
Science of the Total Environment 940 (2024) 173568

Available online 31 May 2024
0048-9697/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Next-gen regional fire risk mapping: Integrating hyperspectral imagery and 
National Forest Inventory data to identify hot-spot 
wildland-urban interfaces 

A. Fernández-Manso a,b, C. Quintano b,c,d,*, J.M. Fernández-Guisuraga e, D. Roberts b 

a Agrarian Science and Engineering Department, University of León, Av. Astorga s/n. 24400 Ponferrada, Spain 
b Department of Geography, University of California, Santa Barbara, CA 93106, United States of America 
c Electronic Technology Department, University of Valladolid, EII, 47011-Valladolid, Spain 
d Sustainable Forest Management Research Institute, University of Valladolid, Spain 
e Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Forest management needs accurate hot- 
spot WUI maps showing high severity 
fire risk. 

• We introduced a next-generation fire 
risk assessment method focused on WUI 
zones. 

• Fire severity was estimated by Multiple 
Endmember Spectral Mixture Analysis 
(MESMA). 

• Generalization at regional scale of fire 
severity map using NFI data 

• Method applied in a Mediterranean 
ecosystem, but with potential for 
extrapolation  
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A B S T R A C T   

The increasing threat of high-severity wildfires in Mediterranean Wildland-Urban Interface (WUI) areas demands 
to develop effective fire risk assessment and management strategies. Simultaneously, the newfound accessibility 
of spaceborne hyperspectral data represents a significant potential for generating fire severity assessments, 
whereas National Forest Inventories (NFI) offer a vast dataset related to vegetation and fuel loads, which is 
essential for shaping the planning and strategies of forest services. This research work aims to advance the state- 
of-the-art in WUI fire risk mapping in the western Mediterranean Basin by combining PRISMA spaceborne 
hyperspectral data and Spanish NFI data. The proposed methodology had three main stages: (i) fire severity 
assessment at local scale (a wildfire) by using PRISMA hyperspectral data and Multi-Endmember Spectral 
Mixture Analysis (MESMA) leveraging field-based measurements of the Composite Burn Index (70 plots); (ii) 
development of a high fire severity probability map at regional scale from the extrapolation of a Random Forest 
predictive model calibrated from fire severity estimates, NFI data and topo-climatic variables at local scale 
(overall accuracy = 92 %; Kappa = 0.8); and (iii) identification and characterization of zones that concentrate 
WUIs with high probability of high fire severity if a fire event occurs (hot-spot WUIs) by crossing the information 
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from the previous regional high fire severity probability map and a WUI cartography developed at regional scale. 
Study area was Castilla y León Autonomous Region (larger Spanish region, 94,226 km2), where the second- 
largest extreme Spanish wildfire event (28,000 ha) occurred. We identified hot-spot WUIs so that stakeholders 
and decision-makers could (i) prioritize resources and interventions for effective fire management and mitiga
tion, (ii) allocate resources for prevention, and (iii) plan evacuation measures to safeguard lives and property. 
This study contributes to the development of next-generation fire risk assessment methods that combine remote 
sensing technologies with comprehensive ground-level datasets.   

1. Introduction 

Wildfires are acknowledged as inherent disturbances in the Medi
terranean Basin (Seidl et al., 2014; Koutsias et al., 2022; Pausas and 
Keeley, 2021) that have shaped historical renewal patterns and created 
mosaic-like landscapes (Fernandes, 2013; Jones and Tingley, 2022). 
However, the increasing frequency of hot and dry summers, and the 
accumulation of fuel over time and space, are associated to the occur
rence of extensive and intense fire seasons in this region (Barbero et al., 
2015). For these reasons, severe wildfires are understood as disasters in 
many occasions not only because of their potential impacts on natural 
environment, but also on infrastructure and human lives (Fernández- 
García et al., 2022; Espinosa et al., 2023; Fernández-Guisuraga et al., 
2023a) caused by urban growth into wilderness areas and/or abandoned 
agricultural lands (Fernández-García et al., 2023; Samara et al., 2018). 
Consequently, the Mediterranean Basin stands as an important fire- 
prone belt where the management of fire risk provokes significant 
attention. While fire risk management has conventionally centered 
around understanding the probability of fire ignition (Calviño-Cancela 
et al., 2017; Chen and Jin, 2022; Molina-Terren et al., 2019) and fire 
spread models (Hysa, 2021; Maffei et al., 2021; Massetti et al., 2019; 
Vacca et al., 2020), the concept of fire severity, understood as the extent 
of fire-induced damage to ecosystems (Keeley, 2009), significantly 
shapes the trajectory of post-fire vegetation recovery (Fernández-Manso 
et al., 2016b; Mitsopoulos et al., 2019) and, conditions the socioeco
nomic impacts (Kalogiannidis et al., 2023). 

Assessing fire severity typically involves on-site evaluations utilizing 
comprehensive indices like the Composite Burn Index (CBI), established 
by Key and Benson in 2005, which is widely regarded as a standard 
method. Currently, advancements in technology allow for the reliable 
determination of burn severity with minimal effort, across various 
scales, utilizing remotely sensed products (e.g. Fernández-Manso et al., 
2019; Nolè et al., 2023). These spectral products are often com
plemented by precise field data to validate them. Traditionally, vege
tation indices generated from two spectral bands of multispectral 
remotely sensed data, primarily sourced from missions like Landsat and 
Sentinel-2, have served as the foundation for evaluating fire severity 
(Fernández-Manso et al., 2016a; Miller et al., 2009). However, previous 
research (e.g. Lewis et al., 2017) have highlighted several drawbacks 
inherent in this approach, including: 1) low model transferability (Ept
ing et al., 2005) due to its specificity to certain sites or ecosystems 
(Lentile et al., 2009); 2) no optimal performance due to the constrained 
number of spectral bands under consideration (Lentile et al., 2009); and 
3) reduced sensitiveness to spatial variations in fire impacts, especially 
in cases of high and moderate severities, compared to alternative 
methodologies (Kolden et al., 2015). 

Fraction images generated through the application of Spectral 
Mixture Analysis (SMA) techniques (Shimabukuro and Smith, 1991), 
and particularly the char fraction, have emerged as a viable and valuable 
alternative to spectral indices in studies focused on fire-induced damage 
(Quintano et al., 2013; Fernández-Manso et al., 2019; Tane et al., 2018). 
SMA represents each pixel within a scene as a linear combination of 
spectra of image basic components, or endmembers. The weighting of 
each endmember corresponds to its abundance in the pixel (Shimabu
kuro and Smith, 1991). SMA, while effective, lacks the ability to 
accommodate variations within endmembers, where different spectra 

could represent the same cover (Somers et al., 2011). By the contrary, 
the Multiple Endmember Spectral Mixture Analysis (MESMA) approach, 
introduced by Roberts et al. (1998), was specifically conceived to 
address endmember variability by utilizing distinct spectra for each 
endmember class. Since then, many studies (e.g. Quintano et al., 2019, 
2020; Lewis et al., 2017; Meng et al., 2017) have showed their efficacy in 
estimating fire severity from satellite data. The advantages of fraction 
images over spectral indices can be summarized as follows: 1) simpler 
interpretation: these images are generally easier to comprehend 
compared to spectral indices, due to their inherent physical interpreta
tion (Quintano et al., 2012); 2) utilization of full spectral range: unlike 
spectral indices that rely only on two or three spectral bands, fraction 
images typically use the complete set of spectral bands (Veraverbeke 
et al., 2018); and 3) avoidance of calibration with field data: unlike other 
methods, fraction images do not necessitate calibration against field 
data, streamlining the process (Somers et al., 2012). 

