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A B S T R A C T

The unprecedented availability of spaceborne hyperspectral data has great potential to provide fire severity esti-
mates that align with post-fire management needs, overcoming complex logistics and data acquisition costs of
airborne hyperspectral sensors, and the suboptimal sensitivity of broadband data to several post-fire ground com-
ponents. We analyzed the feasibility of the PRISMA mission -one of the first spaceborne spectrometers opera-
tionally active- to assess fire severity by leveraging hyperspectral data dimensionality through the retrieval of
sub-pixel components directly related to fire severity in the field. Multispectral data provided by Sentinel-2, com-
monly used in fire severity quantitative assessments, were used as a benchmark method. Multiple endmember
spectral mixture analysis (MESMA) was used to retrieve fractional cover of char, photosynthetic vegetation (PV),
as well as non-photosynthetic vegetation and soil (NPVS) from post-fire PRISMA Level 2D and Sentinel-2 Level
2A scenes in one of the largest wildfires ever recorded in the western Mediterranean Basin. Ground-truth data
were obtained using the Composite Burn Index (CBI) to procure three field-measured severity metrics: vegeta-
tion, soil and site. The relationship between the CBI data on a continuum scale and the cover of char, PV and
NPVS image fractions retrieved from PRISMA and Sentinel-2 was assessed through Random Forest regression
(RFR). Likewise, Ordinal Forests (OF) algorithm was used to classify categorized CBI data (low, moderate and
high fire severity). PRISMA-based RFR fire severity estimates at vegetation, soil and site levels (R2 = 0.64–0.79
and RMSE = 0.33–0.41) outperformed those of Sentinel-2 (R2 = 0.27–0.53 and RMSE = 0.54–0.60), and were
in line with previous studies using airborne hyperspectral sensors at higher spatial resolution. Fire severity un-
derestimation for high field CBI values was almost unnoticeable in the PRISMA estimates. Categorical fire sever-
ity, not currently estimated using hyperspectral data but with high interest in post-fire management, were accu-
rately predicted by PRISMA-based OF classification, with consistent user's and producer's accuracy for each fire
severity category. The high confusion between moderate and low/high fire severity categories, typical when un-
mixing broadband multispectral data, was overcome by the PRISMA-based classification scheme. Our results sug-
gest that new spaceborne spectrometer missions can support reliable fire severity assessments equivalent to air-
borne spectrometers, but readily applicable to large-scale assessments of extreme wildfire events.

1. Introduction

Fire is a recurrent disturbance in terrestrial ecosystems of the
Mediterranean basin (Pausas et al., 2008) and an evolutionary force
shaping landscape patterns (Keeley et al., 2012; Arnan et al., 2013;
Fernandes, 2013) and adaptive traits of species in fire-prone vegetation

communities for millennia (Keeley et al., 2011; Johnstone et al., 2016).
In the last decades, land use changes involving rural abandonment, to-
gether with fire suppression policies and lack of adaptive forest man-
agement, have promoted dense and continuous flammable fuels in this
region (Moreira et al., 2011; Fernandes, 2013; Pausas and Keeley,
2014). In the same way, an increase in heat waves and prolonged
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droughts, in the context of anthropogenic climate change (Giorgi and
Lionello, 2008), promote fuel dryness conducive to extreme fire events
(Pausas, 2004) with unprecedented ecological consequences
(Fernández-Guisuraga et al., 2019; Lasslop et al., 2019). In this context,
the year 2022 registered the most severe drought for 500 years in Eu-
rope, which coincided with an extreme fire season in which a burned
area of about 8600 km2 was reported in the European Union (European
Commission, 2022). Under this scenario, extensive areas are expected
to burn at high fire severity because of the connection between large
wildfire spread and extreme fire behavior determined by fuel, topogra-
phy and fire weather drivers (Lutz et al., 2009; Harvey et al., 2016).

Fire severity, broadly defined as the magnitude of the ecological
change in a burned area with respect to the pre-fire scenario (Lentile et
al., 2006), and operationally measured qualitatively as the fire effects
on vegetation and soils (Key and Benson, 2005), is one of the most used
fire regime attributes to measure ecological impact of wildfires (Keeley,
2009). Fire severity can be thoroughly assessed in the field using single
vegetation and soil indicators (e.g. Hammill and Bradstock, 2006;
Miller et al., 2009; Vega et al., 2013), or integrated indices such as the
Composite Burn Index (CBI; Key and Benson, 2005). However, the ex-
clusive use of field-based indicators is not feasible for assessing large
fires because of the associated costs in time and resources (Fernández-
Manso et al., 2019). For this reason, remote sensing-based assessments
of fire severity are increasingly used, together with accurate field data
for validation. Conventionally, spectral indices computed from broad-
band multispectral remote sensing data have been used to assess fire
severity through empirical models (e.g. the differenced Normalized
Burn Ratio -dNBR-; Key, 2006). These indices, often computed from
multispectral imagery acquired by Landsat and Sentinel-2 missions,
have been used extensively in many scientific studies throughout the
world (e.g. Roy et al., 2006; Norton et al., 2009; Fernández-Manso et
al., 2016a; Fernández-García et al., 2018a; Delcourt et al., 2021) and
also operationally in the Monitoring Trends in Burn Severity (MTBS)
program of the United States (Eidenshink et al., 2007; Picotte et al.,
2020). However, previous research identified several drawbacks in this
approach, namely: (i) its site or ecosystem-specific nature (Lentile et al.,
2009) that hinders potential model transferability (Epting et al., 2005);
(ii) the suboptimal performance of the limited spectral bands consid-
ered (Lentile et al., 2009); (iii) the inability to discriminate intermedi-
ate fire severity levels (Tanase et al., 2011); and (iv) the lower sensitiv-
ity to the spatial variation in fire effects at high severities than other
methods such as spectral unmixing (Kolden et al., 2015).

