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An end-to-end hardware-software pipeline is introduced to automatize ergonomics assessment in industrial 
workplaces. The proposed modular solution can interoperate with commercial systems throughout the ergo
nomics assessment phases involved in the process. The pipeline includes custom-designed Inertial Measurement 
Unit (IMU) sensors, two real-time worker movement acquisition tools, inverse kinematics processing and Rapid 
Upper Limb Assessment (RULA) report generation. It is based on free tools such as Unity3D and OpenSim to 
avoid the problems derived from using proprietary technologies, such as security decisions being made under 
“black box” conditions. Experiments were conducted in an automotive factory in a workplace with WMSDs risk 
among workers. The proposed solution obtained comparable results to a gold standard solution, reaching 
measured joint angles a 0.95 cross-correlation and a Root Mean Square Error (RMSE) lower than 10 for elbows 
and 12 for shoulders between both systems. In addition, the global RULA score difference is lower than 5 % 
between both systems. This work provides a low-cost solution for WMSDs risk assessment in the workplace to 
reduce musculoskeletal disorders and associated sick leave in industry, impacting the health of workers in the 
long term. Our study can ease further research and popularize the use of wearable systems for ergonomics 
analysis allowing these workplace prevention systems to reach different industrial environments.   

1. Introduction 

The most common occupational diseases in the European Union are 
related to musculoskeletal disorders, which affect workers in all sectors 
and professions (Work-related musculoskeletal disorders: prevalence, 
costs and demographics in the EU, 2022). Ergonomic stressors such as 
biomechanical constraints, awkward postures, and repetitive move
ments are closely related to soft-tissue injuries among workers when 
they perform physical tasks (Cole et al., 2005). In recent years, there has 
been increasing interest in measuring human motion and Work-related 
Musculoskeletal Disorders (WMSDs) risk to improve posture and 
workers’ safety in industrial workplaces (Menolotto et al., 2020). The 
ergonomics assessment becomes critical in industry, as workers sick 
leave and occupational accidents generate considerable associated costs. 
The primary cost contributor is its impact on production, surpassing 
expenses related to sickness absence and medical assistance (Rosado 
et al., 2023). In the European Union, the profound economic impact of 

WMSDs is exemplified by Germany, which experienced a staggering 
production loss of EUR 17.2 billion in 2016, calculated based on labor 
costs, along with a subsequent reduction in gross value added by EUR 
30.4 billion (Work-related musculoskeletal disorders: prevalence, costs 
and demographics in the EU, 2022). Similarly, a parallel examination of 
costs in Great Britain in 2013/14 arising from new WMSDs cases reveals 
an estimated annual social cost of approximately £2.3 billion (Health 
and safety statistics, 2021). These figures highlight the significant 
contribution of the economic burden of WMSDs in the European 
countries. 

Traditionally, postural safety testing at work is performed by er
gonomists using direct observation and video recordings (Maldonado 
et al., 2015). Over time, various methods have been employed to assess 
the risk of WMSDs in workstations on production lines. Most of these 
methods are based on the prolonged maintenance of certain incorrect 
postures, which are determined by joint angles. Workstations are 
eventually modified according to the results of these assessment 

* Corresponding author. 
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methods. Among them, a commonly used method is the Rapid Upper 
Limb Assessment (RULA) (McAtamney et al., 1993), which evaluates the 
posture and movement of upper limb joints during a specific task. The 
RULA method is widely accepted as reliable and valid for identifying and 
assessing WMSDs risk in the workplace. However, not only is the ergo
nomics assessment procedure relatively subjective, but also the ergon
omist is often only required to assess a workstation when injuries have 
already appeared, since the analysis reveals the adaptation needs of the 
workplace a posteriori. In this case, workplace adaptation cannot be 
introduced preventively during the design phase of the workplace or the 
first few times it is used. For this reason, human body tracking systems 
that can assist ergonomists in more frequent assessments of workplaces 
with quantitative data are highly desirable. Embracing such technology 
can enhance the effectiveness of ergonomic assessments and contribute 
to healthier work environments (Salisu et al., 2023). 

