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A B S T R A C T

As Industry 4.0 enablers, digital twins of manufacturing systems have led to multiple interaction
levels among processes, systems, and workers across the factory. However, open issues still exist
when addressing cyber–physical convergence in traditional manufacturing small and medium-
sized enterprises. The problem for both traditional operators and the existing infrastructure is
how to adapt knowledge to the increasing business needs of manufacturing plants that demand
high efficiency, while reducing production costs. In this paper, a framework that implements
the novel concept of Digital Twin Learning Ecosystem in traditional manufacturing is presented.
The objective is to facilitate the integration of human-machine knowledge in different industrial
cyber–physical contexts and eliminate existing technological and workforce barriers. This
adaptive approach is particularly important in meeting the requirements to help small and
medium-sized enterprises build their own interconnected Digital Twin Learning Ecosystem. The
contribution of this work lies in a single digital twin learning framework for different traditional
manufacturing scenarios that can work from scratch using a light infrastructure, reusing the
knowledge and common condition-based methods well-known by skilled workers to rapidly
and flexibly integrate existing legacy resources in a non-intrusive manner. The solution was
tested using real data from a milling machine and a currently operating induction furnace
with a maximum power of 12 MW in a foundry plant. In both cases, the proposed solution
proved its benefits: first, by providing augmented methods for maintenance operations on the
milling machine and second, by improving the power efficiency of the induction furnace by
approximately 9 percent.

. Introduction

The emergence of connected platforms has provided manufacturing with a learning ecosystem oriented towards exploiting
nowledge from the integration of physical and digital worlds. Digital twins, as Industry 4.0 enablers, represent an abstraction
f the reality of manufacturing systems, allowing for multiple integration levels between processes, systems, and workers within the
irtual space [1]. Essentially, the potential of this cyber–physical convergence [2] has closed the loop between systems and workers’
nteractions [3], while manufacturing processes have taken advantage of a digital twin representation of heterogeneous assets in
eal-time. As digital twin technology advances, it is expected to become a decision-making solution to provide manufacturing workers
ith a deeper understanding and skills development [4].

However, open issues still exist in the literature regarding digital twin learning approaches in manufacturing environments.
or example, the lack of crossed knowledge from academia and real factories towards the empowerment of workforce skills and
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competences [5], limited data availability for control and scheduling in participatory-adaptive ways [6], and the necessity of
constructing flexible solutions standardized for cyber–physical convergence [1]. Despite the advent of Industry 4.0, which provided
Small and Medium-sized Enterprises (SMEs) with a new digital transformation movement linking machines and humans [7], it is
not clear in the industry what features a digital twin should have or how it should work in different human-machine ecosystems.
Factories should first learn how to overcome connectivity barriers and apply current-enabling technologies for digital twins [8]. This
is the case in traditional manufacturing environments, which are still common among SMEs. They still lack technological approaches
regarding the digitization of operators and legacy systems that are not yet aligned with Industry 4.0 [9]. In addition, it should be
noted that there is a lack of Industry 4.0-trained experts to conduct fieldwork in human-machine collaboration frameworks [10].
Human knowledge is still indispensable for maintaining and improving the manufacturing systems, while the causes of the problems
that may occur are identified and solved to prevent them in the future. Consequently, programs to develop specific lifelong
learning scenarios for reskilling and upskilling the workforce are insufficient, particularly those associated with operating traditional
manufacturing processes.

One way SMEs can overcome legacy barriers is to update workers and old industrial systems simultaneously with human–
achine digital twin strategies and proactive management environments. This actually lays the foundation for human-machine

ollaborative methodologies in SMEs, as demonstrated in [11]. Concerning challenges for the integration of workers and digital
wins in the industry, the recent definition of Digital Twin Learning Ecosystem [12] provides augmented cyber–physical means to
chieve bidirectional interaction, understanding, and learning between processes, systems, and workers. This approach can support
uman-machine learning ecosystems, however the process of modeling reality in a digital twin is a complex task, particularly
hen using traditional approaches involving sensors and different types of sources, models, and services. Based on the recent

iterature [8,13–17] two research gaps in cyber–physical human-machine integration when applied to traditional manufacturing
rocesses in SMEs have been identified. First, there is a crucial need for seamless integration and cooperation between humans and
onnected machines towards Human-Cyber–Physical Systems [18]. New technologies can help reduce production costs efficiently,
ynamically, and intelligently. However, there are many common scenarios in which the manufacturing systems are equipped
ith old machinery. Under this legacy approach, application-based services for controlling production, such as monitoring, are

imited without a bidirectional connection to interchange information between a digital twin and its physical counterpart [6].
ne method to mitigate this is retrofitting legacy machines, ensuring that data are not wasted and that old machines can have

ome form of analytics [8]. In this way, digital twins can enable the transfer of learning to generate knowledge of manufacturing
ystems [19]. Second, human factors and workers’ skills should be considered to understand existing complex manufacturing systems.

comprehensive framework is required to facilitate full-stack solutions by incorporating expert knowledge [14]. Therefore, both
echnological and training issues are inherent in providing workers of SMEs with resources and skills for more appropriate and
ffective knowledge of human-machine interactions. Specifically, when SMEs seem to struggle to adapt and implement modern
echnologies [20]. Despite this, digital twins provide workers of SMEs with a cyber–physical-assisted interface to simulate and test
eal-world operations [21]. Following this idea, a comprehensive digital representation on a factory-wide level arises in the context
f adaptive digital twin frameworks [22], which are capable of making decisions based on information about their environment
r situation [14]. Therefore, the existing challenges for workers, such as lifelong learning, may be addressed by digital twin
dvancements in learning capabilities, skills, and expertise that workers do not yet possess [23]. In summary, the future and effective
nteroperability of digital twins faces the challenges of building and supporting new technical and digital infrastructure, while
orkers’ skill development eventually manages to handle digital change. Consequently, significant research effort is required to

ombine digital twins, systems and workers in traditional manufacturing processes.
The present paper contributes to the understanding of how the novel concept of Digital Twin Learning Ecosystem facilitates the

ntegration of human-machine knowledge in different contexts of traditional manufacturing SMEs. This is achieved by providing
learning framework based on three non-intrusive interconnected digital twin layers, in which a demonstration of the retrofitted

yber–physical convergence of legacy production systems and skilled workers is adaptively managed in different organizations with
minimal set of changes. The integration process was carried out in two different SME case studies to examine the convergence

f existing physical and human resources for knowledge-generation. For this purpose, this paper extends previous work on the
doption of digital twins in industry, in which the authors have already presented practical applications for building connected
uman-machine learning frameworks in traditional manufacturing [11] and a literature review concerning specific human and
echnological challenges [12], such as cyber–physical convergence and digital skills development. Consequently, this work aims to
rovide new insights adapted to different traditional manufacturing scenarios for the successful integration of skilled workers and
egacy systems. This approach is particularly important for meeting the requirements to help SMEs build their own interconnected
igital twin learning infrastructure at different traditional manufacturing levels. Therefore, real data from a Nicolas Correa CF20
illing machine and a currently operating medium-frequency induction furnace with a maximum power of 12 MW in a foundry
lant were used to test the solution. In both cases, the proposed solution proved its benefits: first, by providing augmented methods
or maintenance operations on the milling machine and second, by improving the power efficiency of the induction furnace by
pproximately 9 percent.

The remainder of this paper is organized as follows. Section 2 explores related work on knowledge-based improvements and
earning opportunities offered by digital twins in manufacturing. Section 3 describes the developed Digital Twin Learning Ecosystem
ramework and knowledge generation in traditional manufacturing. Section 4 presents two real case studies on manufacturing
MEs to facilitate the integration of human-machine knowledge. These include improvements in the maintenance operations and
raditional manufacturing processes. Section 5 discusses the results of the proposal. Finally, Section 6 presents the conclusions
2
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2. Literature background

The concept of digital twin has emerged as one of the most disruptive innovations for exploiting data-enabling industrial
echnologies [2]. Simultaneously, digital twins have been improved in manufacturing using different approaches and definitions [24]
nd refined for learning, optimization, and control [25]. However, traditional manufacturing is in the midst of the cyber–physical
onvergence towards Industry 4.0 [6]. This section reviews previous studies on digital twin learning applications. The aim is
o understand the existing barriers and enablers to providing traditional manufacturing with an additional layer of knowledge,
pecifically for maintenance strategies and process monitoring. In addition, different Digital Twin Learning Ecosystems and current
hallenges in SMEs are studied to determine how traditional manufacturing systems must deal with the integration between humans
nd heterogeneous machines.

