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A unique cardiac electrocardiographic
3D model. Toward interpretable AI diagnosis

Cristina Rueda,1,2,7,* Alejandro Rodrı́guez-Collado,1 Itziar Fernández,1,3 Christian Canedo,1

Marı́a Dolores Ugarte,4,5,6 and Yolanda Larriba1,2
SUMMARY

Mathematical models of cardiac electrical activity are one of the most important
tools for elucidating information about heart diagnostics. In this paper, we pre-
sent an efficient mathematical formulation for this modeling simple enough to
be easily parameterized and rich enough to provide realistic signals. It relies on
a five dipole representation of the cardiac electric source, each one associated
with the well-known waves of the electrocardiogram signal. Beyond the physical
basis of the model, the parameters are physiologically interpretable as they char-
acterize thewave shape, similar to what a physician would look for in signals, thus
making them very useful in diagnosis. The model accurately reproduces the elec-
trocardiogram signals of any diseased or healthy heart. This new discovery repre-
sents a significant advance in electrocardiography research. It is especially useful
for diagnosis, patient follow-up or decision-making on new therapies; is also a
promising tool forwell-performing, transparent and interpretable AI approaches.
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INTRODUCTION

The development of models and algorithms for the study of the cardiac electric system helps to better un-

derstand the physical processes governing the system and helps to guide therapeutic planning. In partic-

ular, the development of automatic methods with interpretable decisions is in high demand. The relevance

of the topic has attracted the interest of scientists from different fields, such as mathematics, physics,

bioengineering, and medicine.

The heart muscle is a composite tissue with a complex structure that consists of various cell types. The elec-

tric activation of the heart begins at the sinus node where pacemarker cells activate spontaneously. The

corresponding current results in the excitation of the neighboring cells, and it then spreads, first along

the atria, and then along the ventricles.6,28

Generalized assumptions on cardiac electrophysiological models that date back to the 1960s,23 and remain

part of the conventional approach are: the electric field is represented by a single or multiple dipoles,

whereas the total electric activity is represented by a three-dimensional vector. This vector, denoted by

D
!ðtÞ at time t, is the sum of all the individual dipole vectors. Because the depolarization wavefront spreads

through the heart, D
!ðtÞ changes in magnitude and direction as a function of time. D

!ðtÞtypically describes a
trajectory with three loops corresponding to consecutive time segments: the P wave (atrial depolarization),

the QRS complex (ventricular depolarization) and the T wave (ventricular repolarization), respectively. The

loops described by the P and T waves are elliptical, whereas theQRS has an irregular shape.25 Furthermore,

the voltage measurements registered by the electrocardiogram (ECG) signal are the projections of D
!ðtÞ in

the directions of the axes of the recording electrodes located on the thoracic surface. In general, positive

(negative) signals are produced when the depolarization front propagates toward (away from) a positive

electrode. The opposite happens for the repolarization front. The standard ECG has signals from 12 pro-

jections or leads recorded using 10 electrodes.6

Despite the previous assumptions, mathematical formulations for ECG signals remain quite complex. Clas-

sical formulations include differential equation systems, representing the process with more or less

biophysical detail. Aside from the mathematical complexity of the model formulation, some common crit-

icisms of these models are that they hardly generate realistic 12-lead ECG signals, and that they depend on
iScience 25, 105617, December 22, 2022 ª 2022 The Author(s).
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Figure 1. FMM parameter description

An ECG healthy heartbeat with waves decomposition and morphological parameter description

ll
OPEN ACCESS

iScience
Article
a large number of parameters which are hardly identifiable. In practice, a meaningful parameter identifica-

tion is essential.

The literature dealing with dipolemodels for the electric activity of the heart is very extensive.5,12–16,32,37,38,54,58

Alternative approaches dealing with specific aspects of the heart’s electric activity are also too many to be

easily summarised.21,22,30,50–52 Furthermore, many papers since the early 1950s have been devoted to vector-

cardiography (VCG) models.25 Instead of 12-lead standard ECG models, they only consider three leads

scanned in quasi-orthogonal axes. However, the VCG system is not common in clinical practice as there are

fewer experts trained in these signals. ECG and VCGmodels have contributed to an improved understanding

of the functioning of the heart, but have so far had little success in convincing clinicians. In particular, they fail in

an important prerequisite for clinical applications, the ability to faithfully replicate ECG recorded from any

diseased or healthy heart.

Here we present a novel model, named 3DFMMecg that is formulated for the 12-lead signals. The term 3D is

used because it is assumed that these signals are projections of a three-dimensional electrical signal. The

model relies on the classical physiological premise: the electric source is represented by a multiple dipole

model. The novelty, however, is that it assumes that D
!ðtÞ combines the electric signals from exactly five

different sources, which represent differentiated myocardium segments, further associated with the five

fundamental waves in ECG signals. Namely, D
!ðtÞ = d

!
PðtÞ+ d

!
QðtÞ+ d

!
RðtÞ+ d

!
SðtÞ+ d

!
T ðtÞ, where t repre-

sents the real time and varies in ð0; 2p� for each heartbeat. Furthermore, the new model is also based on a

key idea and original assumption: d
!

JðtÞ, with J˛ fP;Q;R;S;Tg, moves in the same plane as time progress,

and its trajectory is described as a complex FMM signal, a parameterized mathematical equation that de-

scribes an elliptical trajectory. Accordingly, the magnitude of d
!

