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ABSTRACT 

Background. Fire behaviour assessments of past wildfire events have major implications for 
anticipating post-fire ecosystem responses and fuel treatments to mitigate extreme fire beha-
viour of subsequent wildfires. Aims. This study evaluates for the first time the potential of 
remote sensing techniques to provide explicit estimates of fire type (surface fire, intermittent 
crown fire, and continuous crown fire) in Mediterranean ecosystems. Methods. Random Forest 
classification was used to assess the capability of spectral indices and multiple endmember 
spectral mixture analysis (MESMA) image fractions (char, photosynthetic vegetation, non- 
photosynthetic vegetation) retrieved from Sentinel-2 data to predict fire type across four 
large wildfires Key results. MESMA fraction images procured more accurate fire type estimates 
in broadleaf and conifer forests than spectral indices, without remarkable confusion among fire 
types. High crown fire likelihood in conifer and broadleaf forests was linked to a post-fire MESMA 
char fractional cover of about 0.8, providing a direct physical interpretation. Conclusions. 
Intrinsic biophysical characteristics such as the fractional cover of char retrieved from sub- 
pixel techniques with physical basis are accurate to assess fire type given the direct physical 
interpretation. Implications. MESMA may be leveraged by land managers to determine fire type 
across large areas, but further validation with field data is advised.  

Keywords: canopy fraction burned, crown fire, fire type, MESMA, Sentinel-2, spectral indices, 
spectral variability, surface fire. 

Introduction 

Wildfires are a frequent disturbance in terrestrial ecosystems of Mediterranean-type cli-
mate regions around the world (Catry et al. 2013; Xofis et al. 2020). In the western 
Mediterranean Basin, the abandonment of traditional extensive agricultural practises and 
forestry uses in past decades. Together with proliferation of unmanaged forest plantations 
and fire suppression policies, this has led to an extensive and continuous accumulation of 
dense and flammable fuels (Moreira et al. 2011; Fernandes 2013). In addition, anthropo-
genic climate change has increased the occurrence of prolonged droughts and heat waves 
(Tripathy et al. 2023), leading to dryness conditions of fuel conducive to extreme fire 
behaviour and intense crown fires (Dimitrakopoulos et al. 2007; Pickering et al. 2023). 
These events may have unprecedented ecological consequences (Lasslop et al. 2019) and 
associated losses of human lives, infrastructure and properties (Mansoor et al. 2022). 

Extreme wildfire events involving crown fires usually occur under severe fire weather 
conditions, resulting in hazardous and erratic fire behaviour (Mitsopoulos and 
Dimitrakopoulos 2007) over a wide variety of forest ecosystems throughout the western 
Mediterranean Basin (Fernández-Guisuraga et al. 2019, 2023a). A crown fire in forest 
spreads much faster (up to two to four times) than a surface fire burning in the same 
conditions (Fernandes et al. 2004; Perrakis et al. 2023), and its control efforts by direct 
attack are ineffective (Erni et al. 2020; Frost et al. 2022). These characteristics, together 
with increased fire intensity and frequent long-range spotting (Albini et al. 2012), may 
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entail a serious threat to property and life in the 
wildland–urban interface (Fiorini et al. 2023). Long-lasting 
effects of high-intensity crown fires may include near total 
tree mortality (Woolley et al. 2012), abrupt shifts in species 
composition and structure leading to alternative stable 
states threatening ecosystem resilience (Allen et al. 2002;  
Knox and Clarke 2012) and biogeochemical cycles (Varner 
et al. 2021). Such fire impacts reflect the type and extent of 
heat transfer processes to which vegetation and soils were 
exposed (Fernández-Guisuraga et al. 2023b). Altogether, 
predicting the occurrence of crown fire behaviour is of 
utmost importance for planning pre-fire fuel treatments 
and fire suppression strategies (Scott and Reinhardt 2001). 

Wildfires rarely behave only as crown fires due to chang-
ing fuel, topography or fire weather and thus, the spatial 
variability in the fire type entails major implications for the 
structure, successional dynamics and functioning of fire- 
prone ecosystems (Erni et al. 2020; Pérez-Izquierdo et al. 
2021; Taylor et al. 2021). Therefore, it is not only important 
to assess the likelihood of crown fire behaviour, but also the 
spatial variability of the fire type (e.g. surface, crown) after 
wildfire extinction. Such knowledge would be of value, for 
example, in (1) testing the accuracy of fire behaviour mod-
els (Alexander and Cruz 2012), (2) providing insights on 
pre-fire fuel conditions conducive to extreme fire behaviour 
and severe ecological impacts (Dimitrakopoulos et al. 2007), 
(3) evaluating fuel treatment effectiveness (Cruz et al. 2004;  
Hu et al. 2019), and (4) estimating post-fire ecosystem 
responses including delayed tree mortality (Shearman 
et al. 2023). Indeed, several authors suggested that physi-
cally meaningful variables of actual fire effects that can be 
used as a proxy for fire type, such as crown fraction burned 
(CFB), can be more readily translated into management 
applications (Woolley et al. 2012; Hood et al. 2018), as 
opposed to integrative fire severity indices (e.g. the 
Composite Burn Index; Key and Benson 2005) (Morgan 
et al. 2014; Fernández-Guisuraga et al. 2023c). 