Physically-based methods, conventionally applied to broadband
multispectral data, such as spectral mixture analysis (SMA) and radia-
tive transfer models (RTMs), are a sounder approach to provide mean-
ingful fire severity estimates. For this purpose, RTMs have been used to
simulate the spectral response of plant communities as a result of fire-
induced changes and retrieve fire severity in a continuum scale from
satellite imagery (e.g. Chuvieco et al., 2007; De Santis et al., 2009,
2010; Yin et al., 2020), considering the physical link between biophysi-
cal or structural variation of the canopy and the plant community re-
flectance (Wang et al., 2022). RTMs parametrization that meets the as-
sumptions of plant communities with a complex structure is challeng-
ing (Yebra et al., 2008), and requires sampling many vegetation bio-
physical descriptors in the field to alleviate the ill-posed nature of the
models (Combal et al., 2003), but this demand is not usually operative
in the short term after the fire in the context of emergency-management
action needs (Fernández-Guisuraga et al., 2021a). Fraction images ob-
tained from sub-pixel image analyses, including SMA-family tech-
niques, are a solid alternative to retrieve fire severity from satellite im-
agery in heterogeneous post-fire environments (Quintano et al., 2006;
Lentile et al., 2009). In this sense, the retrieval of fire severity can be
considered a sub-pixel matter at moderate spatial resolutions (Quintano
et al., 2013) because a complex mixture of char, vegetation and soil
usually defines short-term scenes after fire (Meng et al., 2017;

Fernández-Manso et al., 2019). For that reason, sub-pixel techniques
have a sound physical sense in post-fire environments (Quintano et al.,
2012), are more readily scalable than RTMs (Meng et al., 2017) and do
not require field data for calibration purposes (Somers et al., 2012;
Quintano et al., 2020). Multiple endmember SMA (MESMA; Roberts et
al., 1998) has been one of the most widely considered sub-pixel image
analyses for fire severity estimation in recent years, mainly by retriev-
ing the char fraction from Landsat or Sentinel-2 data (e.g. Quintano et
al., 2019; Meng et al., 2017). Compared to the conventional linear SMA
(LSMA; Adams et al., 1986), MESMA accounts for land cover spectral
variability by allowing multiple spectra to be incorporated for each
endmember and different endmember combinations to unmix each
pixel in the modeling scheme (Roberts et al., 1998).

Although MESMA enabled successfully unmixing of broadband mul-
tispectral data in previous fire severity studies, a higher sensitivity to
variations of fire effects on vegetation and soils may be procured when
using narrowband remote sensing data as demonstrated by van
Wagtendonk et al. (2004), Kokaly et al. (2007) and Veraverbeke et al.
(2014) using Airborne Visible and Infrared Imaging Spectrometer
(AVIRIS) and Landsat (ETM+/OLI) data. In particular, MESMA is
highly suitable for hyperspectral data unmixing because the large num-
ber of narrow and spectrally contiguous bands provides enhanced spec-
tral information to discriminate the basic components (i.e. endmem-
bers) of the target fraction images in complex post-fire environments
(Tane et al., 2018). For example, Veraverbeke et al. (2014) used
weighted MESMA to compare the performance of narrowband (AVIRIS)
and broadband (Landsat OLI) data for assessing fire severity in western
United States. They found that the data dimensionality of AVIRIS en-
hanced image fraction estimates compared to Landsat OLI, and thus the
correlation with field-measured fire severity. The use of airborne hyper-
spectral sensors such as AVIRIS (Green et al., 1998) or HyMap (Cocks et
al., 1998) in operational fire severity assessments is constrained by the
low spatial coverage and logistics inherent to these platforms
(Veraverbeke et al., 2014; Cotrufo et al., 2018; Singh et al., 2020) with
respect to spaceborne sensors.

Alternatively, Fernández-Manso et al. (2019) mapped fire severity
in eastern Spain using a MESMA char fraction computed from the Hype-
rion sensor (Middleton et al., 2013) onboard the Earth Observing-1
satellite (EO-1), the only full-range spaceborne spectrometer in orbit
(Goetz, 2009) until it was decommissioned on March 2017. Despite the
success of Hyperion in a number of research fields, the narrow swath
width restricted its applicability to relatively small target areas
(Middleton et al., 2013). The PRecursore IperSpettrale della Missione Ap-
plicativa (PRISMA) mission, launched in March 2019, is considered a
follow-up of pioneering Hyperion mission and offers to advance our ex-
pertise in advanced remote sensing of large burned areas from the un-
precedented availability of 400–2500 nm hyperspectral satellite data
with a swath width of 30 km. Details on the PRISMA mission are pro-
vided in section 2.2. In the field of remote sensing of fire disturbances,
the potentiality of PRISMA hyperspectral data has been explored to
date in the mapping of forest fuels and burned area (Lazzeri et al., 2021;
Shaik et al., 2022), as well as in active fire detection (Amici and Piscini,
2021), but not in studies related to fire severity. Accordingly, this study
explores for the first time the potential of PRISMA hyperspectral scenes
to provide meaningful, physically-based fire severity estimates through
the retrieval of ground cover fractions. This is particularly relevant for
one of the first hyperspectral spaceborne missions, together with the
Environmental Mapping and Analysis Program (EnMAP) or the Ad-
vanced Hyperspectral Imager (AHSI) onboard GaoFen-5 (GF-5) satel-
lite, that would make possible large-scale assessments of fire severity
(Veraverbeke et al., 2018). Specifically, we used MESMA to retrieve
fractional cover of typical post-fire ground components (i.e. char, pho-
tosynthetic vegetation and soil) from a post-fire PRISMA scene, and es-
timate field-measured fire severity using multispectral Sentinel-2 re-
trievals as benchmark in one of the largest wildfires ever recorded in
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the western Mediterranean Basin. The prediction performance was
evaluated not only in terms of continuum fire severity per strata, but
also using categorized fire severity data, with special emphasis in inter-
mediate fire severity effects. We also examined the influence of plant
community type on fire severity retrieval performance.

Although previous studies have widely implemented physical-based
approaches to assess fire severity using multispectral sensors, including
radiative transfer models (e.g. De Santis and Chuvieco, 2007;
Fernández-Guisuraga et al., 2023) and MESMA (e.g. Quintano et al.,
2013; Fernández-Manso et al., 2016b), the leverage of hyperspectral
data and physical-based models for this purpose is scarce and limited to
airborne hyperspectral sensors (Veraverbeke et al., 2014; Tane et al.,
2018) or to the technology-demonstrator Hyperion imaging spectrome-
ter (Fernández-Manso et al., 2019). To the best of our knowledge, the
potential of physically-based, fire severity estimates retrieved from re-
cent spaceborne spectrometers has not been unraveled. This represents
an important gap in the scientific knowledge since hyperspectral data
acquired from recent spaceborne spectrometers feature differential
characteristics to previous sensors, namely a higher signal-to-noise ra-
tio than Hyperion data (Papeş et al., 2010; Cogliati et al., 2021), but
lower spatial resolution than airborne hyperspectral data (Lewis et al.,
2007). The impact of these differential characteristics must be deter-
mined when using generalizable physical-based models in the face of
recent and upcoming spaceborne spectrometers which will potentially
allow for operational assessments of fire severity in extreme wildfire
events (Veraverbeke et al., 2018). Also, this is the first study to evaluate
the potential of the high dimensionality of hyperspectral data in pre-
dicting field estimates of fire severity by community strata (i.e. individ-

ual CBI scores at the soil, vegetation and site levels), which is one of the
most requested procedures by land managers to identify priority areas
for post-fire management. (Fernández-Guisuraga et al., 2023).