.1. Digital twins for knowledge-based improvement

Digital twins provide an intelligent data approach capable of managing previously acquired information over their lifecycle, such
s fault prediction [19]. Tao et al. [26] pointed out that the ability to offer seamless integration between cyber and physical spaces
nables their implementation to improve the performance of products and processes in the physical space. Moreover, this work also
efined a digital twin as ‘‘a digital representation that can depict the production process and product performance’’ and summarized the

state-of-the-art of digital twin research and its application as a reference guide in different industries such as aerospace engineering,
electric grid, car manufacturing, petroleum industry, and healthcare.

Owing to the cyber–physical connection process, digital twins have attracted the interest of industries regarding maintenance
strategies. Specifically, the manufacturing industry is the sector in which most research on the implementation of digital twins is
focused [27]. Concerning digital twin use in manufacturing, Madni et al. [28] considered maintenance to be a major contribution
area for digital twins, both helping organizations transition from schedule-based to condition-based maintenance and reducing
system maintenance costs, while also enhancing its availability. In a different study, Fuller et al. [8] identified a range of publications
with particular growth in the health of machines and predictive maintenance from small to large scale plants and industrial processes,
which are tangible with the development of digital twins. In addition, Kritzinger et al. [29] provided a categorical literature review
of digital twins in manufacturing. The review, which is broader in scope, described maintenance as a main discipline of production
systems with the common target of increasing competitiveness, productivity, and efficiency, supported by four applications of the
digital twin: (i) state changes in production systems, (ii) anticipatory maintenance measures, (iii) condition based maintenance, and
(iv) the machine’s health condition.

Several authors have presented papers concerning the applicability of maintenance strategies based on digital twins and their
associated learning models. For instance, Madni et al. [28] presented an overall vision and rationale for incorporating digital
twin technology into model-based system engineering (MBSE), including updated performance, maintenance, and health status
data throughout the life cycle of physical systems. Cai et al. [30] presented the integration of manufacturing data into developing
‘‘digital-twins’’ virtual machine tools for the health status of a milling machine. Aivaliotis et al. [31] presented a methodology for
advanced physics-based modeling to enable the digital twin concept in predictive maintenance applications. Mi et al. [32] proposed a
digital twin-driven cooperative awareness and interconnection framework to improve the accuracy of fault diagnosis, prediction, and
support, thereby creating a maintenance plan with higher accuracy and reliability. Huang et al. [33] proposed a digital twin-driven
online anomaly detection framework for an automation system based on edge intelligence for the early detection of potential failures
of industrial systems and proactive maintenance schedule management. Xu et al. [34] presented a two-phase digital-twin-assisted
fault diagnosis method and framework to achieve smart manufacturing using deep transfer learning, which realizes fault diagnosis
in both development and maintenance phases. In another study based on deep learning, Booyse et al. [35] presented a Deep Digital
Twin (DDT) for prognostics and health monitoring (PHM), which was used for the automation of predictive maintenance scheduling
directly from operational data.

2.2. Digital twin learning ecosystems and current challenges in manufacturing SMEs

Industry 4.0 presents opportunities for enabling Digital Twin Learning Ecosystems in academic and industrial scenarios. The
development of next-generation Information Technologies has provided manufacturing with digital twin-based approaches that
can be applied to cyber–physical convergence [2]. However, industry faces the challenges of building and supporting new digital
infrastructures and skills, while academia faces the challenges of providing technological research programs and experts to prepare
a new generation workforce equipped with interdisciplinary skills [22].

In the manufacturing context, the convergence of digital twins with diverse technologies in learning ecosystems has been
studied over the last years. Fuller et al. [8] presented the status, applications, and enabling technologies for Artificial Intelligence
(AI), Internet of Things (IoT) and digital twins to improve manufacturing processes. The study evidences that digital twin runs
in parallel with AI and IoT technology to gain knowledge in manufacturing. Furthermore, in a different work, Lu et al. [36]
reviewed the development and advancement of digital twin-driven smart manufacturing with other technologies, such as industrial
communications and protocols, simulation, cyber–physical systems, IoT, and Big Data. It presents the rapid growth and challenges of
integrating Information Technologies and Operation Technologies in the industry, where digital twin-driven applications for social
manufacturing and sustainability are called to change the fundamentals of manufacturing systems and operations. Consequently, the
3

use of different technologies in digital twin learning ecosystems enables smart decisions to be made at every point in manufacturing
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operations. For example: (i) digital twins and modular artificial intelligence algorithms to dynamically reconfigure manufacturing
systems [37], (ii) digital twins assisted by augmented reality for futuristic human-centric industry transformation [38], (iii) a digital
twin of the manufacturing process with an immersive virtual reality interface for multi-robot manufacturing cell commissioning [39],
or (iv) a digital twin-based cyber–physical production system for autonomous manufacturing in smart shop floors [40].

As a future trend in the industry, production factories will be presented with multiple digital twins representing their complete
roduction system [41]. In this way, different manufacturing phases can be addressed using digital twins. Virtual factory replication
nd the Learning Factory concept [42] allow the implementation of complex scenarios and frameworks for testing and training in a
iversity of collaborative levels as digital twin learning ecosystem enablers. Focusing on new learning approaches in manufacturing,
aza et al. [43] presented the Festo Cyber–Physical Factory (CPF), which collects IoT data and replicates the processes of the CPF real
roduction line for product assembly at different stages of the product’s lifecycle. This system, coupled with the proposed digital twin
ramework, interlinks cyber–physical data that are used to enable predictive maintenance, operational information for design and
erformance improvements, and contributes to workers’ lifelong learning. With regard to the manufacturing systems configuration
nd validation, using learning data during the design phase can enable a digital twin-based cyber–physical commissioning approach.
herefore, there is an opportunity to enhance the early development phase and ensure correct decision-making guidance [44]. For
xample, Qamsane et al. [45] presented a digital twin framework to improve control reconfiguration, self-organizing and learning
n a manufacturing flow-shop. In another phase, the digital twin learning ecosystem can improve the cyber–physical interaction of
anufacturing systems for the intelligent organization of resources. In this context, Leng et al. [46] proposed a digital twin-driven
anufacturing cyber–physical system (MCPS) framework that discusses how the digital twin applies in optimizing system behavior in
demonstrative implementation of the digital twin-driven parallel controlling of board-type product smart manufacturing workshop.

By promoting the digital twin areas of research already under way, new approaches for transforming existing production and
ontrol methods may emerge towards intelligent cyber–digital interfaces and smart decision support models. This is the case of
he interaction between skilled workers and the production environment, allowing digital twins to offer a context-aware approach
or supporting decision making and learning [14]. A standardized framework to develop a digital twin in manufacturing, such
s ISO 23 247, which partitions a digital twin system into layers, can facilitate the acceptance of the digital twin concept [47].
owever, Shao and Helu [48] remarked that there remains much confusion about digital twins and how different solutions can be

mplemented in real manufacturing systems, especially among SMEs. Digital twins depend on the context and viewpoint required
or a specific use case and require a good understanding of the scope and constraints of the use case to avoid enormous costs.
ecent experiments made in EU funded projects address digital technologies for learning in industry. For example, the FACTLOG
roject [49] develops a real-time processing layer combined with digital twins, where observations, knowledge and experience
nteroperate to understand the control behavior of a complex system to accomplish the cognitive factory for process industries. In
different approach, the RETROFEED project [50] develops a Decision Support System for aluminum melting furnaces through the

etrofitting of core equipment and the implementation of an advanced monitoring and control system based on machine learning
nd digital twin.

