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Abstract

Clustering is one of the most widely used unsupervised learning techniques.

However, it is well-known that outliers can have a significantly adverse impact

on commonly applied clustering methods. On the other hand, clustered out-

liers can be particularly detrimental to (even robust) statistical procedures.

Therefore, it makes sense to combine concepts from Robust Statistics and Clus-

ter Analysis to deal with both clusters and outliers simultaneously through

robust clustering approaches. Among the existing robust clustering techniques,

we focus on those that rely on (impartial) trimming. Trimming offers the user

an easy interpretation, as standard well-known clustering methods are applied

after a fraction of the potentially most outlying observations is removed. This

trimming approach, when combined with appropriate constraints on the clus-

ters' dispersion parameters, has shown a good performance and can be

implemented efficiently thorough available algorithms.

This article is categorized under:

Statistical Learning and Exploratory Methods of the Data Sciences > Clus-

tering and Classification

Statistical and Graphical Methods of Data Analysis > Robust Methods
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1 | INTRODUCTION

Clustering involves the discovery of “crowds” of data points, while anomaly detection focuses on identifying data points
located far from these crowds. Therefore, clustering and anomaly detection complement each other in some ways. Data
anomalies, or outliers in other words, may negatively impact many well-known and widely applied clustering methods,
while robust statistical procedures (see, e.g., Maronna et al., 2019) are aimed at resisting such anomalies, or more gener-
ally, resisting small deviations from the typically assumed models. On the other hand, clustered outliers are known to
be especially harmful for (even robust) statistical procedures (Rocke & Woodruff, 1996), but they can usually be
detected easily by clustering techniques. All the above claims serve to justify the interest of combining ideas from
Robust Statistics and Cluster Analysis, as well as providing some insighits into why “robust clustering” could serve as
an appealing unifying framework for tackling these two problems simultaneously.
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Figure 1 shows an example of the harmful effect of outliers when applying the classical 3-means methods in two
simulated datasets that include K ¼ 3 main clusters, whose centers are located in an equilateral triangle, with 40 obser-
vations each. 40% of background noise is added in Figure 1 (left) and 4% of remote outlying observations (right). We
can see that main clusters are articially joined together by the 3-means method due to the effect of contamination.

It could be argued that increasing the number of clusters K could help to alleviate this lack of robustness. This idea
makes sense, since outliers often tend to occur in (small) clusters of their own and because the mechanism that gener-
ates outlying observations could generate them consistently and sometimes grouped together. However, this idea is not
always the optimal one, because the additional clusters found could be meaningless, with little interpretability; for
instance, made up of a few isolated observations. Moreover, the user sometimes predefines the number of clusters
required due to the final clustering purposes and is not aware of the presence of outliers which could negatively affect
the preferred clustering technique.

Another possibility is to “model the noise” by, for instance, considering uniformly distributed components or com-
ponents associated to heavily tailed distributions. This idea turns out to be extremely useful in many practical cases, but
somehow implies making certain assumptions about the mechanism generating the contaminating data. This is prob-
lematic if actual noise strongly deviates from the assumed hypothesis and, in general, can be troublesome due to the
unpredictible nature of contamination.

There are many other robust clustering proposals in the literature that can be successfully applied to cope with the
presence of outliers (see, e.g., García-Escudero, Gordaliza, Matr�an, & Mayo-Iscar, 2010; Banerjee & Davé, 2012;
Ritter, 2015; Farcomeni & Greco, 2016 or García-Escudero, Gordaliza, Matr�an, et al., 2016 and the references therein).
However, we just focus on reviewing some of the existing approaches based on trimming.

Trimming is one of the oldest1 methods to provide robustness to statistical techniques and relies on the idea of
applying standard statistical tools once we have ensured that the observations most susceptible to being outliers have
(hopefully) been discarded. Relying on well-known statistical methods, once trimmed observations are removed, makes
it easier to understand and communicate what has been done to achieve robustness. A prototypical example of a trim-
ming procedure is the univariate α-trimmed mean, which computes the mean after discarding the proportion α=2 of
the largest observations and the proportion α=2 of the smallest ones. However, how to apply trimming in multivariate
problems, and in clustering in particular, is not direct because, for instance, there is no natural order in
multivariate data to declare the observations as “larger” or “smaller.” Furthermore, the determination of the α fraction
of observations most likely to be outliers should depend on the applied statistical technique. For instance, in the case of

FIGURE 1 Results of applying 3-means in two contaminated data sets.
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clustering, “bridge points” between clusters can be trimmed, even though they are not extreme observations in our
sample.

For this trimming approach to clustering, we consider an “impartial” trimming. The term impartial means that it is
the dataset itself that tells us which observations to trim, and not the choice of privileged or pre-specified trimming
directions. This impartial trimming approach also underlies well-known and widely applied procedures for the so-called
“high-breakdown point” (Rousseeuw & Leroy, 1987) robust proposals in regression, such as the LTS (Least Trimmed
Squares) and the LMS (Least Median of Squares); as well as in multivariate location and scatter, such as the MCD
(Minimum Covariance Determinant) and the MVE (Minimum Volume Ellipsoids).

