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Abstract—This study explores the feasibility of employing
eXplainable Artificial Intelligence XAI methodologies for the
analysis of cough patterns in respiratory diseases. A cohort of
20 adult patients, all presenting persistent cough as a symptom
of respiratory disease, was monitored for 24 hours using a
smartphone. The audio signals underwent frequency domain
transformation to yield 1-second spectrograms, subsequently
processed by a CNN to detect cough events. Quantitative analysis
of spectrogram regions relevant for cough detection highlighted
by occlusion maps, revealed significant differences between pa-
tient groups. Notably, distinctions were observed between the
Chronic Obstructive Pulmonary Disease (COPD) patient group
and groups with other respiratory pathologies, both chronic
and non-chronic. In conclusion, interpretability analysis methods
applied to neural networks offer insights into cough-related
distinctions among patients with varying respiratory conditions.

Index Terms—Respiratory diseases, cough, audio analysis,
CNN, XAI, occlusion maps.

I. INTRODUCTION

Respiratory diseases, like COPD and cancer, are one of the
major causes of death [1]. These chronic conditions often lead
to dependence and disability. Recent studies [2] emphasize the
prolonged need for care and home monitoring after COVID-
19, regardless of hospitalization. The impact of COVID-19
on chronic respiratory diseases, such as COPD or cancer,
heightens the risk of critical hospitalization and death [3].
Continuous monitoring of respiratory conditions is thus crucial
for identifying and managing exacerbations in these patients.

The European Commission’s telemedicine study [4] high-
lighted the potential of telemedicine in managing respiratory
diseases but emphasizes a pressing need for more research in
this area. Despite its promise for affordable monitoring [5],
telemedicine has fallen short due to the lack of reliable objec-
tive measures for symptoms. Improved remote consultations
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depend on obtaining such metrics, leading to early diagnoses
and real-time monitoring for respiratory patients [6].

There has been recently a surge in utilizing deep learning
methods to address the challenge of cough detection and
analysis for diagnostic purposes. Methods such as those in
[7], [8], demonstrate significant outcomes in both detection
and diagnosis. Despite outperforming conventional machine
learning approaches, they operate like black boxes, hindering
the ability to interpret whether coughs exhibit specific charac-
teristics linked to particular diseases or stages thereof.

This paper presents a methodology based on eXplainable
Artificial Intelligence (XAI) to interpret specific spectral sig-
natures of cough sounds in chronic respiratory diseases. The
initial step involves employing a convolutional neural network
(CNN) to detect cough sounds through spectrograms. Occlu-
sion maps representing activated regions of the time-frequency
patterns after being processed by the CNN are extracted
and used to weight the spectrograms. After that, a Gaussian
mixture model is applied to the emphasized spectrograms. The
model parameters are further analysed to identify significant
differences among diseases and interpret the underlying rea-
sons. To our knowledge, the proposed methodology has not
been so far applied to cough patterns.

II. MATERIALS

An observational study of cough evolution during 24 hours
of a patient’s normal life was carried out. Twenty-four hours
of audio from ambulatory patients in the Palencia Health Area
(Spain) were prospectively recorded. The database consists
of approximately 15,000 cough events corresponding to 20
patients aged between 23 and 87 years (9 women, 11 men)
with the following respiratory pathologies: Acute respiratory
disease (ARD, 3), pneumonia (4), COPD (6), lung cancer
(3), and others such as asthma, bronchiectasis or sarcoidosis
(remaining patients). A Sony Xperia Z2 Android smartphone
was used to collect the data using 16-bit WAV format at 44.1
kHz. The following sets were defined for comparison:

• G1: Chronic vs. Non-chronic patients.
• G2: COPD patients vs. other diseases.
• G3: COPD patients vs. other diseases excluding cancer.
• G4: COPD patients vs. ARD and pneumonia patients.
• G5: COPD patients vs. other chronic diseases.
• G6: COPD patients vs. lung cancer patients.
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III. METHODS

A. Audio Signal Preprocessing

The 44.1 kHz audio signal is resamplet at 5x, to reach
a final frequency of 8.82 kHz. The power spectral density
(PSD) is then calculated in 10 ms windows, employing a
non-overlapping Hanning window. Afterward, these PSDs are
concatenated over 1 s intervals, forming a set of 45 × 100
spectrograms. These time-frequency representations undergo
logarithmic normalization, creating input images tailored for
the convolutional neural network.

B. Cough Window Identification

To distinguish spectrograms corresponding to cough events,
we used a convolutional neural network designed from scratch.
This network is formed by a convolutional layer of 32 filters,
2×2 kernels and a ReLu activation function. A 2×2 Max-
Pool layer is incorporated followed up by a dropout layer
to respectively reduce dimensionality and overfitting. This
arquitecture is repeated, doubling the number of filters. The
last four layers before the output are a convolutional layer (128
filters) followed by a dropout layer and a convolutional layer
(256 filters) followed by a Max-Pool layer. The output of this
arquitecture is resized to feed the output architecture, formed
by two Fully-Connected layers, one of 512 neurons followed
by a ReLU activation and the other with two neurons and
softmax activation. Figure 1 shows a block diagram of the
employed CNN.
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Fig. 1. CNN architecture for cough detection.

Training was carried out using the AdaMax optimizer
(α = 0.002, β1 = 0.9, β2 = 0.999) [9], batch size= 128 and
50 epochs. To fine-tune the hyperparameters and determine the
optimal stopping point for training, we employed a validation
set comprising 20% of the training dataset, which itself
constituted 70% of the entire audio clips collection.