Existing related works of Digital Twin Learning Ecosystems based on frameworks have been identified in the literature, as shown
n Table 1. Some frameworks provide digital twin learning features for manufacturing at conceptual, proof-of-concept or laboratory
evel. David et al. [51] proposed a digital twin framework of a flexible manufacturing system for production engineering courses
t the university level. Caldarola et al. [52] implemented the concept of Teaching Factory using knowledge-based systems and a
ramework for social manufacturing. Malik and Bilberg [53] presented a framework to support computer simulations to develop
experimental setup of a human–robot collaborative work environment for assembly work. Yildiz et al. [54] presented a digital

win-based Virtual Factory in a proof-of-concept in a wind turbine manufacturing plant, which is integrated with multi-user virtual
eality simulation for learning/training in a close collaboration with shop floor workers and engineers. Friederich et al. [56] proposed
conceptual data-driven framework in laboratory for automated generation of simulation models as basis for digital twins for smart

actories. Liu et al. [57] proposed a digital thread-driven distributed collaboration mechanism between digital twin manufacturing
nits at experimental level. This environment was verified in a manufacturing workshop to manage the product quality information
uring the manufacturing process. On the other hand, considering a practical approach, frameworks exist that provide digital twin
earning features and real-world verification. Qamsane et al. [45] proposed a novel digital twin learning framework for the real-
ime monitoring of large-scale smart manufacturing systems to improve control reconfiguration, self-organizing. This framework,
valuated in a manufacturing flow-shop, enables flexible control of smart manufacturing systems using unified and standardized
rotocols such as OPC-UA and interfaces for communications with the Manufacturing Execution System (MES) and the Enterprise
esource Planning (ERP). Kong et al. [55] showed a data-driven digital twin framework that uses a non-intrusive add-on method via

ow cost edge computing devices (Raspberry Pi, Arduino and Nvidia Jetson) to tune physical assets as IoT-enabled for monitoring
hrough the Internet. It offers emulation and human-asset interaction with operational decision support accross multiple open devices
n several use cases (embedded system, integrated Frequency Modulated and UR5-based collaborative-robot system) for better
nderstanding of remaining useful life of assets. Kumbhar et al. [58] developed a digital twin framework to track and diagnose
or decision-making in a complex manufacturing system in real-time. The framework was automated using open-source software in
fully-automated manufacturing facility for assembled bearings. Mo et al. [37] constructed a simulation environment combining

igital twins and modular artificial intelligence algorithms to dynamically reconfigure manufacturing systems. The framework was
alidated in a real use case, resulting in a process time improvement of approximately 10%.

It is observed that most processes still depend on human intervention and expert knowledge [3], and digital twins data are
ighly dependent on the specific goals of the system in place [59]. In particular, in the case of SMEs, despite the development of
4

ndustry 4.0-enabling technologies, digital twins face a lack of digital resources concerning data acquisition [60], while workers’ skill
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Table 1
Examples of digital twin learning ecosystems in manufacturing based on frameworks.

Approach Features Domain Application Reference

Reconfiguration framework
for manufacturing systems
based on digital twins and AI.

Dynamical reconfiguration Optimization Simulation [37]

Framework for real-time monitoring
and evaluation of smart manufacturing
systems.

Self-organizing and learning Monitoring Flow-shop [45]

Pedagogical digital twin framework
to educate students on manufacturing
systems.

Learning experiences Pedagogical learning Laboratory test [51]

Conceptual framework for social
manufacturing.

Quality of life Social sustainability Conceptual [52]

Framework to support the design,
building and collaborative environment
for assembly.

Human-machine cooperation Production setting Simulation [53]

Framework architecture for
supporting factory
life-cycle processes.

Workers’ training Collaborative learning Virtual factory [54]

Interactive data-driven digital
twin framework for
asset management.

Human-asset interaction Asset management Decision support [55]

Digital twin research framework
for data-driven simulation
modeling in assembly line.

Automated generation Simulation models Conceptual [56]

Framework for distributed collaboration
between digital twin
manufacturing units.

Thread-driven models Quality control Workshop model [57]

Digital twin based framework
for improvement of complex
manufacturing systems.

Detection and diagnosis Sustainability Assembly [58]

development eventually includes the increased complexity of industrial processes [61]. It should be noted that SMEs are generally
less prepared to adopt digital technologies [62] and maturity models [63]. Although collaborative human-machine models [64]
and maintenance trends have evolved collaboratively [65], only a few SMEs have the capacity to implement the latest advances in
maintenance strategies [66].

Focusing on digital twins convergence, some studies have presented solutions to augment legacy-based production equipment
ithout incurring expensive resources. For instance, Orellana and Torres [67] proposed a retrofitted method using monitored

ensors within cyber–physical systems to upgrade legacy production systems while reducing costs. Similarly, Lins and Oliveira [68]
ocused on reusing existing equipment with the addition of new technologies installed independently of the system, upgrading
o cyber–physical production systems as a rapid and low-cost solution. Pantelidakis et al. [69] considered a cost-efficient digital
win ecosystem used to provide legacy equipment with digital twin capabilities, collect historical data, generate analytics, and
stablish an ecosystem with bidirectional information flow in a simulated virtual environment. In particular, the authors presented
n [11] a framework and architecture for retrofitting traditional manufacturing systems with digitized scenarios in a non-intrusive
anner. This paper integrated a modular multitier cyber–physical convergence approach with diverse heterogeneous systems. The

mplemented solution focuses on a rapid and flexible human–machine collaborative environment to interact with and visualize the
ealth condition of legacy systems. The resulting knowledge models provide bidirectional information in an augmented visualization
ayer. However, this convergence can be improved by following adaptive development according to productive and specific
anufacturing requirements, thereby generating an adaptive learning framework that seamlessly integrates workers, systems, and
rocesses into knowledge modeling. To the best of our knowledge, there is no adaptive framework and architecture approach
tandardized for traditional manufacturing SMEs that can integrate both heterogeneous legacy production systems and skilled
orkers into a Digital Twin Learning Ecosystem in real production conditions. Therefore, this work aims to provide an adaptive and
idirectional human-machine framework that demonstrates its applicability from scratch and capacity of replication in traditional
anufacturing processes.

. Developed framework and knowledge generation in traditional manufacturing

This work addresses the rising demand for the integration of human-machine knowledge in traditional manufacturing SMEs [70,
1]. Currently, the problem for both traditional operators and legacy infrastructure is how to adapt expert knowledge to the
ncreasing business needs of manufacturing plants that demand high efficiency in industrial production while reducing production
osts [13]. In this case, Industry 4.0 transformation is facing a lack of skilled personnel and a low adoption rate of digital technologies
5
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Fig. 1. Overview of the concept of Digital Twin Learning Ecosystem proposed in traditional manufacturing and its three conceptual layers.

and maturity models [20]. Therefore, current challenges in a changing manufacturing industry have led to the need to develop
adaptive cyber–physical frameworks that combine expert knowledge and legacy systems to overcome the lack of connected data
infrastructure [72].

In this paper, a framework that implements the novel concept of Digital Twin Learning Ecosystem in traditional manufacturing
is presented. Overall, this concept poses common requirements to facilitate a real and effective integration of human-machine
knowledge in currently operating traditional manufacturing SMEs [12]. According to its definition, the Digital Twin Learning
Ecosystem consists of three conceptual layers: Digital Twin Data Streams, Digital Twin Data Models and Digital Twin Knowledge Models,
which are depicted in Fig. 1. The behavior of each layer is determined by a hardware and software stack implemented in a three-tier
model architecture. Consequently, the methodology used in this paper is based on an adaptive application under the production
conditions of these three interconnected bidirectional layers.

It must be noted that there exist diverse frameworks, as presented in Section 2.2, that apply the digital twin concept to
manufacturing systems for learning. In such cases, there are challenges pending to facilitate the integration of human-machine
knowledge: (i) to enhance the workforce skills and competencies in manufacturing, (ii) to manage adaptability under different tasks
in manufacturing systems, (iii) to understand processes and data science, and (iv) to extract the corresponding simulation models
using expert knowledge. In comparison with the studied digital twin frameworks, the proposed Digital Twin Learning Ecosystem
provides the following unique features:

• It works from scratch in traditional manufacturing for workers and machines simultaneously, regardless of maturity and level
of digitization.

• It contributes to an adaptive and non-intrusive bidirectional cyber–physical approach in response to the requirements of very
different retrofitted traditional scenarios, always under production conditions.

• It offers new models of collaboration between the workforce and industrial processes that include enablers required for future
human-technology integration in manufacturing [13].

• It provides the creation of standardized communication paths and service infrastructure according to human-machine
interactions to manage and generate industrial knowledge in SMEs [7].