JðtÞ in a given direction is represented by a

one-dimensional FMM wave, which reflects depolarization and repolarization voltage changes. An FMM

wave, Wðt;A;a; b;uÞ, is an equation defined in terms of four parameters.44 The parameter A, a positive

real number, measures the wave amplitude; a is a location parameter with values in ð0; 2p�; whereas b,

with values in ð0; 2p�, describes the asymmetry degree of the wave shape and also informs when the unim-

odal pattern corresponds to a crest or a trough. Finally, the parameter u, with values in 0,1, measures the

sharpness of the peak. The value u = 1 corresponds to an exact sinusoidal shape. Figure 1 illustrates each

parameter in a simulated ECG signal. These four parameters are wave-specific, but, whereas A and b are

also lead-specific, a and u are the same across leads. The role of these common parameters is essential

in the modeling process. They provide connectivity between the signals from different leads thus, simpli-

fying the model substantially. For a given lead L and wave J, the quadruple ½AL
J;aJ;b

L
J;uJ� describes pre-

cisely the wave shape, in the same way a physician looks at the signal. From the model definition it also

follows that projections of D
!ðtÞ, in directions different from those in the standard 12-lead system, are

also formulated as a sum of five FMM waves where a and u do not change. Thus, the approach unifies

VCG and ECG systems within a single formulation.
2 iScience 25, 105617, December 22, 2022
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The inclusion of an intercept and an error term that accounts for data noise results in a powerful

statistical model. To make the model identifiable and even more biologically interpretable, we assume

that aP %aQ %aR %aS %aT . These restrictions respond to the natural depolarization order of different

myocardium segments. These restrictions and the fact that the number of parameters is small, some of

them common to different leads, guarantee an accurate identification of the model parameters, even in

the cases of highly anomalous patterns or noisy signals. A quadratic optimization problem must be solved

to obtain the model parameters. Here, we design a backfitting iterative approach to solve the problem.

Specifically, the common parameters, a and u, are identified using a grid search. Then, the lead-specific

parameter estimates A and b are easily derived using standard linear regression models. An algorithm is

designed to analyze 12-lead ECG fragments of any length. In the preprocessing stage, the signal is divided

beat by beat. Then, for each beat, parameter estimates are derived. The output of the algorithm provides,

for each wave, the series of parameter values, corresponding to consecutive beats, which can be summa-

rized to get average patterns as well as the changes in the patterns over time. These quantities can be used

directly in the clinic. For example, a specific measure of the QRS complex duration, a very well-known

feature in cardiology, can be defined with the distance between aQ and aS . In the literature, there is no uni-

versal way to calculate this measurement. First, because the definition is vague: the QRS interval starts from

the beginning of the Q wave to the end of the S wave. Second, because the observed signal is noisy, and

finally, because different values may be derived from different leads. Compared to the commonly used

measures of QRS duration, that based on FMMparameters have a more precise meaning and, more impor-

tantly, are not dependent on the lead, the measurement device, or the investigator eye.

The evaluation of the 3DFMMecgmodel is an integral question but the evaluation technique and the model to

compare with, depend on the specific tasks we want to solve. The 3DFMMecg model is a multi-purpose

approach and there is no an alikemodel to comparewith. Indeed, there is no othermultiple leadmodel, useful

for automatic diagnosis, beyond black-box models. The better performance of the FMM single lead model

against alternatives has been already shown in Rueda et al.,43 in terms of global goodness of fit, consistency,

robustness, and also for fiducial marks detection and pattern identification. In this paper, to evaluate the per-

formance of the 3DFMMecg model, we proceed as follows. First, we analyze the model’s ability to reconstruct

realistic ECG signals using 1D, 2D, and 3D representations generated fromdifferent parameter configurations.

Second, all the ECG fragments from patients in the Database:PTB-XL56 were analyzed with the new model.

PTB-XL is a benchmark database, that contains a great variety of healthy, pathological, and noisy cases. To

illustrate how the model works see Figure 2 and Figures S5–S12 for healthy and different heart conditions,

respectively. We emphasize that the input and output of the 3DFMMecg model are the 12-lead signals

although is based on the assumption that these signals are projections of a 3D signal. Specifically, the model

generates a predicted multivariate signal that mirrors the original 12-lead ECG signal with high reliability, as

we quantify in the paper. This is something that other models are very far from reaching except for methods

specifically designed for data compression or denoising, which are useless for solving other issues, particularly

in automatic diagnostics. Third, the applicability of the model in clinical practice is illustrated with three

markers, defined in terms of the model parameters, which are proved to be very useful for the detection of

three well-known cardiac pathologies. Specifically, ROC curves from the Database:PTB-XL are given. These

markers have at least the following advantages compared to black-box models: (1) The definition is very sim-

ple, it is applied to each patient individually and the result does not depend on the rest of the patients or their

pathologies. In particular, no training set is used. (2) Its universal character allows the analysis of signals ob-

tained with any recording device or preprocessing. (3) The cardiographic interpretation is clear and in accor-

dance with standard medical diagnostic criteria. (4) The markers can be easily monitored and their evolution

can be studied, providing valuable diagnostic information over time.

Furthermore, the model validation can be extended to any other dataset as an app is provided: https://

fmmmodel.shinyapps.io/fmmEcg3D/, which allows the researchers to check the model with their own

data. It includes a variety of examples that clearly illustrate how well our model reconstructs multivariate

ECG signals, and help in diagnosis providing the markers values.
RESULTS

Next sections show how the 3DFMMecg successfully solves the main challenges of the forward and inverse

problems in electrocardiography, and give an overview of the contributions to interpretable AI. Further-

more, a simulation study that shows how the identification algorithm provides sensible and robust param-

eter estimates across different configuration scenarios was conducted (see STAR Methods). The analysis of
iScience 25, 105617, December 22, 2022 3

https://fmmmodel.shinyapps.io/fmmEcg3D/
https://fmmmodel.shinyapps.io/fmmEcg3D/


[htbp]

I II III aVR aVL aVF

V1 V2 V3 V4 V5 V6

I II III aVR aVL aVF

V1 V2 V3 V4 V5 V6

I II III aVR aVL aVF

V1 V2 V3 V4 V5 V6

Wave P Q R S T

A

B

C

D E F

Figure 2. ECG from patient id 8 (beat n�9) in the Database:PTB-XL

(A) 12-lead observed signals (scaled).