2. Material and methods

2.1. Study site and fire severity assessment in the field

The case-study site is an extreme wildfire event that burned
28,046 ha of forest, woodland, shrubland and grassland plant commu-
nities between June 15th and 19th, 2022 in the Sierra de la Culebra
(northwest Iberian Peninsula; Fig. 1). The wildfire was the second
largest ever recorded in Spain. Orography is characterized by steep hill-
sides and wide valleys, with altitude ranging between 747 and 1205 m
above the sea level. Climate is Mediterranean, with mean annual tem-
perature and precipitation of 11 °C and 750 mm, respectively
(Ninyerola et al., 2005). Extreme fire weather conditions were recorded
during fire spread (Rodrigues et al., 2023) as a consequence of a heat
wave that occurred between June 11th and 20th (Regional Forestry Ser-
vice personal communication). Also, a severe drought was recorded in
the spring season preceding the fire date. The wildfire affected Pinus
sylvestris L. (Scots pine) and Pinus pinaster Ait. (maritime pine) forests,
Quercus ilex L. (holm oak) and Quercus pyrenaica Willd. (Pyrenean oak)
woodlands, shrublands dominated by Cistus ladanifer L., Pterospartum
tridentatum (L.) Willk., Erica australis L., and Halimium lasianthum subsp.
alyssoides (Lam.) Greuter, and Mediterranean grasslands. Fire behavior
was extreme in maritime pine stands and shrublands, but moderate fire

Fig. 1. Sierra de la Culebra wildfire in the western Mediterranean Basin (NW Iberian Peninsula), and distribution of the field plots where the Composite Burn Index
(CBI) was assessed within the fire scar. The background image is a Sentinel-2 false color composite (R = band 12; G = band 8A; B = band 4).
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effects prevailed in Scots pine and oak woodlands/forests (Regional
Forestry Service, personal communication).

One month after the wildfire (July 2022), we assessed fire severity
in 70 field plots of 30 m × 30 m. We used a slightly modified version
(Fernández-García et al., 2018a) of the Composite Burn Index (CBI; Key
and Benson, 2005) in which we did not consider attributes related to
extended fire severity assessments (e.g. colonizers or change in species
composition), or those related to burned legacies that were not signifi-
cantly present in the study site (e.g. heavy fuel consumption in the sub-
strate). Previous studies (Quintano et al., 2019; Fernández-Guisuraga et
al., 2021a, 2023; Huerta et al., 2022) have shown the suitability of
these CBI modifications in Mediterranean plant communities similar to
those in our study site. Plots were georeferenced using a GPS receiver
with RMSEX,Y < 1 m and established in areas with homogeneous fire
effects to ensure uniform spectral responses. Sampling design was ran-
domly stratified, using the dominant plant communities as strata (ex-
cluding grasslands). In the understory layer, we recorded fine fuel con-
sumption and char attributes for the substrate stratum. For the strata
consisting of herbs, low shrubs and trees <1 m tall, as well as for the
strata consisting of tall shrubs and trees between 1 and 5 m, we
recorded the percent of foliage consumed. In the overstory layer (i.e. in-
termediate trees with 5–20 m and trees taller than 20 m), we recorded
the percentage of green/black/brown foliage and the trunk char height.
The consensus of at least two observers was deemed necessary to vali-
date a measurement (De Santis and Chuvieco, 2007). We calculated site
CBI (i.e. overall CBI of the plot) as the average of the rating scores
across all strata, vegetation CBI same as site CBI excluding the sub-
strate, and soil CBI by averaging only the rating scores in the substrate.
Categorized fire severity data was obtained through the CBI thresholds
suggested by Miller and Thode (2007): low (CBI < 1.25), moderate
(1.25 ≤ CBI ≤ 2.25) and high (CBI > 2.25). We used these CBI thresh-
olds because they are widely accepted worldwide (e.g. Miller et al.,
2009; Kane et al., 2014; Parks et al., 2014; Parker et al., 2015;
Stambaugh et al., 2015), and provided comparable fire effects in the
plant communities at the study site with those described by Miller and
Thode (2007), as in other Mediterranean communities (Quintano et al.,
2015, 2017; Fernández-Guisuraga et al., 2023).

2.2. Multispectral and hyperspectral satellite data

The multispectral push-broom sensor onboard Sentinel-2 satellite of
the European Space Agency (ESA) provides 13 bands at different spatial
resolution (10 m, 20 m, 60 m) spanning the visible-near infrared
(VNIR; 10 bands) and the short-wave infrared (SWIR; 3 bands) regions.
We selected a post-fire Sentinel-2A Level 2A scene covering the study
site on July 15th, 2022 from the Copernicus Open Access Hub. This ac-
quisition date was selected based on the availability of cloud-free im-
agery as close as possible to both field sampling and on-demand acqui-
sition date of the cloud-free PRISMA scene. Level 2A corresponds to a
bottom-of-atmosphere (i.e. surface reflectance) orthorectified product
corrected for atmospheric effects by the provider using the Sen2Cor al-
gorithm (ESA, 2022). The nearest neighbor resampling technique was
used to downsample 10-m bands to a spatial resolution of 20 m. The
bands at 60 m were discarded from subsequent analyses because they
are heavily influenced by atmospheric effects (Jia et al., 2016).

PRISMA is the spaceborne hyperspectral mission of the Italian Space
Agency (ASI) launched in March 2019, with an expected mission life-
time of 5 years. The satellite has a revisit time of 29 days at nadir view-
ing, and features a swath width of 30 km. The push-broom VNIR and
SWIR spectrometers acquire spectral data in 240 bands between 400
and 2500 nm with a bandwidth lower than 15 nm (Cogliati et al.,
2021), and at a spatial. Resolution of 30 m. On-demand acquisition of
the PRISMA scene covering the study site was obtained on July 13th,
2022 under clear-sky conditions. The scene was processed by the
PRISMA mission ground processor and the Level 2D product was down-

loaded from the mission server (https://prisma.asi.it/). Level 2D corre-
sponds to a bottom-of-atmosphere orthorectified product corrected for
atmospheric effects by the image provider using MODTRAN6 radiative
transfer code (ASI, 2020; Pignatti et al., 2022). We stacked VNIR and
SWIR bands to build the hyperspectral cube, keeping the SWIR bands in
the spectral range where VNIR and SWIR bands overlap. The bands
with artifacts and a low signal-to-noise ratio identified by visual inspec-
tion, and those in the main water vapor absorption regions, were ex-
cluded (Tane et al., 2018; Amici and Piscini, 2021) for subsequent
analyses. These were bands spanning wavelengths from 400 to 434 nm,
1345–1459 nm, 1774–1975 nm, 2010–2035 nm and 2469–2505 nm.
The scene presented an across-track strip with anomalous reflectance
data due to a calibration failure, affecting some VNIR bands and all
SWIR bands, and was consequently discarded. The strip coincided with
the central axis of the wildfire but not with any CBI plot.

