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Background and objective. Motor imagery (MI) based brain-computer interfaces (BCIs) are widely used in 
rehabilitation due to the close relationship that exists between MI and motor execution (ME). However, the 
underlying brain mechanisms of MI remain not well understood. Most MI-BCIs use the sensorimotor rhythms 
elicited in the primary motor cortex (M1) and somatosensory cortex (S1), which consist of an event-related 
desynchronization followed by an event-related synchronization. Consequently, this has resulted in systems that 
only record signals around M1 and S1. However, MI could involve a more complex network including sensory, 
association, and motor areas. In this study, we hypothesize that the superior accuracies achieved by new deep 
learning (DL) models applied to MI decoding rely on focusing on a broader MI activation of the brain. Parallel 
to the success of DL, the field of explainable artificial intelligence (XAI) has seen continuous development to 
provide explanations for DL networks success. The goal of this study is to use XAI in combination with DL to 
extract information about MI brain activation patterns from non-invasive electroencephalography (EEG) signals. 
Methods. We applied an adaptation of Shapley additive explanations (SHAP) to EEGSym, a state-of-the-art DL 
network with exceptional transfer learning capabilities for inter-subject MI classification. We obtained the SHAP 
values from two public databases comprising 171 users generating left and right hand MI instances with and 
without real-time feedback. Results. We found that EEGSym based most of its prediction on the signal of the 
frontal electrodes, i.e. F7 and F8, and on the first 1500 ms of the analyzed imagination period. We also found 
that MI involves a broad network not only based on M1 and S1, but also on the prefrontal cortex (PFC) and 
the posterior parietal cortex (PPC). We further applied this knowledge to select a 8-electrode configuration 
that reached inter-subject accuracies of 86.5% ± 10.6% on the Physionet dataset and 88.7% ± 7.0% on the 
Carnegie Mellon University’s dataset. Conclusion. Our results demonstrate the potential of combining DL and 
SHAP-based XAI to unravel the brain network involved in producing MI. Furthermore, SHAP values can optimize 
the requirements for out-of-laboratory BCI applications involving real users.
1. Introduction

Brain-computer interfaces (BCIs) create an alternative pathway to 
connect users’ brains with the environment [1]. A BCI system operates 
as a closed-loop system, composed of three stages: recording, process-

ing, and feedback. For the recording stage, electroencephalography 
(EEG) is one of the most commonly used and affordable techniques 
in BCI systems. EEG has the advantages of being non-invasive, highly 
portable, and offering excellent temporal resolution [2]. An EEG-based 

* Corresponding author at: Biomedical Engineering Group, E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, 
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BCI records the electrical brain activity through the placement of elec-

trodes on the user’s scalp. In the processing stage, a BCI processes these 
EEG recordings to discern the user’s intentions [1]. Finally, feedback 
from the BCI’s real-time processing is offered to the user. The feed-

back can take various forms, including visual feedback on a computer 
screen or prosthetic limb movement, among others [3]. Nevertheless, 
obtaining information from the EEG is not trivial due to its low spa-

tial resolution and low signal-to-noise ratio (SNR). To overcome these 
challenges, BCIs rely on different paradigms that can create discernible 
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patterns in the EEG. Among these paradigms, motor imagery (MI) has 
gained considerable attention due to its relevance for motor rehabilita-

tion [4–6].

MI-based BCIs activate the primary motor cortex (M1) and related 
motor areas, similar to motor execution (ME) [6]. Due to this similar-

ity, it has been shown that targeted treatments based on a closed-loop 
MI-based BCI with functional electrical stimulation feedback promotes 
brain plasticity and improves ME in stroke patients [6]. Previous studies 
have revealed that ME involves a complex network of sensory, asso-

ciation, and motor areas that coordinate in a hierarchical manner to 
produce normal movement [7]. The posterior parietal cortex (PPC), the 
prefrontal cortex (PFC), and the premotor cortex (PM) are involved in 
planning and preparing movement based on visual information related 
to both the movement goal and the limb state. The M1 and somatosen-

sory cortex (S1) are involved in executing movement. The PFC was 
reported to activate 150 ms earlier than the PM, indicating its higher 
placement in the temporal hierarchy [7]. In visually-guided movements, 
the PPC associates visual information related to both the movement 
goal and to the state of the limb and its place in the temporal hier-

archy seems to be variable. However, less is known about how these 
areas interact during MI-based BCI training. A symptom of this lack of 
knowledge is that MI-based BCIs usually restrict the feedback to only 
the EEG signal recorded in the M1 and S1 areas related to sensorimotor 
rhythms (SMR) [6,8,9]. Moreover, the pioneering studies that examined 
the behavior of the brain activity in ME have used electrocorticography 
(ECoG), or brain-penetrating microelectrodes [7], which are not feasi-

ble for most widespread neurorehabilitation applications due to their 
invasiveness. Therefore, there is a need for methods that can explore 
both spatial and temporal aspects of MI in non-invasive recordings of 
brain activity during MI-based BCI training.