Trimming techniques discard a proportion α of observations where it is supposedly more likely that any outlying
observations can be found and they also highlight the fraction 1�α of the most “relaible” observations. We are not
claiming that all trimmed observations are outliers and, in fact, we can study their differences with respect to the non-
trimmed ones and use that information to provide a final outlier determination.

2 | TRIMMED K-MEANS

A robust (impartial) trimming-based clustering procedure was given in the pioneering work by Cuesta-Albertos et al.
(1997), where trimmed K-means were introduced as a trimmed extension of the classical K-means. Given a sample
x1,x2,…,xn in Rp, it was proposed to search for K location centers m1,m2,…,mK in Rp (the trimmed K-means centers)
and a partition R0,R1,…,RKf g of the indices 1,2,…,nf g with R0 including a proportion nα½ � of indices and minimizing

XK
k¼1

X
i � Rk

xi�mkk k2:

Since the summation in the previous expression goes from 1 to K (not from 0 to K), the proportion α of observations
in R0 are then omitted when computing the previous target function.

FIGURE 2 Results of applying trimmed 3-means for the data sets in Figure 1 when considering α¼ 0:40 (left) and α¼ 0:04 (right).

Trimmed observations are denoted by crosses.
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Figure 2 shows the results of applying trimmed 3-means for the same data sets as in Figure 1 when considering
α¼ 0:40 (left) and α¼ 0:04 (right). The trimmed observations are shown by crosses. We can see how the three main
clusters are correctly detected after trimming.

It is not difficult to prove the following two characterizing properties for the trimmed K-means: (i) the trimmed
observations in the optimal R0 are exactly the most distant fraction α of observations from their closest
trimmed K-means centers. (ii) The optimal trimmed K-means centers are the standard K-means of the observations not
in R0. As a trivial consequence, the trimmed K-means reduces to the classical K-means if α¼ 0.

In a similar fashion to how the median makes the sample mean more robust, one could think that removing the
squared penalty in the K-means target function (the same one as for the trimmed K-means if α¼ 0) would have served
to achieve robustness throughout the so-called K-medians. However, such a robustification when K >1 is known to be
very timid and, in fact, just one single observation in a very remote position can take one of the K-median centers to
be outside any bounded region in Rp (García-Escudero & Gordaliza, 1999). This lack of robustness of the K-medians is
in some ways similar to what happens when removing the squared penalty in the ordinary least squares regression
through the L1-regression. Robust regression based on trimming, namely the LTS and LMS, were the first methods in
regression that can resist a high positive number of adversarial contaminating observations. The trimmed K-means can
be seen as a modification of the K-means in a similar fashion to how the LTS method modifies the ordinary least
squares regression. The two previously commented properties, (i) and (ii), characterizing the trimmed K-means are, in
fact, closely related to how LTS trims the proportion α of observations with the largest regression residuals, and how
LTS applies standard least squares regression to the non-trimmed observations to produce the LTS regression fit. A fast-
LTS algorithm based on so-called “concentration” steps was given in Rousseeuw and van Driessen (2000). The
corresponding analogy of the concentration steps for trimmed K-means was introduced in García-Escudero et al.
(2003). This algorithm is therefore a combination of the concentration step ideas behind the fast-LTS and the classical
Lloyd's algorithm for K-means (Lloyd, 1982). We will discuss this in greater detail in Section 6. The extension of the
LMS to cluster analysis is the trimmed best K-nets, introduced in Cuesta-Albertos et al. (1998).

García-Escudero and Gordaliza (1999) provides some insights into the robustness gain of trimmed K-means with
respect to classical K-means. The formulation of breakdown-point notions for clustering, and consequently for robust
clustering, is not straightforward, but some proposals for it are available (see a discussion of this in García-Escudero,
Gordaliza, Matr�an, et al., 2016).

Another extension of trimmed K-means is presented in Ib�añez et al. (2012), referred to as trimmed K-medoids. This
extension involves impartial trimming but focuses on identifying K representative observations/objects in the sample,
thus allowing the use of relational data where only measurements of dissimilarity between each pair of objects in our
sample are available. Trimmed K-means, identified under the distinct name “K-means -,” has also been considered in
Chawla and Gionis (2013) along with an extension of the method to Bregman divergences.