While MESMA has proven effective in successfully spectral unmixing 
multispectral data (Fernández-Manso et al., 2016b), the utilization of 
hyperspectral remote sensing data can lead to increased sensitiveness to 
slight differences in fire impacts on vegetation (van Gerrevink and 
Veraverbeke, 2021). Airborne hyperspectral sensors like Hymap or 
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) have 
already proved their usefulness in operational fire severity assessments 
(e.g. van Wagtendonk et al., 2004; Kokaly et al., 2007; van Gerrevink 
and Veraverbeke, 2021). Similarly, spaceborne spectrometers have been 
used to this end (e.g. Fernández-Manso et al., 2019, using Hyperion 
sensor onboard of the Earth Observing-1-EO-1-satellite), proving their 
efficacy and advantages, mainly in spatial coverage and logistical 
challenges, when compared to airborne sensors (Cotrufo et al., 2018; 
Singh et al., 2020). The PRecursore IperSpettrale della Missione Appli
cativa (PRISMA) mission that provides hyperspectral data spanning the 
range of 400 to 2500 nm is regarded as a continuation of the Hyperion 
sensor. PRISMA hyperspectral data has proven its usefulness to detect 
active fire (Thangavel et al., 2023) and map burned areas (Lazzeri et al., 
2021) or fuels (Shaik et al., 2022). However, its utilization for the 
assessment of fire severity has been relatively limited, except for the 
work of Quintano et al. (2023), who demonstrated a stronger correlation 
between field-measured CBI values and PRISMA data as compared to 
Sentinel 2 data. 

Land and forest managers have a critical need for information that 
enables them to anticipate instances of high fire severity (Mitsopoulos 
et al., 2019). This is imperative as high-severity fires can bring about 
alterations in vegetation structure and composition, leading to profound 
consequences on landscape dynamics and ecosystem functioning 
(Wasserman and Mueller, 2023). Therefore, the proactive identification 
of areas displaying a notable propensity for high fire severity is an 
essential parameter for both, pre- and post-fire management (Parks 
et al., 2018). This significance is particularly pronounced in wildland- 
urban interface (WUI) areas, where potential post-fire consequences 
encompass socio-economic losses stemming from damage to man-made 
structures, coupled with an escalated risk of human life loss. WUIs are 
defined as regions where human infrastructure intersects or in
termingles with wildland vegetation (Ribeiro et al., 2020; Zambrano- 
Ballesteros et al., 2021; Molina-Terren et al., 2019). Generally, WUI 
areas stand as critical zones where the concentration of economic losses 
and fatalities occurs due to the vulnerability of populations and assets to 
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extreme fire events that are challenging to control (Schug et al., 2023), 
in addition to a higher ignition and burning probability (Zigner et al., 
2022; Batista et al., 2021; Modugno et al., 2016). In the context of 
Southern Europe, shrublands and forests are progressively encroaching 
upon rural areas (Molina-Terren et al., 2019), forming an interface that 
necessitates the adoption of different and new strategies for risk plan
ning (Fernández-García et al., 2023) to account for the intricate dy
namics at play in these areas. 

Previous studies highlighted the important influence of topography, 
climate, weather and fuel, as well as their complex interactions in 
driving fire severity (e.g. Agee and Skinner, 2005; Kane et al., 2015; 
Storey et al., 2016, Babu et al., 2023; Malandra et al., 2022, Calheiros 
et al., 2022, Costa-Saura et al., 2022; Wasserman and Mueller, 2023). 
Parks et al. (2018) classified those drivers in spatially-variable drivers 
(fuel, topography, and climate), and temporally-variable drivers (fire 
weather and climatic extremes). Although the effect of spatially and 
temporally-variable drivers are generally well-investigated, there are 
few studies that use them to procure wall-to-wall estimates of high fire 
severity likelihood at regional scales (Parks et al., 2018; Fernández- 
Manso et al., 2019). 

Our primary goal is twofold. First, we try to leverage PRISMA 
hyperspectral data and spatially-variable fire severity drivers, including 
records from National Forest Inventories (NFI), to develop a fire severity 
model at regional scale in the western Mediterranean Basin, with a 
specific emphasis on the high fire severity likelihood. NFI data represent 
a substantial and relevant source of information that is of crucial 
importance in the development of planning strategies and assessments at 
extensive levels in the context of European and global forest services 
(Kangas and Maltamo, 2009). However, the joint application of hyper
spectral and NFI data in wildfire hazard analysis has so far been 
underutilized. Second, we aim to identify the hot-spot WUIs (or WUI 
areas with high fire severity likelihood) within a relatively large Spanish 
Mediterranean-type climate region. This approach will enable stake
holders and decision-makers to allocate resources and implement stra
tegic interventions thereby enhancing the efficiency of fire management 
and mitigation efforts, as well as to facilitate the formulation of evacu
ation strategies aimed at safeguarding lives and properties in WUI areas. 

To accomplish this double objective, we have established a struc
tured approach encompassing three key steps:  

1. Assessment of fire severity at local scale (Sierra de la Culebra 
wildfire). This initial step involves the creation of a categorized fire 
severity map with physical basis for this area, which has been 
affected by an extreme wildfire event that burned >28,000 ha of 
typical Mediterranean ecosystems. For this purpose, we will use 
PRISMA hyperspectral data, MESMA algorithm and field-based 
measurements of fire severity.  

2. Development of a high fire severity probability map at regional 
scale. We intend to model and extrapolate at regional scale the 
hyperspectral-based fire severity estimates (high probability class) 
through spatially-variable drivers primarily extracted from each grid 
unit (0.01 km2) present in the Spanish Forest Map at 1:25000 
(SFM25) derived from the fourth Spanish NFI (SNFI4). For this 
purpose, we will use a random forest (RF) algorithm (Breiman, 
2001).  

3. Building of a regional hot-spot WUIs map. We plan to identify and 
characterize the hot-spot WUIs by crossing the information from the 
regional probability map of high fire severity and a WUI cartography 
at regional scale. 

2. Material 

2.1. Study area 

Our study area is located in the autonomous region of Castilla y León 
(Northern-Central Spain; Fig. 1), that is the most extensive 

administrative region of Spain, and is among the largest in Europe, 
covering an area of 94,226 km2. Its geomorphological distinctive char
acteristics are mostly composed by the plateau of the Iberian Peninsula, 
with an average altitude of about 800 m above sea level, accompanied 
by a mountainous contour whose peaks reach around 2500 m. The 
majority of the territory is drained by the Douro River (Duero in Span
ish), which flows westward towards the Atlantic Ocean. Notably, the 
Douro River ranks as the highest-flow river on the Iberian Peninsula. 
According to the Köppen climate classification, the climate is catalogued 
as Temperate Mediterranean in most of the autonomous region (the 
focus areas of this study), characterized by prolonged and cold winters, 
with average temperatures of 3–6 ◦C in January, and brief but hot 
summers (averaging 19–22 ◦C). However, it presents the distinctive 
patterns of summer aridity typical of the Mediterranean climate, for 
three to four months. The average annual precipitation is 450–500 mm, 
worsening in the lower areas. In ecological terms, the relevance of 
Castilla y León in Europe is significant, since 25 % of the European 
Union's Natura 2000 Network is located in this region. 

