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A B S T R A C T

This work estimates the residues and poles of the dynamic system to express the terms of the frequency
response matrix as the sum of simple fractions (each vibration mode contributes two terms). The starting
point is the acceleration response at various points of the structure, it is integrated twice and an analysis is
performed in the frequency domain. The measured vibration frequencies, damping factors, and residues are
estimated by least squares fitting of the measured or experimental frequency response functions (FRFs). The
damping of the structure or system can be proportional or general. The dynamic system is identified by relating
the residues of the functions of the frequency response matrix (complex functions) with the residues measured
from the outputs of the system excited by forces/inputs of impulse, sinusoidal, frequency sweep or other type.
1. Introduction

The behavior of dynamic systems can be described by the equations
of motion obtained systematically from Lagrange’s equations [1]. How-
ever, its representation as a Transfer Function Matrix (TFM) or State
Space Model (SSM) is much more interesting from the point of view
of control theory, which can be achieved by knowing the zeros, poles
and gains or residues and poles of the dynamic system. To achieve
this objective, identify the dynamic system, on the one hand there are
techniques that aim to update an initial computational or numerical
model to adapt it to the experimental results; and on the other hand
those techniques that are based on estimating a new model represen-
tation without the need to previously build a computational model. In
the context of a multi-input, multi-output (MIMO) system, the Transfer
Function Matrix represents the relationship between the inputs and
outputs of the system [2–4]. The State Space Model is a mathematical
framework used to describe and analyze dynamic systems. It provides
a set of first-order differential (or difference) equations that represent
the system’s evolution over time, capturing both its dynamics and its
internal state [5–7].

The first group of methods, called Finite Element Model Updating
(FEMU) is a technique used to refine and improve the accuracy of a
finite element model by comparing its predictions with experimental
data. This process involves adjusting the parameters of the model to
minimize the discrepancy between simulated results and real-world
observations and provide good results after a long iterative updating
process. These techniques begin creating an initial finite element model
based on theoretical knowledge and design specifications with a certain
number of structural elements that have some provisional properties.
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Then compare the experimental data with the results predicted by the
finite element model and identify discrepancies or differences. After
updating, validate the refined model by comparing its predictions with
additional experimental data or by performing new tests and if the
updated model still does not sufficiently match experimental data,
iterate the updating process by refining the model further and re-
evaluating. This numerical model requires the adjustment of so many
parameters and there is so much uncertainty regarding the physical
properties that it is not practical [8–11].

On the other hand, in the 1990s, Yang and Yeh [12] worked with
complex data from FRFs for proportional damping using the properties
of the Hankel matrix and the singular value decomposition technique.
Chen et al. [13] identified the general damping matrix and then the
mass and stiffness matrix. Their methodology was based on a least
squares minimization approach for the error between the experimental
and estimated frequency response functions of the structure. Angelis
et al. [14] proposed a methodology based on an estimated repre-
sentation of the state space of a proportionally damped system. And
they discuss the minimum number of sensors and actuators needed to
obtain a unique solution to the problem. These techniques are called
Modal Parameter Extraction methods and directly estimate the dynamic
model from experimental data without the need to perform complex or
highly detailed iterative computational model updating processes [15–
20]. Modal parameters extraction involves determining the dynamic
characteristics of a system, such as natural frequencies, mode shapes,
and damping ratios. These parameters are crucial for understanding the
vibrational behavior of structures and systems, and they are often used
in structural analysis, design optimization, and health monitoring.
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A promising research direction is the development of a reverse iden-
tification method that integrates real-time response measurements and
the physical laws governing structural systems to deduce time-domain
evolution and frequency-domain statistical characteristics. Traditional
model-driven methods involved several steps, including model updat-
ng, optimal sensor placement [21] and external load inversion [22].