Despite using the MI paradigm to enhance the SNR, decoding the 
intentions of the user from the EEG is still very challenging [1]. Fur-

thermore, MI-based BCI’s decoding precision is lower than that of other 
paradigms. For instance, event related potentials-based BCIs demon-

strate greater than 90% accuracy [10] [11], while code-modulated 
evoked potentials-based BCIs exhibit more than 95% accuracy [12]. 
Traditionally, machine learning (ML) approaches have been used to 
decode users’ intentions in MI-based BCIs. In an ML pipeline, the pro-

cessing stage is composed of three different sub-stages: preprocessing, 
feature extraction with an optional feature selection, and classification 
[1,13–15]. Though this process has yielded suitable performances and 
has been in continuous improvement, its accuracy has been recently sur-

passed with the use of deep learning (DL) [10,16–19]. The processing 
pipeline is replaced by an end-to-end neural network that can classify 
the user’s intentions from the pre-processed EEG signal. DL networks 
not only outperform their ML counterparts but also have the advantage 
of learning complex patterns from EEG data without the need for man-

ual feature engineering. At the same time, DL networks can solve the 
shortcomings of ML in overcoming inter-subject and inter-session vari-

ability of EEG data [18].

While DL networks have improved performance, they are often con-

sidered a black box, making it difficult to retrieve information about the 
classification process [20]. Unlike multi-stage processing pipelines in 
ML, a single DL network responsible for all sub-stages can be less inter-

pretable, and the patterns extracted by DL without human intervention 
might remain undiscovered. A trade-off between explainability and ac-

curacy exists [20]. The field of explainable artificial intelligence (XAI) 
tries to overcome this disadvantage. XAI techniques can be categorized 
by the method used to extract information into (1) backpropagation 
and (2) perturbation [21]. Backpropagation-based XAI propagates the 
importance of the output backwards to the input, while perturbation-

based XAI alters the input to observe the impact on the following layers 
of the model [21]. There have been previous works that have already 
adapted backpropagation and perturbation-based XAI for EEG data. For 
backpropagation-based XAI, an adaptation of layerwise relevance prop-
2

agation (LRP) can be found [22]. These authors found that individual 
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trials were classified by giving relevance to M1 and S1 regions 1000 
to 3000 ms after MI onset and without the presence of real-time feed-

back [22]. Conversely, for perturbation-based XAI, there has been an 
adaptation of occlusion sensitivity analysis [23], and a procedure called 
easyPEASI based solely on perturbations to the input data [24]. Ierac-

itano et al. [23] found that the relevant brain sources used by their 
DL approach to distinguish between previous hand movement and rest-

ing state were located in the temporal lobe and in the central area of 
M1. Meanwhile, Nahmias et al. [24] found the most relevant frequency 
bands for pathology detection.

To approximate the different XAI approaches, the Shapley additive 
explanations (SHAP) were proposed [25]. SHAP values unified the most 
well-known XAI approaches by introducing a theoretical framework 
based on the properties: local accuracy, missingness, and consistency. 
They showed how previous approaches satisfied one or more of these 
concepts, while providing adaptations so that they could satisfy all of 
them. The modified explanation methods that comply with these three 
properties guarantee the uniqueness of the solution and a meaningful 
explanation of the model’s predictions [25]. While an application that 
adapts SHAP values to EEG data has already been proposed [26], it was 
created for tree-based classifiers based on power spectral density fea-

tures which cannot discern as complex patterns as a DL network can in 
EEG data. To the best of our knowledge, none of the previous studies 
have applied SHAP values to DL networks in an EEG context. An analy-

sis based on SHAP values to analyze the decision process of DL models 
in MI classification could reveal high-level features and neural patterns 
that remain undiscovered in MI. Our study has important implications 
for both theory and practice of MI-BCI: it can enhance our understand-

ing of how and when MI activates different brain regions, and it can 
improve the usability of MI-BCI by reducing the number of electrodes 
required while maintaining classification accuracy.

The main goal of this study is to analyze the relevance of the fea-

tures for a DL model applied to MI tasks. Using SHAP values for the 
first time in this context allows us to gain insights into the brain’s 
network involved in MI. Additionally, a second objective is to assist 
in channel selection, further improving the ease-of-use of EEG-based 
BCIs by reducing the number of needed electrodes, taking into account 
the information revealed by SHAP values. To achieve these objectives, 
we use two different public databases of non-invasive EEG recordings 
from healthy users performing MI tasks: one consisting of 109 users 
without feedback [27], and another one with 62 users with real-time 
visual feedback [9]. We apply a DL network called EEGSym [18] with 
state-of-the-art performance on inter-subject classification. EEGSym is 
fine-tuned on these datasets to generate SHAP values that indicate how 
each EEG channel contributes to the classification output.