2.2. Sierra de la Culebra wildfire 

The second-largest extreme wildfire event documented in Spain 
(28,046 ha burned) occurred from 15th to 19th June 2022 in Sierra de la 
Culebra (Northwestern Spain). Altitude in Sierra de la Culebra ranges 
between 747 and 1205 m a.s.l., and wide valleys and steep hillsides 
characterize the topography. During the spread of the fire, there were 
records of severe fire weather conditions (Rodrigues et al., 2023), 
attributed to a heat wave that was recorded from 11 to 20 June. 
Furthermore, a profound drought was documented during the preceding 
spring season leading up to the fire incident. The wildfire significantly 
impacted a variety of Mediterranean ecosystems, including forests 
dominated by Pinus pinaster Ait. (maritime pine) and Pinus sylvestris L. 
(Scots pine), woodlands of Quercus pyrenaica Willd. (Pyrenean oak) and 
Quercus ilex L. (holm oak), shrublands predominantly populated by 
Pterospartum tridentatum (L.) Willk., Cistus ladanifer L., Halimium 
lasianthum subsp. alyssoides (Lam.) Greuter, and Erica australis L., as well 
as Mediterranean grasslands. Fire was particularly extreme within 
shrublands and maritime pine stands, whereas it had a moderate 
behavior in the oak woodlands and Scots pine forests (Regional Forestry 
Service, personal communication). 

2.3. Field data 

In July 2022, approximately one month following the wildfire event, 
we conducted a fire severity assessment across 70 field plots of 30 m ×
30 m. To carry out this assessment, we employed a slightly modified 
protocol of the CBI (Key and Benson, 2005). The appropriateness of 
these CBI adaptations has been confirmed within plant communities 
typical of Mediterranean regions analogous to those found in the wild
fire area (Fernández-García et al., 2018; Fernández-Guisuraga et al., 
2023b; Huerta et al., 2022). We followed basically the CBI protocol 
outlined by Key and Benson (2005) with two exceptions: 1) we omitted 
factors that have to be measured in extended assessments of fire severity, 
such as the percentage of colonizers (plants with potential dominance 
within 2 to 3 years after the fire newly generating from seeds dispersed 
over the plot), and changes in species composition (changes in relative 
abundance of species anticipated within 2 to 3 years postfire); and 2) we 
discarded medium and heavy fuel consumption indicators as these were 
not significantly present in our study site. 

Georeferencing of plots was accomplished using a GPS receiver with 
a root mean square error in the X and Y dimensions (RMSEX,Y) of <1 m. 
These plots were intentionally established within areas displaying uni
form fire effects, thereby ensuring uniform spectral responses for anal
ysis. Following Congalton and Green (2009), a randomly stratified 
sampling scheme was adopted to take into account the variability in 
forest species composition. The dominant plant communities were used 
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as strata, with grasslands being excluded from consideration. During 
data collection, specific attributes were recorded for each stratum. For 
the understory layer, attributes such as char characteristics of the sub
strate and fine fuel consumption were documented. In strata encom
passing herbs, low shrubs, and trees under 1 m in height, as well as those 
comprising tall shrubs and trees ranging from 1 to 5 m, the percentage of 
consumed foliage was recorded. For the overstory layer, encompassing 
intermediate trees measuring 5 to 20 m and those towering over 20 m, 
observations entailed recording of the proportions of brown, green, and 
black foliage, along with the char height on the tree trunk. The 
robustness of measurements was ensured by requiring consensus from at 
least two observers, a practice aligned with de Santis and Chuvieco 
(2007). CBI value was subsequently calculated as the mean of rating 
grades obtained across all strata. 

2.4. Satellite data 

PRISMA, is a spaceborne hyperspectral mission that has a temporal 
resolution of 29-day, a spatial resolution of 30 m, and possesses a swath 
spanning 30 km (Cogliati et al., 2021). Equipped with push-broom 
Visible and Near-Infrared (VNIR) and Shortwave Infrared (SWIR) spec
trometers, PRISMA captures spectral data across 240 bands (bandwidth 
< 15 nm) ranging from 400 to 2500 nm. On 13 July 2022, an on-demand 
PRISMA satellite scene encompassing the wildfire study site was ac
quired under optimal no-cloud condition. We downloaded the Level 2D 
product (bottom-of-atmosphere orthorectified product corrected for 
atmospheric effects) (ASI -Italian Space Agency-, 2020; Pignatti et al., 
2022) from the mission server (https://prisma.asi.it/). 

2.5. National Forest Inventory data and ancillary data 

SNFI4 provides information at regional and national level on the 
state and evolution of Spanish forests, and the SFM25 constitutes the 
cartographic basis of the SNFI4. Both have continuous nature and a 
periodicity of at least decennial updating. Functioning as Spain's 
fundamental forest cartography on a national scale, SFM25 encompasses 
the spatial distribution of the country's forest ecosystems, and provides 
information by grid unit on structural types, fuel models, primary land- 
use, dominant tree and shrub species, and fractional cover by life forms, 
among other attributes. The minimum grid unit within SFM25 is 0.01 
km2 (Alberdi et al., 2010). 

As ancillary data we considered: (i) Global Aridity Index (AI) dataset 
v3 (Global-AI_PET_v3; Zomer et al., 2022) that offers 30 arc-seconds 
global raster data; (ii) a digital terrain model created from LIDAR 
point clouds and provided by the Spanish Aerial Ortho-photography 
National Plan (PNOA-DTM) with a 25-m grid size. The PNOA-DTM 
was used to compute all topo-climatic variables except for the AI; (iii) 
the SFM25 and 50-cm PNOA orthophotos were used to delineate poly
gons in the PRISMA imagery from which to extract potential endmem
bers to be used in the MESMA procedure; (iv) National Topographic Base 
1:25,000 (NTB25), sourced from the Spanish National Geographic 
Institute (CNIG, 2022), was used to identify buildings and map WUI 
areas at regional scale. 

3. Methods 

3.1. Fire severity mapping of Sierra la Culebra wildfire using PRISMA 
hyperspectral data 

The fire severity map of the extreme wildfire event in Sierra de la 

Fig. 1. Location of Sierra de la Culebra wildfire and Composite Burn Index (CBI) field plots. We show the categorized fire severity map derived from PRISMA shade- 
normalized char fraction image calculated using Multiple Endmember Spectral Mixture Analysis (MESMA). 
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Culebra was based on the PRISMA hyperspectral image following three 
steps: preprocessing of the PRISMA image, MESMA procedure, and 
classification of the obtained PRISMA shade-normalized char fraction 
image (Quintano et al., 2023). 

3.1.1. Preprocessing of the PRISMA image 
The hyperspectral cube of the downloaded PRISMA scene was 

created by combining visible and near-infrared (VNIR) with shortwave 
infrared (SWIR) bands giving priority to SWIR bands overlapping the 
VNIR range. Bands that are sensitive to water vapor absorption, or 
showing a low signal-to-noise ratio and artifacts were excluded (Amici 
and Piscini, 2021). A portion of the PRISMA scene along the central axis 
of the wildfire exhibited anomalous reflectance data due to an in-orbit 
sensor calibration failure and was thus discarded. 

3.1.2. MESMA procedure 
We analyzed the PRISMA image of the Sierra de la Culebra wildfire 

through a MESMA-based approach in a previous study (Quintano et al., 
2023), and thus we include here a brief summary of the MESMA pro
cedure, which has in turn two stages: spectral library building and 
spectral unmixing. Both steps were accomplished by the Visualization 
and Image processing for Environmental Research (VIPER) tools 2.1 
software (Roberts et al., 2019). The spectral library building involved 
the identification of endmember spectra (pure spectral signatures rep
resenting a specific material or surface present in the scene), and their 
inclusion into a spectral library (Shimabukuro and Smith, 1991). Spe
cifically, the PRISMA scene was spectrally unmixed using as endmem
bers: char, photosynthetic vegetation (PV), non-photosynthetic 
vegetation (NPV) and soil (Quintano et al., 2013, 2017, 2020). This 
iterative step provided distinct fraction images for each of the end
members under consideration (Roberts et al., 1998). Finally, the char 
fraction image was shade-normalized to remove the influence of the 
shade fraction (Roberts et al., 2019). For more information see the 
MESMA procedure section in the Supplementary Material and Quintano 
et al. (2023). 