(B) 12-lead FMM predicted signals.

(C) 12-lead FMM wave patterns. The symbol + indicates linear combinations of other signals.

(D), (E) and (F): 1D, 2D and 3D representations of the predicted signals, respectively, where X = LeadII;Y = LeadIIðiÞ; Z = LeadV2 � 2 � Y . The colors

differentiate the P (purple), QRS (red) and T loops (blue)
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Table1. Percentiles of R, omeR, omeS and maxAR across NORM, CLBBB, CRBBB, HYP and ALL patients in Database:PTB-XL

R omeR omeS maxAR

Diagnostic N� 5th Median 95th 5th Median 95th 5th Median 95th 5th Median 95th

NORM 8,578 0.91 0.95 0.97 0.03 0.03 0.04 0.02 0.03 0.05 525 837 1,379

CLBBB 505 0.91 0.96 0.98 0.07 0.14 0.21 0.04 0.06 0.10 806 1,585 2,673

CRBBB 523 0.87 0.94 0.97 0.03 0.04 0.11 0.04 0.08 0.14 396 811 1,627

HYP 599 0.92 0.96 0.98 0.03 0.04 0.09 0.02 0.03 0.06 852 1,465 2,403

ALL 21,331 0.92 0.95 0.97 0.03 0.04 0.09 0.02 0.03 0.07 520 888 1,677
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real ECG data requires a preprocessing stage to remove baseline and other noise artifacts. Data prepro-

cessing is detailed in the STAR Methods.

Reconstruction of realistic ECG signals

A configuration of parameters for a healthy heart, labeledNORM, has been identified using themedian values

for all patients, labeled NORM in the Database:PTB-XL. This configuration is used as a reference. Alternative

configurations describing different pathological conditions of the heart have been generated by changing the

reference values of the most relevant parameters, summarized in Table S1, see the STAR Methods. The stan-

dard 12-lead unidimensional signals, and selected 2D and 3D representations, are provided for each config-

uration scenario. The axes we have selected for the 2D and 3D representations are defined as follows;

X = LeadII;Y = LeadIIðiÞ; Z = LeadV2 � 2 � Y
X is the most commonly used lead in studies, and ðX ;YÞ is a natural bidimensional representation

described by the Analytic Signal, defined in the complex plane45,47 (additional details are given in the

Methods Section). Finally, Z has been selected after checking other alternatives, as it offers an interesting

visualization of the three loops: P, QRS and T across different patterns.

To conserve space, the figures for these configurations are shown in the Supplemental Information (see

Figures S1–S4). In particular, the figure for the NORM configuration looks similar to Figure 2. The other con-

figurations generate representations with characteristic and differentiated patterns.

Accuracy of 3DFMMecg predictions and markers

To validate the performance of the 3DFMMecgmodel in real practice, and in particular the three newmarkers,

the ECG signals from the Database:PTB-XL have been analyzed. Using the preprocessing step, 210 patients

(less than 1%) out of 21,837, were discarded because of very noisy patterns. In addition, 295 patients with pace-

makers were discarded because of their highly atypical but predictable ECG patterns. A diagnostic label has

been assigned to each patient in the database using SNOMED CT ontology,34 (bioportal.bioontology.org/

ontologies/SNOMEDCT). Labels are assigned only to patients with a diagnostic likelihood of 80 or more. Ex-

amples of observed and predicted signals from diverse heart conditions and noisy cases are given from

Figures S5–S9 in Supplemental Information, illustrating the ability of the model to successfully handle patho-

logical patterns. Someof themore recognized SNOMED labels used here areComplete Bundle BranchBlocks

(CLBBB, CRBBB) left and right, respectively, and ventricular Hypertrophy (HYP).

ECG data at the patient level are a series of consecutive beats. The new markers are defined for a given

patient, in a given center and device, and at a given moment of time; and these are obtained using median

values of FMM parameters from individual beat values. Specifically, we define three new markers, namely:

and omeS as the median of the uR anduS individual beat values, respectively; andmaxAR as the maximum,

across leads, of the median of the AR individual beat values.

Table 1 gives percentiles for different measures obtained for CLBBB, CRBBB, HYP and NORM patients. On

the one hand, a global model quality measure, named R, is given. It is defined as the mean across leads

of anR2 measure, which is, in turn, the proportion of variation in the signal that is explained by the

model (see Methods section for details). The figures in Table 1show that the R values are quite high across

diagnostics, being higher than 90% for more than 95% of patients. The only candidate models with which to

compare the values of R2 in Table 1 are the models designed for data compression or denoising. These

models are calibrated in the literature using measures similar to R2, such as PRDðPR D2 = 1 � R2Þ.
iScience 25, 105617, December 22, 2022 5



Figure 3. ROC curves and AUC values for the markers omeR, omeS and maxAR for CLBBB, CRBBB and HYP,

respectively
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PRD values of the order of 10% or less are considered sufficient to maintain the specific characteristics of an

ECG signal.31 The average PRD values were obtained using the 3DFMM models with 5–12 components,

ranging from 20% to 9%, for the Database:PTB-XL. These values show that the FMM approach is also a

very interesting method for data compression tasks while retaining diagnostics markers. On the other

hand, Table 1 also shows that omeR and omeS are directly associated with CLBBB and CRBBB, respec-

tively, whereasmaxAR does with HYP, as long as omeR is within the percentile range of NORM. The interest

of the omega FMMparameters in the diagnosis had already been evidenced in Rueda et al.,42 where simple

diagnostic rules for CLBBB and CBBB (Complete Bundle Branch Block) have been defined, and can be used

even when only one of the lead signals is available. To better illustrate the diagnostic ability of binary clas-

sifier systems based on thesemarkers, ROC curves have been plotted in Figure 3. There aremany proposed

rules in the literature to classify these diagnoses with surprisingly high AUC values in some cases.48 The

AUC values obtained with the FMM markers are not far from them whereas the rules based on the new

markers have several advantages compared to black-box models, as commented in the Introduction.