2. Methods

2.1. Datasets and preprocessing

Two public datasets will be used to extract information with the 
SHAP-based XAI method. Both databases include trials with continuous 
imagination of sequentially opening and closing either the left or right 
hand. However, they present differences such as the presence of feed-

back or the sampling frequency. The protocol followed by both datasets 
is presented in Fig. 1. The feedback sessions had a first cue indicating 
the imagination to perform and provided real-time feedback 2 seconds 
after this onset. On the one hand, the Physionet dataset [27] is com-

posed of trials pertaining to 109 healthy users without feedback, with 
only one session of 42-46 trials. The imagination period of each trial 
is constant and spans 3 seconds. EEG was recorded using 64 electrodes 
with a sampling frequency of 160 Hz for 105 users and 128 Hz for 
four of them. On the other hand, the Stieger2021 dataset [9] recorded 
the EEG of 62 healthy users during 7 to 11 sessions with feedback. In 
each session, 450 trials with 62 electrodes and a sampling frequency 

of 1000 Hz were recorded. The trial duration was between 4 and 10 
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Fig. 1. Schematic of trials present in the public datasets, Physionet [27] and Stieger2021 [9]. The feature window selected for classification, and the motor imagery 
period.
seconds, eventually being reduced if the user reached the target during 
feedback.

To both datasets, we apply the following preprocessing [18]: (1) 
from both datasets, we extract the electrodes F7, F3, T7, C3, P7, P3, 
O1, Pz, Cz, F8, F4, T8, C4, P8, P4, and O2, (2) we apply a notch filter 
on the Physionet dataset [27] since it does not have the power line sig-

nal removed by hardware, (3) we perform common average reference 
(CAR) spatial filtering to these 16 electrodes, (4) we do a resampling 
to 128 Hz to homogenize both datasets, (5) we extract the trials with 
a time window length of 3 seconds after the onset, and (6) we apply 
channel-wise z-score standardization to each trial.

2.2. DL architecture

The open implementation of EEGSym [18] for 16 channels will be 
the model explained using the SHAP-based XAI method. EEGSym is 
a novel CNN for inter-subject MI classification that was presented in 
our previous study [18]. The implementation of EEGSym takes advan-

tage of recent techniques developed for DL: residual connections, data 
augmentation, inter-subject transfer learning, and a siamese-network 
design that exploits the symmetry of the brain through the mid-sagittal 
plane. This CNN reached significantly higher accuracy in a binary MI 
inter-subject classification task than four previous CNNs designed for 
EEG classification, i.e., ShallowConvNet and DeepConvNet [16], EEG-

Net [17], and EEG-Inception [10]. The combination of EEGSym and the 
DL techniques applied to it offered new state-of-the-art results for inter-

subject MI classification.

This particular DL network is selected for two reasons. First, it 
achieved superior performance on inter-subject classification tasks, 
thanks to its training on the largest and most diverse set of users and MI 
strategies known to us. Second, the network was designed specifically 
for inter-subject classification, so it is expected to identify and prior-

itize patterns that are common across users. These properties should 
make the CNN particularly adept at extracting generalizable informa-

tion about MI. Thus, our conclusions drawn from it are expected to be 
broadly applicable. Since the generalizability and stability of this ap-

proach to other networks are desirable, we also include results with 
the EEG-Inception and EEGNet networks in the supplementary material 
[10,17].

2.3. SHAP values for MI

There have been multiple approaches to explaining deep networks 
through the use of additive feature attribution methods [28,29,21]. To 
unify all these emerging techniques, SHAP values were proposed [25]. 
SHAP values are a game-theoretic method that studies how different 
players cooperate or compete with each other [25]. Applied to an EEG 
signal, the different parts of the EEG signal are the players, and the 
3

prediction is the outcome of their cooperation. The SHAP values of 
an EEG signal represent the contribution of each data instance to the 
prediction. Furthermore, SHAP values satisfy three properties that en-

sure they provide meaningful explanations of a model’s predictions and 
can be used to understand the importance of different features in those 
predictions: local accuracy, missingness, and consistency [25]. Local 
accuracy ensures that the sum of SHAP values equals the difference 
between the prediction and the expected prediction. Satisfying missing-

ness means that if a feature value is missing, then its SHAP value is zero, 
and thus SHAP values will not assign contributions to features that are 
not present. On the other hand, consistency ensures that if a feature in-

creases its contribution to the prediction when other features are added 
or removed, then its SHAP value should not decrease [25].