2.3. MESMA procedure

Two steps were followed to apply the MESMA algorithm to the origi-
nal Sentinel-2 and PRISMA surface reflectance images and retrieve
cover fraction images. First, endmember spectra were identified and a
spectral library was built. This stage is a key step, as the adequate selec-
tion of the endmembers and their spectral signature determines the ac-
curacy of results (Tompkins et al., 1997). Second, the spectral unmixing
of the surface reflectance images was carried out using the spectral li-
brary previously defined to obtain a fraction image for each considered
endmember.

2.3.1. Definition of the spectral library
The definition of the final spectral library of the land covers present

in the study site consisted on the following steps:

1. Extraction of candidate endmembers from the original image
(image endmembers)

This step was carried out manually using a spectral signature viewer
and, according to previous fire severity studies (Quintano et al., 2013,
2017, 2020), we chose char, photosynthetic vegetation (PV), non-
photosynthetic vegetation (NPV), soil, and water as endmembers to un-
mix the images. Based on Dudley et al. (2015) and Fernández-Manso et
al. (2016b), regions of interest or georeferenced polygons of each se-
lected class were delineated to define all candidate spectra. These poly-
gons were homogeneous areas formed by an expected single land cover,
from which the candidate spectra were extracted to create the initial
spectral library. They were the same for both post-fire images (PRISMA
and Sentinel-2). Delineation of polygons outside the fire scar was as-
sisted using as reference the Spanish Forest Map, 50-cm orthophotos
from Spanish Aerial Ortho-photography National Plan (PNOA) and the
color composite of original images.

Spectral signature of the candidate endmembers was reviewed to
verify that they had the typical shape for the analyzed targets following
Quintano et al. (2020). Endmember spectra for dry grasslands lacked
the typical lignocellulose absorption features centered around 2100
and 2300 nm (Fig. 2) and the sharp increase in red edge reflectance ex-
pected from own knowledge, ECOSTRESS spectral libraries (Meerdink
et al., 2019) and previous research (e.g. Boelman et al., 2011; Dennison
et al., 2019). This behavior may be attributable to the pronounced spa-
tial heterogeneity of non-irrigated, dry grasslands in the study site.
These communities are encroached by scattered woody vegetation, as
in other Mediterranean grasslands (e.g. Maestre et al., 2011), feature a
high percentage of bare soil, and commonly have wide, man-made
stone walls (Peco et al., 2012) to delimit small fields. Then, the acquisi-
tion of pure pixels in these communities is almost impossible at the spa-
tial resolution of PRISMA and a land cover aggregation effect of mixed
pixels can be expected (Fernández-Guisuraga et al., 2021b), and thus
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Fig. 2. Examples of endmember spectra included in the spectral library for unmixing Sentinel-2 (left) and PRISMA (right) images (PV: Photosynthetic vegetation;
NPVS: Non-photosynthetic vegetation and soil). Gray shaded bands in the PRISMA plots indicate regions with artifacts, low signal-to-noise ratio or water vapor ab-
sorption.
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differences in endmember spectra. Our dry grasslands' endmember
spectra closely resemble the non-irrigated lands' NPV spectra used to
unmix an EO-1 Hyperion image in Mediterranean communities of east-
ern Spain (Fernández-Manso et al., 2019). However, the impact in the
unmixing result is expected to be minimal because image endmembers
are collected at the same scale as the image and are easier to associate
with image features (Franke et al., 2009).

Finally, char spectra were obtained from expected homogeneous
polygons delineated exclusively within the fire scar, based on the color
composite and their spectral signature. Char polygons were delineated
in areas with different fire severity levels (low, moderate and high) to
improve char fraction retrieval according to Quintano et al. (2020) and
Fernández-Manso et al. (2016b, 2019).

2. Definition of the final spectral library

A semi-automatic procedure consisting of two steps was used to se-
lect the endmembers definitively included in the final spectral library
following Quintano et al. (2020):

a) Iterative Endmember Selection method (IES), proposed by Schaaf
et al. (2011) and updated by Roth et al. (2012). IES automatically se-
lected the most representative endmembers of the different spectral
classes based on the maximization of the classification accuracy mea-
sured by the kappa statistic. In this way, a provisional spectral library
was procured.

b) Joint calculation of three indices for each candidate endmember
present in the initial spectral library: (i) Endmember Average RMSE
(EAR; Dennison and Roberts, 2003), which identifies endmembers that
minimize RMSE within a class, and, therefore, the optimal endmember
would be the one that produces the lowest EAR value; (ii) Minimum Av-
erage Spectral Angle (MASA; Dennison et al., 2004), which identifies
endmembers with the minimum average spectral angle, and thus lower
MASA values are preferred; and (iii) Count-based Endmember Selection
Index (CoB; Roberts et al., 2003), which identifies endmembers that
model the maximum number of endmembers within their class. Higher
CoB values are preferred. Each index provides unique information to
determine which spectra are more representative of their class while
covering the most within-class variability (Roberts et al., 2019). Those
endmembers not selected by the automatic IES procedure, but whose
EAR, MASA and CoB index values reflected a high suitability according
to Quintano et al. (2013, 2020), were manually added to the provi-
sional spectral library to form the final spectral library. Specifically, we
included an additional endmember per class based on these three in-
dices if it jointly exhibits the highest CoB value, the lowest EAR value,
and the lowest MASA value.

Endmember extraction and the definition of the spectral library
were performed by using the Visualization and Image processing for En-
vironmental Research (VIPER) tools 2.1 software (Roberts et al., 2019)
(https://sites.google.com/site/ucsbviperlab/viper-tools).