Motion capture in industrial environments has become valuable for 
ergonomics because it enables the accurate and objective measurement 
of human movement and posture. This capability can be utilized to 
assess the risk of musculoskeletal disorders in the workplace and provide 
valuable insights for evaluating the effectiveness of ergonomics in
terventions over time (Menolotto et al., 2020; Vijayakumar and Choi, 
2022; Ranavolo et al., 2018). Previous studies have introduced com
puter methods based on different hardware-software approaches 
(Vignais et al., 2013; Vignais et al., 2017; Caputo et al., 2019; Maurice 
et al., 2019; Greco et al., 2020; Huang et al., 2020; Colim et al., 2021; 
Panariello et al., 2022) and recent studies have confirmed the feasibility 
of using inertial sensor-based solutions for body motion capture (Sers 
et al., 2020; Carnevale et al., 2019; Taylor et al., 2017; Poitras et al., 
2019) in real-life conditions. These solutions offer certain advantages 
over those based on computer vision, including the possibility to 
perform measurements in industrial workplaces without the need for a 
dedicated space. For this reason, motion capture systems using Inertial 
Measurement Units (IMU) have become increasingly important to study 
human movement (López-Nava and Muñoz-Meléndez, 2016). Some 
commercial systems can be used as ergonomics tools to capture and 
analyze postural behavior. For example, Movella Awinda (Paulich et al., 
2018) provides a complex capture and analysis suite called MVN 
Analyze Pro, which gives useful information on joint angles and ergo
nomics, and it has been validated against multi-camera body tracking 
systems using computer vision (Robert-Lachaine et al., 2017). 

Although systems using video and positional markers (Nexus Vicon, 
Optitrak) are still considered the gold standard in the field of clinical 
research for postural studies, they have some disadvantages that prevent 
their use for WMSDs assessment in outside-of-the-lab settings. Among 
other limitations, we can find their complexity of use, their high cost, 
and large dimensions, as well as the need for a large and dedicated 
space; and thus, not adjusting to the reality of industrial workstations 
(Salisu et al., 2023). As a result, the video approach has been mainly 
applied to a couple of industries such as construction, robot 
manufacturing, and other generic applications (Menolotto et al., 2020) 
and is not a widespread practice in the rest of industries. Moreover, these 

vision-based systems also preclude in situ capture as they require 
dedicated space or modifications to the workplace to prevent disrup
tions to the standard movements performed by workers (Salisu et al., 
2023; Ranavolo et al., 2018). 

Commercial IMU-based solutions such as Movella Awinda (Huang 
et al., 2020; Colim et al., 2021) are becoming the de facto gold standard 
for WMSDs assessment in the workplace. Nevertheless, these commer
cial solutions come with subscription-oriented and stand-alone pro
grams for analysis, increasing their cost and decreasing the transparency 
of the analysis behind the pay-wall. One of their main drawbacks is that 
they are closed solutions and do not allow ergonomists and researchers 
to control simulation parameters. Differently, custom-developed sys
tems for IMU-based body motion capture can be used to obtain data 
measurements of the orientation of human body parts in real time and 
accurate joint angles using inverse kinematics. A growing number of 
studies have found that low-cost custom IMU-based solutions can satisfy 
human body motion estimation requirements (Caputo et al., 2019; 
Greco et al., 2020; López-Nava and Muñoz-Meléndez, 2016). Still, some 
of them are only applicable when there are no ferromagnetic materials 
nearby (Vignais et al., 2013; Álvarez et al., 2016), making them un
suitable for certain working conditions in the automotive industry; or 
they focus only on providing a hardware solution for the motion capture 
process without covering the subsequent ergonomics analysis software 
(He et al., 2022; Slade et al., 2022; Li et al., 2022). 

The objective of this research is to develop an end-to-end hardware 
and software system for ergonomics assessment using custom sensors 
and free and open software tools, and explore its feasibility in the 
automotive industry. The main contributions of the present work are: 1) 
Development of an end-to-end system for ergonomics assessment built 
with free and open tools; 2) Establishment of its compatibility with a 
commercial solution throughout different assessment phases; 3) Vali
dation of the proposed system on a workstation in the automotive in
dustry through a comparison of joint angles and a RULA assessment 
report. 

2. Methods 

2.1. Pipeline overview 

The pipeline includes both custom hardware and free software for 
ergonomics assessment of industrial workers. The hardware sensor 
system can be any of the preferred custom systems that capture absolute 
orientation data from segments of the human body. The software 
component of the pipeline is a toolkit, based on open-source and free 
software frameworks, used for data processing, visualization, and 
analysis. The toolkit consists of a pyGame or Unity 3D tool for avatar 
visualization and recording, NumPy, SciPy, and Matplotlib libraries for 
numerical computation and data visualization, and OpenSim for 
musculoskeletal modeling and inverse kinematics computing. The 
toolkit is designed to be user-friendly and extensible, with a modular 
architecture that allows users to customize and extend its functionality 

Fig. 1. Overall diagram of the presented pipeline.  