Figures S10–S12 in the Supplemental Information, illustrate how the model works under other heart

conditions.

Contributions to interpretable AI

Black-boxMachine Learning (ML) algorithms rapidly growing in cardiology, lack interpretability and can cause

problems in high-stakes decision making.2,17,21,22,36,41,52,55,61 The ways the 3DFMMecg approach helps to

explain how ML models work are diverse but mainly rely on two powerful properties. On the one hand, the

model provides a set of robust indexes that characterize in detail the morphology of ECG signals. These in-

dexes can be incorporated as features in a classification or prediction task generating inherently interpretable

MLmodels. Besides, they can be used to explain the decision of anML algorithm with statistic summaries and

visualization. In particular, the relevance of different waves and/or leads can be easily illustrated, identifying

the heart regions related to the algorithm decision as well. On the other hand, the 3DFMMecg model is

able to reconstruct any real 12 lead ECG signal. This property allows us to elucidate how the ML model oper-

ates throughwell designed simulations, detecting possible shortcomings problems and identifying the causes

of its decisions. Furthermore, a human-like interpretable and trustworthy AI FMM-based system could be

developed by taking advantage of the ability of the FMM indexes to mimic almost any electrocardiographic

feature, in such a way that the system is able to reproduce approximately the steps that a physician follows to

read and interpret an ECG. Beyond the transparency and interpretability, other property that makes the

3DFMMecg model a very promising tool is its universal character. It works regardless of the preprocessing

and denoising, the recording device, the number of leads, the length of data, or the differences between data-

sets label distributions. It provides consensus indexes for relevant features such as the QRS complex duration

that would also contribute to reduce the differences in the interpretation of electrocardiograms.

DISCUSSION

Here we present a unique cardiac electrophysiological model, the 3DFMMecg. Themodel is formulated under

the assumption that the 12-lead signals are projections of a three-dimensional electric signal. Furthermore, the

equations in the 3Dmodel and in the univariate model in Rueda et al.43 are identical. This is a great advantage

of the 3D model as the generalization of the univariate model. The key of the 3D model is that the a’s and u’s
6 iScience 25, 105617, December 22, 2022
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parameters are common to the 12 leads. These parameter are estimated using information from all the leads,

avoiding problems if, for example, one of the signals had large disturbances. In addition, a set of parameters,

two for each wave and lead, complete the description of the signals. The estimation approach using the 3D

model is muchmore robust, themodel parameters are accurately estimated avoiding identifiability problems.

The 3DFMMecgmodel also succeeds in providing reliable quantitative results to enhance the understanding of

biophysical processes, starting with the a’s and u’s parameters that represent the underlying electric signal

and synchronize the waves across leads. Actually, all the parameters have a morphological interpretation

and are reliable for extrapolation and prediction, thus simplifying the diagnostic task. Another crucial contri-

bution of the 3DModel is that it permits to generate realist 12-lead ECG signals whereas those signals gener-

ated using univariate models do not necessarily correspond to projections of the same 3D underlying signal.

Furthermore, the results in the paper validate the premise that the electrical source can be represented

with a five dipole model, on which the new model is built. Of interest, dipole models have been widely

used in different forms in the literature. An additional motivation of this study is the capacity of the

FMM approach for data compression, as minimal hard disk space is needed to fully reconstruct the signal.

The monitoring of patients and, in particular, telemedicine requires the storage of ECG signals and a fast

on-line transmission of information,7,8 and therefore efficient data compression methods are in high de-

mand. No other model had ever come close to achieving these goals.

Many challenges arise from this study. On the one hand, there is much work to do from a research perspective,

such as the design of new diagnostic rules based on the FMM parameters; the identification of wave patterns

specific to exceptional conditions such as atrial flutter, which do not adapt sowell to themodel; the integration

of the 3DFMMecg model in AI systems; or the inclusion of new terms accounting for different sources of vari-

ability. Specifically, we will start by studying a rule for HYP, using a combination of markers including the

maxAR defined in this paper. On the other hand, there is the committed objective of getting the newmarkers

to be used in clinical practice. To that end, devices that record the signals should provide the newmarkers, and

more importantly, physicians need to be trained. Moreover, the current paper opens up great research oppor-

tunities for studying biological electric systems beyond the cardiac one, which have an impact on the knowl-

edge of the effect and causes of multiple diseases, as well as the development of drugs and therapies. In

particular, electric signals from other organs, such as the brain or the eyes, can be modeled using adapted

3DFMM models. Thus, the important question of analyzing the relationship between signals recorded in

different regions, could also be addressed with these models. Some work in this line is in progress.
Limitations of the study

Regarding the limitations, the computational time is still too high to give interactive outputs. This is

because of the exhaustive search and the backfitting loop, which are time-consuming processes. However,

by implementing the current method in C and using general-purpose computing on graphics processing

units, the computational cost could be greatly reduced. Furthermore, the algorithm, as described here,

does not identify the P wave when it is not located before the QRS complex. New research into detecting

and adapting the algorithm in these cases could bring about the correct identification of the P wave.
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L., and Vitek, M. (2018). A comparative analysis
of methods for evaluation of ecg signal quality
after compression. BioMed Res. Int.

