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Abstract
This paper presents a hybrid variational quantum algorithm that finds a random eigen-
vector of a unitary matrix with a known quantum circuit. The algorithm is based on the
SWAP test on trial states generated by a parametrized quantum circuit. The eigenvec-
tor is described by a compact set of classical parameters that can be used to reproduce
the found approximation to the eigenstate on demand. This variational eigenvector
finder can be adapted to solve the generalized eigenvalue problem, to find the eigen-
vectors of normal matrices and to perform quantum principal component analysis on
unknown input mixed states. These algorithms can all be run with low-depth quantum
circuits, suitable for an efficient implementation on noisy intermediate-scale quantum
computers and, with some restrictions, on linear optical systems. In full-scale quan-
tum computers, where there might be optimization problems due to barren plateaus
in larger systems, the proposed algorithms can be used as a primitive to boost known
quantum algorithms. Limitations and potential applications are discussed.

Keywords Quantum algorithms · Variational algorithms · Hybrid quantum
algorithms · Eigenvectors · Quantum principal component analysis · SWAP test

1 Introduction: Noisy intermediate-scale quantum computers and
hybrid algorithms

Scalable general-purpose quantum computers could run algorithms that are more effi-
cient than any classical alternative [1, 2]. However, at the presentmoment, the available
technology is restricted to computers with a moderate number of qubits with a vary-
ing degree of noise. These computers are usually dubbed noisy intermediate-scale
quantum computers, NISQC [3, 4].

In this scenario, there has been a growing interest on hybrid quantum-classical
algorithms [5–7] where part of the work is shifted to a classical computer. In most
cases there is a continuous feedback between the classical and the quantum computer,
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which has quantum circuits that are a function of a fewparameterswhich are updated in
the classical part of the algorithmaccording to the results of the quantummeasurements
from previous stages.

These algorithms are particularly useful in problems dealing with large state spaces
which can be sampled quickly on a quantum computer without the need to explicitly
write out the whole state, which has a size that grows exponentially with the size of
the problem.

A good example is quantum simulation, one of the most promising applications of
quantum computing. For instance, in molecular simulation, the variational quantum
eigensolver can efficiently search for a particular state in the Hilbert space of n qubits,
which grows exponentially with the size of the problem, and still achieve reasonable
results even in the presence of noise [8–10].

This approach based on using quantum circuits with a classical control also plays
a key role in quantum machine learning [11–15].

In this paper, I present an application of these concepts to the search for an eigen-
value of a known unitary which can be generalized to different kinds of matrices with
some restrictions. The algorithm is based on amodified version the SWAP test for state
comparison and can be realized with circuits of a low depth (with few consecutive
elementary gates). We only require a state preparation phase, a circuit for U and one
CNOT gate and one Hadamard gate for each qubit on which U acts. At the end of the
process, we obtain a list of classical parameters that can produce a good approximation
to a random eigenvector of the desired matrix using a known classically controlled
quantum circuit.

The samemethod can be adapted to perform quantum principal component analysis
of an unknown mixed state, which can be cast as a problem of finding the eigenvectors
of a Hermitian matrix.

The paper starts with a brief reminder of the SWAP test for quantum state compar-
ison and some hardware-efficient optimizations in Sect. 2, followed by an explanation
of the notation and methods of hybrid algorithms in Sect. 3.

The core quantum variational eigenvector finder algorithm is presented in Sect. 4,
including modifications to solve the generalized eigenvalue problem (Sect. 4.1) and
to find the eigenstates of general normal matrices instead of just unitaries (Sect. 4.2).
Section5 shows how to adapt the variational eigenvector finder for quantum principal
component analysis.

Section 6 proposes an alternative implementation in optical systems instead of the
usual quantum circuit model. Section7 compares the proposed quantum variational
algorithms to similar variational algorithms for the same problems commenting the
advantages of each method. Finally, Sect. 8 discusses the strong and weak points of
the variational approach for eigenvector determination and comments some potential
applications in the short and long terms.

2 The SWAP test

While it is impossible to tell apart with certainty two quantum states which are not
orthogonal, there are methods that can tell us if they are equal or not with a certain
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Fig. 1 Quantum circuit realizing
the SWAP test. The crossed lines
represent qubit registers with n
qubits

probability. The SWAP test [16, 17] permits a simple comparison. We start with two
arbitrary n qubit states |ψ〉 and |φ〉 and an ancillary qubit initially in the state |0〉. The
quantum circuit corresponding to the test is shown in Fig. 1.

The evolution in that circuit is

|0〉 |φ〉 |ψ〉 H−→ |0〉 + |1〉√
2

|φ〉 |ψ〉
CSWAP−→ 1√

2
(|0〉 |φ〉 |ψ〉 + |1〉 |ψ〉 |φ〉) H−→

|�out〉 = |0〉 (|φ〉 |ψ〉 + |ψ〉 |φ〉) + |1〉 (|φ〉 |ψ〉 − |ψ〉 |φ〉)
2

.

(1)

If we measure the ancillary qubit after the last Hadamard gate, the probability of
finding the state |0〉 is associated with the eigenvalue 1 of the observable

Z = |0〉 〈0| − |1〉 〈1| = P0 − P1 (2)

for the projectors to the |0〉 and |1〉 states P0 and P1. For the output state |�out〉 the
probability of measuring the |0〉 state in the ancillary qubit is

P(0) = 〈�out| P0 |�out〉 = 1 + | 〈ψ |φ〉 |2
2

(3)

and the average value of the Z observable for the first qubit becomes

〈Z〉 = | 〈ψ |φ〉 |2. (4)

For two identical states, the SWAP operation

SW AP |ψ〉 |φ〉 = |φ〉 |ψ〉 (5)

does not change the state and the value of the control qubit is irrelevant. The two
Hadamard gates on the ancillary qubit cancel and the whole circuit is equivalent to the
identity. We can see from Eq. (1) that when both states are the same |ψ〉 = |φ〉, there
is a destructive interference between the terms entangled to the ancillary qubit state
|1〉. The result from the measurement is always |0〉 and whenever we get that result
we say the SWAP test has been passed.

However, if the states are different, each part of the uniform superposition of the
ancillary qubit becomes entangled to a different state. In that case, there is always a
probability greater than zero of measuring the state |1〉. In a noiseless system, failing
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to pass the test shows with certainty the input states are different. The probability of
finding a |1〉 ancillary qubit on measurement grows as the input states become more
different. If we have k copies of the same states and repeat the test k times, even for very

close states with an overlap | 〈ψ |φ〉 | = 1− ε with ε � 1, P(0) = 1+(1−ε)2

2 ≈ (1− ε)

and we have a probability of passing the test P(0)k ≈ 1−kε. With enough repetitions,
if we never fail the test, we can be confident that the two input states are the same or,
at least, very close.

As expected, global phases do not change the result of the test. Two inputs |ψ〉 and
ei� |ψ〉, for an arbitrary phase �, will act exactly in the same way under the test. This
is the desired operation.While a larger circuit with a reference can distinguish between
these two states, if these inputs were isolated states, there is no physical measurement
that could tell them apart.

The comparison in the SWAP test is also valid for general inputs with mixed states.
We consider an ensemble given by the density matrix

ρ =
m∑

i

pi |ψi 〉 〈ψi | (6)

where we have a statistical mixture of finding a pure state |ψi 〉 with a probability pi
for each. For twomixed states with density matrices ρ and σ the probability of passing
the test becomes:

P(0) = 1 + tr(ρσ)

2
(7)

where tr(ρσ) replaces | 〈ψ |φ〉 |2 [18]. When both states are pure states with ρ =
|ψ〉 〈ψ | and σ = |φ〉 〈φ| we recover the original overlap.