On the other hand, emerging data-driven methods aim to create deep
learning ensemble models to approximate mathematical expressions
between system inputs and outputs [23]. Given the limitations of the
inverse modal transformation in model-driven methods Liu et al. devel-
ps a hybrid model-data-driven framework based on physics-informed
eural network and improved Kalman filter algorithm [24].

In recent years, structural vibration control has rapidly developed
nto a new advanced seismic design method. Structural vibration con-

trol is to arrange seismic isolation and energy dissipation devices on
he building structures to reduce or suppress the structural dynamic
esponse. Dong et al. aims to develop a high-performance acrylate
iscoelastic damper, which is suitable for the low-frequency vibra-
ion control of building structures. The analysis results show that the
roposed model can describe the influence of ambient temperature,
xcitation frequency and displacement amplitude [25].

The objective of this work is first to identify the dynamic system
n the form of a Transfer Function Matrix (TFM). This magnitude is a
undamental in control systems and structural dynamics that describes
he relationship between input and output variables of a system in the
requency domain. It provides a comprehensive way to analyze and
nderstand the system’s dynamic behavior. And secondly, being able to

predict the dynamic behavior of the system for any other set of input
signals (all types of dynamic simulations), which also allows knowing
the dynamic system to apply vibration control techniques in slender
structures. The methodology applies to both the case of proportional
viscous damping and the case of non proportional or general damping.

The main contributions and novelties of this paper are summarized
s follows:

1. Using advanced numerical techniques (Least-Squares Rational
Function estimation (LSRF) and FRFs Least-Squares Fitting meth-
ods), the poles and residues of the mechanical system are ob-
tained in the frequency range of interest from the forces and
accelerations in the sensors.

2. Residues (𝒓(𝑘)𝑖𝑞 ) are calculated as differences between observed
and estimated values (see Methodology, Fig. 1).

3. The major contribution of this work is the calculation of the
residues of the estimated FRFs (𝑘𝑨̂𝑖𝑗) as complex analytical
functions that define the dynamic system (see Methodology,
Fig. 1).

In order to validate the methodology of this work, the mass, damp-
ing and stiffness matrices are given as data, the system is excited with
a force in a certain position and the corresponding synthetic records of
accelerations in the positions of the sensors are obtained. It is integrated
numerically to obtain displacements, the synthetic FRFs are calculated,
the poles of the system are estimated and then both the real and
the imaginary part of the measured FRFs are adjusted to a nonlinear
rational form model based on the poles of the system, to obtain the
measured residues.

This article has been organized as follows: after this brief intro-
duction, the methodology used is summarized and synthetic data is
generated for a given case for which the methodology is applied.
Finally, the main conclusions and contributions of the work are listed.

2. Methodology

This section summarizes the methodology for performing a fre-
quency domain fitting of the dynamic behavior of the mechanical
system (n degrees of freedom and truncated to m modes). Fig. 1 shows
a flowchart that helps understand the methodology of this section. The
objective is to obtain the transfer functions to identify the dynamic
system by follow the next steps:
2 
1. The starting point is the acceleration records of a dynamic
system (for example, a structure) at certain points caused by a
force (an impact, for example) at one of the points where it is
being measured (driving point).

2. A sampling rate 𝑓𝑠 is established and sensors records saved every
𝑇𝑠 seconds (it is known that 𝑇𝑠 = 1∕𝑓𝑠).

3. Integrate the accelerations to obtain the displacements in those
same locations (Matlab™→ convertVibration()) [26,27].
The magnitudes are defined in the complex domain, the variable
𝑠 ∈ C and ℎ𝑖𝑗 (𝑠) are complex analytical functions.

4. Apply the Fast Fourier Transform (FFT) to the input (at node q)
and the outputs (at node i) to calculate the Frequency Response
Functions (measured FRFs) ℎ𝑖𝑞(𝑖𝜔).

5. System poles 𝑠 = 𝑝𝑘 are estimated, for this the Least-Squares
Rational Function estimation method (LSRF) is used (Matlab™→
modalfit()) [27–29].

