Landsat 8 Sentinel-2 Deimos-1

Reflective NDVI 0.556*** 0.467*** 0.481***

dNDVI 0.635*** 0.674*** 0.420***

SAVI 0.533*** 0.520*** 0.517***

NBR 0.640*** 0.670***

dNBR 0.690*** 0.767***

RdNBR 0.686*** 0.762*

EVI 0.139** 0.005

dEVI 0.015 0.004

Thermal LST 0.119**

dLST 0.251***

Mixed NDVIT 0.406***

SAVIT 0.362***

dLST 0.251***

d(LST/EVI) 0.195***



274 Table 3. Coefficients of determination (R2) and significance (p) of linear regression 

275 models between remote sensing indices derived from Landsat 8 OLI/TIRS, Sentinel-2 

276 and Deimos-1 sensors and vegetation burn severity estimated as CBI values. Maximum 

277 R2 values for each satellite are in bold.

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292 Significance of the correlations are represented as * p < 0.05; ** p < 0.01; *** p < 0.001

293

294

295

296

297

298

299

Remote sensing indices Vegetation burn severity

Landsat 8 Sentinel-2 Deimos-1

Reflective NDVI 0.631*** 0.548*** 0.560***

dNDVI 0.523** 0.569*** 0.316**

SAVI 0.589*** 0.574*** 0.576***

NBR 0.696*** 0.721***

dNBR 0.578*** 0.658***

RdNBR 0.693*** 0.760***

EVI 0.072* 0.000

dEVI 0.000 0.000

Thermal LST 0.159***

dLST 0.187***

Mixed NDVIT 0.453***

SAVIT 0.426***

d(LST/EVI) 0.139**

LST/EVI 0.169***



300 Table 4. Coefficients of determination (R2) and significance (p) of linear regression 

301 models between remote sensing indices derived from Landsat 8 OLI/TIRS, Sentinel-2 

302 and Deimos-1 sensors and soil burn severity estimated as CBI values. Maximum R2 

303 values for each satellite are in bold

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322 Significance of the correlations are represented as * p < 0.05; ** p < 0.01; *** p < 0.001

323

324

325

326

Remote sensing indices Soil burn severity

Landsat 8 Sentinel-2 Deimos-1

Reflective NDVI 0.347** 0.25*** 0.275**

dNDVI 0.607*** 0.575*** 0.386***

SAVI 0.328** 0.304*** 0.320***

NBR 0.416** 0.452***

dNBR 0.623*** 0.686***

RdNBR 0.515*** 0.596***

EVI 0.185*** 0.002

dEVI 0.044** 0.026

Thermal LST 0.054*

dLST 0.275***

Mixed NDVIT 0.253***

SAVIT 0.213***

d(LST/EVI) 0.193***

LST/EVI 0.238***



327 Focusing on remote sensing metrics, reflective indices based on NBR (i.e., NBR, dNBR 

328 and RdNBR) derived from Landsat 8 OLI and Sentinel-2 MSI best fitted field burn 

329 severity (Tables 2, 3). Nevertheless, they showed relatively lower correlation values for 

330 soil burn severity (Table 4).

331 The use of Sentinel-2 MSI data slightly improved results of NBR-based indices 

332 compared to Landsat 8 OLI (Table 2, 3 and 4; Figure 3). Specifically, dNBR and 

333 RdNBR correlated the best with site burn severity (R2 = 0.69 and R2 = 0.76 for Landsat 

334 8 OLI and Sentinel-2 MSI respectively; Table 2), and more weakly with soil burn 

335 severity (R2 > 0.515 and R2 = 0.596 for Landsat 8 OLI/ and Sentinel-2 MSI respectively; 

336 Table 4). However, considering vegetation burn severity, NBR and RdNBR 

337 outperformed the dNBR index (Table 3). 

