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Dynamics of breast-cancer relapse reveal  
late-recurring ER-positive genomic subgroups
Oscar M. rueda1, Stephen-John Sammut1,13, Jose A. Seoane2,3,4,13, Suet-Feung Chin1, Jennifer L. Caswell-Jin2, Maurizio Callari1, 
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The rates and routes of lethal systemic spread in breast cancer are 
poorly understood owing to a lack of molecularly characterized 
patient cohorts with long-term, detailed follow-up data. Long-
term follow-up is especially important for those with oestrogen-
receptor (ER)-positive breast cancers, which can recur up to 
two decades after initial diagnosis1–6. It is therefore essential to 
identify patients who have a high risk of late relapse7–9. Here we 
present a statistical framework that models distinct disease stages 
(locoregional recurrence, distant recurrence, breast-cancer-related 
death and death from other causes) and competing risks of mortality 
from breast cancer, while yielding individual risk-of-recurrence 
predictions. We apply this model to 3,240 patients with breast 
cancer, including 1,980 for whom molecular data are available, 
and delineate spatiotemporal patterns of relapse across different 
categories of molecular information (namely immunohistochemical 
subtypes; PAM50 subtypes, which are based on gene-expression 
patterns10,11; and integrative or IntClust subtypes, which are 
based on patterns of genomic copy-number alterations and gene 
expression12,13). We identify four late-recurring integrative subtypes, 
comprising about one quarter (26%) of tumours that are both 
positive for ER and negative for human epidermal growth factor 
receptor 2, each with characteristic tumour-driving alterations in 
genomic copy number and a high risk of recurrence (mean 47–62%) 
up to 20 years after diagnosis. We also define a subgroup of triple-
negative breast cancers in which cancer rarely recurs after five years, 
and a separate subgroup in which patients remain at risk. Use of 
the integrative subtypes improves the prediction of late, distant 
relapse beyond what is possible with clinical covariates (nodal status, 
tumour size, tumour grade and immunohistochemical subtype). 
These findings highlight opportunities for improved patient 
stratification and biomarker-driven clinical trials.

Breast cancer is a multistate disease with clinically relevant interme-
diate end points, such as locoregional recurrence and distant recur-
rence14. A patient’s prognosis can differ considerably depending on 
when and where a relapse occurs, time since surgery, and time since 
locoregional or distant recurrence15,16. These events are associated, and 
individual analyses of disease-free survival (DFS) or overall survival 
alone cannot fully capture patterns of recurrence associated with dif-
ferential prognosis. In addition, most survival analyses use disease-spe-
cific death (DSD) as the primary end point, and censor deaths from 
other causes. However, when competing risks of mortality occur, this 
approach induces bias17. This is particularly problematic for breast 
cancer, where ER-positive patients experience higher mortality from 

nonmalignant causes owing to their increased age at diagnosis relative 
to ER-negative patients.

We evaluated the extent of such bias on breast-cancer survival esti-
mates by analysing 3,240 patients who had been diagnosed between 
1977 and 2005, and for whom there was a median clinical follow-up 
of 14 years (referred to as the ‘full dataset’; see Extended Data Fig. 1, 
Supplementary Table 1 and Methods). We compared the naive cumu-
lative incidence for DSD (computed as one minus the survival prob-
ability), stratified by ER status and considering only cancer-related 
deaths (Extended Data Fig. 2a), relative to estimates with the proper 
cumulative incidence functions accounting for different causes of 
death (Extended Data Fig. 2b). These comparisons indicate that the 
incidence of DSD is overestimated for ER-positive tumours relative 
to ER-negative tumours (0.46 versus 0.37 at 20 years) owing to the 
increased age of diagnosis (median 63.9 versus 53.0 years; P < 1 × 10−6; 
Extended Data Fig. 2c). Moreover, because the baseline survival func-
tions for these subgroups are distinct, their differences cannot be ade-
quately summarized with a single parameter in a Cox proportional 
hazards model.

To overcome these limitations, we developed a nonhomogenous 
(semi)-Markov-chain model that accounts for different disease states 
(locoregional recurrence and distant recurrence) and time scales (time 
since surgery or locoregional or distant recurrence), as well as compet-
ing risks of mortality and distinct baseline hazards across molecular 
subgroups, thereby enabling individual risk-of-relapse predictions 
(see Fig. 1a and Methods). The model also incorporates clinical var-
iables known to influence breast-cancer survival18,19, including age, 
tumour grade, tumour size and number of tumour-positive (‘positive’) 
lymph nodes (all measured at diagnosis). We refer to this as the base 
clinical model, into which information on molecular subtype can be 
incorporated.

We fitted this multistate model to the full dataset, and recorded 
the hazards of moving through distinct states and the number of 
transitions between each pair of states (Supplementary Table 2 and 
Methods). As expected, most cancer-related deaths (83% in ER-positive 
and 87% in ER-negative tumours) occurred after distant metastasis. 
The remainder of the cases probably reflect undetected recurrences or 
death due to other malignancies. Age at diagnosis was associated with 
a transition to death by other causes (P < 1 × 10−6). Examination of 
the log hazard ratios and 95% confidence intervals for all other var-
iables indicated that their effect decreased with disease progression 
(Extended Data Fig. 2d). That is, clinical variables related to the pri-
mary tumour were more prognostic for earlier transitions than for 
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later transitions. However, several tumour characteristics informed 
the risk of progression from locoregional to distant recurrence, and 
from distant recurrence to death. In ER-positive disease, higher tumour 
grade, number of positive lymph nodes and tumour size all increased 
the risk of progression to a later state. A longer time between surgery 
and locoregional or distant recurrence decreased the risk of transi-
tion to a later state, and was more pronounced in ER-negative disease. 
We confirmed that our models were well-calibrated, concordant with 
the established tool PREDICT18, and that they performed compara-
bly in external datasets (see Extended Data Figs. 1, 3, Methods and 
Supplementary Information).

