
Neural Networks 173 (2024) 106180

A
0
n

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Graph Neural Network contextual embedding for Deep Learning on tabular
data
Mario Villaizán-Vallelado a,b,∗, Matteo Salvatori a, Belén Carro b,
Antonio Javier Sanchez-Esguevillas b

a Artificial Intelligence Laboratory (AI-Lab), Telefonica I+D, Spain
b Universidad de Valladolid, Valladolid, 47011, Spain

A R T I C L E I N F O

Keywords:
Deep Learning
Graph Neural Network
Interaction Network
Contextual embedding
Tabular data
Artificial Intelligence

A B S T R A C T

All industries are trying to leverage Artificial Intelligence (AI) based on their existing big data which is available
in so called tabular form, where each record is composed of a number of heterogeneous continuous and
categorical columns also known as features. Deep Learning (DL) has constituted a major breakthrough for
AI in fields related to human skills like natural language processing, but its applicability to tabular data has
been more challenging. More classical Machine Learning (ML) models like tree-based ensemble ones usually
perform better. This paper presents a novel DL model using Graph Neural Network (GNN) more specifically
Interaction Network (IN), for contextual embedding and modeling interactions among tabular features. Its
results outperform those of a recently published survey with DL benchmark based on seven public datasets,
also achieving competitive results when compared to boosted-tree solutions.
1. Introduction

Many practical real-world applications store data in tabular form,
i.e. samples (rows) with the same set of attributes (columns). Medicine,
finance or recommender systems are some common examples.

DL success in tasks involving texts, images or audio has sparked
interest in its possible application to tabular data. Nevertheless, this
success is often achieved when the input data are homogeneous and
the structure used to organize the information provides insights about
the data understanding. All tokens in a sentence are instances of the
same categorical variable and their layout has semantic significance.
Pixels in an image are continuous and usually have spatial correlation.

Tabular data have two characteristics that hinder DL performance.
On one hand, tabular features are heterogeneous, having a mix of
continuous and categorical distributions that may correlate or be in-
dependent. On the other hand, the meaningfulness of tabular data row
is independent of the column order, i.e. position is arbitrary and does
not provide information.

Tree-based ensemble models such as XGBoost (Chen & Guestrin,
2016), CatBoost (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin,
2018), and LightGBM (Ke et al., 2017) achieve the state of the art
(SOTA) performance on tabular data: they have competitive prediction
accuracy and are fast to train. However, further research and devel-
opment of DL models for tabular data are motivated, by the fact that

∗ Corresponding author at: Universidad de Valladolid, Valladolid, 47011, Spain.
E-mail addresses: mario.villaizan@uva.es (M. Villaizán-Vallelado), matteo.salvatori@telefonica.com (M. Salvatori), belen.carro@uva.es (B. Carro),

antoniojavier.sanchez@uva.es (A.J. Sanchez-Esguevillas).

standard tree-based approaches have limitations, for example, in case
of continual learning, reinforcement learning or when tabular data is
only part of the model input, which also includes data such as images,
texts or audio.

Inspired by the success of contextual embedding in large language
models (for example BERT - Bidirectional Encoder Representations
from Transformers (Devlin, Chang, Lee, & Toutanova, 2019)), several
recent researches (Gorishniy, Rubachev, Khrulkov, & Babenko, 2021;
Huang, Khetan, Cvitkovic, & Karnin, 2020; Somepalli, Schwarzschild,
Goldblum, Bruss, & Goldstein, 2022) have investigated how to enhance
tabular feature representation (and hence global DL model perfor-
mance) by taking into consideration their context, that is, feature
interaction. The results obtained in these works, as well as the outcomes
of recent comparisons on many public datasets (Borisov et al., 2022),
illustrate how the contextual embedding approach tends to outperform
not only standard Multi-Layer Perceptron (MLP) models, but also more
complex models developed to solve complicated tasks (Cheng et al.,
2016; Guo, Tang, Ye, Li, & He, 2017; He et al., 2017; Naumov et al.,
2019; Wang et al., 2021) or models combining DL architectures with
standard ML approaches (Arik & Pfister, 2021; Popov, Morozov, &
Babenko, 2019).

Many of the most recent studies employ Transformer (Vaswani
et al., 2017) as a method for contextual embedding. However, in this
vailable online 16 February 2024
893-6080/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.neunet.2024.106180
Received 28 July 2023; Received in revised form 29 January 2024; Accepted 13 Fe
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

bruary 2024

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:mario.villaizan@uva.es
mailto:matteo.salvatori@telefonica.com
mailto:belen.carro@uva.es
mailto:antoniojavier.sanchez@uva.es
https://doi.org/10.1016/j.neunet.2024.106180
https://doi.org/10.1016/j.neunet.2024.106180
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106180&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
paper, we look at how to use a GNN to improve contextual embedding
for tabular data. GNNs are a special subset of neural networks that
are capable of managing information organized in a graph which is
a structure with variable shape or size and with complex topological
relations. One of the most important features of a graph is that its
meaning does not depend on the order of its nodes, just as the meaning
of a tabular row does not depend on the order of its columns.

Contributions. The contributions of our paper are summarized as
follows:

• We introduce Interaction Network Contextual Embedding (INCE),
a DL model for tabular data that employs GNNs and, more specif-
ically, Interaction Networks (Battaglia et al., 2018; Battaglia,
Pascanu, Lai, Rezende, & Kavukcuoglu, 2016; Sanchez-Gonzalez,
Godwin, Pfaff, Ying, Leskovec, & Battaglia, 2020) for contextual
embedding. First, all features (categorical and continuous) are
individually projected in a common dense latent space. The re-
sultant feature embedding is organized in a fully-connected graph
with an extra virtual node, called <CLS> as in BERT (Devlin et al.,
2019). Then, a stack of INs models the relationship among all the
nodes (original features and <CLS> virtual node) and enhances
their representation. The resulting <CLS> virtual node is sent into
the final classifier/regressor. For sake of reproducibility, we share
an implementation of INCE1.2

• We compare INCE against a wide range of deep tabular models
and generally used tree-based approaches, using as benchmark
the tabular datasets provided in Borisov et al. (2022) plus two
new datasets with a large number of features. INCE outperforms
all other DL methods on average, and it achieves competitive
results when compared to boosted-tree solutions.