While the exact computation of SHAP values is challenging in DL 
models, the SHAP Python package implements approximation methods 
based on previous additive feature attribution methods that calculate 
expected SHAP values [25]. We select the method called ‘Gradien-

tExplainer’ from the SHAP package, an adaptation that merges the 
concepts of integrated gradients [30], SHAP [25], and SmoothGrad 
[31]. This method extends the integrated gradients method, which is 
already an extension of Shapley values to infinite player games (the 
Aumann-Shappley values) [30]. ‘GradientExplainer’ method first de-

fines a baseline input signal that is used as a reference point for com-

parison. This baseline signal is typically chosen as an all-zero signal 
[30]. This method computes the gradients (i.e., change in the predicted 
outcome) of the model’s prediction with respect to the input signal at 
each point along the path from the baseline to the actual input signal. 
These gradients represent how much the model’s prediction changes 
as each feature of the input signal changes along the path. Then, the 
SHAP values are computed by numerically approximating the area un-

der the curve of the gradients along the path from the baseline to the 
actual input signal. This integral represents the total contribution of 
each feature to the model’s prediction for that input signal [30]. The re-

sulting SHAP values are a measure of the relative importance of each 
feature in the prediction. Positive SHAP values indicate data points that 
positively influence the classification, whereas negative values indicate 
points that are detrimental to the correct prediction. Conversely, val-

ues close to zero indicate features that do not contribute to any class 
prediction [25].

One of the key aspects to approximate integrated gradients [30] into 
SHAP values by ensuring local accuracy is the use of a background 
dataset instead of a single reference. This feature adds computational 
complexity but can be circumvented in our application to EEG data. 
Since the preprocessing of our signal will set the mean of each channel 
data to approximately 0, the average of infinite basal EEG signals with 
0 mean will also have 0 mean according to the central limit theorem. 
This means that in our application the background dataset can be re-

placed by a matrix in which all points are 0 s in all channels and time 
instances. Furthermore, this reference will be a better approximation for 

calculating SHAP values than any background dataset selected with a 
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finite number of examples. Meanwhile, integrated gradients inherently 
ensure the other two essential properties of missingness and consistency 
by using gradient computations: irrelevant features are assigned a SHAP 
value of zero, while features with higher gradients correspondingly re-

ceive increased SHAP values.

At this point, we have defined all the elements needed to obtain 
the feature attribution maps from each trial: the approximate method 
‘GradientExplainer’, the MI data to evaluate, and the CNN model from 
which we will obtain the SHAP values. Regardless, what we present and 
analyze in this work is the averaged SHAP values obtained from each 
individual trial across subjects and datasets. First, we obtain the SHAP 
values from the prediction of the model applied to an individual EEG in-

put signal referenced to our background. To obtain these values for each 
user, we trained EEGSym following a leave-one-subject-out (LOSO) pro-

cedure, as in the original paper [18]. For each subject’s trials, we use 
the fine-tuned weights to the dataset that have not seen any trial of the 
current subject. We will take into consideration only correctly classi-

fied trials, as these are expected to embody the inter-subject common 
brain patterns associated with the MI task that we seek to unveil. We 
average the SHAP values maps obtained for left and right classes per 
user, and then we average across subjects. By averaging SHAP values 
first within subjects and then across different subjects, we create a more 
generalizable representation of the significant features implicated in the 
MI tasks. This aggregated analysis provides a robust interpretive frame-

work that transcends individual variances, thereby offering insights into 
common neurophysiological mechanisms that underlie the MI task. This 
process ends with 4 feature attribution maps, one for each class in both 
dataset conditions: with and without feedback. In these feature attribu-

tion maps, the time series is represented on the horizontal axis while 
the channels are on the vertical axis. Accordingly, there is a direct cor-

relation between SHAP values and the input signal’s channels or time 
segments. By performing an axis-wise aggregation of the SHAP values, 
we can investigate the contribution that each region of the EEG has in 
predicting the class under analysis [25]. We can determine the relative 
importance of each channel or period of time for MI classification. How-

ever, it is important to note that a positive influence in one region does 
not necessarily mean the presence of a pattern, but rather the absence 
of any pattern that would detract from the classification. Therefore, to 
gain a comprehensive understanding of the classification process, we 
present feature attribution maps for both classes and examine both to-

gether.

An open-source adaptation of this SHAP-based XAI method to EEG 
signals can be found as part of the kernel functions within MEDUSA©, a 
Python-based software ecosystem to accelerate BCI and cognitive neu-

roscience research [32].