• It generates a human-machine digital twin learning framework using a light infrastructure that seamlessly integrates existing
resources via knowledge modeling, which is supported by workers’ expertise.

• It reuses the knowledge that highly skilled operators usually have and contributes to workers’ lifelong learning and training
in traditional manufacturing.

In this way, traditional manufacturing SMEs that are increasingly dependent on highly skilled workers and digital changes to
improve their working methods can take advantage of bidirectional knowledge [73]. Regarding architecture, the framework provides
6
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customizable services that are valid for different traditional SMEs, as described below. These include: (i) IIoT hardware and software,
(ii) industrial protocols and sensors, (iii) human-machine interfaces, (iv) edge and cloud software stacks, and (v) analytic software
and dashboards, intended to rapidly and flexibly integrate the resources already existing in a non-intrusive manner. In summary,
this contribution lies in a common digital twin framework architecture and knowledge modeling process that can be implemented
in diverse organizations with a minimal set of changes.

3.1. Digital twin data streams

The Digital Twin Data Streams conceptual layer, also referred to as the Interaction layer, manages the physical interaction between
skilled workers and legacy industrial systems [67]. It provides the digital twin framework with real-time information from systems
and workers via heterogeneous manufacturing multiple data sources, as depicted in Fig. 1a. Currently, in traditional environments,
the interconnection of the manufacturing process must be considered, reflecting the specific legacy systems, applications, or data
sources needed to define the most straightforward solution. In this context, a step-by-step digital upgrade is proposed to address a
non-intrusive retrofit approach supported by standardized hardware, communications and software tools. Simultaneously, meetings
with key human resources involved in the manufacturing process are conducted to gain first-hand knowledge of the work cycles
and procedures involved in the operation of the systems. These workers are also provided with human–machine interface devices
to include further information that may be relevant to the process [14]. Following a digital paradigm, the retrofitted approach
enables a specific client/server model [74]. This stream converts the knowledge of workers and physical measurements gathered
from legacy systems into time-series values as the input source for the digital twin. The upgrade, oriented towards accomplishing
a cyber–physical production system, results in a standardized common IIoT communication layer that connects the data of the
manufacturing process in the virtual world [68].

3.2. Digital twin data models

The Digital Twin Data Models conceptual layer, also referred to as the Understanding layer, manages the way the retrofitted-
based manufacturing systems data are imported, stored, and presented in real-time as shown in Fig. 1b. This furthers a virtual
representation and understanding of the specific behaviors of production resources [75]. Process performance is analyzed using a
tailored cloud service to visualize and monitor selected measurement inputs, providing relevant information to workers regarding
the connected objects of the physical layer. This cloud-based service infrastructure manages data availability in real-time, setting
up a cyber–physical connection that enables synchronization of real-world activities to the virtual space [24]. Subsequently, both
the management dashboard and data processing modules are implemented to enable the digital twin visualization of manufacturing
systems. The dashboard is customized to assist workers in responding to the detection of anomalies regarding incidents, such as
changes in the manufacturing cycle and changes in a trend; it also assists in modeling some properties related to the health status
of the manufacturing systems, such as operational parameters and knowledge-based techniques [33]. Therefore, this layer meet
the requirements of enabling predictive maintenance applications [31] and the identification of patterns and/or indicators for the
detection of anomalies [45], presenting a flexible solution to generate the data models needed to understand the behavior of the
systems and processes.

3.3. Digital twin knowledge models

The Digital Twin Knowledge Models conceptual layer, also referred to as the Learning layer, manages the characterization of
manufacturing processes, including workers’ expertise and feedback. The aim is to generate a non-intrusive and adaptive learning
ecosystem as shown in Fig. 1c. The sum of all available data previously collected and analyzed on the other layers, such as
the interaction between skilled workers and legacy systems across the factory, is processed in a data analysis module. This step
brings with it invaluable information, which can help with the generation of data-driven models in proactive decision-making [76].
Consequently, the learning process is accelerated, while encompassing the ecosystem as a whole. Furthermore, selected operational
processes that bring initial knowledge through the discovery stage are characterized and combined with the transfer of knowledge
of skilled workers, enabling value-added services based on human–machine collaboration for continuous improvement [3]. Finally,
a set of well-known visual methods and human-machine interface applications are linked to the digital twin dashboard to assess the
impact of changes in process performance [77], while workers diagnose the condition status of systems based on physical indicators
(temperature, frequency, vibration, energy consumption, etc.). In general, this upper layer of the digital twin framework aims to
integrate machine learning through adaptive modeling strategies, which facilitates root cause analysis and the prediction of changes
to address manufacturing planning [28].

3.4. Framework system architecture

The overall framework system architecture, depicted on the left-hand side of Fig. 2, has been designed to seamlessly integrate the
three layers of the Digital Twin Learning Ecosystem. The corresponding data flow is also presented on the right-hand side of Fig. 2,
and is described in more detail below. From this perspective, the framework has been built by integrating a hardware and software
stack around the interconnections of different tiers, as shown separated by a red line. Together, they work as learning enablers,
7
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Fig. 2. The overall Digital Twin system architecture (left), and the corresponding data flow (right).

methods and solutions, such as retrofitting and supervisory human-machine interfaces, to address the bidirectional cyber–physical
convergence of all layers presented. All the digital twin components of the framework architecture: (i) DT data streams, (ii) DT data
modeler, and (iii) DT adaptive learning, are provided as adaptive modular services without interfering with the existing working
conditions.

3.4.1. DT data streams
This tier is nearest to the sensors, machines, and workers, enabling real-time information from systems and workers via multiple

heterogeneous manufacturing data sources. With respect to the fact that traditional SMEs still have inherent limitations to enable
Industry 4.0 human-machine integration [78], in these cases, the framework can include an external non-intrusive industrial
acquisition device with specific sensors plug-and-play/wireless, and human-machine interface software such as Web applications.
Consequently, this module has been designed to integrate an IIoT gateway and a wide range of industrial communication protocols,
such as Modbus TCP/IP, OPC-UA, and HTTP for data acquisition [79]. Particularly in traditional manufacturing, establishing
standardized communication provides the lowest level of digitization services necessary to implement retrofitting techniques
between legacy systems and the cloud infrastructure towards cyber-phisical systems [68]. Thus, the data flow input to the digital twin
defines a common method that transforms the data capture process of legacy systems into time-series values. Overall, information is
shared using the JSON standardized data format [22]. In this way, skilled workers have immediate real-time data access through a
human-machine interface device to manage process control indicators, such as input voltage, acceleration, and temperature, among
others.

3.4.2. DT data modeler
This tier is based on a cloud software stack that exchanges JSON data streams from manufacturing systems to a REST API hub

storage [7]. An authenticated API uses the HTTPS protocol to access digitized data managed by the IIoT gateway and enables
virtual connection between workers, machine data, and third-party systems, such as augmented reality devices. In this way, the
visualization and modelization of real-time data and historical data are supported by a set of human-machine interface software
tools, time series data graphics, and web-based widgets. On top of them, an interactive analytic DT dashboard module manages
the visualization of the target systems, consisting of real-time machine variables, performance indicators, and modeled thresholds.
The data flow of this module presents real-time data processing and storage management, which are required to understand the
key performance indicators and determine the operational thresholds for real-time monitoring and building data models [80]. Data
visualization includes alarms to alert workers about incidents triggered via anomaly detection or behavior fault models related to
the health status of systems or processes [28].

3.4.3. DT adaptive learning
This tier allows characterization of the adaptive behavior of a system or process using condition-based knowledge [81]. In

this manner, the analytic software allows historical data to be retrieved while learned manufacturing models are visualized on
the DT dashboard. This module communicates with a large amount of data from different industrial systems and assists workers
via augmented human-machine interface tools. Specifically, machine learning libraries and data models are used to extract patterns
associated with the different tasks involved in the studied manufacturing cycles [82]. The data flow address the process of knowledge
generation through the extraction of hidden patterns and the creation of unsupervised algorithms that are used to cluster data
samples into behavior models [83]. Furthermore, to accelerate the learning process, supervised learning strategies are used according
to the historical data of each system and feedback provided by experienced workers.
8
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Fig. 3. Knowledge modeling process including a step-by-step diagram for the proposed digital twin approach.