2.1 The destructive SWAP test

The depth of the SWAP test circuit can be reduced if we notice that, after the test,
the original inputs become entangled and they are discarded. The total number of
elementary gates needed to perform a SWAP test can be reduced to 2n for n qubits.
Most importantly, we only need two stages.

This is the destructive SWAP test explained in [19], which was later rediscovered
by an AI driven search [20]. We can check the test is valid starting from the SWAP
circuit for two qubits shown in Fig. 2a. The SWAP operation is performed with three
CNOT gates. A sequence of 3 CNOT gates can perform classical XOR swapping [21]
for two bits in the computational basis x, y ∈ F2 so that

|x〉 |y〉 CNOT(2,1)−→ |x ⊕ y〉 |y〉 CNOT(1,2)−→ |x ⊕ y〉 |y ⊕ x ⊕ y〉 = |x ⊕ y〉 |x〉
CNOT(2,1)−→ |x ⊕ y ⊕ x〉 |x〉 = |y〉 |x〉 (8)
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Fig. 2 Equivalent circuits for the SWAP test on single qubit states

where CNOT(i, j) is controlled by the i th qubit and has the j th qubit as target. The
result follows from two properties the XOR operation ⊕ (equivalent to modulo 2
addition): x ⊕ x = 0 and x ⊕ 0 = x .

If the middle CNOT is replaced by a Toffoli gate controlled by the ancillary qubit
in the SWAP test, we have a controlled SWAP operation. When the ancilla has a state
|1〉 the middle Toffoli gate is equivalent to a CNOT gate on the inputs and we recover
the 3 CNOTs of the SWAP circuit. When it is |0〉 the two consecutive CNOT gates
cancel each other and we have the identity.

The NOT operation can be decomposed as X = HZH and we can convert CNOT
gates into CZ gates surrounded by two Hadamard gates. The Toffoli gate becomes a
doubly controlled Z gate with operation CCZ |x〉 |y〉 |z〉 = (−1)x ·y·z |x〉 |y〉 |z〉where
the sign change only happens if all the qubits have a 1. In that sense, any of the qubits
can be considered to be the target. Putting all together, we can find a series of equivalent
circuits shown in Fig. 2b–d.

Now, starting from Fig. 2d, we can notice that changes on the input qubits after the
Toffoli gate do not affect the state of the ancillary qubit. Wemight just as well measure
both qubits right after the Toffoli. Finally, there is a further simplification if we notice
that the ancillary qubit will result in a |0〉 unless both control qubits from the inputs
are in state |1〉. The result of measuring the two input qubits at this point perfectly
determines the state of the ancillary qubit, which can be removed. If we measure in
the computational basis (observable Z ), we can associate a measurement finding a
|0〉 state to a bit 0 (Z ’s eigenvalue 1) and finding state |1〉 to a bit 1 (Z ’s eigenvalue
−1). The logical AND of the measurement results reproduces the result of measuring
the ancillary qubit. A measurement on the input qubits and classical computation
(the AND operation) return the same statistics as measuring the Z observable for the
ancilla.

The same reasoning can be applied to multiple qubits. In that case, the SWAP
operation has the same decomposition for each pair of qubits of the multiqubit state.
We group the first qubit of |φ〉, q1φ , with the first qubit of |ψ〉, q1ψ , and continue forming

all the n (qiφ, qiψ) pairs for 1 ≤ i ≤ n. For n qubit states, the simplified circuit in Fig. 2d
would have the same CNOT and Hadamard gates in the corresponding qubit pairs and
a Toffoli gate controlled by them and acting on the ancillary qubit. There is a total of
n Toffolis that change the state of the input from |0〉 to |1〉 or from |1〉 to |0〉 when
both controls are |1〉. The final value depends on the parity of the bitwise AND, ∧, of
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the strings coming from measuring the n qubits of each input state. An even number
of ones means the output state in the ancillary qubit would have been |0〉 (a pass). An
odd number of ones corresponds to failing the test.

In terms of the Z observable of the ancillary qubit, themeasurement result is exactly
the same as the product of themeasurement results for theCZ observable on each pair.
For two qubits, the CZ operation has eigenvectors |00〉 , |01〉 , |10〉 associated with
eigenvalue 1 and an eigenvector |11〉 associated with eigenvalue −1. The product of
these CZ observables has the same value as a measurement of the observable Z in the
SWAP test. Considering all the qubits, the observable with the result of the destructive
SWAP test is CZ⊗n if we write our inputs in the order q1φq

1
ψq

2
φq

2
ψ · · · qnφqnψ . Finding

a 1 eigenvalue corresponds to passing the test. Measuring eigenvalue −1 indicates a
failure.

3 Hybrid algorithms: variational methods

Physical quantum computers are difficult to build. They have a high cost of operation
when compared to classical computers and, in their current implementations, are still
too prone to decoherence to be able to carry out long calculations. For all these reasons,
whenever possible, we would like to replace the quantum parts of the algorithm by
classical computation. For instance, in Shor’s algorithm for integer factorization [1],
the only part that needs a quantum computer is the order finding subroutine. As shown
by Ekerå [22], a classical computer can perform a longer preprocessing stage and the
quantum computer can be reserved for a single use of the non-classical routine for
order finding. Even this simplified form of factoring still requires a number of qubits
and consecutive stages beyond the capabilities of current noisy quantum computers.

The first promising results of real-world quantum computers come from hybrid
algorithmswhere the quantumand the classical stages feed each other.One particularly
successful family of algorithms are variational methods taking advantage of the native
capacity of a quantum computer to describe states in a large space without needing to
store an exponential amount of data [8, 10].

For instance, if we want to compute the ground state energy Eg of a particular
Hamiltonian, H , classical variational methods propose a series of trial states. For any
state |ψ〉, the expected energy value 〈ψ | H |ψ〉 ≥ Eg gives an upper bound to the
minimal energy of the ground state. If we choose with care the states for which we
measure the energy, we can approximate Eg with good precision. Quantum methods
offer a compact way to perform variational algorithms. We no longer need to write
down the whole state vector of the ground state, which can have a number of complex
elements growing exponentially with the size of the problem. For instance, a simple
system with n electrons in separate sites can have 2n spin configurations.

Most variational hybrid algorithms can be described using four main blocks. We
will describe them in parallel with an example application for ground state estimation
for a Hamiltonian made of a combination of Pauli operators (Fig. 3). The four blocks
are:
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Fig. 3 Example for three qubits 〈ψ(�θ)|Z ⊗ X ⊗ Z |ψ(�θ)〉

• A parametrized quantum circuit P(�θ):
The gates in the circuit depend on a list of classical parameters �θ = (θ1, . . . , θk)

to prepare a trial state, or ansatz, |ψ(�θ)〉. We assume a fixed initial state, usually
with the n qubits initialized to |0〉 so that P(�θ) |0〉⊗n = |ψ(�θ)〉.
In the example of Fig. 3, the classical parameters appear in a series of rotation
gates RX and RY which rotate a single qubit with respect to the X and Y axis of
the Bloch sphere, respectively, by an angle determined by a classical parameter.
There are also two CNOT gates that introduce entanglement in the final state. This
circuit follows the approach of what is called a hardware-efficient Ansatz [23],
where the gates are selected to give the shallower possible circuit that still can
approximate the desired state.

• A processing circuit:
Depending on the desired target, we need to act on the ansatz in different ways.
The measurement stage must return values related to an objective function scoring
how close we are to our goal.
The example in Fig. 3 shows a typical variational simulation scenario where the
gates perform a change of basis so that the final measurements correspond to one
term of the desired Hamiltonian in a particular encoding. In this case, the H gate
in the middle qubit and the identity in the rest make the final measurement in
the computational basis give the exact same results as measuring the Z ⊗ X ⊗ Z
observable for the generated ansatz |ψ(�θ)〉.