Field methods enable assessing the type of fire based on 
both direct observation of fire behaviour (Cruz et al. 2003) 
and crown scorch and consumption (e.g. Pollet and Omi 
2002; Morgan et al. 2014), but are labour-intensive and 
unable to thoroughly cover extensively burned landscapes. 
In this sense, the synoptic nature of remote sensing earth 
observations may be more appropriate for wall-to-wall esti-
mation of fire type in post-fire landscapes (Fernández- 
Guisuraga et al. 2023a). Most remote sensing-based research 
to date have been focused on assessing fire severity drivers 
(e.g. Parks et al. 2018; Fernández-Guisuraga et al. 2021,  
2023d; Fernández-García et al. 2022) or on developing 
accurate wall-to-wall fire severity estimates (e.g. De Santis 
and Chuvieco 2007; Miller et al. 2009; Quintano et al. 2013;  
Fernández-Guisuraga et al. 2023a). Conventionally, multi-
spectral remote sensing data acquired from broadband 
sensors have been used to compute spectral indices, such 
as the differenced Normalised Burn Ratio (dNBR; Key 2006) 

or its relativised variants (Miller et al. 2009; Parks et al. 
2014), as a proxy for the spectral signal of fire effects 
through empirical models. In this context, many previous 
studies (e.g. Roy et al. 2006; Fernández-Manso et al. 2016;  
Delcourt et al. 2021) and operational programs such as the 
Monitoring Trends in Burn Severity (MTBS; Picotte et al. 
2020) in the United States or the Rapid Damage Assessment 
(RDA) module of the European Forest Fire Information 
System (EFFIS), have extensively used spectral indices com-
puted from Landsat and Sentinel-2 imagery to obtain wall- 
to-wall fire severity estimates. Physical-based models 
applied to broadband or narrowband multispectral data, 
such as multiple endmember spectral mixture analysis 
(MESMA; Roberts et al. 1998), have also been considered 
in previous research (e.g. Quintano et al. 2013, 2023; Meng 
et al. 2017) to decompose sub-pixel reflectance signal and 
retrieve the fractional cover at pixel level of post-fire ground 
components (e.g. char or green vegetation) representative of 
wildfire ecological effects (i.e. fire severity) on vegetation 
and soils. This advanced pixel unmixing technique is con-
sidered to be more robust, scalable and generalisable than 
spectral indices due to its physical basis (Quintano 
et al. 2013). 

Previous studies have seldom considered the potential of 
post-fire spectral variability to provide fire type estimates, 
particularly in Mediterranean fire-prone ecosystems (Mitri 
and Gitas 2006; Collins et al. 2018). These studies leveraged 
either pixel-based or object-based classification schemes and 
spectral indices computed from multispectral satellite data 
for mapping fire type or predicting fire severity categories as 
proxies for fire type. Other authors used a change detection 
framework for identifying fire type from airborne laser 
scanning (ALS) data in Sierra Nevada, California (Hu et al. 
2019). As a bi-temporal change-detection framework, this 
method requires the acquisition of pre- and post-fire ALS 
datasets, which is a constraint because of the limited ALS 
data availability (Fernández-Guisuraga et al. 2022), con-
trary to multispectral satellite data. 

To the best of our knowledge, physical-based and gener-
alisable remote sensing approximations applied to broad-
band multispectral data, together with extensive field 
assessments, have not been used to detect crown fire in 
post-fire environments. Accordingly, we explore for the 
first time in the literature the potential of multispectral 
satellite data and advanced pixel unmixing models to pro-
vide meaningful and generalisable fire type estimates in 
Mediterranean ecosystems. Specifically, we examined how 
the post-fire spectral signal variability of MESMA fraction 
images computed from Sentinel-2 multispectral data reflects 
the likelihood of distinct fire types (surface, intermittent 
crown, continuous crown fire; Forestry Canada Fire 
Danger Group 1992) based on CFB, using spectral indices 
as a benchmark. See Scott and Reinhardt (2001) and  
National Wildfire Coordinating Group (2023) for fire type 
definitions. We selected four wildfires for this purpose that 
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burned different types of broadleaf and conifer forests across 
the western part of the Mediterranean Basin. We hypothe-
sise that MESMA fraction images, specifically the char frac-
tion, would outperform spectral indices due to their higher 
physical sense and the intrinsic relationship between CFB 
and char signal in post-fire landscapes. 