J. González-Alonso et al.                                                                                                                                                                                                                      



Safety Science 173 (2024) 106431

3

according to their specific needs. The pipeline is composed of the 
modules: Sensors, Movement acquisition, Movement analysis, and Er
gonomics analysis (RULA reports), as depicted in Fig. 1. The input to the 
last two modules can be imported from a commercial solution (e.g., 
Movella Awinda), for maximum compatibility. 

2.2. Sensors 

The chosen pipeline hardware component is a custom IMU system 
(González-Alonso et al., 2021), based on low-cost IMU modules and a 
Nordic Semiconductor nRF52 Series single-board processor. The pro
cessing core contains an ARM Cortex M4 with a 2.4 GHz transceiver 
(7–8 m range). The IMU modules are based on the BNO080 (Labora
tories, 2017) chip, which generates quaternion data, representing the 
orientation of the IMU in 3D space. The rechargeable button cell of the 
previous model has been replaced with a 120mAh lithium polymer 
battery, together with a battery charging chip (MCP73831) to increase 
its autonomy. The low-cost custom sensors employed in the pipeline can 
record up to 11 body segments and feature protection against electro
magnetic interference from industrial ferromagnetic cores and saturated 
environments in the Industry 4.0 band (2.4 GHz) (González-Alonso 
et al., 2021). For the experiments in this paper, we used 5 wearable 
nodes attached to the upper parts of the worker’s body, with dimensions 
of 45 × 28 × 10 mm for each sensor. 

This approach can be easily replicated by using any other customized 
system based on IMUs (He et al., 2022; Slade et al., 2022; Li et al., 2022; 
Liu et al., 2018; Raghavendra et al., 2017; Costa et al., 2020) which, in 
any case, would be compatible with the rest of the modules of this so
lution. In particular, the communication protocol can be modified to suit 
the specific application environment. Although our model uses a 
modified implementation of Nordic’s proprietary protocol (Enhanced 
Shockburst) to feature a frequency channel hopping mechanism, other 
technologies, such as Bluetooth (BT) or Wi-Fi, can be used for sensor-to- 
sensor communication as long as they achieve an acceptable number of 

measurements per second for the specific target application. 
The IMU chosen for our sensors comes with a proprietary fusion al

gorithm implemented internally on the BNO080 chip, and has been 
previously tested in human body motion applications (Stanzani et al., 
2020). Alternatively, this algorithm can be replaced by other widely 
used fusion algorithms such as Extended Kalman Filter (Li and Wang, 
2013), Mahony (Mahony et al., 2008), or Madgwick (Madgwick et al., 
2011), with other sensors with similar characteristics, such as the 
LSM9DS1, ICM-20948, MPU9250, among other 9DoF units (He et al., 
2022; Li et al., 2022; Liu et al., 2018; Raghavendra et al., 2017). 

2.3. Sensors placement 

Sensor placement is crucial in both upper-limb (Höglund et al., 2021) 
and lower-limb (Niswander et al., 2020) IMU-based approaches, since 
incorrect placement can lead to measurement inconsistencies. There
fore, a standardized protocol for sensor placement is essential to obtain a 
reliable analysis of body movements. For the experiments, a total of 12 
IMU sensors were placed on the back, the pelvis, the arms, and forearms 
to register upper body movements. Fig. 2a and Fig. 2b show commercial 
(orange) and custom sensors (circles) placement. The worker was 
recorded simultaneously with 7 commercial Movella Awinda sensors 
and 5 custom IMU sensors. The commercial sensors were placed ac
cording to the manufacturer’s guidelines (Technologies, 2016). The 
custom sensors were placed on the back, tracing an imaginary line that 
connects the two posterior axillary folds (approximately at the T5–T7 
level), and on the middle lateral section of each upper arm, as well as the 
rear part of each wrist. Sensors were placed on fastening straps, on the 
specifically designed commercial system’s T-shirt, and on a special 
encapsulation for the back custom sensor. Sensors were positioned 
under the Personal Protection Equipment (PPE) during recordings. In 
Fig. 2a and Fig. 2b, they are shown above the PPE for visibility. A more 
detailed description of the protocol for the custom sensors placement is 
provided in (Martínez-Zarzuela et al., 2023), where the same custom 

Fig. 2. Simultaneous placement of both sensor systems on the same subject.  
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sensors were used to acquire a database of daily life movements. Com
mercial and customized sensors were placed at the same approximate 
locations on the body to obtain comparable results. On the other hand, 
the commercial solution uses two different sensors on the back and adds 
an extra sensor on the pelvis. Both systems did not interfere with each 
other thanks to our band-hopping implementation, which allowed us to 
obtain comparable data on worker performance, under the same 
conditions. 