A notable feature of our multistate model is that hazard rates can be 
transformed into transition probabilities that represent the probability 
of moving from one state into another after a given time. To evalu-
ate patterns of recurrence across established breast-cancer molecular 
subgroups, we turned to the Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) molecular dataset. This data-
set is based on 1,980 patients (Extended Data Fig. 1), and includes 
assignments to: immunohistochemistry (IHC) subtypes (namely ER+/
HER2+, ER+/HER2−, ER−/HER2+ and ER−/HER2−, where HER2 is 
human epidermal growth factor receptor 2); 5 intrinsic gene-expres-
sion subtypes (otherwise known as PAM50 subtypes)11; and the 11 
Integrative Cluster (IntClust) subtypes, which are characterized by dis-
tinct copy-number and gene-expression profiles12,13 (Supplementary 
Table 3). We computed the baseline transition probabilities from sur-
gery, locoregional recurrence or distant recurrence at various time 
intervals (2, 5, 10, 15 and 20 years) and the corresponding standard 
errors of prediction (s.e.) for average individuals in each subgroup 
(using the full dataset for comparisons by ER status, and the molecular 
dataset for all others; Supplementary Table 4).

After surgery, state transitions differed substantially across the 
various subtypes (Fig. 1b). For example, the transition probabilities 

post-surgery reveal different change points for ER-positive versus 
ER-negative disease. ER-negative patients had a higher risk of distant 
recurrence and death from cancer in the first five years, after which 
their risk decreased considerably. By contrast, ER-positive patients 
had a smaller but longer risk period during the first ten years, and 
the risk increased at a lower rate. Among ER-negative patients, the 
PAM50 ‘basal-like’ subgroup was nearly indistinguishable from the 
ER−/HER2− subgroup, with most cancer-related deaths occurring in 
the first five years—similar to HER2+ patients (before the widespread 
use of trastuzumab). By contrast, the three predominantly ER-negative 
IntClust subgroups (IntClust4ER−, IntClust5 and IntClust10) exhibited 
substantial differences in their recurrence trajectories. As expected, 
IntClust5 (HER2+ enriched) generally had poor prognosis at 5 years 
(transition probability to relapse/cancer-related death 0.48; s.e = 0.04), 
with the risk increasing to 0.65 (s.e. = 0.04) at 20 years. For IntClust10 
(‘basal-like enriched’), the first 5 years after surgery largely defined 
patient outcomes: the probability of relapse or cancer-related death at 
5 years was 0.33 (s.e. = 0.03), and this rose after 20 years only to 0.37 
(s.e. = 0.04) for an average patient. This pattern was distinct from that 
seen for IntClust4ER− patients, who exhibited a persistent and increas-
ing risk of relapse or cancer-related death with a probability of 0.30 
(0.05) at 5 years and 0.49 (0.05) after 20 years.

The distinction between IntClust4ER− and IntClust10 is also appar-
ent when examining the average probabilities of relapse among all 
patients across the IntClust subtypes after surgery or after being dis-
ease-free for five and ten years (Fig. 2a). Indeed, through the course 
of the disease, the risk of relapse changed considerably across the inte-
grative subtypes, and to a lesser extent across the IHC and PAM50 
subtypes (Fig. 2a and Extended Data Fig. 4). Moreover, the probabili-
ties of distant recurrence or cancer-related death among ER−/HER2− 
patients who were disease-free at five years after diagnosis revealed 
low (IntClust10) and high (IntClust4ER−) risks for late-relapse 
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Fig. 1 | A multistate model of breast-cancer relapse enables individual 
risk-of-relapse predictions throughout disease progression. a, Graphical 
representation of the model. Nodes represent possible states and arcs 
represent possible transitions between states, where parameters that have 
an effect on the hazard are indicated. A, patient age; G, tumour grade; 
L, number of lymph nodes; S, tumour size; t, time since state entry; T, 
time since surgery. λ() is the hazard function. b, Subtype-specific risks of 
relapse at the time of diagnosis. Transition probabilities from surgery to 

other states (DF, disease-free; LR, locoregional relapse; DR, distant relapse; 
D/C, cancer-specific death; D/O, death by other causes) are shown for 
individual average patients across the indicated breast-cancer subtypes. 
Subtypes were defined on the basis of ER status using the full dataset, and 
for IHC, PAM50 and integrative (IntClust) subtypes using the molecular 
dataset. 95% confidence bands (shaded areas) were computed using 
bootstrapping (see Methods).
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triple-negative breast-cancer (TNBC) subgroups, whereas IHC (and 
PAM50) subtypes homogenized this risk (Extended Data Fig. 5).

Marked differences were also apparent among ER-positive patients, 
with patients with IntClust3, IntClust7, IntClust8 and IntClust4ER+ 
subtypes exhibiting a better prognosis, whereas patients with IntClust1, 
IntClust2, IntClust6 and IntClust9 subtypes exibited late-recurring can-
cer with a poor prognosis (Fig. 2a). These latter four subgroups had 
an exceedingly high risk of relapse, with mean probabilities ranging 
from 0.47 to 0.62 up to 20 years after surgery. The IntClust2 subtype 
exhibited the worst prognosis, with a probability of relapse (0.62; 
s.e.m. = 0.02) second only to that of IntClust5. Collectively, these sub-
groups comprise 26% of ER-positive cases (Fig. 2b, c) and thus define 
the minority of patients who may benefit from extended monitoring 
and treatment given the chronic nature of their disease5,6.

Importantly, the four ‘high risk of relapse’ subgroups were enriched 
in characteristic genomic-copy-number alterations, which represent 
the likely drivers of each subgroup (Fig. 2b). For example, IntClust2 
tumours are defined by amplification and concomitant overexpres-
sion of multiple oncogenes on chromosome 11q13, including CCND1, 
FGF3, EMSY, PAK1 and RSF1 (refs 20–22). IntClust2 accounts for 4.5% 
of ER-positive cases, 96% of which have RSF1 amplification, com-
pared with 0–22% in other subgroups. IntClust6 (5.5% of ER-positive 
tumours) is characterized by focal amplification of ZNF703 (ref. 23) 
and FGFR1 (ref. 24) on chromosome 8p12 (100% of IntClust6 cases 
versus 2–21% of others). IntClust1 (8% of ER-positive tumours) exhib-
ited amplification of chromosome 17q23 in a region spanning the 
mTOR effector RPS6KB1 (also known as S6K1)25, which was gained 
or amplified in 96% and 70% of cases, respectively (versus amplification 

in 0–25% of other subtypes). IntClust9 accounted for another 8% of 
ER-positive cases and was characterized by amplification of the MYC 
oncogene at chromosome 8q24, with amplification in 89% of these 
tumours (versus 3–42% of other groups). Thus the late-recurring 
ER-positive subgroups are defined by genomic drivers, several of which 
are viable therapeutic targets25–27.