• We analyze which aspects of the GNN contextual embedder de-
sign are more significant for the model performance. More in de-
tails, we compare contextual embedding as complexity increases:
MLP without graph embedding → GCN (Kipf & Welling, 2017)
→ GAT (Veličković, Cucurull, Casanova, Romero, Lio, & Ben-
gio, 2018) → Transformer Encoder → IN. In each step, a new
model feature is incrementally added resulting in a continu-
ously superior performance on the benchmark of this paper.
Moving from MLP to GNN implies introducing the representation
of the tabular row as a fully connected graph and the use of
a GNN-like contextual embedder that takes advantage of graph
topology without discriminating the importance of existing edges.
GAT/Transformer Encoder/IN utilize some soft-link-prune, that
is they learn graph edge weights and use them to differentiate
the neighborhood contribution to contextual node update. Finally
moving from GAT → Transformer Encoder → IN the complexity
of mechanism able to learn the edge weights is increased. The
main findings can be summarized in the following: (1) Represent
a tabular row as a fully-connected-graph. This enables the use of
GNN-like contextual embedding which has less learning bias than
a standard MLP (2) Choose GNN-like contextual embedders, that
can explicitly model the edge strength (GAT/Transformer/IN bet-
ter than GCN): not all features interact in the same manner, and
distinguishing the strength of the different interactions is crucial
for determining which neighborhoods are more relevant for the
current-feature final representation (3) Increase the complexity
of the mechanism modeling the edge strength (IN better than
Transformer, Transformer better than GAT).

• We thoroughly investigate the differences between contextual
embeddings based on Transformer Encoder and IN and analyze
the influence of IN hyperparameters on model performance: qual-
ity of results, model size, computational time. Regardless of the
dataset or task challenge, we gain a collection of patterns that aid
in the establishment of a strong baseline.

1 https://github.com/MatteoSalvatori/INCE
2 https://codeocean.com/capsule/2256574
2

• We investigate the interpretability of the IN ensuing contextual
embeddings. On the one hand, we focus on the feature–feature
relationship discovered by the IN, while on the other hand, we
concentrate on how contextual embeddings improve traditional
context-free embeddings.

2. Related work

Standard Tabular Models. As already commented, when dealing
with tabular data, tree-based ensemble models such as XGBoost, Cat-
Boost and LightGBM are often a popular choice. They usually provide
high performance regardless of the amount of data available, as they
can handle many data types, are resilient in the case of null values, are
fast to train and can be interpreted at least globally.

Deep Tabular Models. Due to the success of DL in task involving
texts, sound or images, many efforts are being made to find the best
approach to apply these models to tabular data (Arik & Pfister, 2021;
Gorishniy et al., 2021; Huang et al., 2020; Joseph & Raj, 2022; Kotel-
nikov, Baranchuk, Rubachev, & Babenko, 2023; Somepalli et al., 2022).
Most of these efforts belong to one of the 3 categories described below.

Modeling of multiplicative interactions between features Modeling ex-
plicitly the interaction between features of a tabular dataset (Cheng
et al., 2016; Guo et al., 2017; He et al., 2017; Naumov et al., 2019;
Wang et al., 2021) has been shown to have a significant impact on the
performance of deep learning models in applications such as recom-
mender systems and click-through-rate prediction. Nevertheless, recent
comparisons (Borisov et al., 2022; Gorishniy et al., 2021) show that
these approaches produce worse outcomes than the rest of categories
described below.

Hybrid models. Hybrid models transform the tabular data and com-
bine deep neural networks with classical ML approaches, frequently
decision trees. Those kind of hybrid models can be designed to be
optimized in a fully-differentiable end-to-end pipeline or to bene-
fit from non-differentiable approaches combined with deep neural
networks. NODE (Popov et al., 2019) is partially inspired by Cat-
Boost (Prokhorenkova et al., 2018) and provides an example of fully
differentiable model based on an ensemble of oblivious
decision trees (Langley & Sage, 1994). Entmax transformation and soft
splits allow to obtain a fully differentiable end-to-end optimization.
Other examples of fully-differentiable hybrid architecture are (Frosst &
Hinton, 2017; Katzir, Elidan, & El-Yaniv, 2021; Luo, Cheng, Yu, & Yi,
2021). On the other hand, DeepGBM model (Ke, Xu, Zhang, Bian, & Liu,
2019) is an example of how to take advantage from the combination of
non-differentiable approaches with deep neural networks. It combines
deep neural network flexibility with gradient boosting decision tree
preprocessing capabilities. TabNN (Ke, Zhang, Xu, Bian, & Liu, 2019)
first distills the knowledge from gradient boosting decision trees to
retrieve feature groups and then constructs a neural network based
on feature combinations produced by clusterizing the results of the
previous step.

Transformer-based models. Many of DL recent successes have been
driven by the use of transformer-based methods (Devlin et al., 2019;
Dosovitskiy et al., 2021; Radford et al., 2018) inspiring the proposal of
multiple approaches using deep attention mechanisms (Vaswani et al.,
2017) for heterogeneous tabular data. The TabNet (Arik & Pfister,
2021) design is inspired by decision trees: a set of subnetworks is
processed in a hierarchical order and the results of all decision steps are
aggregated in order to obtain the final prediction. A feature transformer
module chooses which features should be transferred to the next deci-
sion step and which should be employed to get the output at the present
decision phase. TabTransformer (Huang et al., 2020) uses Transformer
to improve the contextual embeddings of tabular features. First, each
categorical variable goes through a specific embedding layer. A stack of
Transformers is then used to enhance the categorical feature represen-
tation. The final contextual embedding is given by the concatenation
of the so obtained categorical representation and the initial continuous

https://github.com/MatteoSalvatori/INCE
https://codeocean.com/capsule/2256574/


Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
features. In FT-Transformer (Gorishniy et al., 2021), columnar transfor-
mations (embeddings) are applied to both categorical and continuous
features. As in BERT (Devlin et al., 2019), a <CLS> token is added
to the set of columnar embeddings and then, a stack of transformer
layers, are applied. The final <CLS> representation is employed as final
contextual embedding, i.e. for predictions. SAINT (Somepalli et al.,
2022) combines the self-attention between features of the same tabular
row with inter-sample attention over multiple-rows. When handling
missing or noisy data, this mechanism allows the model to borrow the
corresponding information from similar samples.

As in Gorishniy et al. (2021), Huang et al. (2020), Somepalli et al.
(2022), we investigate how contextual embedding affects the final
model performance on supervised tasks. The main difference from the
existing research is that in our approach, the contextual embedding is
provided via GNNs and, more specifically, by INs.

Graph Neural Network and Interaction Network. In case of
neural networks such as Convolutional Neural Network or Transformer,
the inputs must be structured data (grid and sequence, respectively).
GNN are a special subset of neural networks that can cope with less
structured data, such as a graph. This means that the input can have
arbitrary shapes and sizes, and can have complex topological relations.
Permutation invariance is a crucial feature distinguishing GNN from the
rest of neural networks. The order of nodes in a graph has no relevance,
this means, that the way in which we order the nodes in a graph does
not impact the results produced by GNNs. In a tabular dataset, the order
of features (columns) does not have any meaning, so GNN is a good
candidate to model the interaction between them.