Material and methods 

Study sites 

We selected four wildfires that affected forests, shrublands 
and grasslands in the western Mediterranean Basin (north- 
western and central Spain) under extreme fire weather con-
ditions in the summer seasons between 2017 and 2022 
(Fig. 1), with unprecedented prolonged droughts and heat 
waves in the months prior to the wildfires. The sites encom-
pass wide environmental gradients are in Table 1. We chose 
as target conifer and broadleaf forests within the wildfires. 
Maritime pine (Pinus pinaster Ait.) dominated conifer forests 
in lowlands, whereas Scots pine (Pinus sylvestris L.) domi-
nated in highlands. Broadleaf forests were mainly domi-
nated by Pyrenean oak (Quercus pyrenaica Willd.) and 
holm oak (Quercus ilex L.). Wildfires were selected on the 
basis of available canopy fraction burned (CFB) data 
acquired by the same observers. 

Field data 

Plots of 20 m × 20 m were randomly established in burned 
areas (ensuring a minimum distance between plots of 100 m) 
within 2 months after fire, being homogeneous in terms of the 
dominant species (maritime pine, Scots pine, holm oak, and 
Pyrenean oak) (Table 1). The plots were located using a high- 
accuracy GPS receiver (RMSEX,Y < 1 m). In each plot 
(n = 129; Table 1), we measured the CFB as the proportion 
of burned crown (charred or consumed foliage, twigs and 
branches; Varner et al. 2021) with respect to all tree crowns 
in the plot (Cruz and Alexander 2017), which is indicative of 
the most probable fire type for crowning-susceptible vegeta-
tion (Cruz et al. 2003). To validate a measurement, the 
consensus of two observers was required (Fernández- 
Guisuraga et al. 2023a). Fire type in each field plot was 
classified according to three CFB thresholds: (1) surface fire 
(CFB < 0.1); (2) intermittent crown fire (0.1 ≤ CFB ≤ 0.89); 
and (3) continuous crown fire (CFB > 0.89) (Forestry Canada 
Fire Danger Group 1992). 

Remote sensing data 

Multispectral data acquired from the multispectral instru-
ment (MSI) onboard Sentinel-2 satellite of the (European 
Space Agency; ESA) Copernicus program were used to com-
pute spectral indices and MESMA fraction images. Sentinel- 
2 provides multiresolution data (10, 20, 60 m) across visible 

(VIS; 4 bands), red edge (RE; 3 bands), near infrared (NIR; 3 
bands) and short-wave infrared (SWIR; 3 bands) regions. 
Pre-fire and post-fire Sentinel-2 Level-2A scenes (orthorec-
tified, surface reflectance product) covering the wildfires 
were downloaded from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu) for dates as close as possible 
to the start and end date of the wildfires based on the 
availability of cloud-free imagery (Table 1). The 10-m 
bands were downsampled to a spatial resolution of 20 m 
through nearest neighbour interpolation. The bands at 60 m 
were discarded for the MESMA procedure because of their 
susceptibility to atmospheric effects and thus the absence of 
interpretable surface reflectance data (Jia et al. 2016). 

Remote sensing data processing 

Spectral indices 
We calculated the most commonly used bi-temporal, 

absolute spectral index in the literature; i.e. the dNBR 
(Eqns 1 and 2), from using bands 8a (NIR) and 12 (SWIR) 
of pre- and post-fire Sentinel-2 scenes. We also calculated a 
relativised spectral index; i.e. the Relativised Burn Ratio 
(RBR; Parks et al. 2014) (Eqn 3), for the higher potential 
it can offer in burned landscapes with heterogeneous vege-
tation composition, and in areas with sparse vegetation 
(Miller and Thode 2007). We discarded the commonly- 
used Relative dNBR index (RdNBR; Miller et al. 2009) 
because of potentially anomalous values as a consequence 
of the numerical instability of the index when pre-fire NBR 
displays zero or negative values (Parks et al. 2014). 

NBR = (Band 8a Band 12) / (Band 8a
+ Band 12)

Sentinel 2

(1) 
dNBR = 1000(NBR NBR )pre post (2) 

RBR = dNBR/(NBR + 1.001)pre (3)  

Sentinel-2 dNBR and RBR values were extracted for each 
plot of 20 m × 20 m by averaging the values of a systemati-
cally sampled grid of 20 points with 2-m spacing within 
each plot in order to account for the mismatch between the 
Sentinel-2 grid and the plot extent (Fernández-Guisuraga 
et al. 2022). 