32. Niederer, S.A., Lumens, J., and Trayanova,
N.A. (2019). Computational models in
cardiology. Nat. Rev. Cardiol. 16, 100–111.

33. Pan, J., and Tompkins, W.J. (1985). A real-
time qrs detection algorithm. IEEE Trans.
Biomed. Eng. 32, 230–236.

34. Perez Alday, E.A., Gu, A., J Shah, A.,
Robichaux, C., Ian Wong, A.K., Liu, C., Liu, F.,
Bahrami Rad, A., Elola, A., Seyedi, S., et al.
(2021). Classification of 12-lead ecgs: the
physionet/computing in cardiology
challenge 2020. Physiol. Meas. 41, 124003.

35. Perrier, V., Meyer, F., and Granjon, D. (2021).
shinyWidgets: Custom Inputs Widgets for
Shiny. R Packageversion 0.6.0.
36. Petch, J., Di, S., and Nelson, W. (2022).
Opening the black box: the promise and
limitations of explainable machine learning in
cardiology. Can. J. Cardiol. 38, 204–213.

37. Quarteroni, A.L.F., Manzoni, A., and Vergara,
C. (2017). The cardiovascular system:
mathematical modelling, numerical
algorithms and clinical applications. Acta
Numer. 26, 365–590.
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d All the presented results are reproducible through the 3DFMMecg app, publicly available at https://

fmmmodel.shinyapps.io/fmmEcg3D/. A detailed description of the 3DFMMecg app, including imple-

mentation and usage examples, is provided in the STAR Methods.

d The code is available at https://github.com/FMMGroupVa.
METHOD DETAILS

Data preprocessing

Electrocardiogram (ECG) signals are usually interfered with baseline drifts, noises, or conduction artifices

which severely affect ECG signal analysis quality.50 Data preprocessing is required both to achieve reliable

ECG fragments and to divide them beat by beat.9,26,53 However, the preprocessed signal may still be

affected by other sources of variability, see Figure S8 in the Supplemental Information. The preprocessing

is designed in four steps, as illustrated in Figure S13 of the Supplemental Information. The inputs of the

algorithm are the raw ECG signals from the 12 leads. The four steps are: 1) Baseline removing; 2) Single-

leadQRSdetections and checking; 3) Multi-leadQRSdetections; and 4) ECG segmentation and checking.

Unlike most of the preprocessing algorithms,3,9,49 the denoising step is dismissed from our proposal,

due to the robustness of the 3DFMMecg model. The details of the algorithm are given below.

Step 1: Baseline removing

For each ECG fragment, a low-frequency filter based on the fitting of a local polynomial regressionmodel is

used. Following the ideas in Rahul et al.,39 these estimates subtracted to the signals which corrects the

baseline wander.

Step 2: Single-lead QRS detections and checking

Signals are independently analyzed with the Pan Tompkins algorithm33 to obtain lead-specific QRS

detections.
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� QRS Revision. The median RR length of the fragment is used as benchmark to remove too short/long

detections40,42,46 preventing false positive detections. RRis the time elapsed between two consecu-

tive QRS detections.

Step 3: Multi-lead QRS detection

Single-lead QRS detections provided in Step 2 are combined to obtain a common reference annotation

set. Following the ideas given in Mondelo et al.,29 the single detections are increasingly sorted to build

groups of at least four nearby detections, in a way that the groups are far enough from each others. The

median of the nearby detections within groups, called tQRS , are computed. Hence, tQRS are the annota-

tions on the reference set, that is common across leads. This procedure ensures false positives detec-

tions and overcomes the problems caused by undetected QRS in some leads. One may refer to Mondelo

et al.29 for details. From now on, only the leads on the set Lred = fI; II;V1;V2;V3;V4;V5;V6g will be

considered.

Step 4: ECG segmentation and checking

As it was done in Rueda et al.,42 the heartbeat segmentation across leads is given by ½tQRS �
40%RR; tQRS + 60%RR�.

� ECG Segmentation Revision. To avoid meaningless heartbeats,27,60 remove from the ECG

fragment:
1. The first (resp. last) beats which are notably shorter than the median RR length; or with a high per-

centage of initial (resp. ending) observations being constant.

2. The beats for whichtQRS locates out of the 35% � 45% of the beat length.

3. The beats with a marked difference between the signal endpoints regarding the beat amplitude.

4. The beats that exhibit conduction issues with amplitudes exceeding the standard limits; or anom-

alous relative beat amplitudes regarding the signal.
ECG signals pass through the analysis iff there are at least i) three beats in the reference annotation set; ii)

three leads with more than three beats; and iii) a 20% of expected beats according to sampling frequency.

The latter conditions allow discarding unacceptable levels of noise or distorted signals.

The outputs of the preprocessing are the tQRS annotations and ECG beat segmentation.
The 3DFMMecg model

Without loss of generality, it is assumed that the time points are in ð0; 2p�. In any other case, transform the

time points t0 ˛ ½t0;T + t0�to t = ðt0 � t0Þ2p
T .

Let us define an FMMwave as follows:Wðt;A;a;b;uÞ = A cosð4ðt;a;b;uÞÞ, whereA is the wave amplitude and,

4

�
t;a;b;u

�
= b + 2 arctan

�
u tan

�
t � a

2

��
; t ˛

�
0; 2p

�
(Equation 1)

is the wave phase.

Wðt;A;a;b;uÞ is suitable for describing rhythmic up-down-up (or down-up-down) patterns, as is well justi-

fied in Rueda et al.44 The parameters characterise various morphological aspects of the wave, as detailed in

the introduction.