3 | ELLIPTICALLY CONTOURED CLUSTERS

3.1 | Trimmed classification likelihoods: TCLUST

A clear drawback of the trimmed K-means, inherited from the classical K-means, is its preference for spherical and
equally scattered clusters. In order to deal with more general types of clusters, and considering internal cluster variabil-
ities and dependence structures, the TCLUST method in García-Escudero et al. (2008) can be applied. TCLUST con-
siders a trimmed classification likelihood approach, assuming multivariate normally distributed components for the
regular part of the data. Consequently, TCLUST searches for centers m1,…,mK in Rp, symmetric positive definite p�p
matrices S1,…,SK , weights p1,…,pK with

PK
k¼1pk ¼ 1, a partition R0,R1,…,RKf g of 1,2,…,nf g such that R0 includes a

proportion nα½ � of indices, and maximizing

XK

k¼1

X
i � Rk

log pkϕ xi;mk,Skð Þð Þ, ð1Þ

where ϕ �;μ,Σð Þ is the probability density function of a p-variate normal with mean vector μ and covariance matrix Σ. A
theoretical framework for the trimmed classification likelihoods is the “spurious outlier model” in Gallegos and
Ritter (2005).
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The original formulation in García-Escudero et al. (2008) included weights pk, but these weights can be removed
(or, analogously, set pk ¼ 1=K for k¼ 1,…,K) if clusters with similar sizes are privileged. Another important ingredient
in TCLUST is an “eigenvalues-ratio” constraint to control the relative size of the scatter matrices S1,…,SK . We comment
on this type of restrictions in Section 3.3.

Figure 3 shows how TCLUST (right) is better suited to dealing with elliptical clusters, and different scatters, than
trimmed K-means (left) for a simulated dataset when K ¼ 3 and α¼ 0:1.

It is not difficult to see that TCLUST with K ¼ 1 (without the eigenvalues-ratio constraint) reduces to the MCD esti-
mator. Hardin and Rocke (2004) considered a different extension of the MCD approach to clustering and Jobe and
Pokojovy (2015) also employed MCD in a cluster-based outlier detection procedure.

An algorithm for applying TCLUST is available (Fritz et al., 2013a), by considering a modification of the classifica-
tion EM algorithm (Celeux & Govaert, 1992), which incorporates trimming through concentration steps and imposing
the eigenvalues-ratio constraint. Good robustness properties for TCLUST have been proven from the infinitesimal
robustness point of view in Ruwet et al. (2012) and from the breakdown point of view in Ruwet et al. (2013).

3.2 | Trimmed mixture likelihoods

We can consider a trimmed mixture likelihood approach, where regular observations are assumed to be random realiza-
tions of a mixture of K normal distributions, which yields the maximization:

X
i =2 R0

log
XK
k¼1

pkϕ xi;mk,Skð Þ
 !

, ð2Þ

where R0 again includes a proportion nα½ � of observations. This trimmed mixture likelihood, combined with the
eigenvalues-ratio constraint on the scatter matrices, was the proposal in García-Escudero et al. (2014). Trimmed mix-
ture likelihoods were also considered in Neykov et al. (2007), Cuesta-Albertos et al. (2008) and Gallegos and Ritter
(2009), as well as robust fixed point estimating equations, in a mixture framework, in Gonzalez et al. (2022).

FIGURE 3 Trimmed 3-means (left) and TCLUST (right) for a dataset including nonspherical and nonequally scattered clusters.
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The consideration of (trimmed) mixture likelihoods could be advantageous when data is generated from a probabil-
ity mixture, and our objective is to estimate the corresponding mixture component parameters. This is due to the well-
known fact that classification likelihoods produce biased estimators of these parameters (Bryant, 1991). Furthermore,
posterior probabilities computed from these (robustly) estimated parameters enable us to define membership probabili-
ties of observations to cluster components, thereby avoiding “crisp” 0–1 assignment decisions that may not be very use-
ful when observations are not unequivocally assigned to any specific cluster.

Instead of using trimmed mixture likelihoods, which attempt to discard noisy observations from the estimating pro-
cess, we can consider the addition of mixture components in order to “fit” or “accommodate” noisy data. With this
viewpoint, using heavy-tailed components through mixtures of t-distributions (McLachlan & Peel, 2000) or mixtures of
contaminated Gaussian distributions (Punzo & McNicholas, 2016) have been proposed. A uniformly distributed noise
component (Banfield & Raftery, 1993), or even an improper constant density component (Coretto & Hennig, 2016;
Hennig, 2004), are other possibilities to accommodate noisy observations. The well-known mclust package (Scrucca
et al., 2023) incorporates the possibility of accommodating outliers within a uniform component. A novel procedure to
initialize the noise component based on entropy has been introduced by Scrucca (2023). Another robustification, based
on the generalization of Tyler's M-estimators to mixture modeling, can be found in Roizman et al. (2023).

3.3 | Restrictions

The target functions Equations (1) and (2) are unbounded without proper constraints on the scatter matrices S1,…,SK
when K >1. This can be easily seen by allowing one scatter matrix Sk to have a determinant made arbitrarily close to
0 and choosing its corresponding center mk equal to one of the observations. Besides the theoretical weakness inherent
in relying on mathematically ill-posed methods, from a more applied perspective, the typically used algorithms to maxi-
mize Equations (1) and (2) may become stuck in non-interesting local maxima without appropriate constraints. These
non-interesting local maxima, with little statistical interest, are made of just a few almost colinear observations deter-
mining the fitted component and are known in the literature as “spurious solutions” (McLachlan & Peel, 2000). The
undesired detection of spurious solutions can be seen as another lack of robustness issue in model-based clustering. In
fact, very often, the effect of noise is precisely to favor the detection of spurious solutions (García-Escudero et al., 2014).