3.1.3. Classification of PRISMA shade-normalized char fraction 
We used thresholds to classify the PRISMA shade-normalized char 

fraction into fire severity classes following the method proposed by Key 
and Benson (2005) to categorize delta Normalized Burn Ratio (dNBR) 
index. First, the values of the shade-normalized char image fraction were 
extracted for every 30 m × 30 m CBI plot accounting for the distribution 
of several pixels inside each plot (Picotte and Robertson, 2011). Second, 
a linear regression model between field-measured CBI and shade- 
normalized char fraction values was calibrated. The performance of 
the model was evaluated using the coefficient of determination (R2). 
Third, CBI values were categorized into two levels of fire severity. To 
this end, the CBI thresholds proposed by Miller and Thode (2007) were 
considered in this study: low-moderate severity (CBI ≤ 2.25) and high 
severity (CBI > 2.25). These specific CBI thresholds were selected due to 
their widespread acceptance globally (Fernández-Manso et al., 2016b; 
Kane et al., 2014; Stambaugh et al., 2015), and their alignment with fire 
effects in Mediterranean ecosystems (Quintano et al., 2017; Fernández- 
Guisuraga et al., 2023a). Finally, we derived shade-normalized char 
fraction thresholds from the CBI thresholds using the linear regression 
model. We considered low-moderate and high fire severity classes since 
areas burned at high severity are a priority in the definition of post-fire 
emergency actions and may pose a high threat to WUI areas (Cocke 
et al., 2005; Beltrán-Marcos et al., 2023). 

3.2. Regional fire severity modelling: map of high fire severity probability 

We used a Random Forest (RF) classification algorithm (Breiman, 
2001) to assess the capability of several spatially-variable drivers to 
predict categorized fire severity data. The RF algorithm was selected 
mainly for two reasons: 1) RF indirectly addresses spatial 

autocorrelation by building multiple decision trees on random subsets of 
data. Each tree is constructed using a random subset of features and 
observations, reducing the impact of spatial structure in the data (Cutler 
et al., 2007); and 2) RF captures non-linear relationships by constructing 
multiple decision trees. Each tree divides the feature space into regions 
using binary decisions based on feature thresholds. By combining pre
dictions from multiple trees, RF algorithm can model complex non- 
linear relationships, making it suitable for a wide range of predictive 
tasks where relationships between variables are intricate and non-linear 
(García-Llamas et al., 2020; Fernández-Guisuraga et al., 2022). Addi
tionally, the algorithm offers other advantages such as efficient 
computation times, robust performance across different applications, 
and the provision of accuracy information during the classification 
process (Rodríguez-Galiano et al., 2012; Wang et al., 2019). 

3.2.1. RF input variables 
We included as predictors of categorized fire severity data in the RF 

algorithm two types of spatially-variable drivers: pre-fire fuel type and 
structure, and topo-climatic variables. The six variables related to pre- 
fire fuel (total cover, tree cover, shrubs cover, herbs cover, shrubs 
height, and ecosystem type) were directly extracted from the SNFI4/ 
SFM25 grid unit (Table 1). As topo-climatic variables, we considered 
(Table 1): Aridity Index (AI), Heat Load Index (HLI), slope (Horn, 1981), 
Topographic Position Index (TPI), Topographic Ruggedness Index (TRI), 
and Topographic Wetness Index (TWI). The AI was computed as the 
ratio between precipitation and the FAO-56 Penman-Monteith Refer
ence Evapotranspiration (ET0). Essentially, it denotes the comparison 
between rainfall and vegetation water demand, aggregated on an annual 
basis. Within this formulation, higher AI values correspond to more 
humid conditions, while lower values indicate more arid conditions. The 
HLI was used as a proxy for evapotranspiration and soil temperature. It 
was computed following McCune and Keon (2002). The TPI compares 
the elevation of the target pixel with that of the neighboring pixels. 
Positive values indicate that the target pixel is located higher than its 
average surroundings, indicating potential fuel convective pre-heating. 
The TRI is a proxy for topographic complexity and dissected terrain 
(Riley et al., 1999). Finally, the TWI is related to topographic conver
gence and reports the potential of an area to evacuate or retain water 
(Gessler et al., 1995). All topo-climatic variables except the AI, acquired 
from the Agroclimatic Atlas of Castilla y León (https://www.atlas.itacyl. 
es/), were calculated in R (R Core Team, 2021) using the “raster” (Hij
mans, 2023) package. These variables were resampled to the grid of the 
PRISMA char fraction image (30 m) using the nearest neighbor algo
rithm. Fire severity estimates and topo-climatic variables were sum
marized for each SMP25 grid unit. 

3.2.2. RF algorithm 
RF classification algorithm was used to predict categorized fire 

severity data based on PRISMA char fraction image (dependent variable) 
using pre-fire fuel and topo-climatic variables (independent variables). 
The Boruta feature selection algorithm (Kursa and Rudnicki, 2010), 
designed as a wrapper around RF, computes permutation test and uses 
variable importance measures to determine important and non- 
redundant features within the predictors' dataset. Subsequently, the 
RF classification algorithm was calibrated from the selected Boruta 
features. To ensure RF prediction stability, the ntree model hyper
parameter was set to 2000 (Probst and Boulesteix, 2018). The optimum 
value of the mtry hyperparameter was found by tuning through repeated 
10-fold cross-validation ten times. RF classification achievement was 
assessed by a 10-fold cross validation repeated 10 times. Kappa index, 
overall accuracy (OA; %), user's accuracy (UA; %) and producer's ac
curacy (PA; %) for each fire severity category computed from the 
average confusion matrix were used to measure the accuracy of classi
fication. We also computed partial dependence plots for each predictor 
in the RF model. Following the convention of Hastie et al. (2009), we 
used the logit scale for the partial dependence calculation in machine- 
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learning models. For each k level of fire severity categorical response, we 
compute: 

fk(x) = log[pk(x) ] −
1
K
∑K

k=1
log[pk(x) ], k = 1,2,…,K,

where x is the predictor for which partial dependence is sought, and 
pk(x) is the predicted probability of the k-th class. Partial dependence 
plots of fk(x) depict the dependence of the log-odds for the k-th class on 
different subsets of the x input variables (Greenwell, 2017). Although pk 
is the proportion of votes for class k in RF models and cannot be inter
preted as underlying distributional probabilities, we refer to them as 
class probability estimates by a stretch of terminology (e.g. Breiman, 
2001; Hastie et al., 2009; Greenwell, 2017) throughout the manuscript. 
We show for each predictor in the RF model the partial dependence plots 
exclusively for the target high fire severity class. 

RF model object was used to generate a spatial prediction of high fire 
severity probability at regional scale. All analyses were conducted in R 
(R Core Team, 2021) using the “RandomForest” (Liaw and Wiener, 
2002), “Boruta” (Kursa and Rudnicki, 2010), “caret” (Kuhn, 2020), 
“pdp” (Greenwell, 2017) and “raster” (Hijmans, 2023) packages. 