Similar differences in the probability of late, distant relapse were seen 
in the subset of patients whose tumours were ER+/HER2− (Fig. 3a, b 
and Extended Data Fig. 4a–f)—a group in which late relapse and strate-
gies to target this, such as extended endocrine therapy, represent critical 
clinical challenges. In particular, the probabilities of distant recurrence 
or cancer-related death reveal a significant risk for IntClust subtypes 
1, 2, 6 and 9 (relative to IntClust3) that varied over time. Moreover, 
the risk was not fully captured by a model that included IHC subtype 
together with clinical variables (age, tumour size, grade, number of 
positive lymph nodes and time since surgery) that have been shown to 
dictate distant-relapse outcomes even after a long disease-free inter-
val5 (Fig. 3a). We therefore assessed whether the integrative subtypes 
provide information about a patient’s risk of late distant relapse above 
and beyond what could be inferred optimally from standard clinical 
information. We found that the model including clinical variables com-
bined with IHC subtype provided substantial information about the 
probability of distant relapse in ER+/HER2− patients who were relapse 
free at five years. The concordance index (C-index) predicting the risk 
of distant relapse was 0.63 (confidence interval 0.58–0.68) at 10 years, 
0.62 (0.58–0.67) at 15 years, and 0.61 (0.57–0.66) at 20 years (Fig. 3c). 
However, including the IntClust subtypes significantly improved the 
predictive value: the C-index was 0.70 (confidence interval 0.64–0.75; 

Fig. 2 | The integrative breast-cancer subtypes exhibit distinct patterns 
of relapse. a, Mean probabilities of relapse after surgery and after 5 and 10 
disease-free years for the patients in each of the 11 integrative (IntClust) 
subtypes, ordered by increasing risk of relapse. IntClust3, IntClust7, 
IntClust8 and IntClust4ER+ represent lower-risk ER-positive subtypes; 
IntClust10 and IntClust4ER− represent TNBC subtypes with variable 
relapse patterns; IntClust1, IntClust6, IntClust9 and IntClust2 represent 
late-relapsing ER-positive subtypes; and IntClust5 represents HER2-
positive tumours before widespread use of trastuzumab. Error bars show 

95% confidence intervals. The lower coloured bar shows the prevalence of 
each integrative subtype in the breast-cancer population. b, Frequencies 
of copy-number amplifications in specific IntClust subtypes (IntClust1, 
IntClust6, IntClust9 and IntClust2). Putative driver genes are indicated by 
asterisks. The amplified chromosomal regions are indicated above each 
chart. c, Proportion of ER-positive tumours that belong to the four late-
relapsing IntClust subtypes. This analysis was done with the molecular 
dataset.
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improvement over the clinical model, P = 0.00011) at 10 years, 0.67 
(0.63–0.72; P = 0.0016) at 15 years and 0.66 (0.62–0.71; P = 0.0017) 
at 20 years. These trends were recapitulated in an external validation 
cohort, despite the smaller sample size and shorter follow-up times 
(prohibiting analyses at 20 years) (Fig.  3c and Extended Data Fig. 3e). 
Thus, information about the dynamics of late relapse that is provided 
by integrative subtype could not be inferred from standard clinical var-
iables, including IHC subtype.

We next turned to the subset of patients who experienced a locore-
gional recurrence. Such a relapse is commonly treated with curative 
intent, and is thought to be a high-risk event that is associated with 
increased rates (45–80%) of distant relapse28. The transition probabili-
ties after locoregional recurrence varied substantially depending on the 
pathological features of the primary tumour at diagnosis and the molec-
ular subtype, highlighting opportunities for intervention (Extended 
Data Figs. 6, 7 and Supplementary Tables 2, 3). By contrast, after the 
initial distant relapse, all subgroups exhibited a high probability of  
cancer-related death, although the median times differed (Extended 
Data Fig. 8 and Supplementary Tables 2, 3).

Unique to our cohort is a subset of 618 patients (out of the 1,079 
from the full dataset who relapsed) for whom a complete description 
of all recurrences is available (this is the recurrent-event dataset). This 
enables a detailed analysis of the rates and routes of distant metasta-
ses and their lethality. These data reveal the varied time course over 
which metastases occurred and indicate that no sites of metastasis are 
exclusive to ER-positive or ER-negative disease (Extended Data Fig. 9a). 
Moreover, multiple distant metastases were common, even among 
subgroups with a favourable prognosis (Extended Data Fig. 9b). We 
next examined the cumulative incidence and number of metastases at 
different organ sites stratified by ER status (Fig. 4a). ER-negative cases 
harboured substantially more visceral disease than did ER-positive 
cases (for example, brain/meningeal, 27% versus 11%; pulmonary, 
50% versus 41%). As previously reported29,30, bone metastases were 
more common in ER-positive than in ER-negative cases (71% ver-
sus 43%), but the cumulative incidence was similar. Thus, the higher 
proportions observed in ER-positive disease appear not to reflect site- 
specific tropism: rather, bone metastases take a long time to develop, 
and ER-negative patients tend to die of other metastases first. In addi-
tion, ER-positive tumours more commonly presented with a first 
metastasis in the bone (76% versus 61%). Similar comparisons strati-
fied by IHC, PAM50 and IntClust subtypes reveal additional variability 
(Extended Data Fig. 10). Striking differences in the rates of distant 
metastasis are also evident: ER-negative disease was characterized by 
a rapid series of relapses early after diagnosis, while most ER-positive 
patients suffered just one early relapse (commonly bone metastases), 
and if a second relapse occurred, the probability of additional relapses 
increased (Fig. 4b and Methods). Thus, after distant recurrence, sub-
type continues to dictate the rate of subsequent metastases, underscor-
ing the importance of tumour biology. Both the number and the site 
of relapses influenced the risk of death after recurrence, with brain 
metastasis being most predictive. Risk estimates (Fig. 4c) were compa-
rable between ER-positive and ER-negative tumours, suggesting that 
the impact of the site of metastasis on progression to death is similar.