With this idea in mind, a main ingredient of TCLUST was to impose, for a fixed constant c≥ 1, the eigenvalues-ratio
constraint:

max k¼1,…,K; j¼1,…,pλj Skð Þ
mink¼1,…,K; j¼1,…,pλj Skð Þ ≤ c, ð3Þ

where λj Σð Þ� �p
j¼1 denotes the set of p eigenvalues of a scatter matrix Σ. Constraint Equation (3) turns the constrained

maximization of Equations (1) and (2) into mathematically well-defined problems for any finite c value and helps to
avoid the detection of spurious solutions if very large values of c are excluded. The eigenvalue-ratio constraint is incor-
porated into the concentration steps in a very efficient manner through an eigenvalue truncation procedure (Fritz
et al., 2013a).

Furthermore, note that Equation (3) controls the relative size of the scatter matrices S1,…,SK and can therefore help
to specify the type of cluster solutions that the user is particularly interested in. For instance, when choosing c¼ 1, we
will be constraining the scatter matrices to be S1 ¼…¼ SK ¼ r� Ιp, where Ιp denotes the p�p identity matrix and r>0
(thus assuming similar assumptions to trimmed K-means, unless the additional constraint p1 ¼…¼ pK in weights is not
imposed). Figure 4 shows the results of applying TCLUST with K ¼ 3, α¼ 0:1 and c¼ 50 (left) and with K ¼ 6, α¼ 0:1
and c¼ 2 (right). The large c¼ 50 value allows the detection of a more elongated cluster (with one notably larger eigen-
value). However, all eigenvalues must be very similar when c¼ 2, which results in clusters close to sphericity and with
similar scatters.

Other types of constraint have been considered in robust clustering based on trimming. For instance, imposing
S1 ¼…¼ SK was proposed in Gallegos and Ritter (2005).

The eigenvalues-ratio constraints in Equation (3) lack affine equivariance, so it is recommended to scale the vari-
ables before their application. To approximate affine equivariance, while still being protected against spurious solutions,
one can consider the “determinant-and-shape” constraints introduced in García-Escudero et al. (2020). Dotto and
Farcomeni (2019) also explored a trimming approach to handle parsimonious parameterizations of the scatter matrices
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(Celeux & Govaert, 1995) and identified scenarios where the eigenvalues-ratio constraints in Equation (3) could be
omitted. More recently, García-Escudero et al. (2022) introduced a set of constraints that cover the well-known 14 parsi-
monious models in Celeux and Govaert (1995) as limit cases and which can be easily extended to robust clustering
based on trimming.

An alternative application of trimming was proposed by Seo and Kim (2012) to prevent the detection of spurious
solutions in the “k-deleted log likelihood” approach. This proposal suggests removing the k observations with the larg-
est (log-)likelihood terms, rather than only trimming the observations with the smallest contributions to the likelihood.

More information about the interest of constraints and other possibilities to avoid spurious solutions in model-based
clustering can be seen in García-Escudero et al. (2018).

4 | CLUSTERING AROUND AFFINE SUBSPACES

4.1 | Robust linear grouping

The methods seen so far could be described as generalizing the (trimmed) K-means method, in the sense that they are
based on searching for clusters around K centroids. However, sometimes the presence of clusters is due to the existence
of underlying relationships between the studied variables that, assuming linearity for them, would be associated with
the problem of robust clustering around affine subspaces. This provides simultaneously robust cluster detection and
dimensionality reduction, extending the type of dimensionality reduction that is done when applying the well-known
Principal Components Analysis (PCA), but assuming the presence of K heterogenous subpopulations in our data.

The Robust Linear Grouping (RLG) algorithm in García-Escudero et al. (2009) is based on the search for K affine
subspaces h1,…,hK with (intrinsic) dimensions q1,…,qK (qk < p) and a partition R0,R1,…,RKf g of 1,…,nf g such that R0

includes a proportion nα½ � of indices and minimizes

XK

k¼1

X
i � Rk

xi�Prhk xið Þk k2,

FIGURE 4 Results of applying TCLUST with K ¼ 3, α¼ 0:10 and c¼ 50 (left) and K ¼ 6, α¼ 0:10 and c¼ 2 (right).
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where Prh xð Þ denotes the orthogonal projection of x onto the affine subspace h. Although the original formulation in
García-Escudero et al. (2009) assumed q1 ¼…¼ qK ¼ p�1, a more general statement is straightforward if we assume
unequal intrinsic dimensions (not necessarily all equal to p�1). When K ¼ 1 and α¼ 0, RLG reduces to the classical
PCA, and when K ¼ 1 and α>0 to the LTS-PCA in Maronna (2005) (see also Croux et al., 2017). The RLG algorithm is
a direct extension of the trimmed K-means algorithm, but replacing the distances to the centers by orthogonal distances
to the affine subspaces, so K different PCA problems are solved in each step of updating affine subspaces.