6. A nonlinear least squares for the measured FRFs is carried out.
Using an expanded matrix, both its real part and the complex
part are adjusted and the residues are estimated.
It is important to point out that the estimated complex values
the measured residues 𝒓(𝑘)𝑖𝑞 and do not coincide with the values
of the residues 𝑘𝑨̂𝑖𝑗 of the complex functions ℎ𝑖𝑗 (𝑠) that define
the dynamic system.

7. From the measured residues, the complex residues of the transfer
functions that relate response at i with input at node q are
calculated:

𝑹̂(𝑘)
𝑖𝑞 = 𝒓(𝑘)𝑖𝑞 ⋅ 𝑇𝑠 =

𝒓(𝑘)𝑖𝑞

𝑓𝑠
(1)

8. All terms of the matrix 𝑯̂(𝑠) can be calculated from a single
row ℎ̂𝑞 𝑖(𝑠) or a single column ℎ̂𝑖𝑞(𝑠), due to the reciprocity
property [15,16,30], from all residues tensors:

𝑘𝑨̂𝑖𝑗 =
𝑹̂(𝑘)

𝑖𝑞 ⋅
(

𝑹̂(𝑘)
𝑖𝑞

)𝑇

𝑅̂(𝑘)
𝑞 𝑞

(2)

where 𝑅̂(𝑘)
𝑞 𝑞 is the residue for mode k corresponding to the driving

point (output at q for input at q too) and ()𝑇 denotes the
operation of transposing a vector or a matrix (a vector in this
specific case). Logically, it must be fulfilled:

𝑘𝑨̂𝑖𝑞 = 𝑹̂(𝑘)
𝑖𝑞 (3)

These mathematical operations make it easy to calculate the
residues of the Transfer Function Matrix:

𝑯̂(𝑠) = ℎ̂𝑖𝑗 (𝑠) =
𝑚
∑

𝑘=1

𝑘𝑨̂𝑖𝑗

𝑠 − 𝑝𝑘
+

𝑘𝑨̂
∗
𝑖𝑗

𝑠 − 𝑝∗𝑘
(4)

where the symbol ()∗ represents the complex conjugate number.

The methodology presented allows the identification of the dy-
namic system in the s-domain through a Transfer Function Matrix,
which makes it possible to convert it to State Space Model and per-
form dynamic simulations/predictions and vibration control of the
structures.

3. Results and discussion

In this section, the methodology of this work will be applied to a
dynamic system with three degrees of freedom, for which data on the
mass, damping and stiffness matrices are provided. Two cases of damp-
ing will be considered, proportional and general (or non-proportional
damping).
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Fig. 1. Numerical dynamic system identification.
3.1. Problem data

The data of the cases that will be analyzed below are:

𝑴 =
⎡

⎢

⎢

⎣

2.0 0.0 0.0
0.0 1.5 0.0
0.0 0.0 1.0

⎤

⎥

⎥

⎦

; 𝑲 =
⎡

⎢

⎢

⎣

800.0 −320.0 0.0
−320.0 450.0 −200.0
0.0 −200.0 200.0

⎤

⎥

⎥

⎦

;

𝑝 = 0.01 ⋅𝑲 =
⎡

⎢

⎢

⎣

8.0 −3.2 0.0
−3.2 4.5 −2.0
0.0 −2.0 2.0

⎤

⎥

⎥

⎦

; 𝑪𝑔 =
⎡

⎢

⎢

⎣

2.0 −2.0 3.0
−2.0 5.0 −4.0
3.0 −4.0 5.0

⎤

⎥

⎥

⎦

(5)

where 𝑴 ,𝑲 are the mass and stiffness matrices, 𝑪𝑝 is the damping
matrix for the case of proportional damping and 𝑪𝑔 is the damping
matrix for the case of non-proportional or general type damping.