• Measurement:
We usually consider measurement in the computational basis {|0〉 , |1〉} for each
qubit. As a single measurement is not enough to estimate the desired averages, we
need to preparemultiple copies of the same trial state using the exact same classical
parameters and processing circuit so that we can get meaningful statistics. This
stage has been considered together with the processing circuit in the example.

• Classical processing and feedback:
After a few repetitions, the statistics from the measurement are used to compute an
objective function f (�θ)which takes a value which depends on the chosen classical
parameters and is related to the problem we want to solve. This dependence is, in
general, quite complex. Using a quantum circuit we reduce an explicit description
of the problem to measuring a small experimental setup.
The global process is a loop that takes the estimated value of the objective func-
tion f (�θ) at each iteration as a guide to tweak the classical parameters �θ . In most
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cases, the problem is posed as aminimization problemwhere we use classical opti-
mization methods (such as nonlinear optimization or gradient descent methods)
changing the input parameters at stage k to new values �θk until we find a stable
value f (�θs) at iteration s which is assumed to be the minimum.
In the example, the expected value 〈ψ(�θ)|Z ⊗ X ⊗ Z |ψ(�θ)〉, which approximates
the energy of |ψ(�θ)〉 for the simulated Hamiltonian, is the objective function to be
minimized. The classical part starts by choosing a random initial list of parameters
�θ1 that gives a first value f (�θ1). The chosen optimization method then generates
a new set of classical parameters �θ2 that are fed into the parametrized quantum
circuit. After we complete the second round of measurements, the new value of
the objective function f (�θ2) is compared to the previous one. The changes in the
parameters that lead to a smaller final value are kept and the ones that increase the
objective function are modified until we can no longer find a better solution. This
part of the hybrid algorithm draws heavily on classical optimization and there are
multiple available software libraries, like Python’s scikit-learn [24].

Notice that, in many cases, we have no guarantee that the algorithm will succeed.
Still, we can provide educated guesses for the solution, similar to what happens in
many classical machine learning methods.

The main advantage of this family of hybrid algorithms is the possibility to probe
a large state space with a quantum circuit that grows linearly instead of exponentially
with the size of the system. This is particularly interesting in the simulation of quantum
systems, where the states of the simulated system can be easily mapped into the
quantum computer. For instance, chains of n fermions with spin 1/2 or −1/2 can be
directly represented by n qubits in the state |0〉 or |1〉 and we can directly explore
the Hilbert space of dimension 2n with a compact system and study, among others,
phase transitions in the Ising model [25]. A good review of existing applications can
be found in [10].

4 A variational method for the eigenvectors of unitary matrices

The SWAP test gives a suitable objective function for a hybrid variational algorithm
that finds the eigenstates |ei 〉 of a unitary evolution U such that U |ei 〉 = λi |ei 〉. The
method can be generalized to multiple scenarios.

For an N ×N unitaryU , we can find N orthogonal eigenvectors |ei 〉which form an
orthonormal basis and their corresponding eigenvaluesλi = eiφi are complex numbers
of modulus 1.

The circuit for the quantum part of the algorithm is shown in Fig. 4. We use the
same parametrized circuit P(�θ) with the same classical parameters twice to generate
a trial state |ψ(�θ)〉|ψ(�θ)〉, which is transformed by the unitary into |ψ(�θ)〉U |ψ(�θ)〉
and then proceeds to a destructive SWAP test circuit.

The objective function in the algorithm comes from the statistics of the SWAP test
and can be written as

f (�θ) = P(0) − P(1) = |〈ψ(�θ)|U |ψ(�θ)〉|2. (9)
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Fig. 4 Variational quantum circuit for the eigenvectors of U

Weapproximate the probabilities of passing and failing the SWAP test, P(0) and P(1),
respectively, from counting how many times we get each outcome and dividing by
the total number of times we run the test. The 0 and 1 results correspond to the parity
of the bitwise AND of the measurement results in the computational basis (assuming
0 for |0〉 and 1 for |1〉) and they have the same statistics that would appear if we
had measured the ancillary qubit in the complete SWAP test. The evaluation of the
objective function is reduced to computing the expected value of the Z observable for
the ancillary qubit, albeit in a roundabout way to reduce the final number of gates.

The objective function is an inner product of normalized states, with f (�θ) ≤ 1, and
we can see that the maximum is obtained only if the trial state is an eigenvector of U ,
|ψ(�θ)〉 = |ei 〉. Then

f (�θ) = | 〈ei |U |ei 〉 |2 = | 〈ei | λi |ei 〉 |2 = 1. (10)

Most optimization methods and software libraries work by minimizing a function.
For these, we can consider:

f ′(�θ) = P(1) − P(0) = −|〈ψ(�θ)|U |ψ(�θ)〉|2 (11)

or

f ′′(�θ) = 1

f (�θ)
= 1

P(0) − P(1)
. (12)

With these functions that can be computed from measurements on the circuit, we can
use a classical optimization method to update the parameters �θ until the parametrized
circuit givingP(�θ) produces a good approximation to an eigenstate of the target unitary
U .
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Fig. 5 Variational quantum circuit for the generalized eigenvector problem U |ei 〉 = λV |ei 〉

4.1 Solving the generalized eigenvalue problem

The circuit can be modified to find generalized eigenvectors in what is usually called
the generalized eigenvalue problem of finding |ψ〉 and λ such that

U |ei 〉 = λV |ei 〉 (13)

for two given matricesU and V (see Fig. 5). The hybrid algorithm is exactly the same
as before, now maximizing the objective function f (�θ) = |〈ψ(�θ)|U †V |ψ(�θ)〉|2 until
f (�θ) = | 〈ei |U †V |ei 〉 |2 = | 〈ei | λ∗ |ei 〉 |2 = 1.

4.2 Generalization for normal matrices

The variational eigenvector finder can be modified to work on normal matrices for
both the usual and the generalized eigenvalue problems. Consider a normal matrix N
such that NN † = N †N . For an M×M normal matrix the spectral theorem guarantees
we have a decomposition:

N =
M∑

i=1

λi |ei 〉 〈ei | (14)

for M orthogonal eigenvectors. This spectral decomposition might not be unique if
there are degenerate eigenvalues.

For any square M × M complex matrix A, the matrix HA = A + A† is Hermitian
(HA = H†

A). If A admits a spectral decomposition like in Eq. (14), this Hermitian
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matrix shares the eigenvectors of A with

HA = A + A† =
M∑

i=1

λi |ei 〉 〈ei | +
M∑

i=1

λ∗
i |ei 〉 〈ei | =

M∑

i=1

(λi + λ∗
i ) |ei 〉 〈ei |

=
M∑

i=1

2 Re(λi ) |ei 〉 〈ei | . (15)

If we consider the unitary UA = eiHA , it will have a decomposition

UA =
M∑

i=1

ei2Re(λi ) |ei 〉 〈ei | . (16)

The matrices A, HA and UA have the same eigenvectors with eigenvector |ei 〉
associated with eigenvalues λi , 2 Re(λi ) and ei2Re(λi ), respectively.

If we can construct the unitary evolution UA, we can obtain the eigenvectors of
any A admitting a spectral decomposition, including all normal matrices. Finding an
efficient quantum gate sequence that realizes the exponential eiHA might be difficult.
This is a well-studied problem that appears in Hamiltonian simulation [26, 27] and in
the HHL quantum algorithm for linear systems of equations [28]. All the tricks used
there can be recycled in this variational method, including efficient approximation
for sparse matrices [29] or designing evolutions directly for the particular quantum
computer architecture in which the variational circuit is run [30].