338 The use of reflective indices based on NIR and red wavelength bands, such as the post-

339 fire NDVI and SAVI, resulted in weaker relationships with field burn severity compared 

340 to NBR-based indices (Table 2, 3 and 4). Furthermore, correlation values of mono-

341 temporal NDVI and SAVI indices did not significantly differ among remote sensing 

342 data sources. In detail, both NDVI and SAVI obtained a similar moderate correlation 

343 with site and vegetation burn severity (R2 > 0.47 and R2 > 0.55 for site and vegetation 

344 burn severity, respectively; Table 2 and 3), but were not able to match soil burn severity 

345 (R2 < 0.35; Table 4). The bi-temporal dNDVI index considerably outperformed the post-

346 fire NDVI index for site and soil burn severity and showed relatively similar correlation 

347 values to NBR-based indices, except when using Deimos-1 imagery (Table 2 and 4; 

348 Figure 3).

349 The reflective index EVI and its bi-temporal counterpart dEVI poorly correlated with 

350 site, vegetation and soil burn severity, and especially using Sentinel-2 MSI data (R2 ≤ 

351 0.18 and R2 ≥ 0.02 for Landsat 8 OLI and Serntinel-2, respectively; Table 2, 3 and 4). 



352 The inclusion of thermal information did not improve correlations with field burn 

353 severity compared to reflective indices. Both thermal and mixed indices derived from 

354 Landsat 8 OLI/TIRS did not work well in any case (i.e., with site, vegetation and burn 

355 severity), with the variance explained by models lower than 0.45 (Table 2, 3 and 4).

356  

357
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359

360

361

362

363

364

365
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367

368

369

370

371

372

373 Figure 3. Site burn severity maps obtained using: a) dNBR index derived from 

374 Sentinel-2 MSI imagery; b) dNBR index derived from Landsat 8 OLI imagery; c) 

375 dNDVI index derived from Sentinel-2 MSI imagery; d) dNDVI index derived from 

376 Landsat 8 OLI imagery; e) dNDVI index derived from Deimos 1 SLIM-6-22.



377 4. Discussion

378 This study evaluates the suitability of individual Landsat 8 OLI/TIR, Sentinel-2 MSI 

379 and Deimos-1 SLIM-6-22 remote sensing indices in order to effectively assess fire 

380 severity in heterogeneous fire-prone Mediterranean ecosystems, dominated by 

381 shrublands and forest. Overall, correlation patterns of field burn severity (i.e., site, 

382 vegetation and soil burn severity) and remote sensing indices were consistent across 

383 different sensors. Furthermore, the results highlight that indices including NIR and 

384 SWIR bands better discriminated burn severity levels in heterogeneous landscapes, 

385 compared to indices based on NIR and red bands, and thermal and mixed metrics, as 

386 observed by Escuin et al. (2008) and Fernández-García et al. (2018). 

387 Specifically, reflective indices based on NBR derived from both Landsat 8 OLI and 

388 Sentinel-2 MSI better correlated with field measurements of burn severity. The 

389 effectiveness of these indices to discriminate changes produced by fire is well 

390 established (Escuin et al., 2008; Veraverbeke et al., 2010, 2011), mainly due to the 

391 reduction of NIR reflectance, sensitive to chlorophyll content, and the increase in SWIR 

392 reflectance, related to a decrease in water content in vegetation and soil (Miller and 

393 Thode 2007). Indeed, in a study by Mallinis et al. (2018), comparing Landsat 8 and 

394 Sentinel-2, the most efficient in distinguishing fire effects was the NIR band of Landsat 

395 8 and its corresponding wavelength band of Sentinel-2, the narrow NIR band (B8a), 

396 followed by the longer SWIR bands for both satellites. Similarly, Huang et al. (2016) 

397 also found that the narrow NIR band (B8a) and the longer SWIR band (B12) were the 

398 most suitable bands for detecting burned areas using a Sentinel-2 sensor. 