3.3. Map of regional hot-spot WUIs 

Since there is no standard procedure for the definition of WUIs in 
Europe, and based on previous research in the Iberian Peninsula 
(Beltrán-Marcos et al., 2023; Fernández-García et al., 2023), the spatial 
characterization of WUIs was based on buffers of fixed distance from 
buildings. Determination of distances around populated areas to define 
WUIs exhibits substantial variability in the western Mediterranean 
Basin, primarily influenced by distinct local regulations (Beltrán-Marcos 
et al., 2023; Bento-Gonçalves and Vieira, 2020). We opted to employ the 
most rigorous delineation strategy, which involves implementing larger 
buffer zones extending up to 200 m around buildings. This approach 
aligns with practices adopted across various European nations and is 
widely recognized (Lampin-Maillet et al., 2010, 2011; Lampin-Maillet 
and Bouillon, 2011). By doing so we guaranteed a comprehensive 
coverage of areas characterized by an elevated susceptibility to wild
fires, a particularly critical consideration in the prevailing era marked by 
significant disruptions in fire regimes (Modugno et al., 2016). Thus, we 
designated as WUIs areas encompassing a 200-meter radius around 
buildings, intersecting with vegetated areas. Mapping of buildings (in
dustrial, residential, agricultural and public) was accomplished utilizing 
NTB25 data and information from the Spanish national cadaster, which 
is generated and maintained by Public Administrations in Spain. 

Our study is focused exclusively in Mediterranean-type climate areas 
of Castilla y León region. As the Northern part of the autonomous region 
of Castilla y León cannot be considered as Mediterranean, the high fire 
severity probability map was masked using the biogeographical regions 
(BGR) specified in the Code List for Bio-geographical Regions, Europe 
1:50,000 (European Environment Agency, 2011). BGRs are defined as 
large areas of the earth's surface, delineated primarily on the basis of 
natural vegetation, that share distinctive ecological characteristics. 
Once WUI areas of Mediterranean Castilla y León region were mapped, 
they were crossed with the high fire severity probability map procured 
by means of the RF algorithm to obtain a regional hot-spot WUIs map. 
Finally, we fitted a one-way ANOVA and a subsequent Tukey Honestly- 
significant-difference (HSD) post-hoc tests to evaluate the differences in 
WUI area (ha) and high fire severity probability between WUI-dominant 
ecosystem types. Statistical significance was defined at 5 %. 

4. Results 

4.1. Fire severity mapping of Sierra la Culebra wildfire using PRISMA 
hyperspectral data 

Candidate endmembers for PRISMA image unmixing were extracted 
from the most representative ground cover classes: (i) PV: forests and 
woodlands dominated by Quercus sp., Pinus pinaster and Pinus sylvestris 
forests, grasslands, shrublands, and irrigated croplands; (ii) NPV: dry 
grasslands; (iii) SOIL: soils, roads, urban areas, and open mines; (iv) 
WATER: dams and rivers; and (v) CHAR: high, moderate and low fire 
severity legacies. The combination of the automated IES algorithm along 
with the MASA, CoB, and EAR indices facilitated the selection of the 
most suitable spectra for constructing the definitive spectral library. 

Different unmixing trials were conducted to unmix the PRISMA 
image, involving the adjustment of both the hierarchical level of the 
spectral library and the quantity of endmembers incorporated. The 
minimal quantity of unclassified pixels, which amounted to only 1.45 %, 
was attained when employing 3- and 4-endmember models within hi
erarchical level 3, (see Quintano et al., 2023 for more detail). In this 
configuration, all the endmembers from the final spectral library were 
included, excluding those associated with the water class. The shade- 
normalized char fraction image derived from PRISMA hyperspectral 
data (Fig. 2) effectively distinguished between areas that had been 
affected by the fire and those that remained unburned within the fire 
perimeter, showing low noise in unburned areas outside the fire 
perimeter. 

From the linear regression model between the CBI field measure
ments and the PRISMA shade-normalized char fraction values (R2 =

0.72; Fig. SM1 of the Supplementary Material) we derived the shade- 
normalized char fraction thresholds corresponding to the CBI thresh
olds. In particular: (i) low-moderate fire severity: shade-normalized char 
fraction ≤ 0.813; and (ii) high fire severity: shade-normalized char 
fraction > 0.813 (Fig. 1). 

4.2. Regional fire severity modelling: map of high fire severity probability 

All pre-fire fuel and topo-climatic variables included in Table 1 were 
non-redundant and deemed as relevant predictors by the Boruta 

Table 1 
Input variables considered in the Random Forest (RF) classification algorithm.  

Group Source Variable Abbreviation Unit 

Fire severity PRISMA 
satellite 

MESMA shade- 
normalized char 
fraction 

char – 

Pre-fire fuel 
variables 

SNFI4/ 
SFM25 

Total cover – %  

Tree cover – %  
Shrubs cover – %  
Herbs cover – %  
Shrubs height – m  
Ecosystem type – – 

Topo- 
climatic 
variables 

Global- 
AI_PET_v3 

Aridity index AI % 

PNOA DTM Heat Load Index HLI MJ cm− 2 

year− 1  

Slope – ◦

Topographic 
Position Index 

TPI –  

Topographic 
Ruggedness Index 

TRI –  

Topographic 
Wetness Index 

TWI – 

SNFI4/SFM25: fourth Spanish National Forest Inventory/Spanish Forest Map 
1:25,000; Global-AI_PET_v3: Version 3 of the Global Aridity Index and Potential 
Evapotranspiration database; PNOA DTM: Digital Terrain Model of the Spanish 
National Aerial Orthophotography Plan. 

A. Fernández-Manso et al.                                                                                                                                                                                                                    



Science of the Total Environment 940 (2024) 173568

7

algorithm since they featured higher importance than the “shadowMax” 
internal variable created by the algorithm as a reference (Fig. 3). Cover 
by vegetation type was more important than total cover in determining 
the high fire severity likelihood. The most important pre-fire fuel vari
ables corresponded to shrubs cover and height, as well as ecosystem 
type. Among the topo-climatic variables, the most important were slope 
and AI. Using all the candidate predictors, the accuracy of the RF clas
sification model was remarkably high (OA = 91.58 % and Kappa =
0.79). PA and UA values for each fire severity category were also very 
high (between 80 % and 96 %), even for the high severity class of in
terest (PA = 89.52 % and UA = 79.73). 

The relationships between the most important pre-fire fuel and topo- 
climatic quantitative variables, and high fire severity probability on a 
logit scale, were strongly non-linear (Fig. 4). High fire severity proba
bility increased gradually with shrub cover. Shrub height showed the 
same positive relationship but reached a maximum probability between 
1 and 1.5 m, which may be related both to the shrub height threshold 
needed to trigger the crowning process in forest ecosystems, and to in
teractions with other predictors in the RF models. The relationship be
tween high fire severity probability and tree cover was strongly positive 
from 75 % onwards. Slope showed a positive relationship with high fire 
severity probability up to 5–10◦, while it was insensitive to increases in 
slope above those values. Similarly, high fire severity potential increased 

markedly with AI values above 0.9, which can be indicative of humidity 
conditions conducive to high fuel build-up. Fire severity was insensitive 
to AI values >1 probably due to limitations imposed by excessively 
humid conditions for more extreme fire behavior despite increasing fuel 
load. Regarding pre-fire fuel type, the only categorical pre-fire vegeta
tion predictor variable, results showed that conifer forests and shrub
lands were prone to the high fire severity, while grassland and crops 
showed the opposite behavior. 

4.3. Map of regional hot-spot WUIs 

High fire severity probability in Mediterranean-type climate areas of 
Castilla y León increases in the mountainous areas of Western, Eastern 
and Southern extremes of the region, where we identified hot-spot WUIs 
with high fire severity probabilities >0.8 (Fig. 5). Conversely, high fire 
severity probability is rather low in the central part of the region, where 
crops predominate. The number of WUIs in Castilla y León was 33,616, 
occupying a surface area of 15,408.25 km2. The mean high fire severity 
probability in WUI areas was 0.31. When crops were excluded, the mean 
high fire severity probability increased to 0.42. The number of WUIs 
whose high fire severity probability is higher than 0.5 was 4753 
(covering 1719.56 km2; 14.13 % of the total WUI area). The number of 
hot-spot WUIs (probability higher than 0.8) was 961 (covering 230.59 
km2; 2.86 % of the total WUI area). 