Regarding the excitation, an impact (impulse type) is used at the
initial instant applied to node 1: 𝑢𝑞(𝑡) = 𝐹0 ⋅𝛿(𝑡) with 𝐹0 = 1.0N and 𝛿(𝑡)
is the Dirac delta function. Sampling rate 𝑓 𝑠 = 2000Hz; sampling time
𝑇𝑠 = 0.0005 s; and final time 𝑡𝑓 = 120 𝑠.

3.2. Proportional damping case

In this section the system will be identified from the records of
isplacements in the degrees of freedom of the dynamic system due to
n impact at the first degree of freedom (11 is the driving point). Fig. 2

shows the synthetic displacements records that correspond to the case
f proportional damping, impulse input at node 1 and sampling rate 𝑓𝑠.

The analysis in the frequency domain is carried out and the poles
of the system are calculated (being 𝑛 the number of degrees of freedom
and 𝑚 the number of modes, in this case 𝑛 = 𝑚 = 3). The LSRF method
(see flowchart 1) is applied:
𝑝1 = −0.1968 + 6.27𝑖
𝑝2 = −1.447 + 16.95𝑖 (6)

𝑝3 = −2.856 + 23.73𝑖

3 
Fig. 2. Displacements records, impulse force at 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

note that for simplicity only three poles have been indicated (those with
the positive imaginary part), the other three poles are the correspond-
ing complex conjugate numbers of those indicated above. The symbol
i denotes the imaginary unit 𝑖 =

√

−1.
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Fig. 3. Measured and identified FRFs (proportional damping). (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)

From the poles it is immediate to calculate the natural frequencies
nd damping factors:

𝑤𝑛𝑘 = |𝑝𝑘|

𝑘 = −𝑅𝑒[𝑝𝑘]
𝑤𝑛𝑘

(7)

The numerical values are as follows:
𝑤𝑛1 = 6.273 rad/s; 𝑤𝑛2 = 17.01 rad/s; 𝑤𝑛3 = 23.90 rad/s
𝜁1 = 0.03137; 𝜁2 = 0.08506; 𝜁3 = 0.1195 (8)

Secondly, the real part and the imaginary part of the FRFs measured
re adjusted by least squares to a rational expression function of the

calculated poles (see Fig. 3), which allows the measured residues to be
stimated:
𝑟(1)11 = −0.01429 − 9.116𝑖
𝑟(2)11 = −0.049 − 11.56𝑖
𝑟(3)11 = −0.0618 − 10.41𝑖

(9)

They are not the residues of the complex function in the s-domain,
t is necessary to divide by 𝑓𝑠 or multiply by 𝑇𝑠:
̂ (1)
11 = −7.145 ⋅ 10−6 − 0.004558𝑖
̂ (2)
11 = −2.45 ⋅ 10−5 − 0.005781𝑖
̂ (3)
11 = −3.09 ⋅ 10−5 − 0.005207𝑖

(10)

note that the real part is practically of negligible value. All residues
matrix terms for this case are included in Annex A. Once the poles and
esidues are known, the system is identified by Eq. (4).

It can be seen in Fig. 4 that the fit is very good.

3.2.1. System simulations/predictions (proportional damping)
Next, once the system is adjusted, the response to any type of load is

imulated. First, the response of the system is calculated for a sinusoidal
orce applied in degree of freedom 3 with excitation frequencies of
.5Hz and 4.0Hz (see Fig. 5):

𝑢3(𝑡) = sin (2𝜋1.5𝑡) + sin (2𝜋4.0𝑡) (11)
4 
Fig. 4. Displacements records, impulse force at 2. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Simulated displacements, sinusoidal force at 3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

And secondly, the excitation is modified to sweep the frequencies
rom the frequency 𝑓1 = 0.2Hz to the value 𝑓2 = 10.0Hz applied in

degree of freedom 2 during 𝑡1 = 20 s (see Fig. 6):

𝑢2(𝑡) = 10.0 sin ((2𝜋 𝑓1 + 2𝜋(𝑓2 − 𝑓1)∕𝑡1 ⋅ 𝑡) ⋅ 𝑡) (12)

Once again it is verified that the correlation between the exact
dynamic solution and the simulated one is very high.