The flow of a GNN can be modeled using the Message-Passing
scheme. (a) For each pair of nodes (𝑢, 𝑣) in the graph, a message
𝑀

(

𝑢, 𝑣, 𝑒𝑢,𝑣
)

from 𝑣 to 𝑢 is created. Here 𝑢, 𝑣 are the embedding of
nodes and 𝑒𝑢,𝑣 is the (optional) embedding of edge. (b) Each node
aggregates the messages coming from all its neighbors. The aggregation
must be permutation-invariant. (c) The node is updated using its initial
representation and the information obtained in point b.

It is simple to find a map between the Message-Passing scheme
and the contextual embedding of tabular features. (a) Initial node
representation is given by columnar feature embeddings. (b) Message-
passing through edges is the pairwise interaction between features. (c)
The neighbor aggregation represents the effect of the interaction of
current feature with all its neighbors. (d) The update step provides the
contextual representation of each feature.

In this paper, we investigate the benefits of using INs for contextual
embeddings of tabular data. They are a low-biased family of GNN that
have obtained enormous success when applied to simulation of complex
physics or weather forecasting (Lam et al., 2023).

The potential of GNNs has attracted the community interest, and
various attempts have been made to apply this type of solution to
tabular data. To the best of our knowledge, past research has mostly
focused on utilizing GNN to learn relationships between samples in
the same table or in distinct entities of a relational database. On the
contrary, in our method we prioritize modeling feature relationships. The
approaches are complimentary, and we leave it to future research to
figure out how to integrate them.

TabGNN (Guo et al., 2021) focuses on modeling the relation be-
tween samples of the same table. Using a set of heuristics, a multiplex
graph (i.e. a graph modeling different types of relations between nodes)
is previously built from sample features. A specific GNN obtains a
customized sample representation for each edge type (i.e. for each type
of node-to-node relation) and then an attention mechanism combines
all contributions. This mechanism can be used in conjunction with
other embedding strategies. In Du et al. (2022), to model the cross-
sample and cross-column patterns a hypergraph is built from relevant
data instance retrieval. Then a novel architecture of message-passing
enhances the target data representation. Finally, in Bai et al. (2021),
Cvitkovic (2020), GNNs are used to automatize and improve the fea-
tures extraction in a relational database with a set of tables and foreign
keys relationships.
3

Fig. 1. The encoder–decoder perspective (Hamilton, 2020): an encoder model maps
each tabular dataset feature into a latent vector, a decoder model uses the embeddings
to solve the supervised learning task. In the encoding step, first a columnar embedding
individually projects any feature in a common latent space and then a contextual
embedding improves these representations taking into account the relationships among
features. The decoder MLP transforms the contextual embedding output in the final
model prediction.

Fig. 2. The columnar embedding is responsible for projecting all the heterogeneous
features in the tabular dataset in a common latent space. For each feature, a continuous
or categorical transformation is defined. The columnar embedding ignores any potential
relationship or similarity between the tabular dataset features.

3. Interaction Network Contextual Embedding

This section introduces the INCE model and describes its compo-
nents in depth.

Problem Definition. We focus on supervised learning problems
with tabular datasets 𝐷 =

{

𝑥𝑗𝑐𝑖 , 𝑥
𝑗𝑛
𝑖 , 𝑦𝑖

}𝑁

𝑖=1
where 𝑥𝑗𝑛𝑖 with 𝑗𝑛 ∈ [1,𝑀𝑛𝑢𝑚]

is the set of numerical features, 𝑥𝑗𝑐𝑖 with 𝑗𝑐 ∈
[

1,𝑀𝑐𝑎𝑡
]

is the set of
categorical features, 𝑦𝑖 is the label, 𝑖 ∈ [1, 𝑁] counts the dataset rows,
𝑁 is the total number of rows and 𝑀 = 𝑀𝑛𝑢𝑚 +𝑀𝑐𝑎𝑡 is total number of
features.

Encoder–Decoder Perspective.
As in Hamilton (2020), we use the encoder–decoder perspective,

Fig. 1. First an encoder model maps each tabular dataset feature into
a latent vector or embedding and then a decoder model takes the
embeddings and uses them to solve the supervised learning task.

The encoder model is composed by two components: the columnar
and the contextual embedding. The decoder model is given by a MLP
tuned to the learning task to solve.

Encoder - Columnar Embedding. All of the original tabular het-
erogeneous features are projected in the same homogeneous and dense
𝑙-dimensional latent space by the columnar embedding depicted in
Fig. 2. As in the (Gorishniy et al., 2021; Somepalli et al., 2022),
the columnar embedding 𝑐𝑗𝑛𝑖 , 𝑐𝑗𝑐𝑖 ∈ R𝑙 of continuous and categorical
features 𝑥𝑗𝑛𝑖 , 𝑥𝑗𝑐𝑖 are obtained as follows:

𝑐𝑗𝑛𝑖 = ReLU
(

𝑏𝑗𝑛 + 𝑥𝑗𝑛𝑖 ⋅𝑊 𝑗𝑛
𝑛𝑢𝑚

)

𝑊 𝑗𝑛
𝑛𝑢𝑚 ∈ R𝑙 (1)

𝑐𝑗𝑐𝑖 = 𝑏𝑗𝑐 + ℎ𝑇𝑗𝑐𝑊
𝑗𝑐
𝑐𝑎𝑡 𝑊 𝑗𝑐

𝑐𝑎𝑡 ∈ R|𝑗𝑐 |×𝑙 (2)

where ReLU is the non-linear activation function for the continuous
embedding, 𝑏𝑗𝑛 , 𝑏𝑗𝑐 are the feature bias, 𝑊 𝑗𝑛

𝑛𝑢𝑚 ∈ R𝑙 is a learnable vector,
𝑊 𝑗𝑐

𝑐𝑎𝑡 ∈ R|𝑗𝑐 |×𝑙 is a learnable lookup table and |𝑗𝑐 | and ℎ𝑇𝑗𝑐 are the size and
the one-hot representation of the categorical feature 𝑥𝑗𝑐𝑖 , respectively.

Encoder - Contextual Embedding. The columnar embedding works
feature by feature and has trouble identifying correlation or more
general relationships between features in tabular datasets. To overcome
this limitation, a contextual embedding is introduced. In contrast to
recent research (Arik & Pfister, 2021; Gorishniy et al., 2021; Huang
et al., 2020; Somepalli et al., 2022) that use Transformer, we pro-
pose a contextual embedding based on GNN and, more specifically,

IN (Battaglia et al., 2018, 2016; Sanchez-Gonzalez et al., 2020).



Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
Fig. 3. Contextual embedding. (a) Homogeneous and fully-connected graph: it contains
a node for each initial tabular feature and a bidirectional-edge for each pair of nodes.
The initial node representation is obtained by the columnar embedding. A virtual <CLS>
node is introduced to characterize the global graph state. (b) A stack of IN (Battaglia
et al., 2016) models node interactions to create a more accurate representation of nodes
(i.e. tabular features). (c) The final representation of the <CLS> virtual node is used
as contextual embedding.

In this approach, the initial supervised learning task on tabular
data is turned into a graph state estimation issue in which a categor-
ical (classification task) or a continuous (regression task) graph state
must be predicted. Taking into account the initial node representation
(i.e. columnar embedding) and graph edges, a stack of GNNs has to
model the interactions among nodes in the latent space and learn a
richer representation of the entire graph capable of improving state
estimation.

As shown in Fig. 3, the first step consists of building a fully-
connected graph. For each original tabular feature, a node is created
𝑛𝑗 ≡ 𝑥𝑗 and for each pair of nodes (𝑛𝑗1 , 𝑛𝑗2 ), two directed and inde-
pendent edges are defined: 𝑒𝑗1𝑗2 ∶ 𝑛𝑗1 → 𝑛𝑗2 and 𝑒𝑗2𝑗1 ∶ 𝑛𝑗2 → 𝑛𝑗1 .
The dense 𝑙−dimensional vector 𝑐𝑗 ∈ R𝑑 obtained from the columnar
embedding is used as initial node representation, giving rise to an
homogeneous graph. No positional embedding is used to improve the
node representation: the original tabular features are heterogeneous
and each one is projected in the common latent space using a separate
columnar embedding. This is enough to distinguish the nodes among
them without explicitly modeling their position in the graph.3 As in
the BERT (Devlin et al., 2019), a virtual <CLS> node connected to
each existing node is added to the graph. The 𝑙−dimensional initial
representation of the <CLS> virtual node is a vector of learnable
parameters. No features are initially considered for the edges 𝑒𝑖𝑗 .

In the following step, a stack of INs is used to improve the repre-
sentation of each node and edge in the graph. The final <CLS> vector
embedding produced by the stack of INs is used as global representation
of the graph, i.e. as a contextual embedding of the tabular row.4

Interaction Network. The workflow of a standard IN
layer (Battaglia et al., 2018, 2016) is described in Fig. 4. In the first
step, the representation of each edge (i.e. interaction between each pair
of tabular features) is updated using the information of the adjacent
nodes (i.e. pair of tabular features):

𝑒′𝑗1→𝑗2
= MLPE

(

Concat
(

𝑛𝑗1 , 𝑛𝑗2 , 𝑒𝑗1→𝑗2

))

(3)

where 𝑛𝑗 , 𝑒𝑗1𝑗2 ∈ R𝑙 are respectively node and edge representation,
MLPE is the shared neural network used to update all the graph edges.
To simplify the notation we have suppressed the row index.

In the second step, all the messages coming from the incoming edges
are aggregated and used to update the node representation:

𝑛′𝑗 = MLPN

(

Concat
(

𝑛𝑗 ,
∑

𝑘∈
𝑒𝑘→𝑗

))

(4)

3 We have explicitly tested this hypothesis and the experiments confirm that
the use of positional embedding does not improve the model performance.

4 We have explicitly examined several approaches of pooling the node
representation learned by GNN. Our findings are consistent with the literature:
the additional virtual <CLS> node method outperforms all the other proposals.
4

Fig. 4. Interaction Network layer. Graph nodes and edges are represented by circles
and rhombuses, respectively. The operators cat and 𝛴 denote concatenation and sum
of latent space features, respectively. The workflow goes from bottom to top. In the
first step, the representation of each edge is updated using the information of the
adjacent nodes. In the second step, all the messages coming from the incoming edges
are aggregated and used to update the node representation. The residual connection
between the initial and updated representations yields the final node and edge.

where  is the set of 𝑛𝑗 neighborhoods and MLPN is the shared neural
network used to update all the graph nodes.

The residual connection between the initial and updated represen-
tations yields the final node and edge representations:

𝑛𝑗 = 𝑛′𝑗 + 𝑛𝑗

𝑒𝑗1→𝑗2 = 𝑒′𝑗1→𝑗2
+ 𝑒𝑗1→𝑗2 (5)

Decoder. The decoder MLPDEC receives the contextual embedding
computed by the encoder. It is a MLP where the final output layer size
and activation function are adapted to the supervised learning problem
to solve, classification or regression.

4. Experiments

Borisov et al. (2022) provides a detailed review on the literature
of DL on tabular data together with an extensive empirical compari-
son of traditional ML methods and DL models on multiple real-world
heterogeneous tabular datasets.

For our experiments, we reinforce the benchmark proposed therein
with two new datasets (Katzir et al., 2021) with a significant number of
features to investigate how the different models scale with the amount
of features.

Data. The main properties of datasets are summarized in Table 1.



Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
Table 1
Tabular benchmark properties.

Dataset Rows Num. Feats Cat. Feats Task

HELOC 9871 21 2 Binary
Gas Concentrations 13 910 129 0 Multi-Class (6)
California Housing 20 640 8 0 Regression
Adult Incoming 32 561 6 8 Binary
Otto Group 61 900 93 0 Multi-Class (9)
Forest Cover Type 581 K 10 2(4 + 40) Multi-Class (7)
HIGGS 11 M 27 1 Binary

HELOC (FICO, 2019): Home Equity Line of Credit (HELOC) pro-
vided by FICO (a data analytics company), contains anonymized credit
applications of HELOC credit lines. The dataset contains 21 numerical
and two categorical features characterizing the applicant to the HELOC
credit line. The task is a binary classification and the goal is to predict
whether the applicant will make timely payments over a two-year
period.

Gas Concentrations (Alex et al., 2012): The dataset contains mea-
surements from 16 chemical sensors exposed to six gases at different
concentration levels. It contains 13.9M of rows and 129 continuous
features and the classification task is to determine which is the gas
generating the data.

California Housing (Pace & Barry, 1997): The information refers to
the houses located in a certain California district, as well as some basic
statistics about them based on 1990 census data. This is a regression
task, which requires to forecast the price of a property.

Adult Incoming (Becker & Kohavi, 1996): Personal details such as
age, gender or education level, are used to predict whether an individ-
ual would earn more or less than 50k$ per year.