5 Principal component analysis of unknownmixed states

The proposed variational method can be also extended to statistical mixtures, which
can appear, among other situations, after a pure state is subject to decoherence. Any
mixed state can be described by a density matrix

ρ =
m∑

j

p j
∣∣ψ j

〉 〈
ψ j

∣∣ , (17)

with a variable number of terms m where the p j are the probabilities associated with
finding a pure state

∣∣ψ j
〉
and sum to one. This decomposition is not unique and the

states are not necessarily orthogonal. The density matrix ρ is still Hermitian and it
will have a spectral decomposition

ρ =
N∑

j=1

λ j |ψi 〉 〈ψi | , (18)

where N is the dimension of the state space and the |ψi 〉 are now orthogonal states.
For non-degenerate eigenvalues, this decomposition is unique.
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Fig. 6 Quantum circuit for
variational quantum principal
component analysis

One important problem for mixed states is quantum principal component analysis
(QPCA): determining the leading terms in the spectral decomposition. The eigenvalues
of the Hermitian ρ are real and can be ordered from the largest to the smallest as
λ1 ≥ λ2 ≥ . . . ≥ λN . The principal component is the eigenstate associated with the
largest eigenvalue which, in certain scenarios, gives a good approximation to the full
state. This mirrors classical principal component analysis methods [31], which have
applications in multiple fields, like in machine learning, where it is generally used as
a way to reduce the dimensionality of the data [32, 33].

The general QPCA problem is thought to be hard for classical computers. Lloyd,
Mohseni andRebentrost showed that there is an efficient quantum algorithm forQPCA
as long as we can prepare multiple copies of a state with a density matrix AA† for
any given matrix A [34]. The proposed quantum method was later dequantized by
Tang who showed that if we assume there is an equivalent black box giving this state
preparation, there are classical methods which are only quadratically worse than the
quantum proposal (as opposed to the exponential quantum advantage in the case of
low rank matrices) [35].

The variational quantum algorithm proposed in the previous sections can also be
used to perform principal component analysis with the same caveats regarding state
preparation. We assume we are given multiple copies of a mixed state with density
matrix ρ. While for general tasks it might be hard mapping a classical matrix to a
state, the method can still be useful, for instance, to approximate the input of a noisy
channel within certain precision when the principal component does indeed give a
good estimation of the original input [36]. When compared to the QPCA algorithm
of [34], we just need the raw input states instead of using them to build the evolution
eiρ , which makes the variational algorithm more suitable for current noisy quantum
computers. However, we are subject to the usual problems of variational methods: they
are heuristic and we have no guarantee of finding a solution, among other challenges.

We will use the circuit in Fig. 6, which also admits a gate efficient realization
with a destructive SWAP test like the circuits in Figs. 4 and 5. For an unknown input
mixed state ρ, we perform a series of SWAP tests comparing the input to the pure
state σ(�θ) = |ψ(�θ)〉〈ψ(�θ)| generated from a fixed input and a parametrized quantum
circuit controlled by the classical parameters �θ . In the optimization phase, we will
tweak these classical parameters until the ansatz σ(�θ) maximizes the value of the
measured observable.

From Eqs. (7) and (18), we see the expected value we approximate is

tr
(
ρσ(�θ)

)
= tr

(
N∑

i=1

λi 〈ψ(�θ) |ψi 〉 〈ψi | ψ(�θ)〉
)

=
∑

i

λi |〈ψ(�θ) |ψi 〉 |2. (19)

123



Finding eigenvectors with a... Page 13 of 24 254

The global maximum is achieved when the ansatz is the principal component (the
eigenstate |ψ1〉 associated with the largest eigenvalue λ1). In that case the expected
value becomes λ1. For any other trial state, with at least some part of the state
orthogonal to |ψ1〉 and λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λN :

tr
(
ρσ(�θ)

)
=

∑

i

λi |〈ψ(�θ) |ψi 〉 |2 ≤ λ1
∑

i

|〈ψ(�θ) |ψi 〉 |2 = λ1. (20)

In general, the final state found at the end of the algorithm will depend on the opti-
mization method and the input state. If we start close to a principal component the
objective function will find a local maximum with a trial state close to the desired
state. However, the search algorithm can also converge to local maxima that do not
correspond to a principal component. The global maximum will be more prominent
for mixed states with a strong principal component.

There are two important differences with respect to eigenvector estimation for
unitary and normal matrices. In those cases, we could know for sure the algorithm
had converged to a true eigenvector by checking the expected value, which should
converge to 1. Here, we cannot be sure we have found the principal component and
not converged to some local maximum (likely a second or third component, or a
superposition of the first components). However, we get additional information if we
did. In QPCA, it is useful finding both the state and the eigenvalue, which can be learnt
from the expected value. The value will tell us how important the principal component
is with respect to other terms and how well it can be used as a compact description of
the whole state. Larger values correspond to principal components that represent the
whole mixed state better.

Using multiobjective optimization, we can also search for successive components.
When the algorithm converges after k iterations, we obtain a set of parameters �θ1k that
give the estimated principal component |ψ̃1〉 = |ψ(�θ1k )〉. We can now alternate two
series of rounds for each iteration j in order to evaluate the parameters �θ2j defining
our trial state for the second component. First we can perform the usual comparison
of the ansatz with the input state ρ to estimate tr(ρσ(�θ2j )). Then, we generate as input
states σ(�θ1k ) and σ(�θ2j ) and use a SWAP test to estimate the overlap tr(σ (�θ1k )σ (�θ2j )) =
|〈ψ(�θ1k )|ψ(�θ2j )〉|2.Wewant twoorthogonal states such that tr(σ (�θ1k )σ (�θ2j )) = 0.Using
these two estimated values, the classical parameters must be optimized according to a
new objective function that the classical algorithm will use to propose the vector �θ2j+1

for the next iteration. Assuming we minimize f (�θ) during optimization, we can, for
instance, define an objective function

f (�θ) = 1/ tr(ρσ(�θ)) + C |〈ψ(�θ)|ψ̃1〉|2 (21)

with a weight constant C that penalizes the previously found principal component
and directs the search toward the next maximum eigenvalue in the decomposition of
ρ. This procedure can be repeated as many times as needed with additional terms to
search for the third, fourth and successive components, much like molecular search
for excited energy levels above the ground state in molecules [37].
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6 Optical implementation

The variational algorithms for eigenvectors and quantumprincipal component analysis
we have seen are not restricted to near-term universal quantum computers. They can
also be carried out in linear optical setups with certain restrictions.

We consider passive linear optical systems with input states that are a superposition
of terms |n1n2 · · · nm〉where we have n = ∑m

i=1 ni photons distributed intom orthog-
onal modes (like different paths or orthogonal polarizations). A linear optics system
acting on m modes can be described classically by its scattering matrix S which is
an m × m unitary matrix [38, 39]. The corresponding quantum evolution acting on
n photons can be computed from S as U = ϕm,n(S) using different known methods
[40–43]. The unitary U has a size M × M , with M = (n+m−1

n

)
. For one photon the

quantum evolution is exactly the scattering matrix S = U [44].
There aremultiple constructivemethods tomap any desired unitary S into a physical

setup using only linear optical devices such as beamsplitters andphase shifters [45–50].
These implementations have a circuit size that grows quadratically with the number
of modes in the worst case and can generate any desired unitary S. There exist many
successful experimental realizations of configurable optical circuits with integrated
optics [51–57] that offer a linear optical system that can be controlled electronically.
These hybrid systems have configurable phase shifters and beamsplitters and give
quantum evolutions that depend on a few classical parameters. They can be designed
to provide any available scattering matrix for the size input, but there are also simpler
configurable circuits that can produce good enough ansätze in variational quantum
algorithms [58].

These systems give an efficient way to realize the first half of the proposed quantum
circuits which has the parametrized unitaries that generate the trial states for eigenvec-
tor estimation and principal component analysis. For the second half which performs
the state comparison, we need to restrict our setups.