2.4. Channel selection based on SHAP values

To validate the usefulness of the information extracted from the 
adapted method for EEG data, we propose a channel selection based 
on SHAP values. Aggregating channel-wise the feature attribution maps 
generated with the 16-electrode configuration in the Physionet dataset 
[27] and the Stieger2021 dataset [9] will help us identify the channels 
that have the least contribution to the final classification in the EEGSym

architecture [18]. To make a BCI system more cost-effective and quicker 
to install for out-of-laboratory use, we will identify the electrodes that 
have the strongest influence on correctly predicting MI. This selection 
will be based on the analysis of the aggregated SHAP values. Instead of 
assessing electrodes individually, we will examine them in pairs. Our 
comparison will involve the contributions of seven electrode pairs lo-

cated on the left and right sides of the scalp (i.e., F7 and F8, F3 and F4, 
T7 and T8, C3 and C4, P7 and P8, P3 and P4, O1 and O2), as well as 
the central electrode pair (i.e., Cz and Pz). Given that 14 out of 16 elec-

trodes are symmetrically placed, it would be incongruous to include 
only one electrode from each pair, even though it falls on the mid-
4

sagittal plane of the scalp. Therefore, our initial strategy of evaluating 
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electrodes in pairs logically extends to the inclusion of Cz and Pz as an 
additional comparative pair. The top four electrode pairs with the most 
significant contributions to classification will be selected. The accuracy 
of this new configuration will be compared to the 8 electrodes used 
in EEGSym’s publication [18]. For comparative analysis, we will also 
derive an 8-electrode configuration based on SHAP values. Addition-

ally, we will investigate how the significance of channels to the model’s 
decision-making process influences the model’s classification accuracy 
on both datasets. This will be done by selectively adding channel pairs 
according to their respective contributions.

3. Results

Figs. 2 and 3 show the feature attribution maps of class-averaged 
MI trials for each dataset as generated from the EEGSym algorithm. 
Supplementary materials provide analogous attribution maps obtained 
using the EEG-Inception and EEGNet models for comparison. SHAP val-

ues shown in these figures are obtained from the 3 seconds of signal 
after the onset, and the 16 channels used in the prediction. Positive 
SHAP values are colored red, and negative values are colored blue. In 
addition to the direct feature attribution map, there is a channel-wise 
average indicating the percentage-based contribution to the prediction. 
In the temporal axis, there is also an average of the SHAP value across 
all channels. Both temporal and spatial averages show the influence that 
different time segments and channels have on the classification of that 
class.

3.1. Physionet

Fig. 2 shows the SHAP values obtained for left and right hand MI 
events from the Physionet dataset [27], a dataset with no feedback. 
Only the SHAP values of correctly classified trials are averaged as men-

tioned in 2.3. EEGSym reaches an inter-subject accuracy of 88.6% ± 
9.0% in this dataset, with 108 out of the 109 users attaining what is 
considered as BCI control (i.e., ≥70% accuracy) [18], indicating that 
almost every user provides useful information about their MI process.

For this binary classification, the first 1000 ms of EEG signal follow-

ing the onset contributes the most to the prediction. More specifically, 
the region between 200 and 400 ms shows the strongest influence, 
which correlates with the two-choice reaction time distribution in hu-

mans [33]. Of note, the last 2000 ms of the signal are less relevant 
for the prediction in the temporal aggregated contribution, despite not 
being unimportant for some electrodes. Analyzing individually each 
channel, the attribution maps show that the first 1000 ms of the sig-

nal is also the most relevant for almost every channel. The electrodes in 
the PPC region, i.e., P3, P4, P7, P8, O1, and O2 showed stronger con-

tributions between 100 and 300 ms after the cue. They were followed 
by the contribution of electrodes in the PFC region, i.e., F7 and F8, be-

tween 200 and 500 ms. Of note, the ipsilateral PFC seems to have a 
behavior that is noticeable earlier than the contralateral, starting 100 
ms after the onset. The relevance of the M1 and S1 signal detected in 
C3 and C4 electrodes starts around 300 ms after onset and remains no-

ticeable until 1500 ms. T7 and T8 electrodes show similar relevance to 
C3 and C4, and may exhibit earlier contributions in some cases.

Each channel’s percentage value shows its relevance in predicting 
a specific class, thereby giving an idea of how important each channel 
is in terms of influencing the model’s decisions. The percentage value 
is calculated by dividing the sum of the absolute SHAP values for that 
channel by the total sum of absolute SHAP values across all channels 
and time points. This information reveals that EEGSym finds the signal 
pertaining to the PFC on F7 and F8 channels as the most informative 
for classifying MI trials. Afterwards, we find the M1 and S1 signal reg-

istered on C3 and C4 electrodes. These four channels are responsible 
for almost 50% of the prediction. From the remaining 12 channels, we 
can highlight the importance given to the pair of T7 and T8, and to the 

pair of central electrodes Cz and Pz. For both MI classes, EEGSym has a 

https://www.medusabci.com/
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Fig. 2. Feature attribution map with SHAP values for MI events in the Physionet dataset [27] without feedback. In the vertical axis, 16 channels from the 10-10 
system are presented. Channels corresponding to the left hemisphere of the scalp are marked in orange, those corresponding to the right hemisphere in green, and 
the central electrodes in black. The percentages indicate the relative importance of that electrode signal to the prediction providing insight into the significance of 
each channel in guiding the model’s decisions. The horizontal axis shows the three seconds after the cue corresponding to the MI event. The positive SHAP values 
are marked in red. Meanwhile, blue color marks negative SHAP values which contribute to not predicting the target class. A red tempo-spatial region contributes to 
correctly predicting the target class.
symmetric attribution of the channels. While the signal from F8 and C3 
electrodes is the most significant to correctly classify left hand MI, the 
signal found in F7 and C4 is used for right hand MI trials.