MESMA procedure 
The MESMA algorithm was implemented using VIPER 

tools ver. 2.1 software (Roberts et al. 2019). The initial 
phase of the procedure involved the identification of candi-
date endmember (i.e. basic ground components) spectra to 
build a spectral library and execute the spectral unmixing 
process on the post-fire Sentinel-2 scenes. This phase is 
critical, as the precise selection of endmember spectral sig-
natures has a high impact on the accuracy of the MESMA 
algorithm output (Tompkins et al. 1997). 
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Fig. 1. Location of Sierra de Cabrera (a), Villapadierna (b), Navalacruz (c), and Sierra de la Culebra (d) wildfires in the western part 
of the Mediterranean Basin (north-western and central Spain). A Sentinel-2 false colour composite (R = band 12; G = band 8A; 
B = band 4) is displayed at the background.   
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To build the spectral library, we first extracted candidate 
endmembers from Sentinel-2 scenes, including several land 
cover classes representative of the study site, and second, we 
identified the optimum endmembers to build the definitive 
spectral library. We chose photosynthetic vegetation (PV), 
non-photosynthetic vegetation and soil (NPVS), and char as 
endmembers to unmix Sentinel-2 scenes following previous 
post-fire assessments (e.g. Quintano et al. 2013, 2023;  
Fernández-Manso et al. 2019). The candidate endmembers 
were manually delineated inside regions of interest for each 
class (Quintano et al. 2023). Polygon delineation outside the 
fire scar was assisted using as reference orthophotos from 
Spanish Aerial Ortho-photography National Plan (PNOA) at 
a spatial resolution of 50 cm, the Spanish Forest Map, and 
true (4-3-2) and false (12-8A-4) colour composites of post- 
fire Sentinel-2 scenes. Spectral signatures were checked to 
verify that they had the expected shape for the ground 
covers of interest. Char spectral signatures were extracted 
from homogeneous polygons within the fire scar using 
Sentinel-2 colour composites and reviewing the expected 
char spectral signature (Fernández-Manso et al. 2019). We 
then built the definitive spectral library by a semi-automatic 
process. We first implemented the Iterative Endmember 
Selection (IES; Schaaf et al. 2011; Roth et al. 2012) algo-
rithm to identify the most relevant endmembers of the 
different land cover classes of interest based on the max-
imisation of the Kappa index. Following this, we manually 
included endmembers not selected by the automatic IES 
algorithm, but where (1) Minimum Average Spectral Angle 
(MASA; Dennison et al. 2004), (2) Count-based Endmember 
Selection Index (CoB; Roberts et al. 2003), and (3) 
Endmember Average RMSE (EAR; Dennison and Roberts 
2003) indices reflected a high endmember representative-
ness (Quintano et al. 2013). An additional endmember per 

class was included in the definitive spectral library if it 
jointly exhibits the lowest MASA index value, the highest 
CoB index value, and the lowest EAR index value. 

Once the definitive spectral library was established, the 
endmembers were hierarchically organised using a multilevel 
fusion procedure and thus at different levels of complexity 
(Roberts et al. 2003). The process of spectral unmixing exe-
cuted on Sentinel-2 post-fire scenes was then iterative 
because it is necessary to adjust the maximum number of 
endmembers considered in each model, and their optimum 
spectral signatures, until the imposed restrictions (i.e. fraction 
values between −0.10 and 1.10, shade fraction values 
between 0.00 and 1.00, maximum allowed RMSE equal to 
0.025 and maximum 5% of unclassified pixels) were fulfilled, 
following previous research (Quintano et al. 2013, 2023;  
Fernández-Manso et al. 2019). Finally, the fraction images 
(i.e. char, PV and NPVS) were shade-normalised to remove 
the shade endmember influence (Roberts et al. 2019). For 
more detailed information on the whole MESMA procedure 
see Quintano et al. (2023). 

Fractional cover by shade-normalised image fractions 
was then extracted for each 20 m × 20 m plot following 
the same procedure as for spectral indices. 

Data analyses 

First, we assessed the differences in CFB, spectral index values 
(i.e. dNBR and RBR), and fractional cover by MESMA image 
fractions (i.e. char, PV and NPVS) between conifer and broad-
leaf forest ecosystems using Mann–Whitney U tests after 
evidencing non-compliance with parametric test assump-
tions. The statistical significance of the differences was deter-
mined at the 0.05 level. The Kruskal–Wallis test was used to 
assess statistical differences in spectral indices and image 

Table 1. Location and characteristics of the four studied wildfires. We provide the number of field plots established within each ecosystem 
type in the wildfires (Qp, Quercus pyrenaica; Qi, Quercus ilex, Pp: Pinus pinaster; Ps, Pinus sylvestris).       

Wildfire Sierra de Cabrera Villapadierna Navalacruz Sierra de la Culebra   

Location NW Spain NW Spain C Spain W Spain 

Wildfire size (ha) 9940 82 24,444 28,046 

Wildfire date 21 August 2017 22 August 2019 14 August 2021 11 June 2022 

Elevation range (m) 836–1938 922–1027 939–2157 747–1205 

Slope range (%) 0–149 6–27 0–649 0–155 

Average annual 
precipitation (mm) 

850 761 758 750 

Average annual 
temperature (°C) 

9.0 10.7 9.6 11Confusion matrix and 
accuracy metrics 

Plant communities (# plots) Qp (21) Qp (15) Pp (5) Ps (5) Qi (8) Ps (18) Qp (9) Qi (14) Ps (21) Pp (13) 

Pre-fire Sentinel-2 
image date 

13 August 2017 15 August 2019 9 August 2021 26 May 2022 

Post-fire Sentinel-2 
image date 

2 September 2017 30 August 2019 8 ctober 2021 15 July 2022   
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fractions between fire types (surface, intermittent, crown), 
followed by a pairwise Wilcoxon test. 