In summary, by leveraging a cohort of 3,240 patients—including 
1,980 from METABRIC, for whom detailed molecular characteriza-
tion and recurrence data are available—we have delineated the spatio-
temporal dynamics of breast-cancer relapse at a high resolution. Our 
analyses are based on a multistate statistical model that yields individual 
risk-of-relapse estimates, using tumour features, clinical, pathological 
and molecular covariates, and disease chronology, and is available via 
a web application (https://caldaslab.cruk.cam.ac.uk/brcarepred). In 
contrast to existing models used to calculate the benefits of adjuvant 
therapy at diagnosis, such as PREDICT18, our research tool can be used 
to assess how a patient’s risk of recurrence changes throughout fol-
low-up. Learning whether specific treatments change the outcomes of 
different integrative subtypes is important and will require analysis of 
randomized clinical trial cohorts.

By classifying breast tumours into the 11 integrative subtypes, impor-
tant differences in recurrence rates have become apparent that were 
obscured in the IHC and PAM50 subtypes. Among TNBC patients, the 
IntClust10 cluster remains largely relapse free after five years, whereas 
IntClust4ER− patients continue to be at a substantial risk of recurrence. 
Among ER+/HER2− patients, IntClust subtypes 1, 2, 6 and 9 have a 
markedly increased risk of distant relapse up to 20 years after diagnosis, 
and together account for around one quarter of all ER-positive tumours 
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and the vast majority of late recurrences. Moreover, the integrative sub-
types markedly improved the prediction of distant recurrence after five 
years in ER+/HER2− patients. Our findings thus address one of the 
contemporary challenges in breast oncology, namely identification of 
the subset of ER-positive patients who have a high risk of recurrence 
and tumour biomarkers that are more predictive of recurrence than are 
standard clinical covariates7,8. Integrative subtyping may help to deter-
mine whether women who are relapse free five years after diagnosis 
might benefit from extended endocrine therapy or other interventions 
to improve late outcomes. Critically, the four late-recurring ER-positive 
subgroups are enriched for genomic-copy-number driver alterations 
that can be therapeutically targeted24–27, paving the way for new treat-
ment strategies for these high-risk patient populations.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1007-8.
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MEthodS
Clinical cohort. We used data from 3,240 patients who were diagnosed between 
1977 and 2005 (with a median follow-up time of 9.77 years overall, and of 14 years 
among patients who remain alive), derived from five tumour banks in the UK and 
Canada. Primary breast tumours and linked pseudo-anonymized clinical data were 
obtained with ethical approval from the relevant institutional review boards. The 
METABRIC study protocol was approved by the ethics committees at the University 
of Cambridge and the British Columbia Cancer Research Centre. Manual curation 
and basic quality control were performed on the data. Observations that had relapse 
times equal to zero or relapse times equal to the last observed time were shifted by 
0.1 days. Local relapses that occurred after distant relapses were omitted. In total, 
11 cases with stage 4 tumours and 6 benign and phylloid tumours were removed 
from all analyses. Last follow-up time or time of death was the final end point for 
all patients. Special care was taken to remove second primary tumours from the 
dataset. Clinical parameters, such as tumour grade, were not centrally reviewed, 
which can lead to variability in the estimation of their effects.

Samples were allocated to three datasets, depending on the information avail-
able. For the full dataset cohort, clinical and pathological variables are available 
(15,394 transitions from 3,147 patients). For a subset of 1,980 patients, we pre-
viously described an integrated genomic analysis based on gene-expression and 
copy-number data12, and refer to this as the molecular dataset or METABRIC 
molecular dataset (9,512 transitions from 1,962 patients). For this cohort, tumours 
were stratified on the basis of the IHC subtypes (ER+/HER2+, ER+/HER2−, ER−/
HER2+, ER−/HER2−), the intrinsic subtypes (PAM50)10,11 and the integrative 
(IntClust) subtypes12,13. Finally, for a subset of patients who experienced distant 
metastasis (618 out of the 1,079 from the full dataset who relapsed), the date of 
each recurrence was available, enabling analysis of their spatiotemporal dynamics. 
We refer to this as the recurrent-events dataset. The three datasets are summarized 
in Extended Data Fig. 1a, with clinical details and basic parameters describing 
the intermediate end points of locoregional and distant recurrence across distinct 
subgroups in Supplementary Table 1. We also established an independent metaco-
hort composed of 1,380 patients with breast cancer from eight cohorts, enabling 
external validation of our findings, despite their shorter median follow-up (eight 
years) (Extended Data Fig. 1b). We used the maximum information available to 
fit the models, keeping for each patient all of the transitions that had complete 
observations in the variables needed to estimate the hazard of those specific tran-
sitions. Therefore, the total number of cases used in each model differs owing to 
the differing missing values in clinical variables and molecular classification that 
can affect different transitions.
Model description. The general model that we fit to our datasets is a multistate 
model that reflects the different risks of locoregional relapse, distant relapse or 
disease-specific death, conditioned on the current status of the patient. Although 
multistate survival models for breast cancer were proposed more than 60 years 
ago31, there are few such analyses in the literature14,32,33. Specifically, we used a 
nonhomogenous semi-Markov chain with two absorbent states (death/cancer and 
death/other), as shown schematically in Fig. 1. The model was stratified by molec-
ular subtype and used a clock-reset time scale, in which the clock stops (clock- 
reset) when the patient enters a new state. Although there were a small number of 
transitions from distant to local relapse (15 ER-positive cases and 7 ER-negative 
cases), we omitted the local relapse in these instances as we considered it to be 
redundant, and allowed only transitions from local to distant relapse in our model. 
We also included the possibility of cancer-related death without a recurrence to 
account for cases where metastasis was not detected. The R packages survival34 
and mstate35 were used to fit the data.

Several covariates were included in the model: age at state entry (diagnosis or 
relapse), tumour grade, tumour size and the number of positive lymph nodes, all 
of them as continuous variables (although, in the case of lymph nodes, all values 
larger than 10 lymph nodes were coded as 10, to avoid excessive influence in the 
estimation of the slope from extreme cases). The time from diagnosis was also 
included as continuous. Note that these formulations are a simplification of the 
modelling in our previous work12, where age, size and lymph nodes were modelled 
nonlinearly through splines. We have simplified these effects to reduce the number 
of parameters in the model, but also, in the case of age, because its nonlinearity is 
relevant only when overall survival is the end point.