3.5. Knowledge modeling process

The starting point of this work focuses on the context of traditional manufacturing SMEs, where skilled workers usually make
operative decisions on a decentralized basis based on their experience. Thus, the exploration of systems’ behavior and workers’
learning patterns can ease their adaptation to changes in manufacturing and develop new ways to convert past experiences into
precise guidelines [51]. In addition, workers play a significant role in the overall efficiency of the systems as well as the evolution of
the manufacturing process [3] and are an integral part of the industrial ecosystem. Human–machine interactions and their associated
learning processes are key challenges in the development and implantation of digital twins in manufacturing applications [1].
Therefore, the proposed knowledge modeling process is the result of the integration of consecutive stages based on the interaction,
understanding, and learning among workers, systems, and manufacturing processes. The proposed framework architecture supports
the sequence of steps shown in Fig. 3. The entire process is described as follows:

• Step I: Deployment of retrofitted hardware or software gateways, diverse non-intrusive data acquisition modules, and human-
machine interface devices. They provide IIoT communications protocols and the user interface to set up the measurement
parameters characterized by type and properties. All digitized systems are converted into an individualized time series of data
objects automatically retrieved.

• Step II: Connection and storage of time-series data gathered from different retrofitted systems into cloud-based service
architecture. All attributes of the different measurement data points, such as accelerometers, resistance temperature detectors,
three-phase current transducers, and weight sensors, are classified according to the manufacturing system properties.

• Step III: Visualization of data models using a dashboard interface and data cleansing. All objects from Step II are fixed, labeled
and configured manually using drag-and-drop widgets that provide several out-of-the box graphics and data tables, building
their visual representation of the process performance indicators in real-time.

• Step IV: Determination of specific working cycles or phases involved in the manufacturing process. Skilled workers model the
operational status of the systems and set customized threshold levels based on their personal experience. Certain properties
related to their health status can be modeled (dynamic behavior, virtual sensors, and operational parameters), enabling an
improved understanding of systems based on their state changes.

• Step V: Selection of the data samples containing physical measurement point values using time series data snapshots
corresponding to each individual working cycle or phase defined by skilled workers. The data set values are normalized in the
range of 0 to 1 before comparing the results.

• Step VI: Extraction of hidden information from the different data samples related to the health status of the analyzed system
using Python 3.x open-source tool kits, such as Numpy, Pandas, Matplotlib, Scipy, and Scikit-learn, a free software machine
learning library. An unsupervised clustering algorithm is used to minimize the amount of labeled data in the system to obtain
the based-condition models.

• Step VII: Classification of the extracted patterns learned from Step IV and checking by workers to build an initial reference
behavior model. Consequently, the sum of all the models constitutes a behavior model and determines the trends and detection
thresholds necessary for the development of adaptive human-machine learning.

4. Case studies

To verify the effective implementation, replicability, and learning derived from the proposed digital twin framework, two
industrial case studies are presented to facilitate the integration of human-machine knowledge in traditional manufacturing. This
work focuses on traditional material processing in SMEs, specifically in a machining workshop and a foundry plant. Both cases
contribute to manufacturing materials in the automotive industry supply chain [84]. Currently, traditional European manufacturing
SMEs remain an important source of employment and wealth creation [85].

The selected traditional industry scenario is governed by Operational Technologies (OT) and manufacturing legacy systems.
Typical OT control hardware for manufacturing machines include Programmable Logic Controllers (PLC), Distributed Control
9
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Fig. 4. (a) Portable IIoT gateway and non-intrusive sensors. (b) ThingsO2 cloud platform hosting the digital twin visualization of the milling machine.

Systems (DCS), human-machine interface devices, Supervisory Control And Data Acquisition Systems (SCADAS), and MES. Most
are integrated by diverse commercial industrial systems that often own data sources with proprietary access [86] and heteroge-
neous communication interfaces for which the data architecture is unknown. This perspective is crucial for integrating complex
heterogeneous scenarios in manufacturing, where systems, processes, and workers are simultaneously involved in operations at
the same time. Despite the increasing digital skills and the accelerating transformation of work, traditional highly skilled jobs will
always be needed by industry [87]. In this case, an effective human-machine interaction involves expert knowledge as well as smart
production systems and tools. On the other hand, human-technology integration by the use of cyber–physical systems enables new
work ecosystems [13]. Consequently, the implementation of novel concepts such as Digital Twin Learning Ecosystem is a valid
approach to provide a cyber–physical framework, allowing tailored knowledge integration of legacy manufacturing systems and
skilled workers.

In summary, this paper provides the literature with new valuable insights and human-machine integration paths. They can be
used to examine its feasibility in other manufacturing scenarios for building new knowledge and digital twin infrastructure as well
as reskilling and upskilling the workforce. In particular, the proposed industrial scenarios validated the common framework and
knowledge generation process to provide augmented maintenance operations in a milling machine and improve the power efficiency
of an induction furnace. The enablement of more straightforward cyber–physical systems and the empowerment of workforce
skills [88] mark an additional step in the adoption of Industry 4.0 in traditional SMEs.

4.1. Case study 1: machining workshop

This section presents a case study conducted using an older three-axis milling machine, Nicolas Correa CF20, at Fundación Cidaut.
This non-digitized production milling machine, which is more than 25 years old, is used in the machining workshop to shape slots
and drill solid material workpieces using a rotating cutter. All the manufacturing orders are manually programmed. The milling
machine is started and stopped every working day by an experienced worker, whereas the maintenance strategies are preventive
or corrective without monitoring. In this type of situation, sensors for monitoring daily changes in energy consumption can help
detect repetitive technical issues in a short period of time towards enhanced learning in maintenance processes. This measurement
tool was previously applied in a similar study to register abnormal current consumption patterns [11]. Regarding these recurring
patterns, the start-up process of the milling machine was considered a suitable environment to address the study on the basis of real
consumption data.

4.1.1. Knowledge modeling process
All the steps presented in Section 3.5 were followed to build the knowledge modeling process to meet the requirements of

a tailored Digital Twin Learning Ecosystem for the milling machine. The first tier of the digital twin framework, supported by
a portable industrial gateway IIoT TWave T8-L, was used to develop retrofitting approaches on the milling machine without
interfering with the working conditions. The gateway provides a customizable industrial acquisition device that integrates plug-
and-play connectors and common sensors. Specifically, these components were used: (i) accelerometers with a magnetic mounting
base, (ii) a pt100 magnetic resistance temperature detector, and (iii) an open-ended Rogowski three-phase AC current transducer,
as depicted in Fig. 4a. This type of infrastructure is intended for applications that require a monitoring solution within a very
short time. Embedded web-based and industrial communication agents, such as HTTPS and Modbus-TCP, were used to convert the
physical measurements associated with the start-up of the milling machine into objects characterized by type and properties. All
information managed during the manufacturing process was registered on a cloud-based architecture provided by ThingsO2, as
shown in Fig. 4b. This second tier is aimed at detecting activity patterns. Digital tools adapted to the shop floor were used to enable
cyber—physical and bidirectional human–machine interactions. Thus, the proposed digital twin dashboard monitored the start-up of
the milling machine and synchronized real-time data in JSON format. In particular, time series data regarding energy consumption
every second, between December 2019 and March 2020, were stored, as shown in Table 2.
10
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Table 2
Detail of start-up power consumption values (Three-Phase Amperage) at every second registered in the milling machine.

Date Time T-PC1(A) T-PC2(A) T-PC3(A)

01/13/2020 08:09:50 0.68 0.09 0.58
01/13/2020 08:09:51 0.68 0.09 0.58
01/13/2020 08:09:52 2.15 1.75 2.63
01/13/2020 08:09:53 2.15 1.75 2.63
01/13/2020 08:09:54 2.15 1.75 2.63
01/13/2020 08:09:55 3.61 3.51 3.71
01/13/2020 08:09:56 3.81 3.51 3.81
01/13/2020 08:09:57 3.81 3.51 3.81
01/13/2020 08:09:58 3.51 3.61 3.81
01/13/2020 08:09:59 3.51 3.61 3.81

Fig. 5. Steps of the knowledge modeling process on the milling machine.