The SWAP test admits a simple experimental realization for two photons. We start
from two separate single photons in the same largeHilbert space.We just need to direct
the two photons encoding the states to the two inputs of a balanced beamsplitter. At the
output of the beamsplitter, we place two binary photodetectors (that click for one or
more photons and do nothing for the vacuum). In such a setup, we call a coincidence to
the simultaneous detection of one photon at each output port of the beamsplitter. For
two input single photon states described by density matrices ρ and σ , the probability
of finding a coincidence at the output is [59]:

PC = 1 − tr(ρσ)

2
, (22)

which is exactly the probability of failing a SWAP test. Thatway, opticalmeasurements
at a beamsplitter can be used for state comparison [19].

Notice we need to encode the whole state from a large Hilbert space into a single
photon. There are many alternatives, like taking advantage of the high dimensional-
ity provided by orbital angular momentum [60–62]. A good option compatible with
current optical network technology is using a time-bin encoding for the orthogonal
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Fig. 7 Time bin encoding for optical qubits. The time location of an optical pulse can serve as a basis
for a qubit. With different amplitude combinations and relative phases between the optical pulses, we can
produce any desired qubit

modes. Figure7 shows different states of a qubit in time-bin encoding. The photon
wavefunction can be confined to two different time bins representing the |0〉 and |1〉
qubits. If we use a common phase reference that is assigned to the pulses in the |0〉
time bin, we can use amplitude modulators to distribute the probability amplitude in
the two time bins and phase modulators to introduce a relative phase with respect to
the reference. The result is an optical qubit in any state of choice. This approach has
been used, for instance, in quantum key distribution protocols over optical fiber [63,
64].

In the proposed variational algorithms, we need d-dimensional systems, or qudits,
which can be generated by dividing the photon into d time bins. With the current
technology,we can expect a reasonable coherence time ofmicroseconds and amplitude
and phase modulators in the GHz range, which could produce systems with 1024 bins,
equivalent to 10 qubits. Existing modulators, beamsplitters and detectors could give
results comparable to what can be done in a quantum computer with 20 qubits. Each of
the two photons could also be distributed intomultiple separate spatialmodes, possibly
with added time-bin encoding. The measurement would need a balanced beamsplitter
for each pair of modes corresponding to the same position for each photon and one
detector at each of their outputs.

In all the variational algorithms proposed, both for finding eigenvectors and for
quantum principal component analysis, one of the subsystems would be one photon
directed to a parametrized linear optics multiport. The second system can either come
from a general optical quantum channel, which could produce a mixed state we want
to characterize, or a known optical transformation if we want to map a known matrix
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S into the optical system in order to find a compact description of its eigenvectors, as,
in this case with a single photon, U = S.

While the scalability of this approach is limited, it can be an interesting alternative
to full quantum computers in the near term, particularly in the cases where we need
a low noise implementation. Photons have long coherence times, relatively low noise
and do not need advanced cooling systems unlike many implementations of quantum
computers, especially those based on superconducting qubits. Optical systems have
their own problems like losses, synchronization or producing good approximations to
single photon states, but, for most of these problems, there are acceptable technical
solutions that have been used in quantum key distribution systems [65, 66].

7 Comparison to other variational quantum algorithms for
eigenvector determination

There exist various proposals for variational quantum algorithms that learn an eigen-
state of a Hamiltonian, a density matrix or a general matrix, each focusing on different
objectives. Themainmotivation of the algorithms put forward in this paper is to reduce
as much as possible the depth of final quantum circuit.

Noisy intermediate-scale quantum computers are the natural hardware to run the
quantum part of hybrid variational quantum algorithms. However, variational methods
are severely limited by the noise in each quantum gate.

A first strong limitation is that there is a bound to the maximum depth for which
variational algorithms give genuine quantum advantage [67]. Above a certain depth
threshold, which depends on the noise level, classical Monte Carlo techniques offer an
efficient simulation of the quantum variational method. Even if the results are correct
despite the noise, the problems that can be solved in this case can also be solved,
without all the specialized hardware, using a classical computer.

A second important limitation comes from the classical optimization phase. Noise
introduces barren plateaus in the optimization landscape [68]: the gradient vanishes
exponentially with the depth of the parametrized circuit generating the ansatz. This
makes classical optimization unfeasible. The search for a global minimum of the cost
function will get stuck at some sub-optimal parameters.

We can compare the proposed variational methods to previous algorithms in terms
of the depth of the circuits.

We have approximated the overlap 〈|ψ(�θ)|〉U 〈|ψ(�θ)|〉 comparing two states
U 〈|ψ(�θ)|〉 = UP(�θ)〈|0|〉⊗n and 〈|ψ(�θ)|〉 = P(�θ)〈|0|〉⊗n using the SWAP test.
However, we can just take an initial all-zeroes state and make it evolve under
P†(�θ)UP(�θ) [69]. If we project the resulting state to the |0〉⊗n output, the statis-
tics for finding all the output qubits in |0〉 are n⊗〈0|P†(�θ)UP(�θ) |0〉⊗n which is
exactly 〈|ψ(�θ)|〉U 〈|ψ(�θ)|〉.

This approach has advantages and disadvantages with respect to using the SWAP
test. The biggest advantage is that is only uses n qubits for 2n ×2n unitaries instead of
2n qubits and does not require any additional gates. In the proposed destructive SWAP
test the overhead of the SWAP test reduces to two gates per qubit pair, which is not
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so important. The qubit advantage is not trivial, though, particularly for intermediate-
scale applications where qubits are scarce. However, the additional circuit depth due
to including P(�θ) can be important, as the performance of variational algorithms can
degrade exponentially with the total circuit depth [68] and deep noisy circuits can
loose quantum advantage [67].

There are also other variational methods that assume a known Hamiltonian that can
be efficiently written in the Pauli basis [70, 71]. For eigenstates, the cost function

C(�θ) =
〈
ψ(�θ)

∣∣∣ H2
∣∣∣ψ(�θ)

〉
−

〈
ψ(�θ)

∣∣∣ H
∣∣∣ψ(�θ)

〉2
(23)

is equal to zero and can be used to tune the parameters in P(�θ). This only requires n
qubits for a Hamiltonian corresponding to a 2n × 2n matrix. The additional cost of
measuring the corresponding Pauli operators is small (at most a change of basis gate
on each qubit). This can be more efficient than the SWAP test eigenvector finder, but
it only works for known Hamiltonians which can be efficiently decomposed into Pauli
operators (in some encoding).

Notice that the SWAP test algorithms proposed in this paper would also work on
arbitrary unitariesU , even if we just have a description in terms of the quantum circuit
giving the evolution. We do not need to compute a closed form for the matrix U or
find the corresponding Hamiltonians.

The application of the SWAP test for variational quantum principal analysis works
on unknown input density matrices ρ and has the simplest circuit from all we have
seen in this paper. Two notable variational algorithms are given in [72, 73], both of
which follow the same philosophy of the method in Sect. 5: after the procedure we
have a set of classical parameters that allow the reconstruction of the desired principal
component with a small error.

The algorithm for variational quantum state diagonalization in [72] takes two copies
of the unknown state per each quantum iteration. Both copies go through the same
parametrized diagonalization circuit P(�θ) and they are compared using variations of
the destructive SWAP test or inner product measurements. The cost function is chosen
so that, after successful optimization,P†(�θ)ρP(�θ) is diagonal. Later, this diagonalizing
operation can be used to recover the eigenvalues and eigenvectors ofρ. The complexity
is essentially the same as the circuit in Fig. 6. The circuits have the same depth, but
the method needs two copies of the parametrized quantum circuit and the input state
instead of the one copy in Fig. 6.

The alternative variational quantum state eigensolver in [73] only requires one copy
of ρ and the parametrized circuit and, instead of the SWAP test approach, it only uses
n qubits (for states in a Hilbert space of dimension 2n). This algorithm produces the
same result as the method in [72] using a cost function C(�θ) = tr(P†(�θ)ρP(�θ)H) for
a given Hamiltonian H which can be adapted during training. This method is more
versatile and compact at the cost of adding a few gates to include the Hamiltonian in
the measurement.