4.2 | Robust clusterwise linear regression

In several problems, the existence of a privileged response variable that has to be explained by other explanatory ones is
also common. Detecting K clusters around regression fits or clusterwise regression is a problem where lack of robust-
ness is clearly expected. Recall that even ordinary least squares regression, which corresponds to the case K ¼ 1, is
highly non-robust. Considering orthogonal errors, as in Section 4.1, does not seem the most suitable approach in
clusterwise regression, and is more appropriate for considering the residuals typically applied in regression. This moti-
vates the approach in García-Escudero, Gordaliza, Mayo-Iscar, and San Martín (2010) where, given values yi for the
response variable and the corresponding values for the p explanatory variables in xi ¼ xi1,…,xip

� �0 �Rp, the proposal is
to search for intercepts β10,…,βK0 , slope vectors b1,…,bK , weights p1,…,pK with

PK
k¼1pk ¼ 1, variances of the error terms

σ21,…,σ2K and a partition R0,R1,…,RKf g of 1,2,…,nf g with R0 including a proportion nα½ � of indices and minimizing

XK

k¼1

X
i � Rk

log pkφ yi;β
k
0þ bk
� �0

xi,σ2k
� �� �

, ð4Þ

where φ �;μ,σ2ð Þ denotes the density of the univariate normal distribution with mean μ and variance σ2. Constraints on
the variances of the error terms can be added to avoid the detection of spurious clusters and ensure that the maximiza-
tion problem is well-defined. The use of Equation (4), when removing constraints on the variances of the error terms
σ2k, is a particular case of the general trimmed mixture likelihood approach in Neykov et al. (2007). Hennig (2003) also
proposed another approach based on trimming by using an iterative fixed-point procedure.

It is well known that “bad leverage points” are a particular type of contamination that can be extremely harmful in
regression. The trimming based on the maximization of Equation (4) does not necessarily provide protection against
bad leverage points because they do not always result in large yi�βk0þ bk

� �0
xi values. To address this issue, a “second

trimming” step was proposed in García-Escudero, Gordaliza, Mayo-Iscar, and San Martín (2010). Torti et al. (2019)
introduced a procedure for flexibly estimating that second level trimming, eliminating the requirement to fix it before-
hand. Yao et al. (2014) also suggested fitting a mixture of regressions based on the t-distribution for the error terms,
after adaptively trimming potential bad leverage points. However, a different solution to this problem was proposed in
García-Escudero et al. (2017) arising from robustification through trimming and the constraints of the Cluster Weighted
Model (CWM) introduced in Gershenfeld et al. (1999). In addition to taking advantage of the cases where the explana-
tory variables provide valuable additional information about clusters, robustification by trimming and constraints of
the CWM avoids the (not very natural) second trimming to prevent the effect of bad leverage points, given that bad
leverage points are atypical in the explanatory variables. This approach requires the specification of a single trimming
level α to automatically decide the observations to be trimmed in a unified manner.

Figure 5 shows two simulated data examples where robust clusterwise linear regression can be applied with K ¼ 2,
and where a 10% fraction of uniformly distributed background noise was added (first row), as well as a 10% fraction of
pointwise contamination at the position x¼ 15 and y¼ 10 (second row). The direct results of fitting a K ¼ 2 mixture
of regressions, by maximizing Equation (4) with α¼ 0 and no constraints, is shown in the first column, together with
the results of maximizing Equation (4) with α¼ 0:1 and constraints in the second column and, finally, the results of
the trimmed and constrained CWM in the third column. We can see that trimming and constraints are sufficient to
handle the background noise case, apart from some misclassifications due to the “intersections” of the fitted regression
lines. However, the problem is worst in the pointwise contamination case, since the observations corresponding to the
pointwise contamination clearly act as bad leverage points even when applying trimming. On the other hand, the use
of the trimmed CWM can deal perfectly with these two types of contamination and takes advantage of the clustering
information from the x-values to avoid problems with the intersecting regression fits.
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5 | EXTENSIONS

Although a normality assumption has been consistently considered (implicitly or explicitly) in the previous sections,
other distributional assumptions can be treated analogously. For instance, the trimmed likelihoods in Neykov et al.
(2007) can be applied for mixtures of GLMs. Additionally, the use of trimming combined with assuming “contaminated
normal” distributions for the components entails a distinction between mild and gross outliers, as can be seen in
Farcomeni and Punzo (2020).

Fuzzy clustering (see, e.g., Ferraro & Giordani, 2020) is also an interesting clustering approach that can be made
more robust through trimming. For instance, the “noise component” approach (Dave, 1991), which is a very popular
method to deal with noisy data in fuzzy clustering, can be adapted to pre-specify the fixing of a fraction α of observa-
tions to be declared as noise. This can be seen as a fuzzy extension of trimmed K-means, while a more general fuzzy
extension of the TCLUST method was given in Fritz et al. (2013b).