The Analytic Signal (AS) of a unit FMM wave, A = 1, is defined using the Hilbert Transform (HT) as

follows: SðtÞ = mðtÞ+ inðtÞ; where, mðtÞ = Wðt;1;a;b;uÞ, and nðtÞ = HTðmðtÞÞ. The AS signal has interesting

properties and researchers often assume that the underlying complex signal associated with an oscillatory

process is an AS.47 Now, the FMM complex signal is defined generalizing the AS of an FMM unit wave as:

SðtÞ = ARemðtÞ+ iAImnðtÞ, where ARe;AIm ˛R+ . A complex FMM wave has elliptical trajectories. Further-

more, in this paper, the AS is also used to generate 2D and 3D representations of ECG
iScience 25, 105617, December 22, 2022 11



ll
OPEN ACCESS

iScience
Article
signals, specifically, we consider that when mðtÞ = PðD!ðtÞ
���LeadIIÞ =

Pm
J = 1AJcosð4JðtÞÞthen nðtÞ =Pm

J = 1AJsinð4JðtÞÞ = PðD!ðtÞ
���LeadIIðiÞÞ, where PðÞ denotes the projection operator.

The 3DFMMecg model relies on two premises. Namely; 1.- the heart electric field originates from a multi

dipole; and 2.- each dipole is represented by a vector, whichmoves in a plane as time progress and is math-

ematically described as a complex FMM signal.

Below, we prove that the projection of such a vector is an FMM wave with the property that the values of a

and u do not depend on the direction of the projection.

Theorem 1

Let fd!ðtÞ; t ˛ ð0; 2p�g be a set of vectors in the same plane, ℘, describing a complex FMM signal, let the

projection of d
!ðtÞ in the principal axe of the ellipse, L, is an FMM wave, as follows;

P
�
d
!�

t
����L� = ML + W

�
t;A

L;aL; bL;uL
�
; t ˛

�
0;2p

i
Then, the projection of d

!ðtÞ in any other direction, L0, is also an FMM wave, verifying that aL0 = aL and

uL0 = uL.

Proof:

First, assume that ð0; 0; 0Þ0 ˛℘. Consider the orthogonal system ðX ;Y ;ZÞ = ðL;Lt;ZÞ, where L; Lt ˛ ℘ are

the axes of the ellipse describing the trajectory of d
!ðtÞ; t ˛ ð0; 2p�; also define the center of the ellipse as

O
!

= ðOL;OLt ;0Þ. Then, the coordinates of d
!

�ðtÞ = ðd!ðtÞ �O
!Þ are ðx;y;zÞ = ðAL cosðqðtÞÞ;ALt sinðqðtÞÞ;0Þ.

From the theorem assumptions consequently: qðtÞ = 4ðt;aL;bL;uLÞ

Now, for any other direction L0, there exist lL
0
;mL0 ; kL

0
such that the projection of a vector v! = ðx; y; zÞ0 in L0 is:

Pð v!jL0Þ = lL
0
x + mL0y + kL

0
z: (Equation 2)

Then, consequently,

P
�
d
!

�ðtÞ
���L0� = lL

0
AL cos

�
4
�
t;aL; bL;uL

		
+mL0ALt sin

�
4
�
t;aL;bL;uL

		
: (Equation 3)

and,

P
�
d
!ðtÞ

���L0� = P
�
O
!���L0� + lL

0
AL cos

�
4
�
t;aL; bL;uL

		
+mL0ALt sin

�
4
�
t;aL;bL;uL

		
: (Equation 4)

Now, considering the trigonometric relation:

l cosðqÞ + m sinðqÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 +m2

q
cos

�
q + atan

�
l

m

�
+
3p

2

�
and applying this relation to equation (4), where q = 4ðt;aL;bL

0
;uLÞ, l = lL

0
AL, and m = mL0ALt , it is imme-

diate to derive that,

P
�
d
!ðtÞ

���L0� = P
�
O
!���L0�+AL0 cos

�
4
�
t;aL;bL0 ;uL

		
where,

AL0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lL

0
AL

	2
+
�
mL0ALt

	2q
;bL0 = bL + atan

�
lL

0
AL

mL0ALt

�
+
3p

2

and the result of the theorem follows when ML = 0.

Now, when ð0; 0; 0Þ0;℘, the projections in any direction are FMM waves, but they also include an intercept

term that accounts for the location of ℘ relative to the origin. Specifically, let z0 = Pðð0; 0; 0Þj℘Þ, for each
d
!ðtÞ˛℘, then v!ðtÞ = d

!ðtÞ � z0 ˛℘d0
, where ℘d0

is a plane passing through the origin.
12 iScience 25, 105617, December 22, 2022
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Therefore, Pðz0jLÞ = ML
0 and Pð v!ðtÞjLÞ = OL +AL cosð4ðt;aL;bL;uLÞÞ.

Finally,

P
�
d
!ðtÞ

���L0� = ML0 +AL0 cos
�
4
�
t;aL; bL0 ;uL

		
where, ML0 = ML0

0 +PðO!
���L0Þ, and the theorem follows. ,

Now, consider the tridimensional space with its origin of the central point in the chest and the voltage

recorder with the ten electrodes generating the 12-lead ECG signals: Lset = fI; II; III; aVR; aVL; aVF; V1;
V2;V3;V4;V5;V6g. Each of these signals is the projection of D

!ðtÞ in a given direction and, in turn, the pro-

jection of D
!ðtÞ is the sum of the projections of the five dipole vectors, for each of which the result of the

theorem can be applied individually.