In general, these two algorithms are more flexible than the method in Sect. 5 and
they give a full solution to principal component analysis with a slightly higher gate
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cost. If the full spectrum is needed they can be more interesting, but they both require
more sophisticated processing and interpretation.

8 Strong and weak points, applications and outlook

Classically, finding the eigenvalues of amatrix is an efficient task. For unitarymatrices,
the QR decomposition [74–76] gives a robust algorithm with efficient and stable
numerical software implementations in reference suites like the LAPACK library [77].
For an N × N matrix, the number of operations grows as O(N 3), with alternative
algorithms with complexities between quadratic and cubic depending on special cases
[78–80]. This includes bisection methods that can search only for one or a limited
subset of eigenvectors instead of the whole spectrum at a smaller cost in terms of the
number of operations.

However, in a quantum setting, the size of the state space grows exponentially
in the number of qubits. For n qubits, this means that any algorithm that needs to
explicitly write down the N = 2n complex entries in a general eigenvector will suffer
from this growth. The variational quantum algorithms introduced in this paper return
a compressed version of the state so that we can produce the desired eigenstate on
demand. The classical parameters in �θ are a short list that contains all the information
we need to recreate the desired eigenvector using the parametrized circuit we chose for
the search. This native encoding into a quantum state allows for an efficient preparation
for future uses.

The algorithm for variational quantum principal component analysis can also be
useful for channel characterization, for instance, in the analysis ofmixed states coming
from a quantum optical channel with decoherence or to study the decay of a quantum
state with time in a noisy quantum computer.

The main potential application for these methods is finding eigenvectors as a step-
ping stone for more complex routines. Take for instance the quantum phase estimation
algorithm of Kitaev [81] where a quantum computer can give efficient approximations
to an eigenvalue of a given unitary provided one of the inputs is the corresponding
eigenvector. The variational quantum eigenvector finder can be used in conjunction
with quantum phase estimation to obtain the full spectrum of any unitaryU , including
all the eigenvalues.

The variational eigenvector finder also combines well with Abram and Lloyd’s
algorithm that gives an efficient approximation to the eigenvectors of a Hamiltonian
with arbitrary precision as long as it has a “good enough” initial guess state [82]. If
we can produce a state |ẽi 〉 that approximates the desired exact eigenstate |ei 〉 and has
a non-negligible overlap |〈ẽi |ei 〉|2 with it, the eigenstate can be refined and taken as
close to the exact value as desired. This fits particularly well with the output of the
variational eigenvector finder. Even if the optimization does not converge to an exact
eigenvector, we can determine from P(0) − P(1) (the Z observable from the SWAP
test) whether the trial state is close or not to an eigenstate. Larger expected values
correspond to a greater overlap. With the correction from Abrams–Lloyd algorithm,
even poor ansätze can give a clean eigenstate.
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Fig. 8 Quantum circuit realizing
the Hadamard test

While these are interesting applications, both require long circuits and use the quan-
tum Fourier transformwhich, for large systems, is still impractical due to accumulated
noise. A more realistic application in the short term would be optimizing algorithms
for noisy intermediate-scale quantum computers.

Take, for instance, the Hadamard test of Fig. 8, which appears in many proposals
for quantum machine learning [12, 83] and in the quantum algorithm for Jones poly-
nomials [84, 85]. This circuit is a simpler version of the quantum phase estimation
algorithm that still can give results that no classical system can.

A key element in that circuit is the controlled unitary cU which applies a unitary
U to the target when the control qubit is |1〉 and is the identity for a control qubit |0〉.
If we are given U as a black box, this task is impossible in the usual quantum circuit
model without describing the complete cU operator and decomposing it [86]. The total
number of gates in those decompositions can be large, introducing too much noise,
and there have been various attempts to give concise descriptions for particular cases
in order to reduce the depth of these circuits [87–90]. In particular, if we can produce
an eigenstate of the evolution there are restricted efficient circuits for cU [81]. The
variational quantum eigenvector finder can be part of general methods to compute a
Hadamard test with a smaller total number of gates.

A preliminary simulation of the proposed quantum variational eigenvector finder
[91] shows that, for moderate sizes ofU , the algorithm converges to valid eigenvectors
both for random input unitaries and for defective matrices with high degeneracy like
the quantum Fourier transform. As the size of the problem grows, the found state has a
smaller overlap with a true eigenstate. This is a common problem in variational quan-
tum algorithms. For an ideal algorithm, we can just use more complex parametrized
circuits to cover a larger part of the state space up to a point. However, in noisy execu-
tion, this approach can be counterproductive. In the simulations, even for the smallest
problems, noise introduces an appreciable deviation from true eigenstates.

On this account, the proposed algorithms share the drawbacks of most hybrid vari-
ational methods. First of all, we need a good ansatz. There are different proposals for
parametrized circuits that could be used. In any variational method, there is a tension
between expressivity and depth. Expressivity describes how much of the whole state
space can be reached from outputs of the parametrized circuit. Depth is given by the
number of consecutive elementary gates we need to build the circuit. We would like
to have expressive enough circuits that can generate an ansatz close to our target state
(the exact eigenvector we are searching for). However, highly expressive parametrized
circuits tend to have larger depths and the noise can build up to levels that make the
output unusable. Apart from that, in order to sample more of the space they need
more classical parameters. Optimizing a large set of parameters is less efficient and
the classical part of the algorithm can converge to suboptimal solutions. Among other
challenges, if we can represent very small changes, there can appear barren plateaus
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(the optimization algorithm gets stuck in a region of the state space with small changes
in the objective function but far from the real minimum) [92]. While this can limit
the usefulness of the method as the state space grows, there are methods to optimize
the parametric circuits so that the number of parameters is small but we are still able
produce states close to the target [93, 94]. The search for better parametrized circuits
and optimization methods is a vibrant area of research and most of the results for other
variational quantum algorithms are likely to be useful in the eigenvector algorithms.

One advantage with respect to other problems, like searching for the ground state
in molecular simulation, is that we do have a confirmation whether the algorithm has
succeeded or not. We might not converge to a true solution, but, when we do, the
expected value will be one.

In general, hybrid algorithms are an interesting solution to middle sized problems,
but have challenges scaling to really large state spaces.The classical optimizationphase
becomes more involved with the number of parameters and we might not converge
to the optimal solution. Even in this case, if scalable full quantum computers become
available, the initial approximation the variational eigenvector finder gives can be used
to kickstart the Abrams–Lloyd algorithm [82].

Despite these limitations, the presented variational eigenvector finder and quantum
principal component analysis algorithms can become a useful addition to the toolbox
of quantum computation in the near future and they can be incorporated into practical,
more complex hybrid quantum-classical algorithms.
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20. Cincio, L., Subaşı, Y., Sornborger, A.T., Coles, P.J.: Learning the quantum algorithm for state overlap.
New J. Phys. 20, 113022 (2018). https://doi.org/10.1088/1367-2630/aae94a

21. Warren, H.S.: “Hacker’s delight”. Addison-Wesley Professional. (2012). 2nd edition
22. Ekerå, M.: On completely factoring any integer efficiently in a single run of an order-finding algorithm.