Second, a Random Forest (RF; Breiman 2001) classifica-
tion algorithm was used to assess the capability of spectral 
indices (univariate model) and MESMA image fractions 
(multivariate model) to predict fire type and link crown 
fire likelihood with post-fire spectral variability in conifer 
and broadleaf forests separately. RF classification algorithm 
was selected due to the absence of assumptions about the 
distribution of the response variable and its capacity to 
unravel complex, non-linear relationships between the 
dependent variable and predictors (Rodriguez-Galiano 
et al. 2012; Wang et al. 2019). The ntree RF hyperparameter 
was set to 2000 for ensuring prediction stability (Probst and 
Boulesteix 2018). The optimum value of the mtry RF hyper-
parameter was found through tuning experiments consisting 
of repeated 10-fold cross-validation. RF classification per-
formance was assessed through the confusion matrix aver-
aged across 10-fold cross validation resamples. The 
following accuracy metrics were computed: overall accuracy 
(OA; %), Kappa index, user’s accuracy (UA; %), and produc-
er’s accuracy (PA; %) for each fire type category. Variable 
importance in multivariate RF models (i.e. those calibrated 
with MESMA fraction images) was calculated using the 
mean decrease in accuracy (MDA; %) metric. We also com-
puted partial dependence plots depicting continuous crown 
fire likelihood in a centred logit scale. Finally, we fitted a RF 
model using global data (conifer and broadleaf forests 
pooled together) to test the generalisation ability of 
MESMA image fractions and the best-performing spectral 
index. RF model objects were used to generate wall-to- 
wall predictions (i.e. fire type maps) for the broadleaf and 
conifer forests within the Sierra de la Culebra wildfire scar 
(Fig. 1), selected because it is one of the largest wildfires 
ever recorded in Spain and has a large area occupied by 
conifer and broadleaf forests. The Spanish Forest Map 
derived from the fourth Spanish National Forest Inventory 
was used to delimit the broadleaf and conifer stands. 

All analyses were conducted in R (R Core Team 2021). 

Results 

The CFB of conifer forests was significantly larger than that 
of broadleaf forests (Mann–Whitney P-value < 0.01) in the 
study sites (Fig. 2). Char fractional cover estimated from 
MESMA was significantly higher in conifer than in broadleaf 
forests (P-value < 0.01), with NPVS fraction exhibiting the 
opposite behaviour (Fig. 2). Both spectral indices (i.e. dNBR 
and RBR) and the GV MESMA fraction did not significantly 
differ (P-value > 0.05) between forest types (Fig. 2). 

All spectral indices and MESMA fractions differed signifi-
cantly between fire types (χ > 46.96; P-value < 0.001), 
with a significant increase from surface to crown fires in 
the case of spectral indices and the char MESMA fraction, 

and the opposite behaviour in the case of the GV and NPVS 
fractions (Fig. 3). The strongest relationship with fire type 
corresponded to the char MESMA fraction. 

In broadleaf forests, the highest performance in fire type 
classification was obtained by the multivariate RF model 
calibrated from MESMA fractions (OA = 82.09% and Kappa 
index = 0.71). The Producer’s and User’s accuracy of the 
model were balanced and no remarkable confusion was 
observed among all classes (Table 2). Classification accuracy 
was notably lower for the spectral indices (OA < 71.96% 
and Kappa index < 0.55), particularly for the dNBR 
(Table 2). The greatest confusion was observed for both 
indices between surface and intermittent crown fires, and 
between intermittent and continuous crown fires. 
Continuous crowning was never misclassified as a surface 
fire for all remote sensing products (Table 2). 

In conifer forests, the overall accuracy provided by spec-
tral indices and MESMA fractions in the RF fire type classi-
fication, as well as the Producer’s and User’s accuracy of the 
models (Table 3), followed the same pattern as in broadleaf 
forests (MESMA accuracy > RBR > dNBR). The very low 
confusion rate in the MESMA-based classification is worth 
noting (Table 3). 

All remote sensing products performed better in conifer 
(OA = 76.88% ± 8.11% and Kappa = 0.62 ± 0.13) than in 
broadleaf (OA = 72.71% ± 8.99% and Kappa = 0.56 ± 0.15) 
forests. 

The likelihood of continuous crowning relative to the 
spectral variability of burned areas captured by the 
MESMA fractions was very similar in conifer and broadleaf 
forests (Fig. 4). Occurrence of continuous crowning is linked 
in both ecosystems to post-fire char fractions greater than 
0.5, the maximum likelihood being reached when char frac-
tion is equal to 0.8. When GV and NPVS fractions are greater 
than 0.25–0.30, the likelihood of continuous crowning is 
very low. The MESMA char fraction was the most important 
variable to explain fire-type likelihood in broadleaf and 
conifer forests (Fig. 4). Consistency of continuous crowning 
likelihood between spectral indices and ecosystem types was 
lower than in the case of MESMA fractions (Fig. 4). dNBR 
values above 500 seem to be associated with maximum 
crowning probability in conifer forests, while in broadleaf 
forests the probability continues to increase progressively 
above such dNBR threshold. The same behaviour in both 
forest types was observed with RBR values above 300. 