One of the biggest challenges that robust clustering must increasingly face is dealing with higher dimensional
cases where, of course, outliers are also commonly encountered. Consequently, the necessity for dimension reduc-
tion techniques that also have a good robustness performance is clearly relevant. The trimmed version of the mix-
tures of Factor Analyzers in García-Escudero, Gordaliza, Greselin, et al. (2016) is an example of this. An extreme
case of the higher dimensional problem is that of functional data. Garcia-Escudero and Gordaliza (2005) provides
an impartial trimming procedure based on B-spline representations of the functions to be clustered, while Cuesta-
Albertos and Fraiman (2007) applies impartial trimming directly by working on a functional Hillbert space. A

FIGURE 5 Two simulated datasets for clusterwise regression with uniformly distributed background noise (first row) and pointwise

contamination at x¼ 15 and y¼ 10 (second row). The dotted lines are the real regression lines to be estimated. The clustering result and the

fitted regression lines are shown with no trimming (first column), trimming and constraints (second column), and the trimmed and

constrained CWM (third column).
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model-based approach based on trimmed “pseudo” likelihoods and constraints was given in Rivera-García
et al. (2019).

Another problem associated with higher dimensionality is cellwise contamination (Alqallaf et al., 2009). Trimming
entire observations, denoted as xi ¼ xi1,…,xip

� �0
, or case-wise trimming, is too extreme when dimension p is large. Even

a small proportion of outlying cells xij in our data set would result in the need to trim a substantial number of cases xi
whenever a large number of these observations include at least one outlying measurement in their p cells. A cellwise
trimming approach was proposed in García-Escudero et al. (2021), which extends the methodology in Maronna and
Yohai (2008) to K >1 clusters. Farcomeni (2014) previously introduced the snipped K-means as a cellwise trimmed
extension of the K-means.

Simultaneously finding clusters and selecting clustering variables by promoting sparsity is another way to deal with
high-dimensionality. Kondo et al. (2016) proposes a robust and sparse K-means for this purpose and, more recently,
Brodinov�a et al. (2019) proposed a methodology in that direction which does not require pre-specifying any trimming
level in advance.

Trimming in co-clustering, that is, simultaneously clustering of rows and columns, has also been considered in
Farcomeni (2009) and, more recently, in relation to the Latent Block Models, in Fibbi et al. (2023).

Finally, another application of trimming to robust clustering is presented in del Barrio et al. (2019), where trimmed
K-barycenters in Wasserstein space are considered for the robust aggregation of clustering partitions. In this approach,
the most anomalous clustering partitions are discarded when performing clustering aggregation.

6 | ALGORITHMS AND CODE

All the reviewed proposals for robust clustering based on trimming involve solving complex combinatorial problems,
because all possible partitions of our sample x1,x2,…,xn into Kþ1 subsets are considered, with one of these subsets
including the fixed fraction α of observations to be trimmed. However, for this extremely complex computational prob-
lem, modifications of the classical EM and the classification EM algorithm, incorporating concentration steps, can often
yield very good results. As already commented, this type of concentration steps was first introduced in Rousseeuw and
van Driessen (1999) for the MCD estimator. The term “concentration” means that, in each step, the goal is to identify
regions of the sample space where observations are more concentrated, making it less likely to find isolated outliers
among them. It is worth noting that this concentration-step philosophy aligns well with the clustering goals because, in
fact, the classical Lloyd's algorithm for K-means aims to move K-means centers to regions where observations are
densely concentrated.

In each iteration of the proposed algorithms for trimming, a fixed fraction α of observations in the most “remote”
regions (under the assumed model) is temporally discarded and they are not considered when updating the new param-
eters of the fitted components. This can be done in such a way that monotonic improvements in the associated target
functions are guaranteed. As is common, for both robust and non-robust clustering methods, the associated target func-
tions are far from being convex, and dealing with the existence of local optima can be a serious problem. To increase
the chances of detecting the global optimum, it is common to use multiple random initializations of the parameters,
which are further refined through concentration steps. The random initializations are typically obtained by using “ele-
mental sets,” which are the minimal number of observations needed to estimate the parameters for the K fitted compo-
nents. When the dimension p increases, initializing these algorithms becomes a challenging task. For instance,
selecting K pþ1ð Þ random observations from the available data set is a common procedure for initializing parameters
in TCLUST. It is important to note that pþ1 observations in general position are required to initialize each of the K
scatter matrices. Additionally, obtaining a suitable partition for these K pþ1ð Þ random observations into K subsets is
necessary to derive correct initializations of the components' location vectors and scatter matrices. Unfortunately,
obtaining such a convenient subsample along with a correct partition becomes increasingly improbable as the dimen-
sion, p, increases. Therefore, there is still much work to be done to enhance these algorithms and increase the chances
of finding the global optimum. For instance, optimized initialization strategies, as demonstrated in the K ¼ 1 case in
Hubert et al. (2012), can be explored.

Algorithms following the concentration steps philosophy underlie the tclust package, available at the CRAN
repository (Fritz et al., 2012). The fsda Matlab toolbox (Riani et al., 2012) can also implement several trimming
approaches to clustering.
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7 | CHOICE OF INPUT PARAMETERS

All the previously reviewed methodologies require the specification of different input parameters, among which the
number of groups K and the trimming level α stand out.