For the full dataset, we fit a Cox model that was stratified on ER status. The 
effect of age on death/other causes was modelled with a different coefficient for 
each transition into nonmalignant death (based on ER status), to account for dif-
ferences in the age at relapse or diagnosis. ‘Grade’, ‘size’ and ‘lymph nodes’ were 
allowed to have different coefficients from the starting state to states of recurrence/
cancer-related death for each ER status. Time since diagnosis had different coeffi-
cients from the starting state of relapse to states of recurrence/cancer-related death 
for each ER status, and time since locoregional recurrence had different coefficients 
from distant relapse state to cancer-related death for each ER status. The time since 

locoregional recurrence was not predictive of the time to distant recurrence and 
therefore was not included in further analyses.

For the molecular dataset, and because of the large number of molecular sub-
types, we reduced the number of parameters, constraining their values to be the 
same for the different molecular subtypes. On the basis of different fits and the 
results of likelihood ratio tests, age was allowed to have a different coefficient for 
transitions from surgery, locoregional relapse or distant relapse into death/other 
causes, although these coefficients were constrained to be the same for all molecu-
lar subtypes. Grade and lymph nodes were allowed to have one value for transitions 
from diagnosis and another for transitions from relapse to states of recurrence/
death, identical for each molecular subtype. Size was allowed one value for transi-
tions from diagnosis and another for transitions from locoregional relapse to states 
of recurrence/death, identical for each molecular subtype. Time since diagnosis 
had the same coefficient from the starting state of relapse to states of recurrence/
death, identical for all molecular subtypes. This model was fit three times, one for 
each molecular classification, based on ER/HER2 status, PAM50 and Integrative 
Clusters; each of them stratified according to the respective molecular subgroups. 
We used a robust variance estimate in all models and performed likelihood ratio 
tests in order to reduce the number of parameters in each model (as mentioned 
above).
Transition probabilities for each molecular subtype. Using the model fit, we 
obtained the hazards for each transition for a given individual. We used these 
hazards to compute the corresponding transition probabilities as follows. We used 
a clock-reset model and defined all probabilities starting at the time of entry to the 
last state. All times (s and t) are also defined starting from the time of entry. Let the 
set of states be {S = disease-free/after surgery, L = locoregional relapse, D = distant 
relapse, C = cancer-related death, O = other cause of death}. We condition on the 
vector of clinical covariates x, which includes the time from surgery (in the case of 
relapse, this variable has an effect on the hazards).
Transitions from distant relapse. Following previously published studies14,36, we 
define the conditional probability of having no further event between times t and 
s for a patient with distant relapse at time t as:

∫ λ λ| = − | + |x x xS s t u u u( , ) exp{ ( ( ) ( ))d }
s

t

D D,C D,O

where λi,j (t|x) is the hazard of moving from state i to state j at time t with the vector 
of covariates x (including the time from surgery or age, which must be updated 
after a relapse).

Then, the prediction probabilities for each path are:
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Transitions from locoregional relapse. Similarly, we obtain:

∫ λ λ λ| = − | + | + |x x x xS s t u u u u( , ) exp{ ( ( ) ( ) ( ))d }
s

t

L L,D L,C L,O

∫π λ π| = | − | |x x x xu t s u s S s t s( , ) ( ) ( , 0 ) ( , )d
u

t

L,D LL
D,C

D
C

∫π λ π| = | − | |x x x xu t s u s S s t s( , ) ( ) ( , 0 ) ( , )d
u

t

L,D LL
D,O

D
O

∫π λ π| = | − | |x x x xu t s u s S s t s( , ) ( ) ( , 0 ) ( , )d
u

t

L,D LL
D

D

∫π λ| = | |x x xu t s S s t s( , ) ( ) ( , )d
u

t

L,C LL
C



LetterreSeArCH

∫π λ| = | |x x xu t s S s t s( , ) ( ) ( , )d
u

t

L,O LL
O

π π π π π π| = − | + | + | + | + |x x x x x xu t u t u t u t u t u t( , ) 1 ( ( , ) ( , ) ( , ) ( , ) ( , ))L L
D,C

L
D,O

L
D

L
C

L
O

Transitions after surgery.  

∫ λ λ λ λ| = − | + | + | + |x x x x xS s t u u u u u( , ) exp[ ( ( ) ( ) ( ) ( ))d ]
s

t

S S,L S,D S,C S,O

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,L SS
L,D,C

L
D,C

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,L SS
L,D,O

L
D,O

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,L SS
L,C

L
C

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,L SS
L,O

L
O

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,L SS
L,D

L
D

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,D SS
D,C

D
C

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,D SS
D,O

D
O

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,L L SS
L

∫π λ π| = | − |x x xu t s u s S s t s( , ) ( ) ( , 0) ( , )d
u

t

S,D D SS
D

∫π λ| = | |x x xu t s S s t s( , ) ( ) ( , )d
u

t

S,C SS
C

∫π λ| = | |x x xu t s S s t s( , ) ( ) ( , )d
u

t

S,O SS
O

π |xu t( , )S  can be computed as 1 minus the sum of the others.
Prediction probabilities for being in a particular state at a certain time can also 

be computed by summing the appropriate paths. Note that the main difficulty in 
computing these probabilities is updating the corresponding hazards every time a 
transition occurs, as they may depend on variables that change over time or after 
a transition to a different state. In our implementation, we tried to follow the style 
of the mstate package35.
Standard errors for transition probabilities in our model. If our model was 
Markovian (as the clock-forward model), the transition probabilities could be 
easily computed through the product-integral representation37 and it would also 
be straightforward to obtain estimates of their standard errors. However, for our 
clock-reset model the estimation of standard errors is complicated, so we used a 
semiparametric bootstrap approach to obtain such estimates38. In brief, for every 
bootstrap replicate (B = 100), we sampled trajectories for each observation in our 
original dataset on the basis of our fitted model. These trajectories were fitted to 
the original model and bootstrap hazards for the original average individuals were 