3.2. Stieger2021

The SHAP values obtained for MI events in the presence of feedback 
from the Stieger2021 dataset [9] are shown in Fig. 3. The inter-subject 
accuracy for this dataset is 90.2% ± 6.5%, with 61 out of the 62 users 
reaching BCI control. In this regard, only one user may not have pro-

vided actual MI information in the averaged feature attribution maps 
presented. The figure includes a green mark that indicates the start of 
the real-time visual feedback phase 2 seconds after the cue.

Similar to the non-feedback scenario of the Physionet dataset, the 
most important temporal region for making a prediction is found be-

tween 200 and 400 ms after the start of the imagination period. How-

ever, in this case, there is also another significant temporal region 
between 2200 and 2400 ms after the onset. Of note, this temporal 
window coincides with 200 and 400 ms after the start of the feedback 
phase, so both regions can be correlated with the two-choice reaction 
time distribution in humans [33]. The analysis that can be made of the 
first 2 seconds without feedback is similar to the one extracted from 
the Physionet dataset, the temporal hierarchy seems to be the same. 
Interestingly, the SHAP values show a clearer influence of the early ip-

silateral region of the PFC, around 100 ms from the onset. Moving to 
the 1000 ms of signal with real-time visual feedback, SHAP values re-

veal a decreased influence of the PFC and an increased activity of the 
5

PPC recorded by the P3, P4, O1, and O2 electrodes. This PPC activ-
ity remains significant after the initial 200 ms, exhibiting a stronger 
contribution during the feedback phase. Furthermore, O1 and O2 also 
capture information from the occipital region, which is responsible for 
processing visual information [34]. These electrodes appear to be rel-

evant in ongoing MI with real-time feedback beyond the first 500 ms. 
Additionally, the signal of the M1 detected by the C3 and C4 electrodes, 
demonstrates greater significance than that of the PFC 500 ms after the 
start of feedback.

The channel-wise aggregation indicates that the pair of electrodes 
positioned in the mid-sagittal plane, i.e. Cz and Pz, have the least con-

tribution to the predicted class during the trial. In this case the signals 
of the PFC registered in the frontal electrodes, i.e. F7 and F8, are some 
of the most important for the prediction. They are followed by the sig-

nal of the M1, i.e. C3 and C4. The channels O1, O2, P3, P4, T7, and T8 
have a similar contribution. We can also observe a symmetrical dispo-

sition between left and right hand MI feature attribution maps.

3.3. SHAP based 8-electrode configuration

As explained in 2.4, we will validate the contribution maps ob-

tained for the Physionet dataset [27] and the Stieger2021 dataset [9]

by selecting an electrode configuration based on SHAP values. The new 
8-electrode configuration includes the 4 electrode pairs that have the 
higher aggregated absolute SHAP values, which means they have the 
strongest contribution to the prediction. The electrode pairs with the 
higher contribution in the combination of the two datasets are F7 and 
F8, C3 and C4, T7 and T8, and P3 and P4, in that order. These 8 elec-
trodes concentrate 72% of the contribution to the classification of both 
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Fig. 3. Feature attribution map with SHAP values for MI events in the Stieger2021 dataset [9] with feedback. In the vertical axis, 16 channels from the 10-10 
system are presented. Channels corresponding to the left hemisphere of the scalp are marked in orange, those corresponding to the right hemisphere in green, and 
the central electrodes in black. The percentages indicate the relative importance of that electrode signal to the prediction providing insight into the significance of 
each channel in guiding the model’s decisions. The horizontal axis shows the three seconds after the cue corresponding to the MI event. Start of the real-time visual 
feedback phase 2 seconds after the onset is marked in green. The positive SHAP values are marked in red. Meanwhile, blue color marks negative SHAP values which 
contribute to not predicting the target class. A red tempo-spatial region contributes to correctly predicting the target class.
classes. This is the new 8-electrode configuration selected through the 
analysis of the SHAP values for our datasets. This SHAP based configu-

ration will be compared with the 8-electrode configuration used in the 
original publication of EEGSym [18], which was comprised of F3, F4, 
C3, C4, P3, P4, Cz, and Pz. EEGSym’s original configuration comprised 
only 45% of the contribution to the prediction. The original 8-electrode 
configuration was selected based on its balanced positioning within the 
10-20 standard, coupled with its broad spatial coverage of the scalp, al-