According to the literature (Höglund et al., 2021), some planes of 
motion of certain joints are less affected by sensor placement, including 
shoulder flexion–extension, abduction–adduction, and elbow flex
ion–extension. Following the chosen method, only joint range values in 

certain axes (flexion, abduction, and pronosupination) were considered 
for the subsequent RULA analysis. Therefore, we will take them as the 
basis of our study instead of others with a greater influence of the 
placement, so they will not compute for our subsequent analysis. Due to 
this, the elbow and shoulder joints were the ones chosen to perform a 
local ergonomics analysis and their local axis system is defined following 
the recommendations of the International Society of Biomechanics (ISB) 
(Wu et al., 2005). 

2.4. Movement acquisition 

The accuracy and reliability of the IMU system and the software 

Fig. 3. Snapshots of the Unity3D visualization and recording tool (left) and actual worker poses (right).  
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pipeline are critical to the validity of the ergonomics assessment results. 
Therefore, calibration and validation procedures are essential to ensure 
the quality of the worker’s movements and the consistency of the data 
along the whole pipeline. In the Movements acquisition module, we 
present a dual-option capture software. The first option includes an 
avatar representing human joint movements using Unity3D (Fig. 3a and 
Fig. 3b), and the second a simpler visualization and recording tool of the 
3D orientation of each sensor separately using Python, both in real time. 
These two solutions include recording functions and a calibration of the 
orientation of the human body bones as described in (González-Alonso 
et al., 2021), following the IMU-to-Body-Segment alignment guidelines 
according to (Rajagopal et al., 2016; Maruyama et al., 2020). In this 
regard, before starting the measurements with the custom solution, we 
suggest a heading reset of the sensors, and a calibration procedure 
consisting in the worker adopting an initial pose to start from 
(commonly N-pose), which is used as a reference for the assumption of 
the initial body segment orientations. In this software module, the initial 
orientations of the sensors during calibration are stored in the output 
files to allow their subsequent use as appropriate inputs of the down
stream analysis system. Later on, they are needed for instant pose and 
kinematics computations as described in (González-Alonso et al., 2021). 
Most of the outputs of commercial IMU-based solutions, as depicted in 
Fig. 1, are also compatible with our implementation. As long as the 
commercial solution provides a quaternion output and a timestamp for 
each placed sensor, it can be easily adapted to be the input to the 
Movement analysis module of our pipeline (Output 1 of Commercial 
Sensors in Fig. 1). 

At the end of this module, the entire recording is segmented into 
subsections (frames selection in Fig. 1), and only the frames in which the 
worker is active are fed into the next module. This is important since 
inactive moments can introduce unwanted variations in the results of 
the postural percentage calculation in the final RULA analysis. The 
capture system described above is used in this step for visual selection of 
the frames of each subsection by reconstructing the recordings in an 
avatar. 

2.5. Movement analysis 

The correct implementation of human biomechanical models and 
inverse kinematics is crucial in human movement research. In the 
Movement analysis module, joint angle trajectories are inferred from 
motion capture data from wearable sensors through inverse kinematics. 
Modeling of body mechanics during complex dynamic movements can 
be accurately performed with OpenSim, an open-source software plat
form (Vargas-Valencia et al., 2016) that is validated with different 
movement capture systems including inertial sensors (Delp et al., 2007). 
This technology allows the use of biomechanical models for the study of 
musculoskeletal disorders or rehabilitation procedures, among others. 

In our pipeline, previously registered recordings are the inputs to the 
Movement analysis module, connecting the recorded data to a model of 
human musculoskeletal structures to generate dynamic simulations of 
movement. The inverse kinematics output will present the resulting joint 
angles after applying the constraints of the human model and being 
adjusted as best as possible to the range of motion achievable by each 
subject based on the body parameters. In our case, the Rajagopal2015 
model (Al Borno et al., 2022) was modified by adjusting its upper-body 
constraints to obtain the inverse kinematics through OpenSense (Delp 
et al., 2007), that has been built on top of OpenSim (Vargas-Valencia 
et al., 2016). Specifically, wider movements were allowed for the 
shoulder and arm joints, as the left-side of Fig. 4 highlights, fitting the 
use-case necessities. 

Before ergonomics assessment, the subject is asked to remain 
motionless and performing an N-pose, as mentioned in the previous 
section. In Fig. 4, it can be observed that the standard pose of the 
OpenSim base model (Al Borno et al., 2022) is modified to be the N-pose 
for the subsequent inverse kinematics process. OpenSim is an open- 
source software solution that offers endless possibilities for motion 
analysis. Many research studies have included this software as a basis for 
their kinematic analysis, and some even have provided clarification on 
the appropriate procedures to use OpenSim (Mahadas et al., 2019). 
Alternatively, other inverse kinematics software programs could be used 
in this module. 