The predominant fuel types in WUI areas in Castilla y León at the 
regional scale are grassland and crops, while there are no significant 
differences in the area occupied by other ecosystem types. However, the 
highest probability of high severity occurs in WUI areas dominated by 
coniferous forests, followed by shrublands (Fig. 6), which would be 
priority areas for intervention to mitigate the risk to local populations. 

5. Discussion 

5.1. Fire severity mapping of Sierra la Culebra wildfire using PRISMA 
hyperspectral data 

Our study confirms that hyperspectral data from the PRISMA 
spaceborne spectrometer provide accurate estimates of post-fire char 
fraction as a unique predictor of wildfire severity through MESMA 
approach. The significance of these results is amplified by the growing 
accessibility of spaceborne hyperspectral missions, which goes beyond 
PRISMA. These missions include Hyperspectral Imager Suite (HISUI), 
Earth Sensing Imaging Spectrometer (DESIS) and NASA Earth Surface 
Mineral Dust Source Investigation (EMIT) on the International Space 
Station (ISS), EnMAP, or AHSI on the GF-5 satellite, as well as the 
forthcoming Copernicus Hyperspectral Imaging Mission for the Envi
ronment (CHIME) and NASA Surface Biology and Geology (SBG) mis
sions. Indeed, these missions collectively represent a significant 
advancement in our capacity to comprehend wildfire impacts in the 
ecological and socioeconomical dimensions. 

Fig. 2. Left: PRISMA representative char spectra. Bands belonging to water vapor absorption regions, or showing a low signal-to-noise ratio and artifacts were 
removed and represented by gray bars in the graph. Right: shade-normalized char fraction. 

Fig. 3. Ranking of pre-fire fuel and topo-climatic variable importance as 
determined by the Boruta algorithm. All variables were deemed important 
(variable importance higher than the “shadowMax” internal variable). The box 
ranges from the first quartile to the third quartile of the distribution, and the 
range represents the interquartile range (IQR). The median is indicated by a line 
across the box. Each whisker extends to the furthest data point within 1.5 times 
the IQR. 
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The high accuracy procured in the relationship between CBI and 
PRISMA char fraction values in the Sierra de la Culebra wildfire can be 
attributed to the higher spectral dimensionality inherent to hyper
spectral data as compared to broadband data (van Wagtendonk et al., 
2004; Veraverbeke et al., 2018). These findings align with previous 
research using airborne spectrometers with reduced coverage but higher 
spatial resolution than spaceborne missions. Veraverbeke et al. (2014) 
reported that AVIRIS char fraction showed a stronger correlation with 
the geometrically structured CBI (GeoCBI) than Landsat estimates (R2 =

0.86 versus R2 = 0.65, respectively) over the Canyon Fire in California. 
Tane et al. (2018) also reported a notably high correlation between 
MESMA char fraction image derived from AVIRIS data and GeoCBI 
values (R2 = 0.74) mapping fire severity after the 2013 Rim Fire in 
California. Despite the well-recognized benefits of MESMA fraction 
images retrieved from hyperspectral over multispectral data, the greater 
availability of multispectral images for management purposes is note
worthy. For this purpose, land managers could still obtain acceptable 
local-level estimates of char fraction images as a proxy for fire severity 
(Fernández-Manso et al., 2012, 2016a, 2016b; Quintano et al., 2013, 
2017, 2020) but at the cost of reduced generality and increased end
member collection efforts (Quintano et al., 2023). 

5.2. Regional fire severity modelling: map of probability of high fire 
severity 

Though many researchers assessed fire severity from a variety of 
approaches in recent years (Miller et al., 2012; Estes et al., 2017; Picotte 
et al., 2020; Leblon et al., 2022; Arkin et al., 2023; among others), few of 
them have created maps depicting probability of high fire severity (e.g. 
Keyser and Westerling, 2017; Parks et al., 2018); and most of these 
studies have focused on limited geographic areas, from single fires to 
small-sized regions (Dillon et al., 2020). Keyser and Westerling (2017) 
conducted a mapping of high fire severity probability across the western 
United States, though with a limited spatial resolution (12 km). Their 
study primarily focused on investigating the influence of interannual 
climate variability on high-severity fire potential. Parks et al. (2018) 
also carried out a mapping of probability of high fire severity in the 
Western United States, but their analysis exclusively considered forested 
environments. Dillon et al. (2020) estimated the spatial distribution of 
high fire severity across United States, providing valuable insights that 
can inform decision-making and research efforts related to fire severity 
in several ecosystems. Our study used a machine learning algorithm 
from which we generated wall-to-wall estimates of high fire severity 
probability at regional scale leveraging for the first time the fourth 
revision of Spanish NFI data and the derived SFM25, which represent an 

Fig. 4. Partial dependence plots depicting the relationship between the probability of high fire severity outcome on a centered logit scale and the variability of pre- 
fire fuel (type and structure) and topo-climatic variables in the Random Forests (RF) classification algorithm. The red line for continuous variables is a locally 
weighted smooth (LOESS) curve. Partial dependence calculation depicts the dependence of the log-odds for the high fire severity class on different subsets of the input 
variables. Although the proportion of votes for class k in RF models cannot be interpreted as underlying distributional probabilities, we call these class probability 
estimates by a stretch of terminology (e.g. Breiman, 2001; Hastie et al., 2009; Greenwell, 2017) throughout the manuscript. 
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unbiased, spatially-explicit and comprehensive source of many stand 
variables throughout the complete range of Mediterranean ecosystem 
types of interest (Álvarez-González et al., 2014). 

In our study, the four most important predictors of fire severity were 
related to pre-fire fuel variables (shrub cover, ecosystem type and shrub 
height) and topography (slope). The most relevant climatic predictor 
was AI which ranked sixth on decreasing order of importance. These 
results emphasize the role of land cover and fuel characteristics in 
shaping fire behavior. Previous studies also reported the relevant role of 
vegetation cover and vegetation amount in mapping fire severity at 
regional scale in Western Italy (Costa-Saura et al., 2022). Similarly, 
Dillon et al. (2020), indicated that vegetation-related variables emerged 
as the most reliable fire severity predictor in western United States, 
followed by elevation and fuel moisture. We did not include elevation in 
our model because it was directly related to ecosystem type, which was 
included and ranked second in model importance. The findings reported 
by Beltrán-Marcos et al. (2023) are also aligned with our results. They 
identified land cover class, that can be considered equivalent to the 
ecosystem type variable in this study, as the primary factor driving fire 
severity, followed by fractional vegetation cover, which is conceptually 
related to shrub and tree cover variables used here. Shrublands, along 
with coniferous forests, were very prone to high-severity fire, in agree
ment with previous studies that found that these fuel types, due to their 
flammability and structure, pose a major threat to human settlements in 
productive environments of the western Mediterranean Basin (e.g. 
Fernández-Guisuraga et al., 2021; Rodriguez-Jimenez et al., 2023). We 
found that shrub height was also an important predictor in determining 
fire severity outcome, since it is well-known that this variable will 
dictate the triggering of the crowning process in forest ecosystems 
dominated by ladder fuels and low canopy base heights (Fernández- 
Guisuraga et al., 2021). Our findings appear to deviate from earlier 
research (Birch et al., 2015; Estes et al., 2017) that emphasized the 
importance of topography in influencing fire severity. However, it is 