2.3.2. Unmixing
Endmembers of the spectral library were organized hierarchically at

different levels enabling the definition of several levels of complexity
that can be used simultaneously to unmix the PRISMA and Sentinel 2
images using the multilevel fusion procedure (Roberts et al., 2003).
Furthermore, once the level or levels of complexity used for unmixing
were defined, we selected the maximum number of endmembers to be
used in each model, as well as their specific signatures. We also ad-
justed the values of some restrictions used in the unmixing process: (i)
maximum and minimum admissible fraction values, (ii) minimum and
maximum allowable shade fraction values, (iii) maximum allowed
RMSE, and (iv) maximum percentage of unclassified pixels after unmix-
ing admissible for the results to be considered valid. The considered
values were similar to those used in previous studies (Fernández-Manso
et al., 2016a, 2019; Quintano et al., 2013, 2020). In particular, mini-

mum and maximum admissible fraction values, −0.10 and 1.10, respec-
tively; minimum and maximum allowable shade fraction values, 0.00
and 1.00, respectively; maximum allowed RMSE, 0.025; and maximum
percentage of unclassified pixels, 5%. Furthermore, to minimize the in-
fluence of external factors when comparing the behavior of the two sets
of fraction images (Sentinel-2 and PRISMA) in relation to CBI values, it
was sought that the parameters used to perform the unmixing of the
two images were the same.

Pixel unmixing is an iterative process since it may be necessary to
adjust the hierarchical level of the spectral library and the number of
endmembers until the imposed restrictions (i.e. admissible fraction val-
ues, allowable shade fraction values, maximum allowed RMSE and
maximum percentage of unclassified pixels) are fulfilled. From this
point, the definitive fraction images were shade-normalized, highlight-
ing the contribution of the rest of the endmembers (Rogan and
Franklin, 2001; Roberts et al., 2019). Finally, the cover by image frac-
tions was extracted for each CBI plot of 30 m × 30 m by averaging the
values of a regular grid of points with a 5-m spacing (Picotte and
Robertson, 2011) due to the allocation of several pixels within each
plot.

All procedures to unmix both post-fire images were completed by
using the Visualization and Image processing for Environmental Re-
search (VIPER) tools 2.1 software (Roberts et al., 2019) (https://
sites.google.com/site/ucsbviperlab/viper-tools).

2.4. Data analyses

The relationship between the CBI (site, vegetation and soil) mea-
sured in the field plots on a continuum scale (dependent variable) and
the cover by image fractions -char, PV, NPVS- (independent variables)
retrieved from Sentinel-2 and PRISMA images was assessed through
Random Forest regression (RFR; Breiman, 2001) ensemble learning al-
gorithm. We chose RFR for its ability to efficiently handle overfitting is-
sues and unravel complex interactions and non-linear relationships be-
tween predictors and with the response variable (Breiman, 2001; Cutler
et al., 2007; Rodriguez-Galiano et al., 2012; Gigović et al., 2019). The
ntree RFR model parameter was set to 2000 to guarantee stable predic-
tions (Probst and Boulesteix, 2018), and the mtry parameter was tuned
to find the appropriate value (mtry = 2). The increase in mean square
error (%IncMSE) attribute was used to assess the relative importance of
each independent variable in the model. We fitted separate models for
Sentinel-2 and PRISMA images, both for the entire study site and also
by plant community. RFR performance was assessed using 5-fold cross
validation resampling, repeated 5 times, computing the average predic-
tion across resamples. We assessed the relationship between observed
and predicted CBI values using the coefficient of determination (R2),
the mean bias error (MBE), the RMSE, and the normalized RMSE
(nRMSE) because of the different fire severity intervals observed in
each CBI level and in each plant community. The nRMSE was computed
using the difference between the maximum and minimum observed CBI
values as normalizing factor (Zambrano-Bigiarini, 2020).

Ordinal Forests (OF; Hornung, 2020), a novel Random Forest-based
classification algorithm adapted for ordinal responses, was used to clas-
sify categorized site CBI data (dependent variable) using the cover by
image fractions -char, PV, NPVS- retrieved from Sentinel-2 and PRISMA
images (independent variables). This algorithm was chosen to avoid the
loss of information associated to the ordinal character of the response
variable (low, moderate and high CBI) (Fernández-Guisuraga et al.,
2021c), and to follow a similar modeling scheme, with comparable
strengths, as for the continuum CBI. The optimal values for OF algo-
rithm hyperparameters (Bsets = 2150, Bbestsets = 10, Bntreeprior = 150,
Bntree = 2400, Nperm = 500) were determined through tuning experi-
ments. See Hornung (2020) for a detailed description of the effect of hy-
perparameters in OF models. We selected an equal performance func-
tion to classify observations from each category with the same accuracy
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independently of category sizes (Hornung, 2020). OF classification per-
formance was evaluated using 5-fold cross validation resampling, re-
peated 5 times, computing the average confusion matrix across resam-
ples. We considered the following accuracy metrics: overall accuracy
(OA; %), Kappa index, and user's (UA) and producer's (PA) accuracy
(%) for each class.

RF and OF analyses were conducted in R (R Core Team, 2021) using
the “randomForest” (Liaw and Wiener, 2002), “ordinalForest”
(Hornung, 2022) and “caret” (Kuhn, 2020) packages.

3. Results

The endmembers extracted from the Sentinel-2 and PRISMA surface
reflectance images included several classes representative of the study
site (Table 1 level 1 column). Based on previous studies (Quintano et
al., 2013, 2020; Fernández-Guisuraga et al., 2022), five hierarchical
levels were established in the spectral library from the land cover by
grouping the level 1 classes (Table 1). The joint use of the automatic IES
algorithm and the EAR, MASA and CoB indices enabled the identifica-
tion of the optimal spectra for building the final spectral library. Some
examples of the endmember spectra included in the final spectral li-
brary are displayed in Fig. 2. The number of endmembers of each class
(level 1) was similar for Sentinel-2 and PRISMA images (Table 2).

It must be emphasized that, as indicated in the Section 2.3.2, before
the definitive fraction images were calculated several unmixing trials
were performed by varying the hierarchical level of the spectral library
and the number of included endmembers. In our study, the highest per-
centage of Sentinel-2 and PRISMA classified pixels after unmixing was
achieved by using the hierarchical level 3, with 3- and 4-endmember
models, and including all the endmembers of the final spectral library
except those corresponding to the water class. Thus, to calculate the de-
finitive fraction images we tested 1378 and 1386 3-endmembers mod-
els, and 9576 and 9720 4-endmembers models for the Sentinel-2 and
PRISMA images, respectively. However, the number of models finally
used for the Sentinel-2 and PRISMA images was 6598 and 3223, respec-
tively, which represents approximately 60% and 30% of the models
tested.