Fig. 4. OpenSim model adjusted to N-pose with modified constraints.  
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2.6. Ergonomics analysis and RULA reports 

The Ergonomics analysis module makes it possible to assess the 
anatomical performance of the worker in a range of activities, high
lighting the WMSDs risk of the different postures, which facilitates their 
subsequent correction. In addition, the software should provide an 
instantaneous score of the postures produced and a percentage of time 
spent in each postural risk range with respect to the full work cycle. The 
output is based on the RULA method (McAtamney et al., 1993) and is 
designed to facilitate subsequent assessment by ergonomists, stream
lining the workstation redesign process and promoting the reduction of 
occupational accidents. 

The Ergonomics analysis module is composed of several Python 
scripts that assign values to the instantaneous joint angles of the previ
ous module according to the RULA method, providing ergonomics re
ports in a semi-automatic way. It can be used as the final module for an 
output file coming from OpenSim, facilitating compatibility with other 
systems such as optical cameras with markers or Vicon (Panariello et al., 
2022) or commercial IMU-based solutions, among others. Commercial 
systems whose outputs are joint angles can be fed directly into this 
system module for RULA analysis as shown in Fig. 1 Output 2 of Com
mercial Sensors. 

The resulting RULA score corresponds to the values established in the 
RULA method guidelines for local analysis, considering some adjust
ments for the final RULA score computation as in (Vignais et al., 2017). 
The Force/load score was set to 0, considering that the parts handled by 
the worker were supported by a weightless manipulator (weighing 
significantly less than 2 kg). In this case, the analysis in subsections does 
not account for repeatability; therefore, the repeatability score was 
assigned a value of 0. Since the worker was not raising his shoulders 
during the task and did not support his arms, these score values were 
fixed to 0. In addition, it was not considered in the final score if the arm 
was working across midline or out to the side of the body. Finally, the 
local joint scores are combined into a global analysis of the total upper 
body activity. The system calculates the percentage of time (cumulative) 
that the subject has been within a postural score range. These ranges 
correspond to risk score levels 1–2, 3–4, 5–6 and 7 and their interpre
tation follows the guidelines defined by the RULA method (Health and 
safety statistics, 2021) for the final score. Both left and right sides will be 
provided, although the worst-case scenario is usually taken to calculate 
the total postural risk according to the RULA method. 

To complete the system, a graphical visualization tool has been 
developed in Python that displays the instantaneous value of the angles 
of all the recorded joints, and a traffic light-based color classification 
system has been introduced for the ergonomics analysis. These results 
are intended to show at a glance how harmful the movements of a 
worker are at a given workstation, based on the risk level categories 
defined by the RULA method. On the one hand, movements grouped in 
green refer to commonly expected and appropriate movements. On the 
other hand, orange and red indicate harmful movements that should be 
performed for the shortest possible time. To show the exact time and 
percentage of total workstation time for each of these classification 
levels, a chart was designed as part of the automatic results of the 
analyzed recording, as it can be seen in Section 3.1. The resulting in
formation is provided to the healthcare professionals in a simplified way 
so that they can rely on these measurements to deliver a precise and 
objective ergonomics assessment of the recorded activity. 

This way, the ergonomist obtains a first graphical assessment of the 
local risk score for each joint. We can then interact with the recording 
using OpenSim, scrolling through the recorded frames until the desired 
moment is reached. This graphical representation allows ergonomists to 
explore in detail, for example, the moment of greatest postural risk 
observing both the model and the RULA score at the same time for 
comparison. An example is shown in Fig. 5a and Fig. 5b. 

3. Experiments and results 

A case study was conducted to evaluate the pipeline for ergonomics 
assessment using the RULA method in an automotive assembly line of 
the IVECO automotive factory in Valladolid, Spain. The analyzed 
workstation was chosen among the semi-robotized tasks that could be 
performed by a single operator and involved mainly upper body 
movements. The workplace involves a wide range of WMSDs risk fac
tors, such as awkward postures and repetitive movements over a long 
period of time that can be identified by the RULA method. The partici
pant (right-handed male, 36 years old) was a volunteer among the senior 
workers in that specific part of the assembly line, and signed an 
informed consent before the experiments. He was asked to perform their 
work as usual, as part of the daily working hours, while wearing the IMU 
system on the upper body. The main tasks of this workplace included 
assembling and disassembling parts, using hand tools, and interacting 
with robotic arms, and other devices. The activity analyzed corresponds 