When pooling data from conifer and broadleaf forests, 
the RBR index shows poor generalisation in fire type esti-
mates (OA = 62.88% and Kappa index = 0.42) (Table 4) 
when comparing results with RF classification models by single 
ecosystems (OA = 73.84% ± 2.79% and Kappa = 0.58 ± 0.04) 
(Tables 2 and 3), with even greater underestimation of 
continuous crowning and higher confusion between surface 
and intermittent crown fires. Conversely, the performance 
loss of the global RF model was negligible (OA = 82.95% 
and Kappa index = 0.73 vs OA = 83.79% ± 2.40% and 
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Kappa = 0.74 ± 0.04) when calibrated with MESMA frac-
tions (Table 4). 

These results are consistent with wall-to-wall fire type 
maps computed from RF model objects at landscape scale in 
broadleaf and conifer forests within the Sierra de la Culebra 
wildfire (Fig. 5). The area of continuous crowning is much 
smaller in RBR than in MESMA estimates due to the high 
confusion between intermittent and continuous crown fire 
types in the former product. Wall-to-wall estimates of the RF 
models calibrated in conifer and broadleaf forests separately 
are quite consistent with those of the RF model calibrated 
from global data in the case of MESMA fractions. In contrast, 

wall-to-wall estimates of RBR-based models are much less 
consistent between the two model calibration strategies. 

Discussion 

Despite the extensive literature on fire severity assessments 
through remote sensing techniques using integrative field 
measurements (e.g. Fernández-Guisuraga et al. 2023a;  
Miller et al. 2023) or physically meaningful variables such 
as crown scorch height or crown consumption (e.g. Lentile 
et al. 2009; Lydersen et al. 2016; Arkin et al. 2023), the 
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potential of physically-based and generalisable remote sens-
ing approximations to provide wall-to-wall fire type esti-
mates representative of wildfire behaviour is examined for 
the first time in this study. Our results showed the impor-
tance of generalisable remote sensing techniques to procure 
accurate crown fire likelihood estimates that align with 
post-fire land management needs in Mediterranean burned 
landscapes (Keeley 2009). This is particularly relevant 
because, although fire severity is closely related to fire 
behaviour (Finney 2005), the latter is what really deter-
mines the effectiveness of fire suppression efforts and size- 
dependent fire impacts (Fernandes et al. 2010). 

Typically, remote sensing techniques with a physical 
basis, including MESMA, perform better than empirical 
methods based on spectral indices for retrieving biophysical 
properties of burned landscapes (e.g. De Santis and 

Chuvieco 2007; Fernández-Guisuraga et al. 2021, 2023a;  
Quintano et al. 2023). Accordingly, MESMA image fractions 
also procured here a remarkably higher performance than 
spectral indices in the fire type RF classifier, particularly 
when pooling field data from several ecosystems. Mitri and 
Gitas (2006) used an object-based classification relying on 
spectral indices computed from a post-fire IKONOS scene, 
together with object contextual information, for mapping 
fire type within a single, small wildfire that affected a 
Mediterranean pine forest in Greece. The authors reported 
a classification accuracy (overall accuracy and Kappa index) 
comparable to that obtained here with MESMA fractions. 
However, they did not consider intermittent crown fire in 
the fire type classification, which may be responsible for 
high patchiness of fire effects over the landscape (Scott and 
Reinhardt 2001) and thus for mixed spectral responses. In 
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contrast to our study, only one ecosystem type within a 
single wildfire was examined, and it has been previously 
reported that spectral indices (1) suffer from generalisation 
issues between different vegetation types and environmental 
conditions due to the lack of physics in the retrieval of fire 
effects (e.g. De Santis and Chuvieco 2007; Lentile et al. 
2009; Fernández-Guisuraga et al. 2023a), and (2) have sub-
optimal sensitivity to complex spectral responses (e.g. Roy 
et al. 2006; Mallinis et al. 2018). 