though it was not specifically optimized for performance. Table 1 sum-

marizes the results of this comparison between both configurations. The 
new configuration has significantly higher mean accuracies (𝑝-value <
0.01) than EEGSym’s original 8-electrode configuration on the Phys-

ionet dataset [27]. This comparison was assessed with the Wilcoxon 
signed rank test [35], correcting the false discovery rate (FDR) with 
the Benjamini-Hochberg approach [36]. Furthermore, the correlation 
between each channel pair’s relevance and the model’s classification 
accuracy is illustrated in Fig. 4. The inclusion order of channel pairs, 
based on their contribution across both datasets, is as follows: F7-F8 
(34.3%), C3-C4 (18.1%), T7-T8 (10.8%), P3-P4 (9.4%), O1-O2 (8.9%), 
Cz-Pz (8.7%), F3-F4 (5.3%), and P7-P8 (4.5%).

4. Discussion

4.1. Insights on MI

Our analysis of the feature attribution maps presented in Figs. 2 and 
3 can be conducted in both temporal and spatial dimensions of the in-
6

put signal. The overall influence of each channel showed that the neural 
Table 1

Comparison of binary classification performance of SHAP-

based selection of 8-electrode configurations.

Study Physionet [27] Stieger2021 [9]

Accuracy(%) Accuracy(%)

Pérez-Velasco et al. [18] 84.5±9.7 88.4±6.5

Present study 86.5±10.6* 88.7±7.0

Accuracy (%): mean accuracy and standard deviation in 
percentage obtained between all subjects in a subject-

independent scheme. The best results for each dataset are 
marked in bold. Statistical differences between the mean 
accuracies were assessed with Wilcoxon signed rank test, 
correcting the false discovery rate (FDR) with Benjamini-

Hochberg approach. Obtaining significant differences is 
marked with *(𝑝-value < 0.01).

activity of the PFC region, registered on the frontal electrodes F7 and 
F8, is the most relevant for making MI predictions in the first 1000 ms. 
The involvement of frontal brain electrical activity in MI-based BCIs 
has been previously studied in the literature [37]. The PFC plays a role 
in planning and preparing movement based on information related to 
both the movement goal and limb state in ME. In this MI task, the PFC’s 
contribution appeared to be more closely related to the imagined goal, 
as its involvement is more pronounced in the non-feedback scenario. 
SHAP values have also highlighted the contribution of the PPC region, 
which is more substantial in the real-time feedback scenario. The par-

ticipation of PPC in visually-guided ME is known to associate visual 

information [7]. Correspondingly, Fig. 3 showed a higher contribution 
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Fig. 4. Correlation between classification accuracy on the Physionet [27] and the Stieger2021 [9] datasets and the relevance of each channel, where relevance 
is quantified by the proportion of absolute SHAP values for a given channel relative to the total absolute SHAP values across all channels and time intervals, 
presented as a percentage. Each point on the graph represents a specific electrode configuration used in the prediction, with the latest pair of electrodes added to 
the configuration highlighted in blue, and the electrode pairs from preceding configurations shown in green.
of PPC-related electrodes in the second after visual feedback started, 
i.e., P3, P4, P7, P8, O1 and O2. This behavior suggests that MI involves 
the participation of the PPC in the presence of real-time visual feedback 
in the same manner as ME. Furthermore, the temporal hierarchy of the 
brain regions in MI, as described in sections 3.1 and 3.2, appears to be 
consistent with that in ME [7].

From these findings, we hypothesize that EEGSym is able to de-

tect the association occurring in the PPC, the planning carried out in 
the PFC, and the imagination in the M1 and S1. These non-invasive 
recordings have allowed us to extract insights from MI using a combi-

nation of DL and the adaptation of SHAP-based XAI method. MI likely 
involves a complex network to generate imagined movement. This be-

havior should be taken into account when designing a BCI application 
intended for controlling an external device.

4.2. XAI based channel selection performance

We presented a SHAP-based channel selection that resulted in a re-

duced 8-electrode configuration from the 16 electrodes evaluated, using 
the methodology described in subsection 3.3. The 8-electrode configu-

ration consisted of F7, F8, T7, T8, C3, C4, P3, and P4. The approximate 
physical locations are represented in Fig. 5. This general configuration 
reduces costs and setup duration by enabling the use of more afford-

able EEG caps with fewer electrodes, as opposed to the more expensive 
and time-consuming approach of individually selecting channels online 
with caps that have a higher electrode count. The XAI based channel 
selection suggests that this 8-electrode configuration more effectively 
captures neural activity during this MI task. It appears that the PFC 
planning activity is better recorded by the F7 and F8 electrode positions 
than by F3 and F4. Meanwhile, the neural activity in M1 and S1 seems 
to be distributed between the paired electrode positions of C3/C4, and 
T7/T8.