The percentage of unclassified pixels was 1.45% in the PRISMA
scene and 0.82% in the Sentinel-2 scene (Table 3), respectively, num-
bers much lower than the threshold proposed by literature (5%;
Quintano et al., 2017). The percentage of pixels unmixed by 3- and 4-
endmember models that included the char endmember in the PRISMA

Table 1
Hierarchical levels of multiple endmember spectral mixture analysis
(MESMA) spectral library.
Level 1 Level 2 Level 3 Level 4 Level 5

Woodlands of Quercus sp. PV PV PV VSW
Forests of Pinus pinaster
Forests of Pinus sylvestris
Shrublands
Grasslands
Irrigated croplands
Dry grasslands NPV NPVS NPVSW
Soil Soil
Urban areas
Roads
Open mine
Dam Water Water
River
High fire severity Char Char Char Char
Moderate fire severity
Low fire severity

PV: Photosynthetic vegetation; NPV: Non-photosynthetic vegetation; NPVS:
Non-photosynthetic vegetation and soil; NPVSW: Non-photosynthetic vegeta-
tion, soil and water; VSW: vegetation, soil and water

Table 2
Number of endmembers of the definitive spectral library.
Levels 1&2 of spectral library #Endmembers

PRISMA image Sentinel 2 image

PV 27 28
Woodlands of Quercus spp. 6 5
Forests of Pinus pinaster Ait. 3 3
Forests of Pinus sylvestris L. 4 4
Shrublands 4 5
Grasslands 5 6
Irrigated croplands 5 5
NPV 8 7
Dry grasslands 8 7
Soil 12 12
Soils 4 4
Urban areas 4 4
Roads 3 3
Open mine 1 1
Water 6 3
Dam 4 2
River 2 1
Char 19 18
High fire severity 11 11
Moderate fire severity 4 4
Low fire severity 4 3

PV: Photosynthetic vegetation; NPV: Non-photosynthetic vegetation

Table 3
Summary of unmixing results in terms of number of pixels classified by 3-
and 4-endmember models in the hierarchical level 3.
Model Complexity Hierarchical level 3 %Classified pixels

PRISMA Sentinel 2

3-endmember models CHAR – PV - shade 10.13 8.48
CHAR – NPVS - shade 25.96 23.75
PV – NPVS - shade 60.98 63.39
Total 3-endmember models 97.07 95.62

4-endmember models CHAR – PV – NPVS - shade 1.46 3.56
Total 4-endmember models 1.46 3.56

Total classified 98.53 99.18
Unclassified 1.47 0.82
TOTAL 100 100

PV: Photosynthetic vegetation; NPVS: Non-photosynthetic vegetation and soil

scene (38.05%) was slightly higher than in the Sentinel-2 scene
(35.79%) (Table 3).

The shade-normalized char fraction images for Sentinel-2 and
PRISMA scenes (Fig. 3) clearly discriminated burned from unburned ar-
eas inside and outside the fire perimeter, but the Sentinel-2 char frac-
tion showed higher noise corresponding to unburned areas. Differences
in char, PV and NPVS fraction values within the fire perimeter suggest
different fire severity levels (Fig. 3).

The mean site CBI (i.e. overall CBI of each plot) within the fire scar
was equal to 1.89. 20% of the plots were classified as low severity
(CBI < 1.25), 40% as moderate severity (1.25 ≤ CBI ≤ 2.25) and 40%
as high severity (CBI > 2.25). Maritime pine stands featured the high-
est fire severity, with a mean site CBI equal to 2.32. The lowest fire
severity was registered in Pyrenean oak forests (mean site CBI equal to
1.55), according to expectations. The mean vegetation and soil CBI
within the fire scar were equal to 2.10 and 1.69, respectively.

The accuracy of the RFR models trained with PRISMA fraction im-
ages (char, PV and NPVS) used to retrieve site, vegetation and soil fire
severity (R2 = 0.64–0.79 and RMSE = 0.33–0.41) was substantially
higher than that achieved from Sentinel-2 (R2 = 0.27–0.53 and
RMSE = 0.54–0.60) based on field-based fire severity assessments for
the entire study area (Fig. 4). For both sensors, the lowest performance
was obtained in the retrieval of soil fire severity, although the differ-
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Fig. 3. Shade-normalized fraction images from Multiple Endmember Spectral Mixture Analysis (MESMA) procedure (PV: Photosynthetic vegetation; NPVS: Non-
photosynthetic vegetation and soil).

ence in retrieval performance between vegetation/site and soil fire
severity was lower in the case of PRISMA. Fire severity was slightly un-
derestimated for high field-measured severity values (CBI > 2.25) from
the Sentinel-2 retrieval, this effect being much less noticeable in the
case of the PRISMA retrieval as evidenced by the MBE metric (Fig. 4).
The char fraction was the most contributing variable in the RFR models
(Table 4).

The performance of fire severity retrievals by plant community fol-
lowed the same pattern as for the entire study site (Table 5). The re-
trieval from PRISMA fraction images presented a lower error
(nRMSE = 13.3%–29.1%) than the Sentinel-2 retrieval
(nRMSE = 18.2%–38.7%) in all communities. In general, the retrieval
error was higher in Pyrenean oak and maritime pine stands (Table 5).

The spatially-explicit fire severity maps computed from RFR model
outputs for PRISMA (Fig. 5) revealed that the highest fire severities oc-
curred in the southwesternmost sector of the wildfire, spatially coinci-
dent with maritime pine plantations. In these areas, fire severity was
clearly underestimated by the Sentinel-2 retrieval in concordance with
field-based validation results (Fig. 4).

When considering categorized fire severity data (Table 6), the high-
est classification performance was also achieved by the OF model
trained with PRISMA fraction images (OA = 83% and Kappa = 0.73),
with Sentinel-2 obtaining modest results (OA = 57% and
Kappa = 0.33). In the PRISMA-based classification, PA and UA values
for each fire severity category were highly balanced and consistent with
OA. Specifically, PA and UA values were always higher than 70%, in-
cluding for the moderate fire severity category. In the case of Sentinel-
2, high fire severity had the highest PA and UA values.

4. Discussion

Previous studies reported the potential of narrowband hyperspectral
remote sensing data collected by airborne or the technology-
demonstrator Hyperion spectrometers to produce meaningful, physi-
cally-based estimates of fire severity through the fractional cover re-
trieval of representative ground components in a post-fire landscape
(Lewis et al., 2007, 2011; Veraverbeke et al., 2014; Fernández-Manso et

al., 2019). Nevertheless, these findings are limited by the low ability to
evaluate large surfaces and high costs of airborne acquisitions
(Veraverbeke et al., 2018), as well as the low signal-to-noise ratio and
narrow swath width of Hyperion scenes (Papeş et al., 2010). A key find-
ing of this study is that state-of-the-art PRISMA spaceborne spectrome-
ter overcomes these limitations in the context of extreme wildfire
events. First, the on-demand acquisition of PRISMA scenes is straight-
forward as compared to airborne hyperspectral data (Veraverbeke et
al., 2014). Second, the PRISMA retrieval performance of sub-pixel com-
ponents directly related to fire severity was remarkably high in spite of
the lower spatial resolution than airborne spectrometers, and in line
with previous research involving airborne hyperspectral data (e.g.
Lewis et al., 2011; Veraverbeke et al., 2014).