Despite this, the higher accuracy of MESMA image frac-
tions versus spectral indices used as benchmark within the 
same experimental design for estimating fire-type spatial 
variability may be related to the sound physical meaning 
of sub-pixel image analysis techniques in post-fire environ-
ments (Quintano et al. 2013). In this context, capturing the 
variability in the fire type spectral signal can be a subpixel 
matter when using moderate spatial resolution multispectral 
imagery (Quintano et al. 2013; Fernández-Manso et al. 
2019), such as Sentinel-2. Specifically, the high spatial 
variability in surface and canopy fuels expected in 
Mediterranean fire-prone ecosystems (Fernández-Guisuraga 

et al. 2023a), together with fine-scale variations in terrain 
and fire weather, may result in fire behaviour alternation 
between different fire types at small spatial scales (Scott and 
Reinhardt 2001). MESMA image fractions also represent 
intrinsic biophysical characteristics of burned landscapes 
(i.e. char or photosynthetic vegetation), not only a second-
ary proxy for these constituents. Indeed, the SWIR region of 
broadband remote sensing data involved in dNBR and thus 
RBR calculation is not as sensitive to the spectral variability 
of char, ash and soil, nor to their complex mixture in post- 
fire scenarios as traditionally assumed (see Lentile et al. 
2009), unlike the NIR region to vegetation vigour or amount 
(Hudak et al. 2007). Several authors also stated that spectral 
indices such as dNBR were originally conceived to map 
burned areas, and not to estimate the variability in their 
biophysical properties (Roy et al. 2006). 

The ability of MESMA to resolve complex and mixed 
spectral responses of scorched and burned canopies due to 
the use of full available spectra (Quintano et al. 2023), 
rather than a limited number of bands and thus spectral 
information as in the case of spectral indices (Mallinis et al. 

Table 2. Confusion matrix and accuracy metrics of Random Forest 
(RF) fire type classification using spectral indices (dNBR and RBR) and 
MESMA image fractions in broadleaf forests.       

Fire type  Ground truth 

Surface Intermittent Crown   

Predicted 
(dNBR) 

Surface 9 6 0 

Intermittent 7 22 6 

Crown 0 5 12 

PA (%) 56.25 66.67 66.67 

UA (%) 60.00 62.86 70.59 

OA (%) Kappa   

64.18 0.42   

Predicted (RBR) Surface 10 5 0 

Intermittent 6 24 5 

Crown 0 4 13 

PA (%) 62.50 76.67 72.22 

UA (%) 71.43 67.65 81.25 

OA (%) Kappa   

71.86 0.55   

Predicted 
(MESMA 
fractions) 

Surface 12 2 0 

Intermittent 4 27 2 

Crown 0 4 16 

PA (%) 75.00 81.82 88.89 

UA (%) 85.71 81.82 80.00 

OA (%) Kappa   

82.09 0.71     

Table 3. Confusion matrix and accuracy metrics of Random Forest 
(RF) fire type classification using spectral indices (dNBR and RBR) and 
MESMA image fractions in conifer forests.       

Fire type  Ground truth 

Surface Intermittent Crown   

Predicted 
(dNBR) 

Surface 5 5 0 

Intermittent 3 21 8 

Crown 0 3 17 

PA (%) 62.50 72.41 68.00 

UA (%) 50.00 65.63 85.00 

OA (%) Kappa   

69.36 0.50   

Predicted (RBR) Surface 6 5 0 

Intermittent 2 22 6 

Crown 0 2 19 

PA (%) 75.00 75.86 76.00 

UA (%) 54.55 73.33 90.47 

OA (%) Kappa   

75.81 0.61   

Predicted 
(MESMA 
fractions) 

Surface 6 0 0 

Intermittent 2 25 3 

Crown 0 4 22 

PA (%) 75.00 86.21 88.00 

UA (%) 100.00 83.33 84.62 

OA (%) Kappa   

85.48 0.76     
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2018), may have prevented the high confusion between fire 
types and the underestimation of continuous crowning. This 
effect, evident in dNBR and RBR estimates and highly 

dependent on vegetation type (Lentile et al. 2009), was 
probably also attributable to the SWIR reflectance satura-
tion and steady NIR reflectance decrease at high char and 
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Fig. 4. Partial dependence plots depicting the relationship in broadleaf and conifer forests between crown fire likelihood and the 
variability of MESMA image fractions and spectral indices in the Random Forests (RF) classification algorithm. The red line is a LOESS 
smooth curve. Mean decrease in accuracy (MDA;%) metric is shown for each MESMA image fraction (multivariate RF models).   
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ash cover (Soverel et al. 2010). Indeed, high crown fire 
likelihood in conifer and broadleaf forests is linked to a 
post-fire MESMA char fractional cover of about 0.8 
(Fig. 4), close to the CFB defining a continuous crown fire 
(CFB > 0.89). Consistent with previous fire severity 
research (Tane et al. 2018; Fernández-Manso et al. 2019), 
the char fraction was the most important ground constituent 
to retrieve fire type likelihood in broadleaf and conifer 
forests. 