The choice of the number of clusters K can be considered the quintessential problem in Cluster Analysis. This prob-
lem has seen and continues to see numerous proposed solutions, making it one of the most active research areas in this
field. In robust clustering based on trimming, this problem is even more complex, given its dependence on the trim-
ming level α. For instance, focusing the discussion on TCLUST, a high α can lead to trimming small clusters, thus
requiring a smaller K . Moreover, the proper choice of K and α is also linked to the parameter c in Equation (3), which
controls the differences allowed in the scatters, because a high value of c would allow the determination of a cluster
including very scattered observations that might otherwise have been considered as background noise, thus requiring a
higher α. In any case, TCLUST provides a flexible and unified mathematical framework to address the simultaneous
choice of these three parameters K, α, and c, as well as analyzing their interrelationships.

It is important to note that the problem of choosing K in clustering is not a perfectly well-defined problem because
the required number of clusters clearly depends on the practical application in which is intended to be used. To this
end, let us go back to the dataset shown in Figure 4. A simple visual inspection of this dataset would surely suggest
K ¼ 3 distinct clusters with a small proportion of outlying observations, requiring a not too large α. Certainly, this
would be a reasonable solution in many potential applications of clustering for this dataset and corresponds to the solu-
tion in Figure 4 (left) with K ¼ 3, α¼ 0:03, as well as a large value of c that allows the detection of the third most elon-
gated cluster. However, let us assume, similarly to Hennig and Liao (2013), that we are dealing with a social
stratification problem in which these observations represent families, and where the x1-axis corresponds to the families'
“income levels,” and the x2-axis reflects a measure of their “social status.” Would it make sense for the most elongated
cluster in Figure 4 (left) to include low-income and low-status social families clustered together with high-income and
high-status social families? In that specific application, it would seem more reasonable to consider a value of c close to
1 (more spherical groups with more similar sizes), along with a higher number of groups K, as shown in Figure 4
(right). Consequently, even though we are dealing with a nominally “unsupervised” classification problem, it does not
seem reasonable that the choice of the number of clusters K (and other parameters as the trimming level) could be a
fully unsupervised procedure that does not require an even minimal user intervention to specify the type of clusters
required. The use of constraints, such as those incorporated in TCLUST, could allow users to explicitly declare the type
of clusters they are seeking.

Having fixed the parameter c, García-Escudero et al. (2011) proposed considering the so-called classification
trimmed likelihood curves (ctlcurves) to assist the user in choosing K and α. The ctlcurves monitor the evolution of the
maximum value of the objective function Equation (1) while varying K and α. The consideration of the weights pk in
Equation (1) is key because, in some cases, it is of interest to set some weights as pk ¼ 0 when the dataset does not sug-
gest increasing K for particular c and α values (this possibility was already suggested in Bryant (1991) in the untrimmed
case). Figure 6 shows the ctlcurves for the data set in Figure 4: Figure 6 (left) shows these curves when c¼ 50 and
Figure 6 (right) when c¼ 2. We can see that it is clearly beneficial to increase K until K ¼ 4 is reached, but not to
increase K if K >4 when α¼ 0 and a large c¼ 50 are considered. This means that α¼ 0 and K ¼ 4 are sensible choices
when c¼ 50, because one very scattered cluster gathers all the outlying observations, so that no trimming is needed. On
the other hand, it is no longer convenient to increase K from K ¼ 3 once an approximate 3% fraction of possible outliers
has been trimmed. Therefore, K ¼ 4 and α¼ 0 or, alternatively, K ¼ 3 and α¼ 0:03 are both sensible parameter choices
when c¼ 50 is pre-specified by the user. On the other hand, the very elongated cluster cannot be detected with a
smaller value of c¼ 2 and, in that case, it is preferable that this more elongated elliptical component should be split into
further clusters, thus requiring higher values of K, as can be seen in Figure 6 (right).

A precursor to the ctlcurves was the trimmed K-variogram in García-Escudero et al. (2003), which monitors changes
in the trimmed K-means target function. This target function strictly decreases as K increases for any α, and the rates of
decrease have to be analyzed.

As previously mentioned, another advantage of considering appropriate constraints on the scatter parameters is that
well-defined optimization problems are considered. This is quite important when considering parameter selection
criteria based on penalized likelihoods, such as BIC (Fraley & Raftery, 1998) or AIC (Biernacki et al., 2000). If the likeli-
hood is unbounded (which happens for some of these methods without any constraint), the penalized likelihood is also
unbounded, which, combined with the detection of spurious solutions, can be a very serious drawback for choosing
parameters. The use of penalized criteria considering the strength of constraints on scatter parameters, as introduced in
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Cerioli et al. (2018), can be useful in overcoming this difficulty. There, so-called “carbike” plots were introduced to
assist the user in choosing sensible c and K values. That proposal was formulated for the α¼ 0 case, but a natural exten-
sion would be to incorporate the trimming level α in the definition of the penalized criterion. Some suggestions and
proposals in this direction were made through the “trimmed BIC” in Neykov et al. (2007) and the “corrected BIC” in
Gallegos and Ritter (2009). An alternative approach was suggested in Gallegos and Ritter (2018), wherein they proposed
searching for sensible solutions related to Pareto points. These points act as a compromise between “scale balance”
(interpreted as the difference between component scatters) and “model fit” (interpreted as the value attained in the
defining likelihood target function) among all local maxima of the likelihood. Additionally, they proposed a procedure
for their proper exploration.