computed. Then, the formulas described earlier were used to obtain bootstrap tran-
sition probabilities. Because these bootstrap estimates are not likely to converge to 
the theoretical estimates in transitions with a small number of observed instances, 
we computed the standard deviation of the bootstrap estimates as an indication of 
the variability of these predictions for a given patient.
Transition probabilities for specific events. The transition probabilities obtained 
for each patient can be aggregated to obtain probabilities of visiting specific states 
(locoregional recurrence, distant recurrence) or specific end points. We used these 
probabilities in two ways: as an example of individual predictions for an average 
patient for each molecular subtype (based on typical or average values of each 
covariate), as in Supplementary Table 4b, Fig. 1b and Extended Data Figs. 6, 8, 
together with a confidence interval computed using the obtained probabilities 
± 1.96 times the standard deviation of the bootstrap estimates described above, 
which represents variability around individual predictions. We also computed 
probabilities for all patients to show their distribution in each molecular subtype, as 
in Supplementary Table 4a, Figs. 2a, 3a and Extended Data Figs. 4, 5, 7. Confidence 
intervals computed using the mean of the probabilities ± 1.96 times the standard 
error of the mean represent variability around the mean in each subtype.
Sites of relapse. In the recurrent-event datasets, each patient can have several 
relapses. Instead of adding the site to our multistate models, we selected only 
patients who had a distant relapse. First, in Fig. 4a and Extended Data Fig. 10, we 
tested whether the proportions of relapses in each organ differed by molecular sub-
type. We fitted a logistic regression model with relapse as a binary variable and the 
sites of metastases as dependent variables. We computed simultaneous tests using 
the R package multcomp39 with the Dunnet method40. Only those proportions with 
P < 0.05 were considered significant. In the same figures, cumulative-incidence 
distributions for each organ were computed independently—that is, no competing 
risk model was fitted.

Next, we modelled recurrent distant metastases (Fig. 4b) using the PWP condi-
tional model41. This model allows for different baseline hazards for each consecutive  
recurrence while keeping at risk for recurrence i only those individuals that have 
experienced the recurrence i − 1.

Finally, in Fig. 4c we fitted a Cox model with time-dependent variables to esti-
mate the hazard of DSD for metastases in different organs. We also included in this 
model the clinical variables from the primary tumour (tumour grade, tumour size 
and number of tumour-positive lymph nodes).
Goodness-of-fit testing. Goodness-of-fit testing was performed for all models. 
Proportional hazards assumptions were tested with the Schoenfeld residuals versus 
time, using the survival package function cox.zph()34. None of the models showed 
covariates that violated the assumption, except the model for sites of metastasis 
(ER-positive), where the number of metastases and ‘other metastasis’ were signif-
icant, and the model for sites of metastasis (ER-negative), where the grade and 
number of metastases were significant (see Supplementary Information). Visual 
inspection of the plots showed that the trend was roughly flat and thus the violation 
was not critical. As shown previously, in the model that includes ER, ER violates 
the proportional hazard assumption. However, this model was only used to test 
differences in the hazard ratios of the other covariates according to ER.
Model validation and calibration. We validated each of the models using several 
approaches, as outlined below.
Internal validation. We validated the global predictions of the model on all tran-
sitions using a bootstrap approach that has previously been described in detail42, 
using the rms R package. We used the following measures of predictive ability: (1) 
Somers’ Dxy rank correlation (Dxy), which is 2(C − 0.5), where C is the C-index; 
(2) Nagelkerke’s R2, which is the square root of the proportion of log-likelihood 
explained by the model, to the log-likelihood that could be explained by a ‘perfect’ 
model, with a penalty for model complexity; (3) the slope shrinkage (slope), a 
measure of how much the estimates are affected by extreme observations; (4) the 
discrimination index D, derived from the log-likelihood at the shrunken linear 
predictor; (5) the unreliability index U, a measure of how different the model 
maximum log-likelihood is from that of a model with frozen coefficients; (6) the 
overall quality index Q, a normalized and penalized-for-unreliability log-likeli-
hood; and (7) the g-index (g) on the log relative hazard (linear predictor) scale 
(Gini’s mean difference).

Each measure was computed on the training set and on 200 bootstrap test sets, 
estimating the optimism and the corrected indexes for predictions at 5, 10 and 15 
years (see Extended Data Fig. 3a).
Internal calibration. We also use the following procedure for model calibration, as 
described previously42: (1) interpolation of the hazard function using splines (hare 
method) among all the cases as a general function of the predictor variables and time; 
(2) computation of the predicted values for a given time point (5, 10 or 15 years); (3) 
computation of the differences between observed and predicted; and (4) using 200 
bootstrap datasets, computation of the optimism in those differences. Extended Data 
Figure 3b shows a box plot of the mean absolute error of all predictions.
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External calibration. As an external comparison of the predicted probabilities of 
our models, we used predict v.2.118, a tool that has been validated extensively. 
PREDICT uses a model with several variables (including the effect of treatment) 
and produces estimates of the probability of cancer-specific death (C/D) and non-
malignant death (O/D), as well as estimates of the effect of treatment. We compared 
the probabilities for these events with PREDICT using Pearson correlation (see 
Extended Data Fig. 3c, d).
External validation. We used two sets of external samples to validate the predictions 
of our models. First, we used a set of METABRIC samples that were not part of the 
original study, including 121 patients with copy-number data and 57 patients with 
expression data. Survival data are available for these patients (in fact, they are part 
of the full dataset, but because they had not been used to fit the IntClust model, 
they could be used to test the validity of the C-index on an external dataset). We 
classified these tumours into IntClust groups using the iC10 package13.

Second, we used an external dataset of 1,380 patients from 8 different cohorts 
and different survival information. We validated predictions of disease-specific 
survival, overall survival, relapse-free survival and distant-relapse-free survival. 
We compiled a metacohort by merging early breast-cancer cohorts for which 
expression data (Affymetrix array), outcome and covariates are available, includ-
ing GSE19615 (DFHCC cohort43), GSE42568 (Dublin cohort44), GSE9195 (Guyt2 
cohort45), GSE45255 (IRB/JNR/NUH cohort46), GSE11121 (Maintz cohort47), 
GSE6532 (TAM cohort45), GSE7390 (Transbig cohort48) and GSE3494 (Upp 
cohort49). Original data (raw CEL files) were downloaded and preprocessed using 
the rma function from the affy50 package. The intensities were then quantile nor-
malized and corrected for batch effects with the COMBAT function from the sva51 
package. PAM50 was called using the genefu52 package. The ER, progesterone 
receptor and HER2 status were extracted from the expression with probes 205225_
at, 208305_at and 216836_s_t, using a Gaussian mixture model. IntClust10 sub-
groups were called using the iC10 package. C-indices and summary C-indices were 
calculated using the survcomp53 package. For the combined metacohort scores, 
we calculated C-scores for each individual cohort and then combined them using 
the function combine.est from the survcomp53 package. Confidence intervals and 
P values for comparing C-indices were computed with the same package. Extended 
Data Figure 3e shows the C-indices and confidence intervals for these comparisons.
General statistical considerations. All tests were performed two-sided (except 
where indicated). Adjustment for multiple comparisons was done as described 
in the section ‘Comparison of probabilities of relapse in ER+ high risk integra-
tive subtypes’ (see Supplementary Methods) and separately when comparing the 
proportions of metastases in each organ (Fig. 4a and Extended Data Fig. 10). All 
analyses were conducted in R version 3.5.154. No statistical methods were used to 
predetermine sample size. The experiments were not randomized and the investi-
gators were not blinded to allocation during experiments and outcome assessment.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Code availability
All code and scripts are available for academic use at https://github.com/cclab-
brca/brcarepred.