The comparison presented in Table 1 showed that this new con-

figuration obtained better mean accuracies in both datasets than the 
8-electrode configuration of the original article of EEGSym [18]. Al-

though the original configuration was not specifically fine-tuned, it still 
achieved state-of-the-art performances in MI classification. Neverthe-

less, we increased the accuracy of an 8-electrode configuration from 
84.5% to 86.5% in the Physionet dataset [27], and from 88.4% to 88.7% 
in the Stieger2021 dataset [9]. Furthermore, the visual representation 
7

presented in Fig. 4 helps to understand more in-depth how incremental 
Fig. 5. 16-electrode configuration analyzed in this work. Selected electrodes for 
the 8-electrode configuration are labeled in green.

additions of electrode pairs, based on their SHAP value-derived rele-

vance, influence the overall model accuracy.

4.3. Contributions

In this study, we adapted the SHAP method ‘GradientExplainer’ for 
DL networks trained to decode MI from EEG. This adaptation has been 
open-sourced as part of the MEDUSA© Kernel Python package [32]. We 
applied this XAI-based method to explore the feature attribution maps 
generated by the state-of-the-art CNN on inter-subject MI classification, 
EEGSym [18]. This analysis was performed on two datasets comprising 
171 subjects. Despite the common practice of using electrodes centered 
around the PM, M1, and S1 areas [6,8,9], XAI showed that MI involves 
a complex network that also includes the PPC and PFC. With the combi-

nation of DL and the adapted SHAP method, we discovered a temporal 
hierarchy among these regions in MI tasks. Furthermore, we identified 
a new 8-electrode configuration that can be employed in actual BCI ap-

plications, reducing the preparation time and allowing for the use of 

cheaper EEG caps.

https://www.medusabci.com/
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4.4. Limitations and future work

Despite the promising insights on MI obtained from the application 
of SHAP-based XAI method and their correlation with previous knowl-

edge on ME, we also acknowledge the following limitations that ought 
to be addressed in the future. On the one hand, we chose this paradigm 
to make use of EEGSym [18], which offers the best inter-subject capa-

bilities and should show common patterns to a wide variety of subjects. 
However, by analyzing a binary classification problem we are limiting 
the information that can be extracted with XAI. It would be desir-

able to apply this analysis to a DL network trained to distinguish at 
least between left/right hand MI and the resting state. Furthermore, 
to strengthen the generalizability of our findings, it is recommended 
to apply this approach to a larger and more diverse sample of sub-

jects and databases. Special attention should be given to including data 
from target populations for MI-based BCIs, such as stroke patients and 
individuals with movement disorders. Importantly, the 8-electrode con-

figuration identified in this study holds promise for practical, online 
applications, making it particularly relevant for these target groups. 
Taking into account that MI seems to involve a hierarchical contribu-

tion of a wide variety of brain regions, we suggest that future MI-BCIs 
use electrode configurations that are not restricted to the M1 and S1 ar-

eas, which will increase decoding accuracy and in turn result in faster 
user adaptation. In this study, we corroborated the explanations ob-

tained through a selection of an 8-channel configuration that could be 
compared with the one obtained in the original work [18]. Neverthe-

less, it would enrich the usefulness of this explanation method to study 
more in depth the relation between the percentage contribution to the 
model’s decision and classification accuracy of the model presented in 
Fig. 4. Another equally important future line of work is to apply this val-

idated method with different DL networks to other paradigms that are 
less studied in the literature and further advance the knowledge about 
the functioning of the brain.

5. Conclusion

Our XAI-based method for DL networks applied to EEG provides 
feature attribution maps through SHAP values. These maps shed light 
on the spatio-temporal distribution of the input signal, revealing signifi-

cant contributions from the PFC and PPC, in addition to the well-known 
contributions from the M1 and S1. Our analysis also demonstrates the 
temporal hierarchy among these regions. These findings suggest that 
sensory, association, and motor areas play a crucial role in MI tasks, 
and MI-based BCIs should consider focusing on this broader network. 
The results indicate that the frontal channels F7 and F8, followed by 
central electrodes C3 and C4, are the most relevant for classification. 
By implementing a channel selection process based on SHAP values, 
we achieved a considerable improvement in accuracy on the Physionet 
dataset, reaching 86.5% ± 10.6%, and on the Carnegie Mellon Uni-

versity’s dataset, achieving 88.7% ± 7.0% with a reduced 8-electrode 
configuration. Our XAI method, based on SHAP values, enables the dis-

cernment of important regions in the input signal for DL networks. This 
advances the knowledge of BCI paradigms employing these techniques, 
while potentially optimizing the EEG recording devices used, without 
compromising performance.
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