Collecting daily data over multiple start-ups provides repetitive behavioral patterns over a short period of time. Detection and
learning were performed at the beginning of the day to generate power consumption data samples. In this way, the experienced
worker was able to set the correspondence between the data and label four different operation phases depicted in Fig. 5: (i) power-up
from scratch, (ii) PLC running cycle, (iii) engine start, and (iv) engine warm-up, as well as provide lessons learned about anomalies
based on other characterizations of past events, such as overheating or excess consumption. Because the human-machine interaction
managed during the engine start depends on a variable moment in which the worker manually releases the milling machine’s
emergency button, the timeline for phase 2 (end of the PLC running cycle) was adjusted up to 95 s. in all data series and interpolated
using average values to have comparable start-up datasets without substantial change.

Specifically, data samples containing physical measurement values were selected for 19 days, between January and February
2020. Data models supporting decision making for maintenance operations were built using this dataset. The unsupervised k-means
clustering algorithm [89] from the Scikit-learn Python library was used to accelerate the extraction of patterns, while minimizing
the amount of labeled data. Next, the elbow method [90] was used to determine four as the number of different clusters for each
type of start-up in the dataset, as shown in Table 3.

Subsequently, the minimum, maximum, and average values from all data samples in each individual resulting cluster were
processed to generate the threshold limits in the four data models. With the aim of building a single initial reference model as
shown in the entire start-up process, the four groups modeled were checked with the support of an experienced worker. In this
manner, the admissible threshold data values for each model were adjusted and supervised by considering the learned behavior
when starting the machine. This was achieved through real-time monitoring using a human-machine interface device (Android
11
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Table 3
Group clusters obtained from CNC start-up analysis.
Date K-means group Date K-means group

01/13/2020 2 02/03/2020 2
01/16/2020 1 02/04/2020 2
01/17/2020 3 02/05/2020 1
01/21/2020 3 02/06/2020 2
01/22/2020 1 02/07/2020 1
01/24/2020 4 02/10/2020 1
01/27/2020 3 02/11/2020 4
01/29/2020 4 02/13/2020 3
01/30/2020 4 02/14/2020 3
01/31/2020 2

tablet). Hence, an aggregated model implementing the common patterns labeled by the worker was proposed as a digital twin input
for the detection of abnormal start-ups, as shown in Fig. 5.

4.1.2. Model validation
In particular, the aim of the Digital Twin Learning Ecosystem is to provide workers who interact with legacy manufacturing

ystems with a bidirectional decision-making approach, such as these human-machine augmented models in real time. To evaluate
he improvement in maintenance strategies in this traditional manufacturing scenario, the usefulness of the proposed digital twin-
ased model was tested using new start-up data samples supervised by different workers. During the assessment, operational data
rom the milling machine were collected in March 2020 (March 6th, March 11th, March 12th, and March 24th). Regarding each
ndividual phase of the start-up process, the data tests presented only minor deviations beyond the upper threshold for Phase 3
engine start), as shown in Fig. 5. Therefore, after three months of work assisted by digital twin data, the expert operator considered
he implemented learning environment as a valid approach for diagnosing anomalies that depend on the asset condition, such as
hose triggered by the measurement of power consumption related to threshold values.

.2. Case study 2: foundry plant

The second case study was conducted at a foundry plant in the SME sector. Lingotes Especiales plant located in Valladolid (Spain)
as several induction furnaces used for casting gray iron parts. In particular, 80 per cent of the energy input is used for the cast iron
anufacturing process. Because it is an electrointensive industry, electricity is a primary factor in its production process. Specifically,
uring 2021, the electricity consumption recorded in the factory was around 100 MM kWh. Therefore, human–machine interaction
as become a critical aspect in reducing the cost of production because the induction furnace uses a high-voltage electrical source (up
o 12 MW) for the casting of gray iron. This case study was selected because it is a repetitive process in a legacy manufacturing system
hat is suitable for understanding a Digital Twin Learning Ecosystem in different contexts. In this way, it is possible to retrofit real
vailable data while reusing known measurement tools and conducting expert worker interviews to validate data patterns generating
uman-machine knowledge models.

During the process, experienced workers manage the production orders and quality of cast iron using a MES and visual displays.
owever, they did not have predictive analysis models for enhanced learning based on a comparison of data from the Key
erformance Indicators (KPIs). In this respect, the charge of the raw materials for each heating cycle in the induction furnace is
dded (steel, tin, cast iron shavings, iron, scrap, etc.), and the maximum power is continuously applied. Then, the required casting
emperature is gradually controlled to 1500 ◦C and the process ends when the cast iron is poured.

4.2.1. Knowledge modeling process
The implementation of the proposed Digital Twin Learning Ecosystem was evaluated with the aim of improving the efficiency

of the gray iron casting process in an induction furnace. All the steps presented in Section 3.5 were applied. First, a non-intrusive
gateway software was deployed to retrofit the isolated proprietary data capture system that operates plant process monitoring. Using
a tailored IIoT data connector, the software was configured to gather physical values from the MES solutions Olanet and Circutor
Powerstudio, and send them to the digital twin cloud data hub via authenticated HTTPS API. Thus, real-time monitoring of the
operating patterns of the induction furnace, shown on the left-hand side of Fig. 6, was allowed as the input for the digital twin. In
particular, several data streams were registered every minute between July 2021 and December 2021, such as the values of energy
consumption, temperature, and iron mass, which were processed as time-series data (Table 4).

The cloud-based infrastructure used the JSON format to communicate data streams between legacy systems and the data hub.
Next, digital twin visualization and the data modeler were configured, as shown on the right-hand side of Fig. 6. Both were presented
through a web browser interface to the workers. Simultaneously, historical data samples from the furnace were processed between
January 2021 and June 2021.

The assistance of two experienced workers was required to analyze the samples of the heating cycles. These workers’ skills
facilitated the acquisition of digital patterns according to plant operating procedures. In this respect, the workers used data from
12
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Fig. 6. Induction furnace for the cast iron manufacturing process (left). TEEPP digital twin dashboard (right).

Table 4
Detail of mass and power consumption values acquired in the induction furnace.

Date Time m (kg) P (kW) I (A)

01/10/2021 07:52:00 815 2811 1620.28
01/10/2021 07:53:00 822 2824 1634.20
01/10/2021 07:54:00 949 2840 1886.68
01/10/2021 07:55:00 944 2855 1880.48
01/10/2021 07:56:00 937 2871 1866.53
01/10/2021 07:57:00 923 2886 1884.99
01/10/2021 07:58:00 913 2902 1815.11
01/10/2021 07:59:00 901 2917 1794.82
01/10/2021 08:00:00 900 2932 1789.26
01/10/2021 08:01:00 905 2947 1799.21

Table 5
Group clusters obtained from induction furnace analysis.
Date K-means group

01/10/2021 04:55 2
02/01/2021 00:00 1
02/21/2021 20:56 1
03/14/2021 22:20 1
04/04/2021 11:58 1
04/18/2021 21:15 1
05/09/2021 20:51 1
06/20/2021 21:06 1

(ii) raw material ramp-up, (iii) raw material charge ending and casting of gray iron, and (iv) ramp-down of cast iron. The correlation
between each specific phase and a collection of time-series values associated with this foundry plant was established. In particular,
the detection of the first phase change depends on the increase in the charge of the raw material in the induction furnace. This
change make it possible to determine its duration and thus obtain comparable datasets for heating cycles.

Next, as in the previous case study, the k-means clustering algorithm was used to group the data samples extracted from the
heating cycles into clusters. Eight data samples were selected to investigate the four working phases of the induction furnace. The
elbow method was used to determine two as the number of different clusters for the heating cycles. Most of the data samples were
grouped into the same cluster. Only one data sample dated October 01/10/2021 was placed in the other cluster, as shown in Table 5.

After investigation with the help of the experienced workers, this singularity of the iron casting process was confirmed as an
abnormal heating cycle after a long scheduled outage. From this point on, after validating the extracted patterns and comparing
the KPIs supervised by the plant manager, an initial behavior model was built. The visual representation of this model, depicted
in Fig. 7, includes the average curve of the data corresponding to the heating cycles from cluster 1, and the standard deviation of
these data to determine the detection thresholds.