essential to consider that topography often serves as an indirect proxy of 
vegetation and fuel distribution. In this context, our results appear to 
align more closely with the conclusions drawn by Parks et al. (2018), 
which suggest that pre-fire fuel load plays a more crucial role than 
inherent topographic factors in shaping fire behavior. Nonetheless, our 
findings also indicate that topographic variables slightly contribute to 
the predictive power of the RF model, suggesting that topography can 
still be a relevant factor in disentangling fire severity role when 
considered in conjunction with pre-fire fuel variables. Although fire 
weather is an important control on fire behavior in Mediterranean 
ecosystems (e.g. Birch et al., 2015; Lydersen et al., 2017), we did not 
consider fire weather-related variables because they vary not only in 
space, but also in time (Parks et al., 2018), and distinct fire weather 
datasets for different dates are not available for the Sierra de la Culebra 
wildfire in which local fire severity estimates are calibrated. The high 
fire severity probability product at regional scale may be representative 
of fire danger under severe weather conditions recorded in the area, and 
under which most extremes wildfires burn (Parks et al., 2018). However, 
it must be considered that short-term (hourly to daily) fluctuations in 
fire weather-related variables such as relative humidity, wind speed and 
temperature, may significantly influence fire behavior along different 
times of wildfire progression (Ruffault et al., 2016). In fact, high severity 
patterns within wildfire perimeters may be concentrated mainly in those 
areas burned under extreme fire weather conditions (Moritz, 1997), 
which is particularly relevant under drought-driven fire regimes where 
bottom-up fire behavior drivers may play a secondary role in deter
mining fire severity (Oliveras et al., 2009). The influence of these fire- 
weather feedbacks on the determination of hot-spot WUIs at regional 
scales should be considered in future studies. 

Our results revealed that high fire severity probability is concen
trated in a relatively small portion of the studied region, primarily 
within the most mountainous and forested areas. Conversely, the central 
plateau, which is mainly dedicated to crops, exhibits a low probability. 

Fig. 5. Upper: location map of study area. Left: wall-to-wall predictions of high fire severity probability at regional scale in Mediterranean-type climate areas of 
Castilla y León; Right: map depicting the location of WUI areas and their probability of high fire severity. We show detail zoom of three hot-spot WUI areas: A-north- 
west; B-east; and C-south. 
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This pattern is consistent with assessments of Monitoring Trends in Burn 
Severity (MTBS) data, which have indicated that typically, less than one- 
third of the area burned in wildfires in the western United States, 
including Mediterranean ecosystems, experiences high fire severity 
(Dillon et al., 2011; Finco et al., 2012; Picotte et al., 2016). 

5.3. Map of regional hot-spot WUIs 

The surface occupied by WUI areas in Castilla y León represent 
approximately 15 % of the region. Apart from WUIs associated with 
urban expansion, the majority of WUIs (located in the Central plateau of 
Castilla y León) result from the process of agricultural abandonment 
near settlements. This process enables vegetation to regenerate, creating 
an increased interface between vegetation and urban or developed areas 
(Pausas and Fernández-Muñoz, 2012; Radeloff et al., 2018; Bar-Massada 
et al., 2023). Over the past few decades, land abandonment has been 
widespread in this region (Lasanta et al., 2017), and linked to an uptick 
in wildfires, potentially exacerbating fire feedbacks even further (Salis 
et al., 2022; Ermitão et al., 2023). The combination of land-use aban
donment and climate change is leading to substantial fuel accumulation 
in the form of shrubs and forest vegetation (Badia et al., 2019; Mantero 
et al., 2020), which represents a critical situation in terms of fire hazard 
and vulnerability (Beltrán-Marcos et al., 2023; Francis et al., 2023). This 
evolving landscape, mainly transitioning from agricultural lands into 

shrublands, where high fire severity likelihood is concentrated, presents 
significant challenges for pre-fire management (Pausas and Fernández- 
Muñoz, 2012; Badia et al., 2019). 

Overlapping the information of the regional WUI and high fire 
severity probability maps (hot-spot WUI map), we identified that almost 
3 % of WUIs in Castilla y León had a potential probability of high fire 
severity >0.8. Hotspot WUIs were mainly located in the forested areas of 
the mountains that surrounds the Central plateau. In the last decade, 
>75 % of burned area in Castilla y Leon was located in these areas. In 
particular, A-labeled zone in Fig. 5 concentrated 69 % of the burned area 
in Castilla y Leon from 2012 to 2022; B-labeled only a 3 %, and C- 
labeled, 25 % (Junta de Castilla y León, 2023). This distribution pattern 
of hotspot WUIs in Castilla y León visually agrees with the pattern 
observed in the global WUI map produced by NASA/Maryland Univer
sity within the project Global Hotspots of the WUI (https://lcluc.umd. 
edu/projects/global-hotspots-wildland-urban-interface). Schug et al. 
(2023) noted that while natural grasslands may face recurrent fire 
events in specific regions within the WUIs worldwide, this is not a sig
nificant problem in areas where grasslands are intensively maintained as 
pastures. Conversely, both natural and managed forests contribute to the 
fuel available for fires, rendering forested areas more vulnerable to such 
events. This highlights the importance of land management practices in 
influencing the wildfire risk within WUIs, with grassland management 
playing a protective role and forest management requiring careful 
attention to reduce fire risks. In this sense, Moreira et al. (2020) have 
emphasized the significance of policies that prioritize investments in fire 
management over fire suppression efforts. They advocate for a paradigm 
shift in environmental management policies, measuring effectiveness 
based on the prevention of socio-ecological damage rather than the 
extent of burned areas. Our study, which identifies WUI areas prone to 
high fire severity, enables forest managers to prioritize areas for fuel 
management interventions, potentially mitigating the severity of future 
wildfires. 

5.4. Limitations and uncertainties 

While this research contributes significantly to advancing fire risk 
assessment methods in the Mediterranean Wildland-Urban Interface 
(WUI), it is crucial to acknowledge certain limitations and uncertainties 
associated with the study. The first ones are related to the scale and 
generalization. The methodology's effectiveness at a regional scale relies 
on extrapolation from local-scale data. The degree to which findings can 
be generalized across diverse WUI areas may introduce uncertainties, 
particularly in regions with varying ecological and climatic conditions. 
The accuracy of the Random Forest predictive model is subject to the 
quality and representativeness of the calibration data. Variability in fire 
severity estimates, NFI data, and topo-climatic variables may impact the 
model's performance, introducing uncertainties in the regional fire 
severity probability map. Specifically, the coarse spatial resolution of 
the AI product may result in a decreased capture of spatial variability 
and underestimation of the importance of this variable in explaining fire 
severity outcomes, ultimately contributing to uncertainty in the re
lationships between the predictors and the response variable (Meng 
et al., 2015). Another limitation is that the study's reliance on specific 
temporal snapshots of hyperspectral data and NFI records may not 
capture dynamic changes in vegetation, fuel loads, or land use over time. 
This limitation could affect the model's ability to account for temporal 
variations in fire risk. Additionally, while spaceborne hyperspectral data 
and NFI datasets offer valuable information, their resolution may not 
capture fine-scale variations in WUI features. This limitation could affect 
the identification and characterization of hot-spot WUIs, potentially 
impacting resource allocation and management strategies. On the other 
hand, the WUI spatial characterization used may be somewhat over
simplified to represent the complex distribution pattern of sparse 
impervious areas. For more accurate and ecologically meaningful fire 
severity assessments, it is advisable to move towards more sophisticated 

Fig. 6. Boxplots depicting the relationships between WUI area (ha) and high 
fire severity probability with the WUI-dominant ecosystem types. The box 
ranges from the first quartile to the third quartile of the distribution, and the 
range represents the interquartile range (IQR). The median is indicated by a line 
across the box. The red point denotes de data mean. Each whisker extends to 
the furthest data point within 1.5 times the IQR. We showed one-way ANOVA 
and Tukey Honestly-significant-difference (HSD) post-hoc tests results. Lower
case letter denote significant differences at the 0.05 level. 
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methods that account for the spatial heterogeneity and dynamic nature 
of WUIs. Consideration of interface and intermix areas (Radeloff et al., 
2005), as well as multiclass WUI typologies (Beverly et al., 2010; 
Lampin-Maillet et al., 2010), could provide a more accurate character
ization of these areas (Bar-Massada et al., 2023; Beltrán-Marcos et al., 
2023). Finally, the identification of hot-spot WUIs is contingent upon the 
accuracy of the regional high fire severity probability map and the WUI 
cartography. The effectiveness of these maps in real-world scenarios and 
their validation against actual fire events may introduce uncertainties. 
Understanding and addressing these limitations is crucial for the accu
rate interpretation and application of the study's findings. 