399 Despite the overall good performance of NBR-based metrics, the response of individual 

400 indices differed among fire severities per strata. The dNBR and RdNBR strongly 

401 correlated with site burn severity, but more weakly with soil burn severity. Spectral 



402 indices correlated better with surface variables than with soil, likely because of the 

403 shielding effect of vegetation on the ground and the inadequacies of passive sensors to 

404 see under vegetation canopy (Tanase et al., 2011). Thefore, our results corroborate 

405 certain limitations of remote sensing data to analyze fire effects on soil (Fernández-

406 García et al., 2018). Considering vegetation burn severity, the NBR and RdNBR indices 

407 outperformed the dNBR index. This could be explained by the heterogeneity of pre-fire 

408 vegetation types (i.e. Erica australis, Genista hystrix and Quercus pyrenaica), with 

409 different chlorophyll content and canopy cover, which may bias burn severity estimates 

410 using dNBR due to the strong influence of pre-fire vegetation on the magnitude of this 

411 index (Safford et al., 2008; Wulder et al., 2009). Thus, the relativized RdNBR index, 

412 which provides information on the changes induced by fire regardless of pre-fire land 

413 cover (Miller and Thode 2007), may more accurately predict burn severity in 

414 heterogeneous landscapes (Safford et al., 2008; Miller et al., 2009). Further, mono-

415 temporal NBR may help provide a more accurate burn severity assessment in 

416 heterogeneous systems, likely due to an attenuation of errors associated with differences 

417 in vegetation phenology and cover (Epting et al., 2005; Lhermitte et al., 2011). 

418 Abovementioned correlation patterns of individual NBR-based indices were similar for 

419 both Landsat 8 OLI and Sentinel-2 MSI data. Moreover, the use of higher-resolution 

420 Sentinel-2 MSI only slightly improved correlations with field-based burn severity, 

421 compared to their counterparts derived from Landsat 8 OLI. These results support the 

422 findings of Mallinis et al. (2018) and could be attributed to the high correspondence 

423 between the spectral response function of NIR and the narrow NIR bands (B8a) of 

424 Landsat 8 OLI and Sentinel-2 MSI, and between the SWIR bands of both sensors 

425 (Skakun et al., 2017; Figure 2).



426 Reflective indices based on NIR and red bands derived from Landsat OLI, Sentinel-2 

427 MSI and Deimos-1, (i.e., the post-fire NDVI and SAVI indices), were similarly 

428 correlated with field-based burn severity, but underperformed indices based on NBR. 

429 Epting et al. (2005) and Veraverbeke et al. (2011) reported that indices including 

430 information in the SWIR band (i.e., the NBR) were better suited than NDVI and SAVI 

431 for distinguishing burn severity levels. Such underperformance was mainly observed for 

432 soil burn severity. In this sense, the red band is strongly linked to vegetation chlorophyll 

433 content that decreases in burned areas, but presents limited sensitivity to spectral post-

434 fire components of burned soil, such as black carbon or ash (Chuvieco et al., 2006; 

435 Rocha and Shaver 2009). Conversely, the association of the SWIR band to moisture 

436 content in vegetation and soil and charcoal variations would enhance sensitivity to 

437 changes in soil properties after fire, such as the charcoal signal, scorching and dry soil 

438 exposure, which would increase SWIR reflectance (Schepers et al., 2014). 

439 The dNDVI index from Landsat 8 OLI and Sentinel-2 MSI data exceeded the NDVI 

440 index for site and soil burn severity and showed relatively similar correlation 

441 coefficients to NBR-based indices, contrary to studies by Chafer (2008) and 

442 Veraverbeke et al. (2010). Consequently, the dNDVI index may substitute NBR-based 

443 indices for assessing site and soil burn severity when imagery with a SWIR band is 

444 unavailable. Nevertheless, similar to dNBR patterns, the dNDVI index showed a weaker 

445 correlation with vegetation burn severity, probably due to the effect of the heterogeneity 

446 of pre-fire vegetation types in terms of chlorophyll content and canopy cover (Todd and 

447 Hoffer 1998; Lhermitte et al., 2011). Moreover, dNDVI from Deimos-1 data poorly 

448 correlated with field burn severity. This heterogeneous pre-fire environment may 

449 exhibit a complex spectrum signature difficult to discriminate with low spectral 

450 resolution sensors (Rocchini 2007). Consequently, coarse spectral resolution in the NIR 



451 and red bands of Deimos-1 could explain its reduced efficiency in evaluating burn 

452 severity based on the dNDVI index. To our knowledge, this is the second study that 

453 evaluates Deimos-1 imagery for burn severity assessment. Therefore, further research 

454 must be conducted under different fire scenarios aimed at determining the current 

455 potential of this sensor to detect burn severity, especially considering the unavailability 

456 of SWIR information.