4.2.2. Model validation
The applicability of the proposed approach was evaluated to measure the impact of the human-machine learning process on

improving the energy efficiency associated with the casting of gray iron. Between January 2022 and May 2022, foundry plant
operators used a digital twin knowledge model connected to real-time data. These process operators were provided with the
13
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Fig. 7. Steps of the knowledge modeling process on the induction furnace.

visualization of KPIs in real-time, such as the iron mass and power consumption, as well as the heating cycle state of the induction
furnace in comparison with the threshold models obtained for the planning of the production cycles. Thus, some improvements were
successfully applied during the model-fitting process associated with the digital twin. An R-squared statistical parameter (Eq. (1))
was selected to determine the correlation between the behavior model of the studied furnace and the subsequent production data
series tested.

𝑅2 = (
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
√

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2(𝑦𝑖 − 𝑦)2

)2 (1)

The R-square results obtained by the comparison between the proposed heating cycle model of the furnace and four different and
random iron casting production processes in 2022 were 0.979 (2022/01/17), 0.947 (2022/02/21), 0.98 (2022/04/04), and 0.994
(2022/05/23). These values show a strong correlation between the model data and subsequent process data samples. Therefore,
during the tests, it was considered that the learned model represents a good approach to determine if the heating cycle process is
in line with acceptable thresholds or whether a possible anomaly must be investigated to implement predictive maintenance plans.
Additionally, a measure of the impact of the learning process is discussed in Section 5.

5. Discussion

This work presents a new adaptive and non-intrusive digital twin learning framework to facilitate the integration of human-
machine knowledge in traditional manufacturing SMEs from scratch. In particular, using this framework, has been demonstrated
the applicability and replication capacity of the common methodology, architecture, and knowledge-modeling process presented. The
outcomes of this study contribute real data from two relevant case studies linking machines and humans to evaluate and illustrate
the benefits of the proposed adaptive learning ecosystem for traditional manufacturing SMEs. Eliminating existing technological and
workforce barriers in processes not yet aligned with Industry 4.0 provides the literature with new valuable insights that can be used
to design similar learning scenarios or build new technical and digital infrastructures. In this way, the requirements of a tailored
Digital Twin Learning Ecosystem are validated in these two currently operating traditional manufacturing SMEs. Therefore, this
work presents an opportunity to help SMEs operating traditional processes build their own interconnected learning infrastructure
at different manufacturing levels, focusing on non-intrusive twinned interactions between skilled workers and legacy systems.
Consequently, all existing and required resources can be adaptively integrated, even if they vary for each industrial scenario.
14
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5.1. Comparative study

Table 6 compares the proposed Digital Twin Learning Ecosystem against four existing scenarios in outstanding productive
enters and research institutions in the literature. The comparison is carried out using different dimensions concerning digital
win-based learning approaches related to fault diagnosis, anomaly detection, and decision-making strategies, particularly for
raditional manufacturing SMEs. The columns describe the features (approach, asset, sensors, digital twin model, scenario, aim,
ata, automated learning type, and results) and metrics (number of samples and accuracy) to enable data-driven knowledge models
n these manufacturing systems.

From Table 6, it can be noted that one of the key points in which Digital Twin Learning Ecosystem is focused is a rapid
idirectional human-machine knowledge integration using small labeled samples for pattern recognition. Comparing industrial
igital twin learning approaches, Xia et al. [91] considers that the process of obtaining sufficient labeled data to train models
s expensive and laborious in industrial applications. Furthermore, Netzer et al. [92] also uses a pattern recognition system to detect
nomalies in a test series (10 individual tests in three repetitive machining segments) and applies a ‘‘human-in-the-loop approach’’
fter anomalies are detected to further enhance the system. Villalonga et al. [93] conducts the decision making about the process
ondition or state by analyzing residuals (difference between the actual output and the output estimated by the model), while
zen et al. [50] exposes that detailed simulations of the whole process using Computational Fluid Dynamics method are extremely
omputationally time consuming. Despite significant advances in intelligent data-driven methods, it is found that factories require
uman resources and data automation levels to support the vision of Industry 4.0.

To verify the results, complex heterogeneous scenarios governed by Operational Technologies in traditional manufacturing are
resented. In particular, Cimino et al. [6] has demonstrated that the use of the digital twin closes the loop with MES, thereby
nhancing the availability of field data for more consistent autonomous decision-making. For this purpose, Villalonga et al. [93]
as described the digital twin implemented in a MES-equipped assembly line, which is focused on monitoring machine states and
nergy consumption in a practical laboratory environment. Nevertheless, digital twins are dependent on interaction and an exchange
f data and information, where some operations are conducted manually and operational data are incomplete or missing due to a
ack of acquisition systems, specifically in SMEs. Instead, the Digital Twin Learning Ecosystem proposes an alternative bidirectional
on-intrusive digital twin approach based on generated data through an augmented interaction between workers, MES and legacy
quipment to avoid data dependence on proprietary systems. In this way, the visualization of the digital twin has the feedback
f the skilled workers and simultaneously offers in real-time knowledge-based decisions regarding the production orders and the
ealth status of the manufacturing systems. Özen et al. [50] has presented a study carried out in the ASAŞ Aluminum Factory
t Turkey which includes a future decision support system based on machine learning and digital twin models. It provides the
imulation capabilities of a real furnace, where all models are intended to replicate the real process in the digital platform as closely
s possible. The model will be used for day-by-day processes using fresh data from ASAŞ’s DCS system, to predict billet’s quality of
eal batches in quasi real-time. Thus, the application of human-machine knowledge-based operations in traditional SMEs has proven
o be a key factor in the Digital Twin Learning Ecosystem, enabling both the efficiency of the manufacturing process and workers’
earning by integrating existing resources in a short period of time.

.2. Machining workshop benefits achieved

In the first case study, the knowledge modeling process introduced in a traditional machining workshop helps a worker perform
ugmented maintenance operations from scratch in three months by detecting abnormal start-ups in a milling machine. In this
ndustrial scenario, as shown in Fig. 8, the human–machine interaction allows a rapid and flexible digital twin to be built, based
n the time series of working data and state changes from the physical counterpart. Despite the possibility of a false positive result
n the training stage, as evidenced by an adaptive human–machine interaction during the process, the involvement of a skilled
orker allowed the use of augmented human–machine interface devices to integrate expert knowledge. The worker facilitated the
ssessment of physical values in real time, anomaly labeling, and its association with datasets for further analysis using a semi-
upervised learning process. This digital twin bidirectional approach minimizes downtimes using a fully digitized context-aware
perator.

The use of human-machine interfaces and augmented procedures to monitor alarm thresholds in real time introduces an advanced
iagnosis well-known by the operator. When applied to the milling process, the diagnosis was useful for saving time and improving
he performance by interacting with the operational knowledge of the experienced operator. Both workers and industrial systems
ere simultaneously updated with a framework learning, which validated an example of the effective implementation and proved

he operational capability of the integration of existing legacy systems and human resources, as well as the value generated using
his approach.

.3. Foundry plant benefits achieved

In the second case study, the same system architecture and knowledge modeling process is used to replicate a custom-built
igital twin enhancing human-machine learning in a traditional foundry plant. Problems concerning the current coexistence of
ifferent technology levels in factories, such as legacy control systems that operate plant process monitoring, are now well known.
onsequently, the framework can be reused and all existing and required resources, such as humans or systems, can be adaptively
15
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Table 6
Digital Twin Learning Ecosystem compared with existing scenarios in outstanding productive centers and research institutions.

Ref. Digital
Twin-based
approach

Asset Digital twin
model

Scenario Aim Human-
machine
learning

Data acquisition

Ours Digital Twin
Learning
Ecosystem

Older
non-digitized
three-axis
milling machine,
Nicolas Correa
CF20

Start-up process
of a CNC milling
machine

Machining
workshop

Provide workers with
an augmented
decision-making
approach to evaluate
maintenance strategies
(predictive)

Yes Retrofitted
three-phase current
values. Time series
every second

Ours Digital Twin
Learning
Ecosystem

Induction
furnace with a
high-voltage
electrical source
(up to 12 MW)

Heating cycles of
an induction
furnace, used for
casting gray iron
parts

Foundry plant Assist plant staff in
making decisions in
real time to improve
the iron casting process

Yes Retrofitted data
from MES (energy
consumption,
temperature and
iron mass). Time
series every minute

[91] Digital
twin-enhanced
fault diagnosis
framework

Motor mounted
on a Drivetrain
Dynamics
Simulator

Induction motor
simulated using
COMSOL
Multiphysics
software

Experimental
machinery fault
simulator
(Drivetrain
Dynamics
Simulator
platform)

Predict fault categories No Three-phase stator
current signals

[92] Machine tool
process
monitoring

DMG 6-axis
milling center

Extraction of
patterns from
available time
series and
retrieval during
machine
operation

wbk Institute of
Production
Science,
Karlsruhe,
Germany

Anomaly detection for
indirect tool condition
monitoring

Yes 13 individual
signals from Milling
head position,
Spindle position,
Current, Spindle
current and Torque.