C. XAI methodology for cough analysis

The foundation of the here proposed XAI methodology lies
on our recent proposal [10] for ADHD diagnosis. This method
consists in:

1) Occlusion maps: For each patient, we select those
spectrograms for which the network output identified cough
with confidence levels higher than 90%. After that, heat maps
were created using occlusion maps [11] to highlight relevant
regions in cough spectrograms. This technique defines a mask

which is placed over the input spectrograms hiding part of
their information to the CNN. The class probability of the
CNN fed by this input allows estimating the importance of the
hidden area for classification (higher probability means lower
importance). The process is repeated after sliding the mask
until the whole spectrogram is covered. The output values are
stored in a matrix that is resized to have the same dimensions
as the original input. After all the maps were created for the
selected cough spectrograms, they were normalized and pixel-
averaged so that each patient has a unique occlusion map
associated with his/her cough.

2) Weighted Spectrograms: Differently to [10], where the
occlusion maps were directly analysed, we weighted each
patient’s pixel-averaged spectrogram with their corresponding
occlusion map. This way, only the relevant regions were
further analysed (areas with occlusion map values below
0.7 were ignored). Figure 2 show examples of the median
weighted spectrograms for each of the studied groups.

3) Parametric modelling and hypothesis testing: Quantita-
tive analysis is carried out by fitting a Gaussian Mixture Model
(GMM) to the weighthed spectrograms. Let ws(x, y) be the
weighted spectrogram at point (x, y) ∈ χ ⊂ Z2 of the 2D grid.
We define f(x, y;θi) as the 2-dimensional Gaussian density
function where θi denote the function parameters. Two main
activation regions can be seen in the occlusion maps (one at
lower frequencies and the other at higher values, see ), so a
2-Gaussian model was chosen. The model is fitted using the
following expression:

min
p1,p2,θ1,θ2

∑
(x,y)∈χ

(
ws(x, y)−

2∑
i=1

pif(x, y;θi)

)2

(1)

being
θi =

[
ηxi

σxi
ηyi

σyi
ρxiyi

]
, (2)

the parameters of the Gaussian function, where η denotes the
means, σ the standard deviations and ρ the Pearson correlation
coefficient of the two components. Subscripts refer to the
direction, with x for the horizontal axis (time) and y for the
vertical (frequency).

To check for statistically significant differences between
the groups defined in section 2, the following procedure was
applied:

• First, the two Gaussians were sorted according to the
value of pi in equation (1). The one with lowest pi value
was defined as non-dominant.

• G1–G6 sets were compared using hypothesis testing.
Initially, a Gaussianity test was executed on each sam-
ple; if Gaussianity persisted in both, we resorted to an
unpaired Student’s t-test. Alternatively, if Gaussianity was
dismissed, we turned to the Mann-Whitney U-test.

• Once the corresponding test was performed for all the
parameters in (2), we obtained boxplots for the cases in
which significant differences (p−value lower than 0.05)
were detected.
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Optimized Spectrogram for a Non-COPD Patient
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Fig. 2. Median Weighted Spectrogram for the study groups

Fig. 3. Boxplots obtained for parameters with significant differences.

IV. RESULTS AND DISCUSSION

Tables I (dominant Gaussian) and II (non-dominant
Gaussian) show parameters’ test results for the differ-
ent compared groups G1–G6. Results are presented in
terms of mean ± SEM (Standard Error of the Mean) or
[median, IQR (interquartile range)] depending on wether the
Student’s t-test or the Mann-Whitney U-test were performed.
Comparisons for which p < 0.05 are highlighted and the
corresponding illustrated using boxplots in Figure 3.

Significant differences were found for the following groups
and parameters:

• Dominant Gaussian’s ηx in G6 (ηx−COPD < ηx−cancer,
p = 0.0427). The dominant Gaussian can be identified
in the examples in Figure 2 as the region with highest
energy, encompassing frequency and time ranges of 1.75–
2.75 kHz and 0–0.8s respectively. Examples in Figure 2
show that the two separate regions after 0.4s have lower
energy for COPD patients than for cancer patients, thus
shifting the estimated time mean to be lower. Therefore,
the higher frequency’s cough energy can be interpreted
as being more concentrated at the beginning of the event.

• Non-dominant Gaussian’s ηx is significantly lower for
COPD patients in groups G2–G6. The same applies to σx

except for group G5. The non-dominant Gaussian can be
found in the examples in Figure 2 at the lower frequency

regions (0–1 kHz). COPD patients have higher energy
in this region at the beginning of the event, which shifts
both mean and std estimation to lower time values. The
boxplots in Figure 3 show these meaningful differences,
which can be interpreted as lower frequency energy being
concentrated at the beginning of the cough event for
COPD patients.

V. CONCLUSION

This study showed the feasibility of using XAI techniques
to understand cough differences in various patient groups.
Significant differences between chronic COPD patients and
those with other chronic and non-chronic conditions were
found. The methods used help identify which parts of a
cough sound are crucial for the neural network in each
disease, revealing specific temporal patterns in COPD patients.
However, it’s important to note that the study is in the early
stages, as the patient groups for some diseases were small.
Despite this, the techniques show potential. With larger groups
of patients, there’s hope for more significant results, providing
a better understanding of the symptoms in different respiratory
conditions.
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[8] A. Tena, F. Clarià, and F. Solsona, “Automated detection of COVID-19
cough,” Biomedical Signal Processing and Control, vol. 71, p. 103175,
2022.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[10] P. Amado-Caballero et al., “Insight into ADHD diagnosis with deep
learning on actimetry: Quantitative interpretation of occlusion maps in
age and gender subgroups,” Artificial Intelligence in Medicine, vol. 143,
p. 102630, 2023.

[11] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.