Data availability
The genomic copy number, gene-expression and molecular-subtype information 
has been described previously12 and is available at the European Genome-Phenome 

Archive at https://www.ebi.ac.uk/ega/studies/EGAS00000000083. Clinical data are 
available in Supplementary Tables 5–8. The breast-cancer-recurrence predictor 
is available as a web application for academic use at https://caldaslab.cruk.cam.
ac.uk/brcarepred.
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Extended Data Fig. 1 | Description of the cohorts used in this study.  
a, Description of the METABRIC discovery cohort, clinical characteristics 
and flow chart of sample inclusion for analysis. b, Description of the 
validation cohort, clinical characteristics and flow chart of sample 
inclusion for analysis. DRFS, distant-relapse-free survival; DSS, disease-
specific survival; OS, overall survival; RFS, relapse-free survival. 

The cohorts are as follows: GSE19615 (DFHCC cohort43), GSE42568 
(Dublin cohort44), GSE9195 (Guyt2 cohort45), GSE45255 (IRB/JNR/
NUH cohort46), GSE11121 (Maintz cohort47), GSE6532 (TAM cohort45), 
GSE7390 (Transbig cohort48) and GSE3494 (Upp cohort49). NA, not 
available.
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Extended Data Fig. 2 | Effect of censoring nonmalignant deaths on the 
estimation of disease-specific survival, and prognostic value of clinical 
covariates at different disease states. a, Cumulative incidence computed 
as 1 − Kaplan–Meier (KM) estimator, using only disease-specific death as 
an end point and censoring other types of death. b, Cumulative incidence 
computed using a competing-risk model that takes into account different 
causes of death. The bias of the 1 − Kaplan–Meier estimator is visible. 
c, Distribution of age at the time of diagnosis for ER-negative and ER-
positive patients. The number of patients in each group is indicated in 
all panels. This analysis was done with the full dataset. Box plots were 
computed using the median of the observations (centre line). The first and 

third quartiles are shown as boxes, and the whiskers extend to the ±1.58 
interquartile range divided by the square root of the sample size. Outliers 
are shown as dots. d, log hazard ratios calculated using the multistate 
model stratified by ER status (n = 3,147) for different covariates, namely 
grade, lymph-node (LN) status, tumour size (size), time from surgery and 
time from local relapse (LR). log hazard ratios are shown for different 
states, including post-surgery (PS; hazard ratio of progressing to relapse or 
DSD), locoregional recurrence (LR; hazard ratio of progressing to distant 
relapse or DSD) and distant recurrence (DR; hazard ratio of cancer-
specific death). 95% confidence intervals are shown. This analysis was 
done with the full dataset.
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Extended Data Fig. 3 | Model calibration and validation in an external 
dataset. a, Internal validation of the global predictions of the models 
on all transitions using bootstrap (n = 200). Discriminant measures of 
predictive ability are shown on the x axis, as described in the Methods 
section ‘Model validation and calibration’. The y axis shows the optimism, 
that is, the difference between the training predictive ability and the test 
predictive ability of the discriminant measures (see Methods). b, Internal 
calibration of the global predictions of the models on all transitions 
using bootstrap (n = 200). The distribution of the mean absolute error 
between observed and predicted is plotted. c, External calibration of 
DSD risk and nonmalignant death risk using PREDICT 2.1 (n = 1,841). 
The distribution of the mean absolute error between the predictions of 
PREDICT and our model based on ER status only is plotted. a–c, Box 
plots were computed using the median of the observations (centre line). 

The first and third quartiles are shown as boxes, and the whiskers extend 
to the ±1.58 interquartile range divided by the square root of the sample 
size (see Methods). d, Scatter plot of the predictions of DSD risk computed 
by PREDICT and our model based on the IntClust subtypes only at 
ten years (n = 1,841; see Methods). The Pearson correlation is shown. 
e, Concordance index (C-index) of prediction of risk of distant relapse 
(DRFS), disease-specific death (disease-specific survival, DSS), death 
(overall survival, OS) and relapse (RFS) in the 178 withheld METABRIC 
samples and in a metacohort composed of eight published studies 
among ER+/HER2− patients in the high-risk IntClust subtypes, where 
results are shown for individual cohorts and the combined metacohort 
(see Methods and Supplementary Information). Error bars correspond to 
95% confidence intervals for the C-index. The number of patients in each 
group is indicated on the right.
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Extended Data Fig. 4 | Different subtypes have distinct probabilities 
of recurrence. a, Average probability of experiencing a distant relapse 
(defined as the probability of having a distant relapse at any point followed 
by any other transition) or cancer-related death for the high-risk ER+ 
IntClust (IC) subtypes (IC1 n = 134, IC6 n = 81, IC9 n = 134, IC2 n = 69) 
relative to IC3 (n = 269), the ER+ subgroup with the best prognosis. This 
analysis was restricted to ER+/HER2− cases, which represent the vast 
majority for each of these subtypes. Error bars represent 95% confidence 
intervals around the mean. b, As for a, but showing the average probability 
of experiencing distant recurrence or cancer-related death after a local 
recurrence (IC1 n = 21, IC6 n = 10, IC9 n = 21, IC2 n = 13, IC3 n = 30). 
c, Average probability of recurrence (distant relapse or cancer-specific 
death) after locoregional relapse for all patients in each of the 11 IntClust 
subtypes. d, Median time until an additional relapse (distant recurrence 
or cancer-specific death) after local recurrence for all patients in each 
of the 11 IntClust subtypes (n = 270). This has been computed using 