5.5. Management advices 

Strategic planning plays a pivotal role in wildfire prevention within 
WUI areas and holds significant societal benefits (Santasusagna-Riu and 
Ubeda-Cartana, 2021). These plans can advert the destruction of valu
able natural resources during extreme wildfire events that can inflict 
substantial harm on both property and the environment (Molina-Terren 
et al., 2019). The hot-spot WUI map provides key information of 
geographic distribution of severe fire probability and offers an under
standing of the ecological and topo-climatic conditions that drive high- 
severity fire effects in these areas. This, in turn, facilitates the consid
eration of ecological consequences in fire management and planning 
efforts (Dillon et al., 2020). Operational planning involves the practical, 
day-to-day implementation of strategies. Our research highlighted the 
significance of pre-fire vegetation as a critical factor influencing fire 
severity, a finding that aligns with the conclusions of other studies (e.g., 
Stevens-Rumann et al., 2016; Parks et al., 2018). Thus, the hot-spot 
WUIs map may serve as an initial guide for identifying suitable loca
tions to implement landscape fuel treatments at tessellation-scale, thus 
helping mitigate the potential for severe fires and safeguard inhabited 
areas (Modugno et al., 2016; Samara et al., 2018). Applying mechanical 
treatments to reduce surface fuel loads, particularly excessive shrub 
cover (Lampin-Maillet et al., 2009; Fernández-García et al., 2023; 
Fernández-Guisuraga et al., 2023c), or elevating the height of the can
opy base through pruning and conducting low stand-thinning operations 
that disrupt the continuity of ladder fuels (Kennedy and Johnson, 2014; 
Pastor et al., 2020; Fernández-Guisuraga et al., 2021) has the potential 
to mitigate the severity of wildfires in WUI areas (Beltrán-Marcos et al., 
2023). 

Since all these preventive actions are very costly, knowing which 
WUIs are more susceptible to high fire severity will help to optimally 
assign resources and actions (Sarricolea et al., 2020). WUI areas are 
diverse, and appropriate responses can vary significantly depending on 
the local context, either urban, suburban, rural or forested. In our study 
area, most of hot-spot WUIs are encompassed in rural and forest con
texts. Some practical recommendations for WUIs in rural environments 
are: 1) to encourage traditional agricultural practices such as extensive 
livestock and agroforestry to reduce fuel loads in surrounding vegetation 
areas (García-Llamas et al., 2019a, 2019b; Sil et al., 2019); 2) to promote 
the implementation of prescribed burning treatments for the same 
purpose (Grebner et al., 2013; Kondo et al., 2022; Fajardo-Cantos et al., 
2023); and 3) to improve the availability and access to water resources 
for fire suppression, including the installation of strategic water reser
voirs and access points for firefighting equipment (Pastor et al., 2020). If 
the WUIs are located in forest environments, it is essential: 1) to main
tain and clear roads and trails to ensure that they can serve as fire breaks 
and facilitate access for firefighting teams in case of emergency (Pastor 
et al., 2020); 2) to promote fire-smart management and reforestation 
with native and fire-resistant tree species to reduce wildfire impacts 
(Fernandes, 2013; Lecina-Díaz et al., 2023); and 3) to implement remote 
sensing and surveillance systems to detect early signs of fire, allowing 
for faster response times (Barmpoutis et al., 2020; Sakellariou et al., 
2021). 

5.6. Future study scopes 

In this study, we focused only on the basic definition of WUI, but we 
could go further in future research works by identifying different WUI 
configurations according to their building density, population, urban or 
industrial typology, so that recommendations for the management of each 
type of hop-spot WUI can be further specified (Fernández-García et al., 
2022). We only considered pre-fire vegetation characteristics, climatic and 
topographic variables but, high-severity fire risk in WUI areas can emerge 
due to a combination of other drivers such as soil characteristics (Viedma 
et al., 2020) and socio-economic aspects (Moreira et al., 2020; Chas-Amil 
et al., 2022). In the presentation of the Portuguese Large Wildfire Spread 
database (PT-FireSprd), Benali et al. (2023) emphasizes the complex in
teractions between fuels, topography and weather in determining wildfire 
behavior. The detailed set of fire behavior descriptors in PT-FireSprd, such 
as the rate of spread (RoS), fire growth rate (FGR) and fire radiative energy 
(FRE), may constitute a solid and physically-based tool to refine the 
identification of hot-spot WUIs in future studies. 

Several more actions remain as opportunities for future research: (i) 
conduct an external validation of the regional high fire severity proba
bility map obtained through RF algorithm. This validation process can 
help ensure the robustness and reliability of the model predictions; (ii) 
expand the high fire severity probability map to cover the entire national 
territory where NFI information is available; and (iii) exploring the use 
of hyperspectral images from alternative sensors. This would allow for 
more frequent data collection, enabling a more dynamic and timely 
assessment of fire severity. 

6. Conclusions 

Assessment of fire severity is crucial as it offers a structured 
perspective on the ecological impact of wildfires. In our study, we spe
cifically concentrated on high severity because of the profound alter
ations it can bring to ecosystem values and the subsequent vegetation 
response. Thus, for the first time a regional map of probability of high 
fire severity was generated using a RF algorithm (Kappa = 0.8), trained 
with predictor variables primarily derived from SNFI4 data and MESMA 
PRISMA char fraction, which served as a proxy for fire severity. Simi
larly, for the first time, a regional map of hot-spot WUIs was built, 
showing the areas that concentrate WUIs with high probability of high 
fire severity in case of fire event (hot-spot WUIs) were primarily situated 
in forested regions along the mountainous borders of the region. The 
findings of our study offer fire managers valuable predictive tools for 
identifying priority areas with management action needs. Using tools 
such as the hot-spot WUI map contributes significantly to enhancing 
territorial resilience within WUIs through strategic and operational 
planning for wildfire prevention. This shift towards a more compre
hensive and predictive approach represents a critical step in addressing 
the multifaceted challenges posed by wildfires in WUI areas. We played 
a role in advancing the development of next-generation fire risk 
assessment methods, which integrate remote sensing technologies with 
extensive ground-level datasets. 

Funding information 

This study was financially supported by the Spanish Ministry of 
Science and Innovation in the framework of the LANDSUSFIRE project 
(PID2022-139156OB-C21) within the National Program for the Pro
motion of Scientific–Technical Research (2021–2023); and by the 
Regional Government of Castile and León in the framework of the 
WUIFIRECYL project (LE005P20). A. Fernández-Manso and C. Quintano 
were supported as research visitors at VIPER Lab. (University of Cali
fornia, Santa Barbara) by a Spanish Education Ministry grant (Salvador 
de Madariaga program, codes PRX22/00305 and PRX22/00307, 
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