The basis of the proposed fire severity assessment with PRISMA hy-
perspectral data, benchmarked with the multispectral capabilities of
Sentinel-2, relied on the representative characterization of per-pixel
fractional cover in the post-fire scenes. The high classification percent-
age (> 98.5%) of PRISMA and Sentinel-2 scenes could be accounted for
by the precise endmember selection through the combination of the IES
algorithm with EAR, MASA and CoB indices (Quintano et al., 2020),
avoiding ill-posed models and data overfitting (Li et al., 2005).
Fernández-Manso et al. (2019) and Quintano et al. (2020) achieved
similar unmixing percentages when using a multi-level fusion approach
and comparable hierarchical levels of the spectral library to retrieve
post-fire fractional covers from Hyperion and Sentinel-2 scenes, respec-
tively. Here, NPV and soil formed just one category in the third level of
the spectral library. This finding agrees with previous studies suggest-
ing that the grouping of NPV and soil in a unique spectral library
(NPVS) provided accurate results in the classification of burned land-
scapes (Fernández-Manso et al., 2019; Quintano et al., 2017; Quintano
et al., 2019). The fewer potential MESMA models required by the
PRISMA scene for subpixel fraction estimation than the Sentinel-2 scene
may be associated with the increased spectral data volume of PRISMA,
and thus the improved capture of distinctive spectral features within
classes (Lewis et al., 2011; Degerickx et al., 2019). This may also ex-
plain both the high number of unmixed pixels that included a char end-
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Fig. 4. Relationship between observed and predicted site, vegetation and soil Composite Burn Index (CBI) for the Sentinel-2 and PRISMA retrievals considering all
plant communities together.

member and the low char fraction noise from the PRISMA post-fire
scene.

Fire severity retrieval in a continuum scale from PRISMA post-fire
fraction images outperformed the Sentinel-2 retrieval at the site, vege-
tation and soil levels in our study. PRISMA retrieval accuracies reported
here, attributable to high spectral resolution and spectral data dimen-
sionality (van Wagtendonk et al., 2004; Veraverbeke et al., 2014, 2018;
Fernández-Manso et al., 2019), are comparable to previous studies us-
ing a variety of airborne hyperspectral sensors and SMA-based ap-
proaches, including MESMA. For example, Veraverbeke et al. (2014)
found that the burned fraction retrieved from AVIRIS data had higher
correlation with the geometrically structured CBI (GeoCBI; R2 = 0.86)
than Landsat OLI-based estimates (R2 = 0.65) over the Canyon Fire
(California, United States). In the Taylor Complex fires occurred in

Alaska's boreal forest, Lewis et al. (2011) evidenced varying correla-
tions (R2 = 0.27–0.79) between PV and char fraction images retrieved
from HyMap hyperspectral data, and post-fire ground components mea-
sured in the field. Robichaud et al. (2007) found moderate to strong
correlations (R2 = 0.21 to 0.48) between field-measured fractional
cover of ash, soil, and vegetation and that retrieved from Probe I hyper-
spectral sensor in the Hayman wildfire in the Rocky Mountains. Despite
the higher spatial resolution procured by airborne hyperspectral sen-
sors (Lewis et al., 2007), this may not be a decisive parameter at the
scale of CBI plots in view of the accuracies obtained in this study at
moderate spatial resolution.

A plausible explanation for the enhanced retrieval performance of
site and vegetation fire severity compared to that of soil may be related
to the occlusion of background signal by vegetation legacies and burned
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Table 4
Variable importance in Random Forest regression (RFR) models for site, vege-
tation and soil Composite Burn Index (CBI), measured as the percentage in-
crease in mean square error (%IncMSE).
%IncMSE CBI components

site vegetation soil

Sentinel-2 Char 57.83 56.42 48.21
PV 24.20 27.96 18.36
NPVS 18.54 25.28 12.58

PRISMA Char 60.79 63.11 54.49
PV 33.27 35.99 26.43
NPVS 36.13 32.35 35.23

PV: Photosynthetic vegetation; NPVS: Non-photosynthetic vegetation and soil

Table 5
Random Forest regression (RFR) model performance for each plant commu-
nity, assessed through the normalized RMSE (nRMSE). Errors above 25% are
displayed in red.
nRMSE (%) CBI components

site vegetation soil

Sentinel-2 Holm oak 25.1 24.4 24.8
Pyrenean oak 26.9 27.2 37.5
Maritime pine 38.4 38.7 32.8
Scots pine 19.1 20.0 24.5
Shrub 18.2 18.6 20.9

PRISMA Holm oak 21.1 22.1 21.2
Pyrenean oak 19.6 24.2 28.7
Maritime pine 22.3 29.1 24.4
Scots pine 15.0 13.5 20.9
Shrub 13.3 14.6 13.9

remnants (Fernández-García et al., 2018a), especially in areas burned
at low or moderate fire severity, where the overstory strata are most
closely related to plot reflectance (Hudak et al., 2007; Cansler and
McKenzie, 2012). However, the loss of performance in the retrieval of
soil fire severity was less pronounced in the case of PRISMA (≈ 29%)
than in Sentinel-2 (≈ 55%) estimates, most probably associated with
the fire-amplified spectral similarities in forest background materials in
the band configuration of multispectral sensors (Robichaud et al., 2007;
Finley and Glenn, 2010; Peón et al., 2017). Nevertheless, the accuracy
of the PRISMA-based soil fire severity retrieval was remarkably high
(R2 = 0.63). The char fraction featured the highest importance in all
fire severity retrievals, in line with previous studies that reported the
relevance of the char fraction as a site fire severity indicator (Quintano
et al., 2017; Tane et al., 2018; Fernández-Manso et al., 2019). Here, we
also evidenced that char fraction was the most important post-fire
ground constituent on individual vegetation and soil severity assess-
ments.

The underestimation of high fire severity was minimal in PRISMA
estimates compared to those of Sentinel-2, which could be related with
the suboptimal sensitivity of Sentinel-2 discrete SWIR bands to soil and
char cover (Roy et al., 2006; Lentile et al., 2009), and also to SWIR re-
flectance saturation at high CBI values (Soverel et al., 2010). The per-
formance of fire severity estimates from both sensors decreased, partic-
ularly Sentinel-2, in communities dominated by maritime pine and
Pyrenean oak, with CBI values measured in the field plots between 1.5
and 3 and 0.5–2, respectively. The lower performance may have been
driven by the narrow range of fire severity in both communities (Allen
and Sorbel, 2008), but also by decoupled canopy and surface fire effects
(Saberi et al., 2022). In fact, maritime pine stands and mature Pyrenean
oak communities showed the greatest difference in mean vegetation
and soil fire severity values (≈ 0.75 CBI units).