Finally, the 3DFMMecg model is derived, taking into account all the above considerations. Specifically, the

ECG unidimensional signals are formulated as a signal plus error model in Definition 1, where the error term

accounts for artifacts in the data and the intercept accounts for location changes as follows.

Definition 1. 3DFMMecg model

Let XLðtiÞ, t1 <.< tn, be an observation from lead L, L˛ Lset. Then,

XLðtiÞ = ML +
X

J˛ fP;Q;R;S;Tg
W

�
ti;A

L
J;aJ;b

L
J;uJ

	
+ eLðtiÞ; (Equation 5)

where, for L˛ Lset, and, J˛ fP;Q;R;S;Tg:

� ML ˛R,

� bLJ ˛ ð0; 2p�,
� aP %aQ %aR %aS %aT %aP ,

� uJ ˛ ½0; 1�,
� AL

J ˛R+ ,

� ðeLðt1Þ;.;eLðtnÞÞ0 � Nnð0;sLIÞ.

It is relevant to note that restrictions imposed on the a parameters, response to the assumption that the

atrial depolarization is previous to the ventricles depolarization. Occasionally, the atria may repolarize

later. In such a case, the P wave would not go before the QRS. To prevent these cases, the model can

also be defined by numbering the waves and making a subsequent identification of the numbers with

the letters, maintaining the relationship between the QRS and the T .

Other important parameters of practical use are the peak and trough times. They are defined as functions

of the basic parameters.43 In addition, other indices, such as the distances between waves, are easily

derived from the set of basic 3DFMMecg model parameters. Obtaining good estimators of these indices

is crucial for clinicians because they are useful tools in the diagnosis.
Evaluation metrics

In this study, a global model quality measure, named R, is defined for a given patient. Namely,

R =
1

12

X
L˛ Lset

median
�
R2
Lb

�
;

where, for a fixed beat b and lead L,

R2
Lb

= 1 �
Pn

i = 1

�
XL
bðtiÞ � cXL

b ðtiÞ
	2

Pn
i = 1

�
XL
bðtiÞ � X

L

bðtiÞ
	2
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is the proportion of variation in the signal that is explained by the predicted values. The higher the R, the

better the model.

The PRD, a related measure that is widely used in the data compression literature is defined as follows:

PR DLb =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

�
XL

bðtiÞ � cXL
b ðtiÞ

	2
Pn

i = 1

�
XL

bðtiÞ � X
L

bðtiÞ
	2

vuuut =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � R2

Lb

q

Identification algorithm

The identification problem reduces to solving the following optimization problem:

Minq˛Q

X
L˛ Lset

1

sL

Xn

i = 1

�
XLðtiÞ � mLðti; qÞ

�2
;

where q is the vector of the model parameters, Q is the parametric space, and mLðti; qÞ =

ML +
P

J˛ fP;Q;R;S;TgWðti;AL
J;aJ;b

L
J;uJÞ. For a typical ECG pattern,Q is initially defined as in Definition 1. How-

ever,Q is reduced when atypical or very noisy patterns are analyzed to achieve a correct physiological iden-

tification of waves. The values sL; L˛ Lset are identified as part of the optimization process.

For computational efficiency, the Lset is reduced to Lred = fI;II;V1;V2;V3;V4;V5;V6g, as the rest of the lead
signals are linear combinations of I and II. However, the weight of I and II increase by a factor of 3 in order to

maintain the global weight of the derivations from the frontal plane.6

From a statistical point of view, the optimization problem defined above is that of finding the Maximun

Likelihood Estimates of the parameters. We adapt an iterative algorithm45 to the multivariate setting.

The algorithm alternates M and I steps. It is assumed that the preprocessing stage provides a QRS anno-

tation point, denoted as tQRS , for each beat. Moreover, exceptionally, one or more than one, of the eight

leads are discarded in the preprocessing stage due to noise artifacts; only information on at least one of I, II,

V2, or V5 lead is required. In those cases, the identification stage is conducted with the selected leads,

providing estimates for the common parameters; while the estimates for the lead-specific parameters of

missing leads are derived by solving a standard multiple linear regression problem at the end of each

M step.

The M step obtains K R 5 FMM waves using a backfitting algorithm and the I step assigns K % 5 letters to,

at most, five of these waves. Typically, K = 5; however, in the presence of significant noise or when the

morphology is pathological, it is possible that the interesting waves may be hidden between the sixth

and seventh waves (exceptionally up to the tenth). The values sL are updated in each iteration of the algo-

rithm, averaging the squared difference between the expected values and the predicted values by the

model. They are initially set to 1.

M step

A standard backfitting algorithm is designed by fitting a single FMM wave simultaneously to the leads in

Lred. The fitting of a single FMM is repeated successively to the residuals. The numbers of backfitting

passes programmed in each step M is five. The final estimates of ML, AL
J and bLJ ; L˛ Lred; J˛ fP;Q;R;S;

Tg, are derived by solving a standard multiple linear regression problem.

I step

The R wave is assigned in the first I step. It corresponds to the one with the highest explained variability

among those closest to tQRS , which also has a positive peak on leads I or II and a negative peak in

lead V2. In the few cases where these assumptions do not hold, additional conditions are used. Next,

the preassignation of P;Q;S and T to the free components among the first five is done using aP %

aQ %aR %aS %aT . This preassigment corresponds, in most cases, to the final assignment. However, in

the presence of significant noise, or when themorphology is pathological, the interesting wavesmay some-

times be hidden between the sixth and seventh waves, which are checked for reassignments using thresh-

olds on the main model parameters. In particular, noisy components are detected with too small or too

high u values.
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The algorithm finishes when there is no significant increase in the objective function of the optimization

problem.