Quantum Inf. Process. 20, 1–14 (2021). https://doi.org/10.1007/s11128-021-03069-1
23. Kandala,A.,Mezzacapo,A., Temme,K., Takita,M.,Brink,M.,Chow, J.M.,Gambetta, J.M.:Hardware-

efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549,
242–246 (2017). https://doi.org/10.1038/nature23879

24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

25. Smith, A., Jobst, B., Green, A.G., Pollmann, F.: Crossing a topological phase transition with a quantum
computer. Phys. Rev. Res. 4, L022020 (2022). https://doi.org/10.1103/PhysRevResearch.4.L022020

26. Lloyd, S.: Universal quantum simulators. Science 273, 1073–1078 (1996). https://doi.org/10.1126/
science.273.5278.1073

27. Berry,D.W.,Childs,A.M., Cleve, R.,Kothari, R., Somma,R.D.: Simulating hamiltonian dynamicswith
a truncated taylor series. Phys. Rev. Lett. 114, 090502 (2015). https://doi.org/10.1103/PhysRevLett.
114.090502

28. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev.
Lett. 103, 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

123

https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1103/PhysRevA.106.010101
https://doi.org/10.1103/PhysRevA.106.010101
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1007/978-3-540-24587-2_21
https://doi.org/10.1007/978-3-540-24587-2_21
https://doi.org/10.1103/PhysRevA.87.052330
https://doi.org/10.1088/1367-2630/aae94a
https://doi.org/10.1007/s11128-021-03069-1
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevResearch.4.L022020
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.103.150502


254 Page 22 of 24 J. C. Garcia-Escartin

29. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in preci-
sion for simulating sparse hamiltonians. In Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing. Page 283–292. STOC ’14New York, NY, USA (2014). Association for
Computing Machinery. https://doi.org/10.1145/2591796.2591854

30. Clinton, L., Bausch, J., Cubitt, T.: Hamiltonian simulation algorithms for near-term quantum hardware.
Nat. Commun. 12, 4989 (2021). https://doi.org/10.1038/s41467-021-25196-0

31. Karl Pearson, F.R.S.: LIII. On lines and planes of closest fit to systems of points in space. London Edin-
burgh Dublin Philos. Mag. J. Sci. 2, 559–572 (1901). https://doi.org/10.1080/14786440109462720

32. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos.
Transact. Royal Soc. A: Math. Phys. Eng. Sci. 374, 20150202 (2016). https://doi.org/10.1098/rsta.
2015.0202

33. Jolliffe, I.T.: Principal component analysis (2nd ed). Springer. (2002). https://doi.org/10.1007/b98835
34. Lloyd, S.,Mohseni,M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633

(2014). https://doi.org/10.1038/nphys3029
35. Tang, E.: Quantum principal component analysis only achieves an exponential speedup because

of its state preparation assumptions. Phys. Rev. Lett. 127, 060503 (2021). https://doi.org/10.1103/
PhysRevLett.127.060503

36. Koczor, B.: The dominant eigenvector of a noisy quantum state. New J. Phys. 23, 123047 (2021).
https://doi.org/10.1088/1367-2630/ac37ae

37. Higgott, O., Wang, D., Brierley, S.: Variational quantum computation of excited states. Quantum 3,
156 (2019). https://doi.org/10.22331/q-2019-07-01-156

38. Haus, H.A.: From classical to quantum noise. J. Opt. Soc. Am. B 12, 2019–2036 (1995). https://doi.
org/10.1364/JOSAB.12.002019

39. Pozar, D.M.: Microwave engineering. Wiley. (2004). Fourth edition
40. Caianiello, E.R.: On quantum field theory – I: explicit solution of Dyson’s equation in electrodynamics

without use of Feynman graphs. Il Nuovo Cimento 1943–1954(10), 1634–1652 (1953). https://doi.
org/10.1007/BF02781659

41. Skaar, J., Escartín, J.C.G., Landro, H.: Quantum mechanical description of linear optics. Am. J. Phys.
72, 1385–1391 (2004). https://doi.org/10.1119/1.1775241

42. Scheel, S.: Permanents in linear optical networks (2004). arXiv:quant-ph/0406127
43. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In Proceedings of the

43rd Annual ACM Symposium on Theory of Computing. Pages 333–342. STOC ’11New York, NY,
USA (2011). ACM. https://doi.org/10.1145/1993636.1993682

44. Cerf, N.J., Adami, C., Kwiat, P.G.: Optical simulation of quantum logic. Phys. Rev. A 57, 1477–1480
(1998). https://doi.org/10.1103/PhysRevA.57.R1477

45. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary
operator. Phys. Rev. Lett. 73, 58–61 (1994). https://doi.org/10.1103/PhysRevLett.73.58

46. Bouland, A., Aaronson, S.: Generation of universal linear optics by any beam splitter. Phys. Rev. A
89, 062316 (2014). https://doi.org/10.1103/PhysRevA.89.062316

47. Sawicki, A.: Universality of beamsplitters. Quantum Inf. Comput. 16, 0291–0312 (2016). https://doi.
org/10.26421/QIC16.3-4-6

48. Clements, W.R., Humphreys, P.C., Metcalf, B.J., Steven Kolthammer, W., Walmsley, I.A.: Optimal
design for universal multiport interferometers. Optica 3, 1460–1465 (2016). https://doi.org/10.1364/
OPTICA.3.001460

49. de Guise, H., DiMatteo, O., Sánchez-Soto, L.L.: Simple factorization of unitary transformations. Phys.
Rev. A 97, 022328 (2018). https://doi.org/10.1103/PhysRevA.97.022328

50. Bell, B.A., Walmsley, I.A.: Further compactifying linear optical unitaries. APL Photon. 6, 070804
(2021). https://doi.org/10.1063/5.0053421

51. Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N.J., Silverstone, J.W., Shadbolt, P.J.,
Matsuda, N., Oguma, M., Itoh, M., Marshall, G.D., Thompson, M.G., Matthews, J.C.F., Hashimoto,
T., O’Brien, J.L., Laing, A.: Universal linear optics. Science 349, 711–716 (2015). https://doi.org/10.
1126/science.aab3642

52. Mennea, P.L.,Clements,W.R., Smith,D.H.,Gates, J.C.,Metcalf,B.J., Bannerman,R.H.S.,Burgwal,R.,
Renema, J.J., Steven Kolthammer, W., Walmsley, I.A., Smith, P.G.R.: Modular linear optical circuits.
Optica 5, 1087–1090 (2018). https://doi.org/10.1364/OPTICA.5.001087

123

https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1038/s41467-021-25196-0
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1007/b98835
https://doi.org/10.1038/nphys3029
https://doi.org/10.1103/PhysRevLett.127.060503
https://doi.org/10.1103/PhysRevLett.127.060503
https://doi.org/10.1088/1367-2630/ac37ae
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1364/JOSAB.12.002019
https://doi.org/10.1364/JOSAB.12.002019
https://doi.org/10.1007/BF02781659
https://doi.org/10.1007/BF02781659
https://doi.org/10.1119/1.1775241
http://arxiv.org/abs/quant-ph/0406127
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1103/PhysRevA.57.R1477
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevA.89.062316
https://doi.org/10.26421/QIC16.3-4-6
https://doi.org/10.26421/QIC16.3-4-6
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1103/PhysRevA.97.022328
https://doi.org/10.1063/5.0053421
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1364/OPTICA.5.001087


Finding eigenvectors with a... Page 23 of 24 254

53. Bogaerts, W., Pérez, D., Capmany, J., Miller, D.A.B., Poon, J., Englund, D., Morichetti, F., Melloni,
A.: Programmable photonic circuits. Nature 586, 207–216 (2020). https://doi.org/10.1038/s41586-
020-2764-0

54. Elshaari, A.W., Pernice, W., Srinivasan, K., Benson, O., Zwiller, V.: Hybrid integrated quantum
photonic circuits. Nat. Photon. 14, 285–298 (2020). https://doi.org/10.1038/s41566-020-0609-x

55. Arrazola, J.M., Bergholm, V., Brádler, K., Bromley, T.R., Collins, M.J., Dhand, I., Fumagalli, A.,
Gerrits, T., Goussev, A., Helt, L.G., et al.: Quantum circuits with many photons on a programmable
nanophotonic chip. Nature 591, 54–60 (2021). https://doi.org/10.1038/s41586-021-03202-1