Otto Group (Bossan, Feigl, & Kan, 2015): The dataset provided by
Otto Group (an e-commerce company) has 61.9 K of rows and 93
continuous product attributes, and the multi-class (9) classification
problem consists of determining which category each product belongs
to.

Forest Cover Type (Blackard, 1998): Cartographic variables are used
to predict the forest cover type: it is a multi-class (seven) classification
task. The first eight features are continuous whereas the last two are
categorical, with four and 40 levels respectively.

HIGGS (Baldi, Sadowski, & Whiteson, 2014): The dataset contains
11M of rows and 28 features where the first 21 are kinematic properties
measured by the particle detectors, and the last seven are processed
features built by physicists. The data has been produced using Monte
Carlo simulations and the binary classification task is to distinguish
between signals with Higgs bosons and a background process.

Data Preprocessing. We reproduce the same data preprocessing
described in Borisov et al. (2022). Zero-mean and unit-variance normal-
ization is applied to the numerical features whereas an ordinal encoding
is used for the categorical ones. The missing values were imputed with
zeros.

Baselines. INCE is compared to the following models. Standard
methods: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), CatBoost (Prokhorenkova et al., 2018). Deep learning models:
MLP (McCulloch & Pitts, 1943), DeepFM (Guo et al., 2017), Tab-
Trasformer (Huang et al., 2020), SAINT (Somepalli et al., 2022),
FT-Transformer (Gorishniy et al., 2021). The baseline chosen are ones
with the best performance in Borisov et al. (2022). It should be noted
that we include in our study the FT-Transformer that is subsequent
to Borisov et al. (2022).

Contextual-Embedding comparison. To emphasize how critical is
the choice of the contextual embedding, we include in the comparison
several versions of INCE where the contextual embedding is modified
replacing the stack of INs by other architectures able to work with
graph structured data. More in detail, all the INCE versions follow
5

the workflow depicted in Fig. 1: they share columnar embedding and
decoder and differ by the choice of the contextual embedding archi-
tecture. In our analysis, we explore both GNN models (GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), IN) and Transformer
Encoders. Notice that the comparison includes two types of contextual
embeddings, on the one hand, those which dynamically learn graph
edge weights and use them to differentiate the neighborhood contri-
bution to the node update (i.e. designs utilizing some soft-link-prune
method) such as GAT, IN or Transformer Encoder and, on the other,
those which take advantage of graph topology without discriminating
the importance of existing graph edges such as GCN.

Setup. For each tabular dataset, we use the Optuna library (Akiba,
Sano, Yanase, Ohta, & Koyama, 2019) with 50 iterations to fine-tune the
hyperparameters. Each hyperparameter configuration is cross-validated
with five folds. The search space for each baseline model as well as
for each INCE version is described in Appendix B. All the DL code
is implemented using PyTorch (Paszke et al., 2019) and PyTorch-
Geometric (Fey & Lenssen, 2019) and parallelized with Ray (Moritz
et al., 2018).

4.1. Results

In Table 2 we report the results on the tabular benchmark described
above. In six of seven datasets, INCE outperforms all the DL baselines.
In the seventh, HIGGS case, INCE ties with SAINT model (Somepalli
et al., 2022), but largely above the rest of DL models. In two of the
seven datasets, INCE outperforms tree-based models, while in the other
five it achieves results that are competitive with them reducing the gap
between tree-based and deep learning models as shown for example by
the mean rank column of Table 2.

With respect to contextual embedding comparison, the main findings
are the followings:

1. Regardless of the implementation, the contextual embedding
allows to improve model performance. All the INCE versions
outperforms MLP.

2. GAT, Transformer, and IN outperform GCN systemically. In our
workflow the original tabular row is turned into a fully con-
nected graph where each node is given by the columnar embed-
ding of the original tabular features. The graph is fully-connected
and all the edges have the same initial weight (i.e. importance).
Nonetheless, GAT, Transformer Encoder and IN, all employ a
mechanism to compute dynamically the weights to be assigned
to each edge in the fully connected graph: attention mechanism
in GAT and Transformer Encoder case and the edge update rule
of Eq. (3) in the IN case. These weights allow discerning the
relevance of each neighborhood contribution to the contextual
embedding of each node. GCN, on the other hand, uses the graph
topology to figure out which are the current node neighborhoods
but without a way to differentiate between neighborhoods, all of
them have the same relevance. In a fully connected graph, the
situation is even worse since each node is a neighbor to every
node and all have the same importance.

3. IN and Transformer Encoder get the best results being IN the
best on the current benchmark and using the proposed workflow.
In Section 5.1, we deeply analyze IN and Transformer Encoder,
underlining similarities and differences between them.

4. The results are consistent regardless of dataset size and number
of features. Regarding the latter, it is crucial to note that, while
the 129 features of the Gas Concentration dataset may appear to
be a large amount of features for a tabular dataset, a graph with
129 nodes remains a relatively tiny graph.



Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
Table 2
Experiment results. Mean Squared Error (MSE) and accuracy are the metrics used in regression and classification case, respectively. An up/down arrow near the dataset name
indicates whether the corresponding metric has to be minimized or maximized. For each dataset the first and second best results are highlighted using bold and underlined format.
The last column computes the mean rank of each model across all datasets. Notice that with the resources available (Processor: i7-7700HQ (2.8 GHz), RAM: 32 GB, and GPU:
GeForce GTX 1070 (8 GB)), the SAINT and DeepFM models could not be executed for datasets with a large number of features, such as Gas and Otto.

HELOC ↑ Gas ↑ Cal. Hous. ↓ Adult Inc. ↑ Otto ↑ Forest Cov. ↑ HIGGS ↑ Mean Rank ↓

LightGBM 83.5 ± 0.2 99.2 ± 0.2 𝟎.𝟏𝟗𝟓 ± 𝟎.𝟎𝟎𝟔 𝟖𝟕.𝟒 ± 𝟎.𝟑 95.8 ± 0.1 93.4 ± 0.2 77.1 ± 0.0 4.14
XGBoost 83.7 ± 0.3 𝟗𝟗.𝟑 ± 𝟎.𝟏 0.198 ± 0.003 87.2 ± 0.3 𝟗𝟔.𝟕 ± 𝟎.𝟐 𝟗𝟕.𝟐 ± 𝟎.𝟏 77.6 ± 0.0 𝟐.𝟓𝟕
CatBoost 83.5 ± 0.4 99.2 ± 0.2 0.197 ± 0.005 87.1 ± 0.1 96.4 ± 0.1 96.3 ± 0.2 77.5 ± 0.0 3.43