3.3. General damping case

In this section the methodology is applied again but for the case
f general damping. Fig. 7 shows the synthetic displacements records

that correspond to the case of general damping, impulse input at node
1 (sampling rate 𝑓𝑠). The estimated poles of the system are:
𝑝1 = −0.6884 + 6.258𝑖
𝑝2 = −1.254 + 17.38𝑖 (13)

𝑝3 = −2.724 + 23.09𝑖
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Fig. 6. Simulated displacements, frequency sweep at 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Displacements records, impulse force at 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Secondly, the real part and the imaginary part of the FRFs measured
re adjusted (see Fig. 8), and the measured residues may be estimated:

𝑟(1)11 = 0.01169 − 9.212𝑖
(2)
11 = 5.719 − 12.37𝑖
(3)
11 = −5.856 − 9.468𝑖

(14)

The measured residues are multiplied by 𝑇𝑠 to obtain the residues
f interest:
̂ (1)
11 = 5.845 ⋅ 10−6 − 0.004606𝑖
̂ (2)
11 = 0.002859 − 0.006187𝑖
̂ (3)
11 = −0.002928 − 0.004734𝑖

(15)

All residues matrix terms are included in Annex A and Eq. (4)
efines the dynamic system in terms of transfer function.. Again, graph-

ically it can be seen that the fit is very good.
5 
Fig. 8. Measured and identified FRFs (general damping). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

3.3.1. System simulations/predictions (general damping)
The response of the system with general damping is simulated

for a sinusoidal force applied in degree of freedom 3 with excitation
frequencies of 1.5Hz and 4.0Hz (see Fig. 9).

And secondly, the excitation is modified to sweep the frequencies
rom the frequency 𝑓1 = 0.2Hz to the value 𝑓2 = 10.0Hz applied in

degree of freedom 2 during 𝑡1 = 20 s (see Fig. 10):
In practice it is not necessary to know the mass, damping and stiff-

ness matrices. This is for simplicity and as a check, but the methodology
s general. The necessary information is the accelerations and forces at

the points of interest, to which the methodology of this work is applied
to predict the behavior of the dynamic system.

On the other hand, the driving point must always be considered to
scale the problem and reproduce the dynamic of that specific system
and not of all its equivalents. That is, systems whose dynamic behavior
is similar although they have different masses (for example).

4. Conclusions

In this work, accelerations due to an impact (synthetic data) are
easured in one of the degrees of freedom (in total three) and con-

erted to displacements. It is analyzed in the frequency domain (s-
omain, complex frequency) to obtain the poles and residues of the
ystem and obtain a representation in the form of a transfer function
atrix of the dynamic system identified.

A great contribution is that a direct relationship has been found be-
ween the measured residues and the residues of the complex functions
efined in the s domain, complex frequencies. This allows the dynamic
ystem to be identified quickly and intuitively by its frequency response
rom the applied forces and the acceleration records measured by the
ensors.

System identifying as Frequency Functions Matrix response makes
it easier to move on to other representations of the dynamic system:
poles and residues; state space model and zeros, poles and gains.
imulate/predict the system dynamic response for other input/forces
ignals it is now possible.