a Kaplan–Meier approach with competing risks of progression and 
nonmalignant death. Error bars represent 95% confidence intervals 
around the median time. Asterisks denote situations in which the median 
time cannot be computed because fewer than 50% of the patients relapsed. 
This analysis was done with the molecular dataset. e, Average probability 
of cancer-related death after distant recurrence for all patients by subtype. 
f, As for d, except that the median time until cancer-specific death after 
distant recurrence is shown (n = 596). g, Mean probabilities of relapse 
after surgery and after five and ten disease-free years (see Methods and 
Supplementary Table 4) for the patients in each of the four IHC subtypes. 
Error bars represent 95% confidence intervals. The number of patients in 
each group is indicated. h–k, As for c–f, but for the IHC subtypes (same 
sample sizes). l, As for g, but for the PAM50 subtypes. The number of 
patients in each group is indicated. m–p, As for h–k, but for the PAM50 
subtypes (with the same sample sizes, except for p where n = 593).
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Extended Data Fig. 5 | The ER−/HER2− integrative subtypes exhibit 
distinct risks of relapse. The probabilities of distant relapse or cancer-
related death among ER−/HER2− patients who were disease-free at five 
years after diagnosis reveal marked differences in the risk of relapse for 
TNBC IntClust subtype IC4ER− versus the IC10 (basal-like enriched) 

subtype. Here the base clinical model with IHC subtypes is compared 
with the base clinical model plus IntClust subtype information. Error bars 
represent 95% confidence intervals. The number of patients in each group 
is indicated.
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Extended Data Fig. 6 | Subtype-specific risks of relapse after 
locoregional relapse. Transition probabilities from locoregional 
recurrence to other states for individual average patients, stratified on the 
basis of ER, IHC, PAM50 or IntClust subtype. 95% confidence bands were 

computed using bootstrap. This analysis was done with the full dataset for 
the comparisons between ER+ and ER−, and the molecular dataset for the 
remainder.
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Extended Data Fig. 7 | Associations between probabilities of distant 
relapse ten years after locoregional relapse with clinico-pathological 
and molecular features of the primary tumour. For each patient that 
had a locoregional recurrence, the ten-year probability of having a distant 
relapse or cancer-related death is plotted against different variables. A 
loess fit is overlaid to highlight the relationship between the probability 

and tumour size or time of relapse. Box plots were computed using the 
median of the observations (centre line). The first and third quartiles are 
shown as boxes, and the whiskers extend to the ±1.58 interquartile range 
divided by the square root of the sample size. Outliers are shown as dots. 
This analysis was done with the molecular dataset and the model was 
stratified by IntClust subtype (n = 257).
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Extended Data Fig. 8 | Subtype-specific risks of cancer-related death 
after a distant relapse. Transition probabilities from distant relapse to 
other states for individual average patients stratified on the basis of ER, 
IHC, PAM50 or IntClust subtype. 95% confidence bands were computed 

using bootstrap. This analysis was done with the full dataset for the 
comparisons between ER+ and ER−, and the molecular dataset for the 
remainder.
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Extended Data Fig. 9 | Distribution of the number of relapses by 
molecular subtype. a, Times of distant recurrence for ER− and ER+ 
patients (n = 605). Each dot represents a distant recurrence, coded by 
colour for different sites. b, Distribution of the number of distant relapses 
for different subtypes (n = 609), based on ER status (ER+ n = 422, ER− 
n = 187), IHC ER/HER2 status (ER+/HER2− n = 263, ER−/HER2− n = 82,  

ER+/HER2+ n = 36, ER−/HER2+ n = 41), PAM50 subtype (normal n = 33,  
luminal A n = 101, luminal B n = 138, basal n = 79, HER2 n = 69) and 
IntClust subtype (IC1 n = 40, IC2 n = 25, IC3 n = 32, IC4ER+ n = 46, 
IC4ER− n = 16, IC5 n = 72, IC6 n = 23, IC7 n = 24, IC8 n = 54, IC9 
n = 38, IC10 n = 52). ER status was imputed on the basis of expression in 
four samples. These analyses were done with the recurrent-events cohort.
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Extended Data Fig. 10 | Site-specific patterns of relapse in the IHC, 
PAM50 and IntClust subtypes. a, Left, percentages of patients with 
metastases at a given site in the IHC subtypes (bar plots, total numbers 
also indicated). Upright triangles indicate significant positive differences 
in that group with respect to the overall mean and inverted triangles 
indicate significant negative differences in that group with respect to 
the overall mean using simultaneous testing of all sites (see Methods). 
Location of metastatic sites is not anatomically accurate. Right, cumulative 

incidence functions (as 1 − Kaplan–Meier estimates) for each site of 
metastasis in the IHC subtypes. The same patient can have multiple sites 
of metastasis. b, As for a, but for the PAM50 subtypes. c, As for a, but 
for the IntClust subtypes. These analyses were done with the recurrent-
events cohort. Female silhouettes are from the public-domain human 
body diagrams at https://commons.wikimedia.org/wiki/Human_body_
diagrams.
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Sample size We used all available samples from the METABRIC study (Curtis et al, 2012 Nature). To our knowledge, this is the largest breast cancer cohort 
with molecular data and long-term follow-up. To reduce the risk of overfitting, we only used pre-selected variables in the model and used 
common parameters in different subgroups. 

Data exclusions Exclusion criteria were pre-established. Missing values were queried over the original source hospital files. Those that were truly missing were 
excluded. Benign, stage 4 tumors, and patients for whom  recurrence times were not reliable were removed. 

Replication Not applicable; these are patient data. 
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Population characteristics The cohort includes 3240 patients with invasive primary breast cancers derived from five tumor banks in the UK and Canada 
diagnosed between 1977-2005 (with a median follow-up of 14 years amongst patients who remain alive). Primary breast tumors 
and linked pseudo-anonymised clinical data were obtained with ethical approval from the relevant institutional review boards. A 
detailed description of the cohort can be found in Supplementary Table 1 and Supplementary Table 4.

Recruitment In this observational study, women diagnosed with invasive primary breast tumors between 1977-2005 for whom clinical 
information could be categorically linked to fresh frozen tumor material were considered for inclusion. Further details can be 
found in Curtis et al (2012, Nature).
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