The better performance of MESMA-based models (and 
spectral indices) in conifer than in broadleaf forests may 
be associated with the typical lower canopy closure in 
Mediterranean conifer forests than in broadleaf forests 
(e.g. García et al. 2010; Sheffer et al. 2015), which may 
cause the char spectral signal from the lower canopy 
strata to be better captured by the sensor. This behaviour 
has been previously reported by Gibson et al. (2020) in 
Mediterranean, semi-arid and subtropical burned areas of 
eastern Australia. The authors evidenced that high canopy 
closure may result in the underestimation of the fire severity 
spectral signal sensed by moderate spatial resolution satel-
lites. Conifer forests were more prone to elevated CFB and 
thus to high-intensity crown fires than broadleaf forests 
according to fire hazard generic expectations and previous 
reports of crowning potential in the Mediterranean Basin 
(Fernandes 2009; Fernandes et al. 2010; Fernández- 
Guisuraga et al. 2023c), and in other biomes elsewhere 
(e.g. Scott and Reinhardt 2001; Epting and Verbyla 2005). 
This may be linked to higher accumulation of flammable 

litter and fuel loading of fine-fuel rich species in the unders-
tory of unmanaged Mediterranean conifer forests than in 
those dominated by broadleaf species, coupled with 
increased vertical fuel continuity and ladder fuels (Safford 
et al. 2012; Fernández-Guisuraga et al. 2021). 

MESMA fraction images provided not only more accurate 
fire type estimates than spectral indices in broadleaf and 
conifer forests, but also featured greater generalisation abil-
ity. This could be related to the analogy between the varia-
tion in crown scorch and consumption estimated through 
MESMA fraction images and the fire type definition (CFB) 
used in the field. In addition, the variability of the back-
ground reflectance signal corresponding to bare soil can 
affect the discrimination of ecological fire effects and gen-
eralisation ability when relying on spectral indices (Meng 
et al. 2017; Fernández-Guisuraga et al. 2023a). Conversely, 
the endmember collection of all representative ground con-
stituents at each site to build the definitive spectral library 
in the MESMA algorithm could be accounted for the mini-
misation of the background influence in the estimation of 
fire effects (Quintano et al. 2023). 

Overall, the results of this study could be leveraged by 
land managers to reliably infer tree damage, mortality and 
ecosystem responses in Mediterranean post-fire landscapes, 
and develop accordingly appropriate post-fire management 
plans and restoration strategies. In particular, the potential 
implementation of physical-based algorithms such as 
advanced spectral mixture models in consolidated geospa-
tial processing platforms in the cloud; e.g. Google Earth 
Engine (GEE; Gorelick et al. 2017), could emerge as a valu-
able resource for minimising data acquisition and processing 
efforts in wildfire management (Costa-Saura et al. 2022). 
Moreover, future research could leverage the potential of 
recently-available spectroscopic spaceborne data together 
with advanced image analysis techniques like MESMA 
(Quintano et al. 2023) to determine whether wall-to-wall 
fire behaviour estimates reported here can be further 
refined. Recently, the use of unmanned aerial vehicles 
(UAVs) has enabled accurate predictions of physically mean-
ingful variables as proxies for fire effects at the level of 
individual trees (Moran et al. 2022; Arkin et al. 2023), and 
can therefore be a reliable tool in future research to char-
acterise the fire type particularly when fire effects vary 
greatly at fine spatial scales. 

Conclusions 

We examined for the first time the potential of broadband 
satellite data to provide meaningful fire type estimates rep-
resentative of wildfire behaviour in Mediterranean ecosys-
tems. A key result of this study is that intrinsic biophysical 
characteristics of burned landscapes, such as the fractional 
cover of char or photosynthetic vegetation, retrieved from 
sub-pixel image analysis techniques with a physical basis, 

Table 4. Confusion matrix and accuracy metrics of Random Forest 
(RF) fire type classification using spectral indices (dNBR and RBR) and 
MESMA image fractions for global data (conifer and broadleaf forests 
pooled together).       

Fire type  Ground truth 

Surface Intermittent Crown   

Predicted (RBR) Surface 13 13 0 

Intermittent 8 40 15 

Crown 3 9 28 

PA (%) 55.56 64.52 65.12 

UA (%) 53.57 62.50 70.00 

OA (%) Kappa   

62.88 0.42   

Predicted 
(MESMA 
fractions) 

Surface 18 3 0 

Intermittent 6 51 5 

Crown 0 8 38 

PA (%) 75.00 82.26 88.37 

UA (%) 85.71 82.26 82.61 

OA (%) Kappa   

82.95 0.73     
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MESMA broadleaf forests RBR broadleaf forests

MESMA conifer forests RBR conifer forests

MESMA global

Field plots

Surface Intermittent Crown

RBR global

Fig. 5. Location of the field plots and wall-to-wall fire type predictions in broadleaf and conifer 
forests within the Sierra de la Culebra wildfire (RF model in conifer and broadleaf forests separately). 
We also present the map for the RF model calibrated from global data (conifer and broadleaf forests 
pooled together).   
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are more accurate at assessing fire type (e.g. surface or 
crown fire), given the direct physical interpretation, than 
commonly-used spectral indices. For example, post-fire char 
fraction estimates computed by MESMA can be used by 
forest managers directly to estimate the CFB and thus deter-
mine fire type in distinct ecosystems; i.e. without the need 
for calibration with field data, unlike spectral indices. Such 
estimates would enable evaluating both the performance of 
fire behaviour models and pre-fire treatments as moderators 
of extreme fire behaviour. 
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