Notice also that choosing α slightly higher than necessary is not necessarily a serious problem for methods based on
trimming. The estimation of cluster parameters, especially those related to the location of the clusters, are not typically
severely affected by considering a slightly higher than needed α. Even though some non-outlying observations are
wrongly trimmed, concentration steps seek regions where observations are concentrated, which may still allow sensible
estimated parameters to be obtained. Subsequently, we could attempt to recover incorrectly trimmed observations. For
instance, a simple proposal to identify those wrongly trimmed observations when using TCLUST could be to resort to
Mahalanobis distances, calculated robustly using parameters fitted with only untrimmed observations. This approach is
aligned with that in Hardin and Rocke (2004). Building on that idea of starting with a high initial trimming level and
sequentially recovering incorrectly wrongly trimmed observations, it is worth noting the proposals in Dotto et al.
(2018). This approach involves a re-weighting scheme, where better estimators of the scatter matrix “scales” (a scatter
matrix Σ is decomposed into Σ¼ σ2U with σ2 ¼ Σj j1=p as a scale parameter, and U ¼Σ= Σj j1=p as a shape matrix) are pro-
gressively obtained through iterative steps, even though their initial values were not reliable due to a higher than
needed trimming level. García-Escudero and Gordaliza (2007) shows the crucial role that the correct estimation of scale
parameters plays in robust clustering. This re-weighting procedure can even correct wrong determinations of c or α.
The use of re-weighting techniques is common in Robust Statistics (Lopuhaa & Rousseeuw, 1991). Another idea is to
choose α so that the non-trimmed part of the data looks as close to a mixture of Gaussians as possible, as proposed in
Coretto and Hennig (2016). Moreover, relying on a simple but highly robust procedure, such as trimmed K-means with
a high α, can serve as a useful robust initialization for other types of clustering procedures (see, e.g., Mclachlan
et al., 2006 or Cuesta-Albertos et al., 2008).

Many of the proposals for parameter selection are indeed based on monitoring by-products of the application of
robust clustering when input parameters are systematically varied. This is in agreement with the view in Atkinson et al.

FIGURE 6 Application of ctlcurves to the dataset in Figure 4 when c¼ 50 (left) and c¼ 2 (right).
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(2004) and Atkinson and Riani (2007) arguing that the “whole movie” provided by appropriate monitoring processes
can be more informative than focusing on the “single frame” provided by one single application of any robust clustering
technique. These last two references pertain to a “forward search” approach, which offers a form of adaptive trimming
procedure that can be useful in robust clustering (see Atkinson et al., 2018, Riani et al., 2019 or Cerioli et al., 2019).

We would like to insist once more that clustering is not a well-defined problem, whose final solution should not
depend at all on possibly different final clustering purposes. Therefore, our final goal could be just to produce a reduced
list of sensible partitions, by selecting parameter combinations that may be of interest to the user and discarding param-
eter combinations that are likely not very interesting. An example of this approach would be, for instance, Torti et al.
(2021) or Cappozzo et al. (2023).

Although we have focused on the problem of choosing the parameters K and α, some techniques require some other
parameters to be fixed, such as the intrinsic dimensions of subspaces in q1,…,qK in the case of the RLG. Therefore, pro-
cedures for selecting all of them are also required and it is important to note that all the involved parameters are likely
to be interrelated.

8 | CONCLUSIONS

Different robust clustering techniques based on trimming have been summarized in this review. These techniques move
from the trimmed K-means, as the simplest case, being an extension of the classical K-means, to more elaborate pro-
posals in more complex scenarios. An impartial trimming approach has been followed, where the dataset itself and the
clustering model assumptions automatically determine which observations to trim. The trimming approach can be
combined with constraints on the clusters' scatter parameters to avoid detecting spurious clusters, which can be seen as
another source of lack of robustness for clustering methods.

There are several open research problems, such as dealing with higher dimensionality. In higher dimensional prob-
lems, addressing the challenge of outlying measurements simultaneously with dimensionality reduction or the presence
of noninformative variables, which add noise in the sense of not providing useful clustering information, is essential.
Moreover, the possibility of cellwise trimming, which does not sacrifice too much information when only a few cells or
individual measurements are atypical in one observation, also appears as a key research direction. Another problem
that undoubtedly requires additional work is assisting the user in selecting the several parameters required for applying
these methodologies. While we do not believe that fully automated parameter selection without any minimal user
supervision can be provided, it does seem useful to narrow down this selection to a limited number of reasonable alter-
natives. All the techniques presented have a notably high computational complexity, and considering computational
improvements that reduce computing times and enhance their effectiveness is also important, especially when dealing
with high-dimensional problems or an increasing number of observations or clusters.
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