MLP 73.3 ± 0.4 92.7 ± 0.3 0.284 ± 0.009 84.8 ± 0.1 88.5 ± 0.1 91.0 ± 0.4 76.9 ± 0.0 10.71
DeepFM 73.6 ± 0.2 – 0.260 ± 0.006 86.1 ± 0.2 – 92.1 ± 0.3 76.9 ± 0.0 6.57
TabTransformer 73.3 ± 0.1 95.1 ± 0.3 0.331 ± 0.008 85.2 ± 0.2 89.2 ± 0.2 76.5 ± 0.3 77.0 ± 0.0 10.43
FT-Transformer 83.8 ± 0.3 98.7 ± 0.1 0.228 ± 0.006 86.5 ± 0.3 94.5 ± 0.2 95.8 ± 0.1 78.5 ± 0.0 4.29
SAINT 82.1 ± 0.3 – 0.229 ± 0.005 86.1 ± 0.4 – 96.2 ± 0.2 𝟕𝟗.𝟏 ± 𝟎.𝟎 3.86

INCE-GCN 82.0 ± 0.2 98.5 ± 0.1 0.268 ± 0.003 85.9 ± 0.19 92.3 ± 0.1 93.3 ± 0.1 75.8 ± 0.0 9.29
INCE-GAT 82.2 ± 0.4 98.5 ± 0.1 0.234 ± 0.004 86.0 ± 0.2 93.8 ± 0.1 93.6 ± 0.1 77.7 ± 0.1 7.14
INCE-Transformer 83.8 ± 0.3 98.7 ± 0.1 0.228 ± 0.006 86.5 ± 0.3 94.5 ± 0.2 95.8 ± 0.1 78.5 ± 0.0 4.29

INCE 𝟖𝟒.𝟐 ± 𝟎.𝟓 99.1 ± 0.0 0.216 ± 0.007 86.8 ± 0.3 96.1 ± 0.1 97.1 ± 0.1 𝟕𝟗.𝟏 ± 𝟎.𝟎 2.71
5. Deep dive in Interaction Network

For each tabular dataset, we have studied how the choice of IN
hyperparameters (latent space size 𝑙, MLPN, E depth 𝑑 and number
𝑛 of stacked INs) influences the model behavior: number of train-
able parameters, performance and computational time. The findings
from the various datasets reveal similar patterns, leading to consistent
conclusions.

Trainable parameters. The number of trainable parameters   (IN)
of a stack of 𝑛 INs is given by:

  (IN) =
𝑛
∑

𝑖=1
 

(

IN𝑖)

=
𝑛
∑

𝑖=1

[

 
(

MLPi
E

)

+  
(

MLPi
N

)]

 
(

MLPi
N

)

=
(

2 ⋅ 𝑙2 + 𝑙
)

+ (𝑑 − 1) ⋅
(

𝑙2 + 𝑙
)

 
(

MLPi
E

)

=
(

𝐾𝑖 ⋅ 𝑙
2 + 𝑙

)

+ (𝑑 − 1) ⋅
(

𝑙2 + 𝑙
)

(6)

where 𝐾𝑖 = 2 if 𝑖 = 1 and 𝐾𝑖 = 3 otherwise. We consider all the hidden
layers of MLPE, N of the same size. The difference in the number of
parameters between MLP𝑖=1

E and MLP𝑖>1
E is due to the fact that all IN

with 𝑖 > 1 receive the edge features computed by preceding layers,
whilst the first IN does not use any initial edge features.

The quantity of trainable parameters increases quadratically with
the size of the latent space and linearly with the number of stacked INs
or the MLPE, N depth, Fig. 5. The slope of the straight line correspond-
ing to the number of stacked INs is steeper than the one relative to the
MLPE, N depth.

Performance. Our experiments suggest that whereas the latent
space size needs to be fine-tuned for each dataset, the impact of MLPE, N
depth 𝑑 and number 𝑛 of stacked INs does not depend on the supervised
learning problem to solve. The configuration with 𝑑 = 3 and 𝑛 = 2 is a
solid baseline regardless of the underlying task.

To clarify this point, in Fig. 6 we show how the normalized metric
changes as a function of the MLPE, N depth and the number of stacked
INs. The normalized metric is a global performance measure (higher is
better) generated using the findings from all of the datasets as described
in Appendix A. The normalized metric is a global performance measure
(higher is better) generated averaging the metrics from all of the
datasets obtained using the algorithm described in Appendix A.

The left side plot in Fig. 6 depicts the normalized metric curves 𝑑
(blue line) and 𝑛 (orange line) obtained modifying 𝑑 and 𝑛 respectively
while the other parameters are kept constant. The information on the
right side plot is the same as on the left, but it is compared to the
normalized number of trainable parameters.

The depth 𝑑 of the shared neural networks MLPN, E has the most
impact on the model performance and, at the same time, it has re-
duced effect on the number of learnable parameters. These results are
6

Fig. 5. Growth of the normalized   (IN) as a function of MLPE, N depth, number
of stacked INs and latent space size. The plot on the left compares the evolution of
  (IN) when two hyperparameters are fixed and the third is increased. The plot on
right is a zoom on the contribution of MLPE, N depth and number of stacked INs. The
baseline used to normalize   (IN) is given by the number of trainable parameters of
the simplest case: 𝑙 = 16, 𝑑 = 1, 𝑛 = 1. It is trivial to show using Eq. (6) that the
behavior of normalized   (IN) curve does not depend on the particular choice of the
baseline latent space size 𝑙.

Fig. 6. Average normalized metric. Left side plot depicts how the normalized metric
changes when the MLPE, N depth or the number of stacked INs is increased and the
other is kept constant. The right side plot shows the same information but referenced
to the normalized number of trainable parameters.

coherent with the observed behavior of the Optuna (Akiba et al., 2019)
bayesian optimizer. Regardless of the supervised learning problem,
after few attempts, it quickly reduces search space for 𝑑 to [3, 4] and
then it fine-tunes the number of stacked INs in the range [2, 3]. The
configuration with 𝑑 = 3 and 𝑛 = 2 is always a solid candidate
regardless of the tabular dataset.



Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
Fig. 7. Average normalized training time. For each dataset the INCE training time
is normalized using the time of the corresponding MLP with the same columnar
embedding and decoder but without contextual embeddings. All the results are relative
to a batch size of 256. Starting from the configuration base 𝑙 = 16, 𝑛 = 1 and 𝑑 = 1,
the different curves are computed modifying one parameter while the others are kept
constant.

Why adding more than two layers does not improve the contextual
encoder capability? We interpret this as follows. (a) The number of
nodes in the graph is small. In our formulation there is a node for
each tabular feature and the number of them goes from eight (Cali-
fornia Housing) to 129 (Gas Concentrations). After two IN layers, the
information of a node has been transmitted to every other node in the
graph. (b) We are working with a fully connected graph, i.e. a trivial
topology. The IN has to model the strength of each edge but the initial
topological information seems to be poor. (c) The size of datasets is
limited (excluding HIGGS).