In addition, the predictions from other leads in the frontal plane, III, aVL, aVR and aVF are derived using the

predictions of the I and II leads, using the known linear relations between them.6 In the case that any of the I

and II leads is tentatively eliminated in the preprocessing step, the estimates for leads in the frontal plane

can be derived by solving a standard multiple linear regression problem, as is done with the missing leads

in step M. A flow chart of the algorithm is given in Figure S14 of the Supplemental Information.
Model validation

A simulation study is performed to evaluate the properties of the parameter estimators provided by the

identification algorithm across different ECG signal patterns. Four different parameter configurations

defining the 3DFMMecg signal are considered, representing healthy (NORM), complete left bundle-branch

block (CLBBB), complete right bundle-branch block (CRBBB) and hypertrophy (HYP) hearts. Figures S1–S4

show the simulated 3D signals and Table S1 gives the values of the main parameters of the different con-

figurations. The parameter for the NORM configuration corresponds to the median values of the patients

labeledNORM in PTB-XL database. As it is shown in Table S1, the main changes in CLBBB, CRBBB and HYP

in relation to NORMare uR , uS and maxAR, respectively.

For each configuration, 100 synthetic beats are simulated at 300 equally time spaced points using the

3DFMMecgmodel (see Definition 1 of themain text). The error term is generated using a normal distribution

with mean zero and lead-dependent SD. The choice of SD values is based on the residual SD

from NORMsubjects of PTB-XL database. Depending upon the lead, three values of SD are considered:

sL = 25 for L˛ fI; IIg, sL = 20 for L˛ fV1;V2;V3g and sL = 12 for L˛ fV4;V5;V6g.

Three measures of the estimation performance are shown in Table S2: bias, defined as the average differ-

ence between the true parameter value and its estimate across the 100 simulated beats in each ECG

pattern; empirical SE(empSE), computed as the SD of the estimates over the 100 synthetic beats; and a co-

efficient of variation (CV) that, for the euclidean parameters q˛ fuJ;maxARg, J˛ fP;Q;R;S;Tg is defined as,

CVq =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j = 1

�
q0 � bq j	2
q20

vuut (Equation 6)

whereq0 is the true parameter value and N the number of simulated beats. For the angular parameters, aJ,

this CV is defined as

CVq =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j = 1

��bq j � q1
	 � p

	2
p2

s
(Equation 7)

where q1 = q0 � p. For the angular parameters, circular mean and SD are computed using the

circular R package.1 The median and percentile ranges of global model quality measure, R, are shown

in Table S3.

Estimates for a and u’s parameters exhibit a bias near zero and a very small empirical SE ECG patterns,

pointing that the proposed algorithm provides high accurate and precise parameter estimates. As ex-

pected, the CVs are low in these cases, below the 10% for almost all of the estimates. The higher CV values

are observed for uQ in the HYP pattern and for uS in the CLBBB pattern, both near an acceptable 30%.

Although, in absolute terms, the bias of the maxAR estimates is higher, this bias is small with respect to

the true parameter value, ranging from 600 to 1700. It is worth noting that this parameter is the maximum,

across leads, of the AR values, so bias is to be expected. Additionally, this estimate has a very high preci-

sion. Furthermore, by observing the distribution of this estimate in PTB-XL (see Table 1), it is clear that such

biases have no effect on the ability of maxAR as a diagnostic marker. Regarding the values for the R, in all

patterns are above the 97%, showing an excellent match between the predicted and simulated ECG

signals.

The performance of the 3DFMMecg in real cases for healthy and pathological heart conditions is illustrated

in Figures S5–S12 of the Supplemental Information.
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3DFMMecgapp

The 3DFMMecgapp has been developed using shiny11 from the programming language R. Shiny applica-

tions are mainly composed of two modules: the frontend or user interface, designed with HTML widgets

and CSS elements, and the backend or server, responsible for the computational tasks implemented in

R. User interface flexibility is achieved through several R packages.4,10,24,35,59 While the backend has

been mainly implemented using the R package FMM.18,19

ECG data can be analyzed in the app by uploading the data in tabular format (extensions.csv,.xls, or.xlsx),

and indicating the sampling rate in Hertz (Hz). Data must contain multiple beats recorded in the standard

twelve leads, and include at least one of I, II, V2, or V5 leads. The more of these derivations provided, the

better the estimates obtained will be. Each column of the file should correspond to a lead and the column

header names should indicate the lead name (labeledI, II, III, aVL, aVR, aVF, V1, V2, V3, V4, V5, or V6).

Once the file is uploaded, data is preprocessed and fragmented in beats using the preprocessing

described in this document. Then, the user must select the beat to be analyzed, which is displayed in

the app interface, and the number of backfittings desired in the estimation algorithm. In particular, a higher

number of backfittings can improve the predictions at the cost of a higher computational time. Finally, the

analysis starts by pressing the prediction button. The following outputs are given:

� The predicted FMM signal plotted along with the input data for each lead.

� Individual waves plot for each lead. Plot of estimated Wðt;AL
J;aJ;b

L
J;uJÞ, L˛ Lset, Lset = fI; II;III;aVL;

aVR;aVF;V1;V2;V3;V4;V5;V6g, J˛ fP;Q;R;S;Tg, t ˛ ð0; 2p�.
� Accuracy measure, in particular 1003 R.

� The estimates for the relevant parameters given in Tables S1 and S2.

To illustrate the app functionality, four ECG fragments from PTB-XL database are provided, labeledNORM,

CLBBB, CBBB and HYP, respectively. The recordings sampling rate is 500 Hz, default value in the app. In

particular, signals are from patients 976 (NORM), 11,174 (CLBBB), 10,938 (CBBB), and 15,260 (HYP).
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