[93] Distributed
digital twin
framework for
manufacturing
processes

Simplified
mobile phone
prototype
assembly line.
Station (2)
‘‘Front Cover’’

Fault detection
and maintenance
scheduling
developed in
MATLAB

Industry 4.0
Laboratory at
the School of
Management of
Politecnico di
Milano

Improvement in
decision making about
abnormal situations at
local level

Yes Pressure signal in
the station 2

[50] Decision support
system based on
machine learning
and digital twin
models

Melting furnaces Operative digital
twin model for
the, melting
process using
ANSYS Twin
Builder v2021R1

ASAŞ Aluminum
Factory

Provide simulation
capabilities of the real
furnace to test
beforehand possible
process modifications
or improvements

No Company’s MES or
DCS platforms

Ref. Dataset Supervised learning Unsupervised
learning

Knowledge
transfer

Clustering-
based
learning

Results Real-
time

Sensors

Ours 19 days (at
the
beginning),
200 s

Pattern recognition.
Four different
working phases and
thresholds labeled
by operator using
limits and threshold
values

19 samples Collaborative
augmented
learning

K-means 4 samples tested.
75% by
thresholds
defined for each
phase

Yes Current sensors

Ours 8 heating
cycles

Pattern recognition.
Four different
working phases and
thresholds labeled
by operator using
limits and threshold
values

8 samples Collaborative
augmented
learning

K-means 4 samples tested
by R-squared
statistical
parameter
(0.979, 0.947,
0.98 and 0.994)

Yes Current
sensors,
temperature
sensors, weight
sensors

[91] 2000 samples
(real motor
signals) 500
for each
health state

Small labeled
dataset (10%)

Large
unlabeled
dataset
(90%)

DDA,
Adversarial
training

K-means 76% with only 1
labeled sample
of each category

Yes Current sensors

(continued on next page)
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Table 6 (continued).
[92] 10 individual

milling tests
(x3)

By pattern
recognition, 40
sub-sequences were
detected as part of
the milling process

Mean-Shift
Clustering

Pattern
recognition

Mean-Shift
Clustering

N/A No Integrated in
the milling
machine

[93] 41 operations
and 410
samples

Decision making
about the process
condition or state is
conducted by
analyzing residuals.
Threshold are used
corresponding to
normal operating
conditions

N/A Adaptive
learning

N/A Able to detect
abnormal
conditions.
Weighted sum of
the square of the
residuals (WSSR)

Yes Pressure
sensors

[50] 729 casting
processes

Ridge Regression
model, Random
Forest Regression,
Support Vector
Regression, Artificial
Neural Network
1-deep layer
network 8 neurons

N/A Decision
support
strategies

N/A Preliminary test
results for ASAŞ’
raw material
management
process (Si, Mg,
C, Fe, Cr)

No Furnace sensors

Fig. 8. Worker putting into practice augmented maintenance operations by detecting abnormal start-ups of a legacy milling machine.

In this industrial scenario, owing to the communication restrictions on proprietary supervisory systems, effective human-machine
interaction became possible only when a fully operational three-tier digital twin was deployed. This non-intrusive knowledge
example proved to be less demanding on resources and more flexible towards cloud solutions than other proprietary supervisory
or MES systems. Therefore, using this legacy approach means that digital twin services, providing a bidirectional connection to
interchange information between the digital twin and skilled workers, effectively overcome connectivity barriers in traditional
processes.

Knowledge modeling provided production staff with both digital twin-based models and indicators of manufacturing processes, as
shown in Fig. 9. Thus, the digital twin visualization that compares data with KPIs and workers’ expert knowledge to assist decisions in
real time allowed the staff to significantly improve the iron casting process. The interaction of workers and the integration of digital
information with the real environment provided enhanced human-machine learning, empowering workers’ skills, and building up
digital twin data flows.

The learning ecosystem allowed experienced workers to apply changes in heating cycles and improve them, thereby reducing
the cost of production. In particular, in the short period between January and July 2022, there was an improvement in the power
efficiency indicator in the induction furnace by approximately 9 percent, as shown on the right-hand side of Fig. 10, whereas the
amount of cast iron mass remained within normal values, as shown on the left-hand side of Fig. 10.
17



Internet of Things 25 (2024) 101094Á. García et al.
Fig. 9. (a) Induction furnace’s SCADA. (b) Custom-built online digital twin for the foundry production staff.

Fig. 10. KPIs comparison in the induction furnace between January and July 2022 of cast iron mass (left) vs. power efficiency indicator (right).

6. Conclusion

For decades, the traditional manufacturing industry has relied on skilled workers for the supervisory control of systems and
processes. In fact, the increasing business needs motivated by enhancing factors over the entire manufacturing life-cycle, are making
these same workers already face Industry 4.0 challenges. However, there is a lack of Industry 4.0-trained experts to conduct fieldwork
in human-machine collaboration frameworks. This represents a source of concern for industries that have not yet reached a sufficient
level of digital maturity. Consequently, existing case studies and Industry 4.0 programs to develop specific lifelong learning scenarios
for reskilling and upskilling the workforce, particularly those associated with operating traditional manufacturing processes, are still
sparse.

In general, there are limitations to sharing captured data of proprietary industrial equipment, commonly managed by automation
systems such as MES or SCADA. Moreover, the maintainability of the entire production process must be addressed before transform-
ing legacy manufacturing systems into smart manufacturing systems [94]. Thus, the convergence between legacy manufacturing
systems and next-generation Information Technologies such as cyber–physical systems, artificial intelligence, and digital twins in
SMEs remains an open challenge for continuous improvement. On the other hand, research on flexible and low-cost retrofitting
techniques effectively promotes the convergence of the physical and digital worlds. Therefore, it is possible to extend digital twins
in a non-intrusive way to manage different types of industrial ecosystems in SMEs, while also offering flexible opportunities to
overcome actual knowledge limitations for smart manufacturing in traditional processes.

To this end, this work contributes to a cyber–physical knowledge for human-machine bidirectional interaction, focusing on
adaptive digital twins [95], which can provide industrial systems with tailored cyber–physical convergence at different integration
levels, such as retrofitting, monitoring and human-machine learning. Knowledge-based improvements can be applied to traditional
SMEs, where there are many outdated systems, starting from scratch. Following this idea, this work also proposes the implementation
of a three-layer digital twin-based framework that meets cyber–physical requirements for human–machine integration at different
levels of the manufacturing process. Therefore, the implementation of digital twins, integrated seamlessly in a non-intrusive way,
contributes to human-machine adaptive learning to characterize systems and processes via knowledge modeling supported by
workers’ expertise. The validation and replication of the digital twin framework in two industrial SMEs (a machining workshop and
a foundry plant) demonstrated the same human-machine knowledge generation by applying a rapid and flexible semi-supervised
learning method, which models the physical values monitored from diverse retrofitted manufacturing systems, while also receiving
feedback from the workers.

As seen in these SME environments, there is a possibility of overcoming both legacy and workforce barriers. Digital twins have
proven to be effective in enhancing workers’ 4.0 skills to avoid technological exclusion risks. This approach is especially important
for traditional SMEs to learn tasks that require experienced plant-process knowledge that highly skilled operators usually have and
who are difficult to replace upon retirement. Although resistance to change can be an obstacle to innovation, particularly when new
technologies are tested and introduced in traditional SMEs, further research should consider the workers’ learning process to cope
with upcoming digital technologies. The removal of older workers from their jobs owing to lack of knowledge and confidence in
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new technologies poses a risk to their employment in the future. As reflected in the research findings, the available insights from
workers and their work methods could be adapted to other learning scenarios in a Digital Twin Learning Ecosystem and introduced
into teaching programs that concern workers’ lifelong learning and training in the manufacturing sector.
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