56. Taballione, C., van derMeer, R., Snijders,H.J., Hooijschuur, P., Epping, J.P., deGoede,M.,Kassenberg,
B., Venderbosch, P., Toebes, C., van den Vlekkert, H., Pinkse, P.W.H., Renema, J.J.: A universal fully
reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol. 1, 035002 (2021).
https://doi.org/10.1088/2633-4356/ac168c

57. Hoch, F., Piacentini, S., Giordani, T., Tian, Z.-N., Iuliano, M., Esposito, C., Camillini, A., Carvacho,
G., Ceccarelli, F., Spagnolo, N., Crespi, A., Sciarrino, F., Osellame, R.: Reconfigurable continuously-
coupled 3D photonic circuit for boson sampling experiments. npj Quantum Inf. 8, 1–7 (2022). https://
doi.org/10.1038/s41534-022-00568-6

58. Peruzzo,A.,McClean, J., Shadbolt, P.,Yung,M.-H., Zhou,X.-Q., Love, P.J.,Aspuru-Guzik,A., Jeremy,
O.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 1–7 (2014).
https://doi.org/10.1038/ncomms5213

59. Schwarz, L., van Enk, S.J.: Detecting the drift of quantum sources: not the de Finetti theorem. Phys.
Rev. Lett. 106, 180501 (2011). https://doi.org/10.1103/PhysRevLett.106.180501

60. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light
and the transformation of laguerre-gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992). https://
doi.org/10.1103/PhysRevA.45.8185

61. Allen, L., Barnett, S.M., Padgett, M.J.: Optical angular momentum. Institute of Physics Publishing,
Bristol, UK. (2003). https://doi.org/10.1201/9781482269017

62. Willner, A.E., Pang, K., Song, H., Zou, K., Zhou, H.: Orbital angular momentum of light for
communications. Appl. Phys. Rev. 8, 041312 (2021). https://doi.org/10.1063/5.0054885

63. Muller, A., Herzog, T., Huttner, B., Tittel, W., Zbinden, H., Gisin, N.: Plug and play’ systems for
quantum cryptography. Appl. Phys. Lett. 70, 793–795 (1997). https://doi.org/10.1063/1.118224

64. Woodward,R.I., Lo,Y.S., Pittaluga,M.,Minder,M., Paraïso, T.K., Lucamarini,M.,Yuan, Z.L., Shields,
A.J.: Gigahertz measurement-device-independent quantum key distribution using directly modulated
lasers. npj Quantum Inf. 7, 58 (2021). https://doi.org/10.1038/s41534-021-00394-2

65. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security
of practical quantum key distribution. Rev.Mod. Phys. 81, 1301–1350 (2009). https://doi.org/10.1103/
RevModPhys.81.1301

66. Feihu, X., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic
devices. Rev. Mod. Phys. 92, 025002 (2020). https://doi.org/10.1103/RevModPhys.92.025002

67. Stilck França, D., García-Patron, R.: Limitations of optimization algorithms on noisy quantum devices.
Nat. Phys. 17(11), 1221–1227 (2021). https://doi.org/10.1038/s41567-021-01356-3

68. Wang, S., Fontana, E., Cerezo, M., Sharma, K., Sone, A., Cincio, L., Coles, P.J.: Noise-induced barren
plateaus in variational quantum algorithms. Nat. Commun. 12(1), 6961 (2021). https://doi.org/10.
1038/s41467-021-27045-6

69. Khatri, S., LaRose, R., Poremba, A., Cincio, L., Sornborger, A.T., Coles, P.J.: Quantum-assisted
quantum compiling. Quantum 3, 140 (2019). https://doi.org/10.22331/q-2019-05-13-140

70. Kokail, C., Maier, C., van Bijnen, R., Brydges, T., Joshi, M.K., Jurcevic, P., Muschik, C.A., Silvi, P.,
Blatt, R., Roos, C.F., Zoller, P.: Self-verifying variational quantum simulation of lattice models. Nature
569(7756), 355–360 (2019). https://doi.org/10.1038/s41586-019-1177-4

71. Kardashin, A., Uvarov, A., Yudin, D., Biamonte, J.: Certified variational quantum algorithms for
eigenstate preparation. Phys. Rev. A 102, 052610 (2020). https://doi.org/10.1103/PhysRevA.102.
052610

72. LaRose, R., Tikku, A., O’Neel-Judy, É., Cincio, L., Coles, P.J.: Variational quantum state diagonaliza-
tion. Quantum. npj Inform. 5(1), 57 (2019). https://doi.org/10.1038/s41534-019-0167-6

73. Cerezo,M., Sharma, K., Arrasmith, A., Coles, P.J.: Variational quantum state eigensolver. npj Quantum
Inf. 8(1), 113 (2022). https://doi.org/10.1038/s41534-022-00611-6

74. Francis, J.G.F.: TheQRTransformationAUnitaryAnalogue to theLRTransformation–Part 1. Comput.
J. 4, 265–271 (1961). https://doi.org/10.1093/comjnl/4.3.265

123

https://doi.org/10.1038/s41586-020-2764-0
https://doi.org/10.1038/s41586-020-2764-0
https://doi.org/10.1038/s41566-020-0609-x
https://doi.org/10.1038/s41586-021-03202-1
https://doi.org/10.1088/2633-4356/ac168c
https://doi.org/10.1038/s41534-022-00568-6
https://doi.org/10.1038/s41534-022-00568-6
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevLett.106.180501
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1201/9781482269017
https://doi.org/10.1063/5.0054885
https://doi.org/10.1063/1.118224
https://doi.org/10.1038/s41534-021-00394-2
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1038/s41567-021-01356-3
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.22331/q-2019-05-13-140
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1103/PhysRevA.102.052610
https://doi.org/10.1103/PhysRevA.102.052610
https://doi.org/10.1038/s41534-019-0167-6
https://doi.org/10.1038/s41534-022-00611-6
https://doi.org/10.1093/comjnl/4.3.265


254 Page 24 of 24 J. C. Garcia-Escartin

75. Francis, J.G.F.: The QR Transformation–Part 2. Comput. J. 4, 332–345 (1962). https://doi.org/10.
1093/comjnl/4.4.332

76. Kublanovskaya, V.N.: On some algorithms for the solution of the complete eigenvalue problem. USSR
Comput. Math. Math. Phys. 1, 637–657 (1962). https://doi.org/10.1016/0041-5553(63)90168-X

77. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A., Sorensen, D.: “LAPACK users’ guide”. Society for
Industrial and Applied Mathematics. Philadelphia, PA (1999). Third edition. https://doi.org/10.1137/
1.9780898719604

78. Demmel, J.W.: “Applied numerical linear algebra”. SIAM. (1997)
79. Stewart, Gilbert W.: “Matrix algorithms: Volume II: Eigensystems”. SIAM. (2001)
80. Björck, Åke: “Numerical methods in matrix computations”. Springer. (2015). https://doi.org/10.1007/

978-3-319-05089-8
81. Kitaev, A.: Quantummeasurements and the abelian stabilizer problem (1995). arXiv:quant-ph/951102
82. Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigen-

values and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999). https://doi.org/10.1103/PhysRevLett.
83.5162

83. Cao, S., Wossnig, L., Vlastakis, B., Leek, P., Grant, E.: Cost-function embedding and dataset encoding
for machine learning with parametrized quantum circuits. Phys. Rev. A 101, 052309 (2020). https://
doi.org/10.1103/PhysRevA.101.052309

84. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones
polynomial”. In Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing.
Page 427–436. STOC ’06New York, NY, USA (2006). Association for Computing Machinery. https://
doi.org/10.1145/1132516.1132579

85. Passante, G.,Moussa, O., Ryan, C.A., Laflamme, R.: Experimental approximation of the Jones polyno-
mial with one quantum bit. Phys. Rev. Lett. 103, 250501 (2009). https://doi.org/10.1103/PhysRevLett.
103.250501
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