457 The reflective post-EVI and dEVI indices seemed to be inefficient in assessing site, 

458 vegetation and soil burn severity, regardless of the sensor. There is still limited 

459 agreement on the functioning of those indices; while Schepers et al. (2014) noted a poor 

460 performance in ecosystems dominated by shrubs, Zheng et al. (2016) and Holden et al. 

461 (2010) found that correlations between the EVI and the dEVI and burn severity tended 

462 to increase in forest systems. These findings could suggest limitations of EVI and dEVI 

463 indices for assessing burn severity in shrubland ecosystems, likely because they are 

464 mostly tied to canopy structural characteristics, such as leaf area (Huete et al., 2002). 

465 Additionally, this poor performance may be associated with the inclusion of the blue 

466 band, which has less ability to discriminate burn areas, both with Landsat 8 OLI and 

467 Sentinel-2 MSI sensors (Mallinis et al., 2018).

468 Different studies support the utility of temperature data to assess burn severity 

469 (Veraverbeke et al., 2010; Quintano et al., 2017), likely because LST tends to increase 

470 after fire (Zheng et al., 2016). However, our study showed limitations of thermal data to 

471 determine field burn severity consistent with Harris et al. (2011) and Fernández-García 

472 et al. (2018). LST is strongly influenced by aspect and elevation (Vlassova et al., 2014; 

473 Quintano et al., 2015). Our study area is characterized by rough terrain and a wide 

474 altitudinal range that results in differences in insolation, moisture content, and 

475 vegetation type and cover, which ultimately affect LST (He et al., 2018). Therefore, 



476 inconsistencies in our results compared to previous studies could be attributed to the 

477 influence of topographic features on LST that lead to changes unassociated with burn 

478 severity (Fernández-García et al., 2018).

479

480 5. Conclusion

481 This study represents a novel approach comparing the performance of several Landsat 8 

482 OLI/TIRS, Sentinel-2 MSI and Deimos-1 remote sensing indices as suitable tools to 

483 measure field burn severity in site, vegetation and soil in a very heterogeneous fire-

484 prone Mediterranean ecosystem dominated by shrublands and forest. It confirms that, 

485 regardless of the sensor used, reflective NBR-based indices are more efficient in 

486 evaluating burn severity than indices based on the red and NIR bands, and thermal 

487 information. High resolution Sentinel-2 MSI imagery only slightly improved the 

488 performance of NBR-based indices compared to Landsat 8 OLI. The dNDVI index 

489 derived from Landsat 8 OLI and Sentinel-2 MSI correlated relatively well with site and 

490 soil burn severity, demonstrating its potential for assessing burn severity when remote-

491 sensing imagery including SWIR information is unavailable. Moreover, mono-temporal 

492 and relativized indices, exhibited a better correlation with vegetation burn severity in 

493 heterogeneous systems compared to differenced indices. Results also highlighted the 

494 limitations of remotely sensed indices in determining soil burn severity.

495 Products derived from Sentinel 2 and Landsat 8 showed a good potential for detecting 

496 burn severity in a cost effective way, with minor differences between correlation 

497 patterns of field burn severity and remote sensing indices. Nevertheless, we highlight 

498 the need for further evaluation of the Deimos-1 sensor for different ecosystems, 

499 especially when applying bi-temporal indices.

500
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Figure1. Coefficients of determination (R2) of OLS models between remote sensing índices  from Landsat 8 OLI/TIRS, Sentinel-2 and Deimos-1; and site, vegetation and soil burn severity