Fig. 5. Illustrative avatar view in the same instant for the two systems recorded.  
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to the one that concentrates the body movements with the greatest 
injurious load, out of the 2 independent sub-processes into which the 
factory work line was divided. To determine the time when the 
recording starts and when it ends, the starting point of each sub-process 
was taken as the moment when the operator presses the red start button 
at the workstation and the sub-process ends by pressing the same button 
to stop. This start-stop process is activated 4 times for each workstation 
of this factory line. This way we can discriminate the time when the 
operator is performing work at the workstation as useful time versus rest 

time or idle time. 
Each task lasted approximately one minute, with pauses in between, 

and was recorded using the custom IMU system and the Movella Awinda 
sensors simultaneously. The different tasks were performed and recor
ded in a row, so the frames of the different tasks captured had to be 
separated afterwards. The data were processed, visualized, and analyzed 
using the proposed pipeline, and WMSDs risk factors were assessed using 
the RULA scoring system. 

3.1. Joint angles analysis 

To evaluate the performance of the approach, the joint angles ob
tained from the motion captured with our custom system and analyzed 
with the OpenSim software, were compared to the motion analysis result 
of the commercial Movella Awinda sensors system with the MVN 
Analyze Pro license. The measured differences between the joint angles 
and the RULA outputs are discussed later. 

In the capture procedure, the entire recording was supervised by 
ergonomists from the occupational risk prevention department of IVECO 
Valladolid. They were asked to pay close attention to the placement of 
the sensors, and the correct operation of body-worn units during data 
acquisition in the Unity3D visualization and recording tool. Their 
participation was crucial to ensure the reliability of the data collected, 
and therefore the validity of the results and the overall robustness of the 
study. The registered data outcome consists of quaternion orientations 
of the worker’s body segments, converted into angular variations from 
the upper body joints through inverse kinematics. The inverse 

Table 1 
Delta-t values between successive working line subprocesses (min:seconds). 
Movella Awinda recordings in Frames (recorded at 100 Hz). Custom Sensors 
data were recorded into two different files (R1 & R2).  

Subprocess Delta-time Custom Record Movella Awinda Frames 

1 R1 → 0:04–1:04 F210 – 6300 
2 R2 → 1:28–2:38 F24760 – 31,760  

Table 2 
Posture summary.  

Subprocess G1 Left-Elbow Right-Elbow Left-Shoulder Right-Shoulder 

Cross-correlation 0.958 0.971 0.961 0.955 
RMSE 8.971 7.799 9.253 9.685 
Subprocess G2 Left-Elbow Right-Elbow Left-Shoulder Right-Shoulder 
Cross-correlation 0.967 0.973 0.953 0.952 
RMSE 9.580 7.412 8.667 11.48  
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Fig. 6. Comparative data for the first subprocess between customized and commercial solutions for the estimated joint angles.  
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kinematics process is performed following the process described in 
Section 2.5. 

Records were obtained for the 2 subprocesses of the workstation as 
defined in Table 1, including flexion–extension and pronation- 
supination of the elbow, and flexion–extension and abduction of the 
shoulder, for both the right and left sides of the body. 

In a first visual comparative study, we observed how the elbow joint 
and the shoulder joint on the right and left sides of the body obtained 
equivalent results. Fig. 5 shows an illustrative capture for the second 
subprocess. In this experiment, the results in the flexion–extension axis 
were compared, being this axis the most relevant one used for the sub
sequent computation of the RULA score. 

Table 2 summarizes cross-correlation and Root Mean Square Error 
(RMSE) results. These parameters are useful for measuring the differ
ences in the joint angles obtained from the proposed pipeline, and those 
obtained from the gold standard (Output 2 of Commercial Sensors in 
Fig. 1) for the studied subprocesses. 

As it can be seen from the analysis of the resulting inverse kine
matics, the motions recorded by both systems (Fig. 6 and Fig. 7) are 
similar for the elbow joint and only differ slightly in some specific 
movements. The largest angular differences were found at the shoulder 
joint (RMSE < 12 degrees) and these differences were not significant for 
the final RULA score computations. 

The RULA score was computed from these angular variations 
following the guidelines described in Section 2.6. The comparison of 
results of the two systems considers the fully free pipeline output shown 
in Fig. 1 versus the MVN Analyze Pro output of joint angles passed 

through our RULA system, that is, Output 2 of Commercial Sensors 
pipeline. 