Finally, this work can help describe systems using perfectly de-
fined mathematical functions and not as black boxes that relate inputs
and outputs. This can facilitate advances in the development and
applications of Artificial Intelligence (AI) and Neural Networks (NNs).
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Fig. 9. Simulated displacements, sinusoidal force at 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Simulated displacements, frequency sweep at 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
his article.)
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Annex A. Auxiliary results

Proportional damping case (estimated values):

1𝑨̂𝑖𝑗 =

⎡

⎢

⎢

⎢

⎣

−7.145 ⋅ 10−6 − 0.004558𝑖 −1.61 ⋅ 10−5 − 0.01027𝑖 −2.005 ⋅ 10−5 − 0.01279𝑖
−1.61 ⋅ 10−5 − 0.01027𝑖 −3.63 ⋅ 10−5 − 0.02316𝑖 −4.519 ⋅ 10−5 − 0.02883𝑖
−2.005 ⋅ 10−5 − 0.01279𝑖 −4.519 ⋅ 10−5 − 0.02883𝑖 −5.627 ⋅ 10−5 − 0.03589𝑖

⎤

⎥

⎥

⎥

⎦

(16)

6 
2𝑨̂𝑖𝑗 =

⎡

⎢

⎢

⎢

⎣

−2.45 ⋅ 10−5 − 0.005781𝑖 −1.693 ⋅ 10−5 − 0.003995𝑖 3.786 ⋅ 10−5 + 0.008933𝑖
−1.693 ⋅ 10−5 − 0.003995𝑖 −1.17 ⋅ 10−5 − 0.00276𝑖 2.616 ⋅ 10−5 + 0.006173𝑖
3.786 ⋅ 10−5 + 0.008933𝑖 2.616 ⋅ 10−5 + 0.006173𝑖 −5.85 ⋅ 10−5 − 0.0138𝑖

⎤

⎥

⎥

⎥

⎦

(17)

3𝑨̂𝑖𝑗

=

⎡

⎢

⎢

⎢

⎣

−3.09 ⋅ 10−5 − 0.005207𝑖 3.306 ⋅ 10−5 + 0.005571𝑖 −1.781 ⋅ 10−5 − 0.003002𝑖
3.306 ⋅ 10−5 + 0.005571𝑖 −3.538 ⋅ 10−5 − 0.005962𝑖 1.906 ⋅ 10−5 + 0.003212𝑖
−1.781 ⋅ 10−5 − 0.003002𝑖 1.906 ⋅ 10−5 + 0.003212𝑖 −1.027 ⋅ 10−5 − 0.001731𝑖

⎤

⎥

⎥

⎥

⎦

(18)

General damping case (estimated values):

1𝑨̂𝑖𝑗 =

⎡

⎢

⎢

⎢

⎣

5.845 ⋅ 10−6 − 0.004606𝑖 0.0003014 − 0.01038𝑖 −0.0003819 − 0.01292𝑖
0.0003014 − 0.01038𝑖 0.001328 − 0.02336𝑖 −5.164 ⋅ 10−5 − 0.02914𝑖
−0.0003819 − 0.01292𝑖 −5.164 ⋅ 10−5 − 0.02914𝑖 −0.002189 − 0.03623𝑖

⎤

⎥

⎥

⎥

⎦

(19)

2𝑨̂𝑖𝑗 =

⎡

⎢

⎢

⎢

⎣

0.002859 − 0.006187𝑖 −0.001396 − 0.004529𝑖 −0.001592 + 0.01014𝑖
−0.001396 − 0.004529𝑖 −0.002826 − 0.001693𝑖 0.00389 + 0.005986𝑖
−0.001592 + 0.01014𝑖 0.00389 + 0.005986𝑖 −0.001875 − 0.01535𝑖

⎤

⎥

⎥

⎥

⎦

(20)

3𝑨̂𝑖𝑗 =

⎡

⎢

⎢

⎢

⎣

−0.002928 − 0.004734𝑖 0.001095 + 0.006163𝑖 0.001974 − 0.004276𝑖
0.001095 + 0.006163𝑖 0.001414 − 0.006895𝑖 −0.0038380.00365𝑖
0.001974 − 0.004276𝑖 −0.003838 + 0.00365𝑖 0.003939 + −0.0006035𝑖

⎤

⎥

⎥

⎥

⎦

(21)
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