The normalized error in the fire severity retrieval considering a con-
tinuum CBI scale was below 25% when we pooled all communities to-
gether for both sensors, which is considered an acceptable accuracy

Fig. 5. Composite Burn Index (CBI) maps computed from Random Forest re-
gression (RFR) model outputs for Sentinel-2 and PRISMA.

Table 6
Ordinal Forests (OF) classification performance evaluated through the aver-
age confusion matrix computed across 5-fold cross validation resamples.
Sentinel-2 Reference fire severity

Low Moderate High

Classified fire severity Low 10.6 11.4 1.1
Moderate 5.7 11.4 4.3
High 2.3 19.4 33.7
PA (%) 57.90 26.83 87.18
UA (%) 47.83 52.38 61.82
OA (%) Kappa
56.57 0.33

PRISMA Reference fire severity
Low Moderate High

Classified fire severity Low 17.2 5.2 0.9
Moderate 1.2 31.3 1.8
High 0.0 8.2 34.2
PA (%) 94.44 70.46 91.89
UA (%) 73.91 91.18 80.95
OA (%) Kappa
82.83 0.73

OA: overall accuracy; UA: user's accuracy; PA: producer's accuracy

threshold in fire severity assessment (e.g. De Santis and Chuvieco,
2007; Fernández-García et al., 2018a). However, only PRISMA-based
estimates remained below 25% for the site CBI when the analysis is
stratified by plant community. Going one step further by considering
categorized fire severity data using the thresholds proposed by Miller
and Thode (2007), we found that PRISMA-based classification enabled
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highly accurate fire severity estimates, with consistent PA and UA val-
ues for each fire severity class. We can suggest that the introduction of
hyperspectral data unmixing, particularly in a wildfire with large sec-
tions burned at moderate fire severity, solved to a large extent the high
confusion between moderate and low/high fire severity categories
(Miller and Thode, 2007). This problem is typical when unmixing
broadband data (Quintano et al., 2013; Quintano et al., 2017), and was
also evidenced in this study. In this sense, PRISMA data volume was
able to spectrally resolve the alternate fire effects that define the com-
plex nature of areas burned at moderate or mixed severity (Miller et al.,
2009).

Altogether, the results of this study are significantly relevant to the
fire ecology field, even more so considering the recent, and increasing
availability of spaceborne hyperspectral missions besides PRISMA, such
as Earth Sensing Imaging Spectrometer (DESIS) and Hyperspectral Im-
ager Suite (HISUI) onboard International Space Station (ISS), EnMAP,
or AHSI onboard GF-5 satellite, and upcoming NASA Surface Biology
and Geology (SBG) and Copernicus Hyperspectral Imaging Mission for
the Environment (CHIME) missions. Nevertheless, we are also aware of
several limitations of this study. First, PRISMA and Sentinel-2 scenes
were atmospherically corrected using different algorithms already im-
plemented by the image provider. We chose vendor-supplied surface re-
flectance products to minimize image processing workflows in a poten-
tial operational-use context in fire severity assessments. We assume that
slight differences could exist in the reflectance output of the atmos-
pheric correction algorithms, but no significant implications for our
analyses are expected as in previous studies (Quintano et al., 2018;
Cardille et al., 2022; Johnson and Mueller, 2021). Additionally, we
used image endmembers to form the MESMA spectral library indepen-
dently for each sensor and thus the impact of atmospheric correction is
minimized. Second, our study is based on a single fire event and the
transferability of the methodological approach should be further tested
in other Mediterranean ecosystems and biomes to evaluate the poten-
tial of new spaceborne hyperspectral missions for regional to global fire
severity assessments. However, the fire is extensive (28,046 ha) and the
land cover is heterogeneous since different Mediterranean plant com-
munities are encompassed within the fire scar, our PRISMA-based ap-
proach featuring a remarkable performance in each community. More-
over, the physical basis of MESMA has proven to show an adequate gen-
eralization ability in burned landscapes (e.g. Fernández-Guisuraga et
al., 2022). Third, the number of field plots could have been higher but
we decided to minimize the time lag between the end of the field sam-
pling campaign and the date of the PRISMA on-demand image acquisi-
tion. Likewise, the field sampling campaign had to be completed before
the burned wood extraction by the Regional Forest Service. We did not
consider control CBI plots because unburned areas within the fire scar
were dominated by residential fuels and agricultural lands in wildland-
urban interfaces, as well as riparian vegetation in valley-bottoms. Un-
burned islands with the presence of representative Mediterranean plant
communities were very small and located between low severity areas.
Accordingly, their size and shape were not adequate enough to accom-
modate homogeneous CBI plots. Presumably, the use of control CBI
plots may have decreased the precision of the fire severity estimates,
which is more realistic as there is potential confusion between un-
burned and low fire severity areas (McCarley et al., 2018). However,
these areas are not a priority for the implementation of post-fire emer-
gency management (De Santis et al., 2009). Despite the promising re-
sults involving spaceborne hyperspectral data availability to assess fire
severity, further research could take advantage of the on-demand scene
acquisition and increased catalog availability of new spaceborne hyper-
spectral sensors like PRISMA to conduct multitemporal sub-pixel image
analyses (Sunderman and Weisberg, 2011; Quintano et al., 2019), more
ecologically linked to fire severity definition than monotemporal per-
spectives (Tane et al., 2018).

5. Conclusions

This study contributes to the continued efforts for evaluating the
ecological effects of wildfire disturbances in fire-prone ecosystems and
extends the fire severity assessments of previous studies using airborne
spectrometers to the state-of-the-art spaceborne spectrometer missions.
We evaluated for the first time the retrieval of sub-pixel components di-
rectly related to fire severity by leveraging the high dimensionality of
hyperspectral data provided by the PRISMA mission. Our results
showed that MESMA fraction images retrieved from PRISMA hyper-
spectral data provided reliable fire severity estimates in the line of pre-
vious studies utilizing a variety of airborne hyperspectral sensors, at the
expense of less complex logistics and processing workflows than the lat-
ter. Continuum fire severity estimates using PRISMA data clearly out-
performed those based on Sentinel-2, the spaceborne mission with mul-
tispectral band setting capabilities that has previously provided the
most reliable results. Also, the PRISMA-based classification of fire
severity was accurate and solved the typical confusion between moder-
ate and low/high fire severity categories when using broadband multi-
spectral data. We conclude that spaceborne spectrometer missions may
provide improved insights to support adequate post-fire management
strategies, but the approach followed in this study should be tested
across distinct regions worldwide.
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