The final RULA score is presented in two different ways: first, by 
showing a RULA score at each time instant for each joint, as shown in 
Fig. 8 for elbow and shoulder flexion, and second, with a risk level 
percentage of the total cycle time in a pie chart for global results, as 
shown in Fig. 9 and Fig. 10. 

Fig. 8 shows the RULA scores obtained from the joint angles in Fig. 7. 
It can be observed in Fig. 8 how both systems obtain the same RULA 
scores, except for very specific instants. 

By adding the elbow and shoulder scores, and analyzing each score 
range over the total time, we derive the overall workstation risk. Thus, 
based on the established joint angle ranges, we can analyze the overall 
risk of injury according to the percentages obtained. This analysis is 
defined as the Global RULA score of a work cycle as shown in Fig. 9 and 
Fig. 10. As can be seen in both analyses, the two systems obtain similar 
results for the WMSDs risk assessment at each specific moment and as 
percentages of the overall risk of the workstation. In addition, a global 
RULA score table can be obtained for a given observed position of higher 
risk. The tracking of the achieved position can be ensured by instanta
neous representation of the human model in both systems, as shown in 
Fig. 5a and Fig. 5b. 

4. Discussion 

The conducted study successfully implemented and validated an end- 
to-end system for ergonomics assessment, including both hardware and 
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Fig. 7. Comparative data for the second subprocess between customized and commercial solutions for the estimated joint angles.  
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software, showing its feasibility in the automotive sector. Other re
searches (He et al., 2022; Slade et al., 2022; Li et al., 2022) have offered 
solutions focused only on the hardware, while some others have only 
focused on the ergonomics assessment (Caputo et al., 2019), but without 
including a comparison with a reference system. There are also studies 
that generate RULA assessments using the output of commercial sensors 
(Huang et al., 2020) or consumer-depth cameras (Manghisi et al., 2017; 
Abobakr et al., 2019). The presented end-to-end system offers a free and 
comprehensive ergonomics analysis tool that can indicate a local and 
global time-based reference score for RULA assessment in the industry. 
The proposed custom sensors and free tools approach has several 
attractive features: it constitutes a simple and easy-to-use solution for in 
situ motion capture; it overcomes the communication limitations of 
entry-level IMU solutions with respect to crowded 2.4 GHz environ
ments (González-Alonso et al., 2021); it democratizes access to these 
systems in industry; it provides an adaptation layer between raw sensor 
data and open software such as OpenSim; and finally, it enables fully 
customizable solutions to reach the industry by completely adapting to 
the final workplace. 

The proposed modules through the pipeline can interoperate to some 
extent with other IMU-based hardware systems and inverse kinematics 
software solutions, such as the commercial system discussed in this 
paper. More specifically, Movella Awinda has an export option that 
provides per-sensor quaternion orientation output (ASCII CSV text 
format) through MT Manager software. In more advanced commercial 
solutions, such as the MVN Analyze capture and processing software 
compatible with the Movella Awinda, a complex calibration process can 
be performed, which may include a motion routine and obtains a good 
correction for expected deviations in IMU-based systems. However, the 

outputs of these systems are proprietary and only compatible with the 
manufacturer’s software (e.g.,.mvn or.mvnx). In MVN Analyze Pro, an 
export process can be used to export joint angles into an.xlsx file through 
a license fee. Movella has recently introduced a cloud-based analysis 
(Movella Motioncloud license) that also incorporates RULA analysis for 
its recordings, emphasizing the usefulness of these methods and their 
use with IMU systems. 

Custom IMUs and free tools have been successfully used to conduct a 
semi-automatic ergonomics analysis report and obtain joint angles and 
RULA scores equivalent to those of a state-of-the-art gold standard so
lution. Comparative experiments of joint angles computed with the 
proposed system and the reference system determined that the acqui
sition and representation of movements in the musculoskeletal model of 
the pipeline faithfully followed the movements of the recorded subject. 
The value of the cross-correlation coefficient is higher than 0.95 for 
elbow and shoulder joint angles and the RMSE is lower than 10 for el
bows and 12 for shoulders. We can conclude that the system based on 
custom wearables and OpenSim obtained inverse kinematics results 
comparable to those detected by the Movella system. The global RULA 
score in the different subprocesses analyzed differs by no more than 5 % 
between both systems’ reports. 