Computational time. Fig. 7 shows how the number of features
in the tabular dataset as well as the INCE configuration (latent space
size, number of stacked IN and MLPN, E depth) impact on the training
time. In particular, Fig. 7 presents the average training time for a batch
size of 256. All the INCE training times are normalized by using the
corresponding train time of a MLP with the same columnar embedding
and the same decoder but without contextual embeddings. For each
dataset, the three curves are obtained modifying one parameter (for
example 𝑛 ∈ {1, 2, 3, 4} for the orange line) while holding the other two
constant (𝑙 = 16 and 𝑑 = 1).

• As expected, the number of features in the tabular dataset has an
effect on the computational time: it grows from California Hous-
ing (eight features) to Heloc (23 features) for a fixed INCE config-
uration. In our proposal, we are working with a fully-connected
graph and the volume of operations increases quadratically in
relation with the number of nodes (features).

• For a fixed dataset, the number 𝑛 of stacked INs has the greatest
impact on the amount of operations and, hence, on computational
time.

• When the number of features is around 20, the impact of latent
space size is comparable or even greater than the impact of
MLPN, E depth.

5.1. Interaction Network vs. Transformer

Recent works Gorishniy et al. (2021), Huang et al. (2020), Somepalli
et al. (2022) propose the Transformer encoder Vaswani et al. (2017)
as contextual embedding. Here, we analyze similarities and differences
between the two models.

Approach. In this work, we concentrate on the use case where
either Transformer Encoders or GNNs are employed to learn the in-
teraction between features improving the contextual embedding. For
7

this particular use case, the following features are shared by both
approaches:

• The columnar embeddings of each individual feature are orga-
nized in a fully-connected graph with an additional extra virtual
node (<CLS>).

• A mechanism (the attention mechanism in the Transformer case
and the IN convolution of Eqs. (3), (4) in our proposal) models
the interaction between nodes/features. The strength of the inter-
action between nodes acts as a soft prune mechanism: the stronger
the interaction between a neighborhood and the current node, the
larger its contribution to the current node contextual embedding.

The main difference is in how the interaction is modeled. In the orig-
inal Attention mechanism (Vaswani et al., 2017), the contextual node
embedding (for head=1) is given by (neglecting for sake of simplicity
the skip connection in both cases, Transformer Encoders and GNNs):

𝑛′𝛼𝑖 =
𝑀
∑

𝑗=1

𝑙
∑

𝛽=1
𝜔𝑖,𝑗𝑉

𝛼,𝛽𝑛𝛽𝑗 (7)

where latin indexes 𝑖, 𝑗 = 1,… ,𝑀 are indexes in the topological space
(that is over the graph nodes), Greek indexes 𝛼, 𝛽 = 1, 2,… , 𝑙 are indexes
in the latent space and 𝜔𝑖,𝑗 is the attention mechanism:

𝜔𝑖,𝑗 = softmax𝑗

(

𝑛𝑖𝑄𝐾𝑇 𝑛𝑗
√

𝑙

)

(8)

Eq. (7) shows that the interaction between nodes 𝑛𝑖 and 𝑛𝑗 is written
as the product of two operators 𝜔𝑖,𝑗 and 𝑉 𝛼,𝛽 . The attention mechanism
𝜔𝑖,𝑗 is an operator with no trivial structure in the topological space
(it depends on the nodes indexes 𝑖 and 𝑗) but diagonal in the latent
space (it does not depend on the indexes in latent space). 𝑉 𝛼,𝛽 , on the
contrary, is diagonal in the topological space (it does not depend on
the node indexes) but with a non-trivial structure in the latent space
(it depends on the latent space indexes 𝛼, 𝛽).

Using Eqs. (3), (4), it is possible to prove that, for the case of IN,
the node contextual embedding is given by:

𝑛′𝛼𝑖 = MLP𝑁

(

Concat
(

𝑛𝑖,
∑

𝑗
MLP𝐸

(

𝑛𝑖, 𝑛𝑗 , 𝑒𝑛𝑗→𝑛𝑖

)

))

(9)

This is a more general formulation than the case of the attention
mechanism. MLP𝑁 plays a similar role to the 𝑉 𝛼,𝛽 operator of the
Transformer Encoder and does not depend on the node indexes. The
MLP𝐸 plays a similar role to 𝜔𝑖,𝑗 . The main difference is that the
MLP𝐸 is a non-trivial operator in both topological and latent space
and therefore, given a pair of nodes 𝑛𝑖 and 𝑛𝑗 , it may learn different
strengths for different latent space indexes 𝛼, 𝛽.

Performance. As explained in Section 4, INCE and
INCE-Transformer are two models that share the workflow of Fig. 1
and differ only by the contextual embedding: IN and Transformer
Encoder, respectively. Table 2 shows how INCE and INCE-Transformer
provide comparable results even though, at least on the selected bench-
mark, the IN encoder performs slightly better regardless of number of
rows/features in the dataset. We interpret this result as a consequence
of the previous discussion: IN employees a more general mechanism to
discriminate how each neighborhood contributes to the contextual node
update.

Trainable parameters. The size 𝑓 of the latent space used by the
Transformer FeedForward block has a significant impact on the number
of trainable parameters in a Transformer Encoder. In the comparison5

that follows, we take into account the setup where 𝑓 = 512 since it
achieves the best average results in the Optuna optimization.

5 For the purpose of simplicity, we exclude the Normalization Layers
parameters from our study in both cases, Transformer and IN.



Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
Fig. 8. Comparison of IN and Transformer trainable parameters. The normalized
  is obtained using Eqs. (6) and (10) and then normalizing with regarding to
 

(

𝐼𝑁𝑙,𝑑=1,𝑛=1
)

. The plot shows the results for 𝑙 = 128. Transformer has more trainable
parameters than IN, and the relative difference grows when 𝑙 decreases.

The number of trainable parameters of a Transformer Encoder is
given by:

  (Transformer) = 𝑛 ⋅ [   (𝑄,𝐾, 𝑉 ) +

=   (MultiAttention) +
=   (FeedForward) ]

  (𝑄,𝐾, 𝑉 ) = 3 ⋅ ℎ ⋅ 𝑙 ⋅ (𝑙 + 1)

  (MultiAttention) = 𝑙 ⋅ (ℎ ⋅ 𝑙 + 1)

  (FeedForward) = 2 ⋅ 𝑓 ⋅ 𝑙 + 𝑓 + 𝑙

(10)

where 𝑙, ℎ, 𝑓 and 𝑛 are respectively the latent space size, the number
of attention heads, the FeedForward latent space size and the number
of stacked Transformer Encoders.