There are several advantages of using the presented pipeline for er
gonomics assessment in the automotive industry. One major strength of 
this approach is the cost-effectiveness of the pipeline, as it is based on 
low-cost IMU modules and free developing tools. Although studies 
involving measurements performed by customized IMU-based solutions 
are rare in these use cases, this system is presented as an alternative for 
entry-level IMU systems, which do not perform well in signal-crowded 
industrial environments (He et al., 2022). Regarding interference- 
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related limitations, in the proposed system the use of a specific 
communication protocol improves the reliability and safety of the 
pipeline. In other solutions, interferences causing sensor range reduction 
and security issues can occur due to the use of standard Bluetooth or 
other IoT communication technologies. Automotive environments are 
characterized by high saturation in the 2.4 GHz spectrum band. Besides, 
the use of free developing tools also enables users to customize and 
extend the pipeline functionality according to their specific needs and 
preferences. 

One of the main limitations of the experiments conducted is related 
to the total number of custom IMU sensors employed. Meaningfully, the 
greater variations observed in the shoulder joint could be mainly due to 
the placement of a larger number of Movella sensors in this location, 
specifically the inclusion of one sensor per side on the scapula to obtain 

data relating to the glenohumeral joint. Future work will add these 
sensors to the system. To complete the RULA analysis of the upper body, 
additional sensors can be added. This would allow for a broader study of 
the trunk and neck, with sensors on the head, chest (already included in 
this analysis), wrists, and hips, which could also be considered. 

Another limitation of the proposed approach is the reliance on the 
RULA method, which may not be sufficient for more comprehensive and 
sophisticated ergonomics evaluations. Recent scoring systems, as 
exemplified by (Ghasemi and Mahdavi, 2020), exhibit superior corre
lations with WMSDs prevalence compared to traditional methods. These 
systems provide a more nuanced understanding of risk factors and 
eliminate sharp angular transitions that cause abrupt changes in the 
scores of input variables. Although our research did not cover this spe
cific analysis, acknowledging this limitation prompted us to consider 

Fig. 9. Comparison of Global RULA scores using the first subprocess recordings obtained through the pipeline with data from the custom sensors and with the output 
2 of the commercial sensors (Movella Awinda). 
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potential enhancements. The adaptability inherent in the modular 
design of this pipeline allows for such improvements. Consequently, the 
pipeline could be extended to support other ergonomics assessment 
methods, such as OWAS (Ovako Working Posture Analyzing System), 
OCRA (Occupational Repetitive Actions), REBA (Rapid Entire Body 
Assessment), or EAWS (Ergonomic Assessment Worksheet) or other 
more novel approaches. Moreover, with the same capture procedure and 
adding other sensors and tools to the described modules, it would be 
possible to add more parameters, such as muscle strain or forces 
involved in musculoskeletal systems and repeatability. 

This study is intended to serve as a guide for future research in the 
use of free tools for the acquisition and analysis of body movements in 
different application areas. It aims to facilitate and define a path in the 
different stages of the process that contemplates the possibilities of new 
open access tools for the study of musculoskeletal disorders through 

biomechanical models and to develop tools for movement data acqui
sition and subsequent ergonomics analysis. 

In future works we will conduct the recording of a larger number of 
subjects with different body measurements and positions with different 
characteristics. More data are necessary to explore the solution in 
different use cases, as this is a key factor for a generalization of the 
applicability of the system. 

5. Conclusion 

This study explores the industry applicability of a custom IMU sensor 
system for measuring human body movements in line with standard 
ergonomics methods. The proposed IMU-based approach offers easy 
placement and continuous activity monitoring, enhancing postural 
assessment and worker re-education. Likewise, human motion data 

Fig. 10. Comparison of Global RULA scores using the second subprocess recordings obtained through the pipeline with data from the custom sensors and with the 
output 2 of the commercial sensors (Movella Awinda). 
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collection from body sensors can aid injury prevention and influence 
workplace design. In the presented study, the validation of a free ergo
nomics assessment tool, built on top of low-cost wearable custom sen
sors, was performed in comparison with a commercial gold standard in 
an automotive workstation with WMSDs risk. Inverse kinematics anal
ysis showed close agreement between the two models. 

The case study demonstrated the feasibility and effectiveness of the 
pipeline for ergonomics assessment in the automotive industry. The 
software toolkit was able to provide powerful and flexible tools for data 
processing, visualization, and analysis, with an average error in the 
global RULA score of less than 5 % compared to the gold standard IMU 
system. The proposed pipeline is a promising, cost-effective, and user- 
friendly tool for assessing ergonomic parameters in the automotive in
dustry, with potential applications in manufacturing, construction, and 
healthcare. Further research is needed to enhance usability and address 
any challenges that may arise. 

Using free tools and customized systems for recording body move
ments can popularize objectified, data-driven methods to prevent 
musculoskeletal injuries, making the presented pipeline a versatile tool 
for various fields, including preventive medicine, postural training, and 
musculoskeletal disorder assessment and rehabilitation. 
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