Fig. 8 compares the behavior of   (Transformer) and   (IN).
As in Fig. 5, the normalized number of trainable parameters   is
obtained dividing by  

(

IN𝑙,𝑑=1,𝑛=1
)

. Fig. 8 presents the results for
𝑙 = 128. IN has less trainable parameters than Transformer and the
relative difference is even bigger when 𝑙 decreases. When the number of
attention heads is ℎ ≤ 2, the difference is due to the FeedForward block
parameters. For ℎ > 2, Transformer has more parameters included,
without taking into account the FeedForward block.

Limitations. When the number of tabular features increases, both
IN and Transformer use greater resources. The vanilla Multi Head Self-
Attention and IN on fully-connected graph share quadratic complexity
regarding the number of features. This issue can be mitigated by using
efficient approximations of Multi Head Self-Attention (Tay, Dehghani,
Bahri, & Metzler, 2022) or a more complex graph topology with less
edges in the Interaction Network case. Additionally, it is still possible
to distill the final model into simpler architectures for better inference
performance.

6. Interpretability of contextual embedding

6.1. Columnar vs. contextual embedding

In Section 4.1, the effect of contextual embedding on the model
performance has been shown. INCE outperforms solutions that just use
columnar embedding and, more generally, produces results that are on
par with or even better than those of SOTA DL models when applied
to tabular data.
8

Fig. 9. Left: Columnar embedding before the stack of INs. Right: Contextual embedding
from the last IN.

In this subsection, we visually examine how this mechanism im-
proves the features representation, enhancing the performance of the fi-
nal model. For sake of simplicity, in the following discussion, we use the
Titanic (Dua & Graff, 2017) dataset. The supervised learning problem
is a binary classification. The preprocessed dataset contains eight fea-
tures. Age and fare are the zero-mean and one-standard-deviation con-
tinuous variables. The categorical features are sex ∈ {female, male},
title ∈ {Mr., Mrs., Rare}, pclass ∈ {1, 2, 3},
family_ size ∈ {0, 1, 2, 3, 4, 6, 7, 8}, is_alone ∈ {0, 1}, embarked ∈
{C = Cherbourg, Q = Queenstown, S = Southampton}. For this exer-
cise, we consider an INCE model with latent space size 𝑙 = 128, MLPN, E
depth 𝑑 = 3 and 𝑛 = 2. Fig. 9 shows the output of columnar (left
side plot) and contextual (right side plot) embedding after dimensional
reduction.

The columnar embedding does not depend on the context: regardless
of pclass, age or family_size values, title = Mrs is always projected to
the same point in the latent space size.

The contextual embedding is given by the message sent from each
node (i.e. tabular feature) to update the <CLS> representation in the
last IN. It is feasible to see that the latent projections of categorical
features are not yet limited to a fixed number of points when the
context is taken into consideration, as shown, for example, by title
embedding.

6.2. Feature importance from feature–feature interaction

The attention map for the <CLS> virtual node may be used to
assess the feature relevance when the contextual embedding is a Trans-
former (Gorishniy et al., 2021; Somepalli et al., 2022). Here, we
investigate if the feature–feature interaction that the IN learns can
reveal details about the significance of tabular features. We first explain
our methodology using the Titanic dataset for the purpose of simplic-
ity, and then we illustrate the findings we achieved using the same
technique on the other tabular datasets.

In contrast to the Transformer case, we now have two new prob-
lems to resolve: (1) The feature–feature interaction is a 𝑙-dimensional
vector (that means, it is not a scalar); (2) To assess the feature global
significance, we must aggregate the feature–feature importance. The
description of our process is provided below.

First Step: We split data in train/test datasets. We train the model
and use the trained INCE on the test dataset to produce the feature–
feature interaction, i.e. 𝑒𝑖𝑗1→𝑗2

∈ R𝑙 in Eq. (5) returned by the last IN.
In this notation, we have explicitly recovered the tabular row index 𝑖.

Second Step: We estimate mean 𝝁 and covariance 𝑺 of the entire pop-
ulation

{

𝑒𝑖𝑗1→𝑗2

}

∀ 𝑖, 𝑗1, 𝑗2. Third Step: For each pair (𝑗1, 𝑗2) of features
and for each test row 𝑖, we compute the squared Mahalanobis distance:

𝐷2 (𝑗 → 𝑗
)

=
(

𝑒𝑖 − 𝜇
)

𝑆−1
(

𝑒𝑖 − 𝜇
)

𝑖 1 2 𝑗1→𝑗2 𝑗1→𝑗2



Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.
Fig. 10. Titanic feature–feature interaction at feature-value level.

Fourth Step: The squared Mahalanobis distance follows a Chi-Square
distribution, so we can normalize the distance using 𝑝-value. The
number of degrees of freedom of Chi-Square is given by the latent space
size 𝑙:

𝑝𝑖
(

𝑗1 → 𝑗2
)

= Pr
(

𝐷2
𝑖 ≥ 𝜒2

𝑙
)

Fifth Step: The global interaction 𝑝-value 𝑝
(

𝑗1 → 𝑗2
)

is obtained
averaging the previous results over the test dataset:

𝑝
(

𝑗1 → 𝑗2
)

= 1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
𝑝𝑖
(

𝑗1 → 𝑗2
)

The findings of the proposed methodology on the Titanic dataset
are displayed in the heatmap of Fig. 10. The results are broken down
at the feature-value level (i.e. sex = female, sex = male, title = Mrs,
title = Mr, etc.). This is how the heatmap may be understood: the
relevance of the message from the row-𝑟-feature to the column-𝑐-feature
is represented by the element (row=𝑟, column=𝑐) of the heatmap.
A lower (blue) 𝑝-value implies more significance. The last column,
‘‘Mean’’, is created by averaging all of the row values and shows the
average relevance of the messages sent by row-𝑟-feature. In a similar
way, the last row (also known as ‘‘Mean’’) is derived by averaging all
the values of the columns and it represents the mean relevance of the
messages received by column-𝑐-feature.

In order to quantitatively assess the quality of the heatmap, we
compute the Spearman Rank correlation 𝜌 between

𝑝(𝑗) = 1
| |

∑

𝑗∈

𝑝(𝑗, 𝑗) = 1
2
[

𝑝
(

𝑗 → 𝑗
)

+ 𝑝
(

𝑗 → 𝑗
)]

and the feature importance calculated by KernelShap (Lundberg & Lee,
2017). In the formula above,  and | | are the set of neighbors of
node 𝑗 and its size, respectively. The outcome for the Titanic dataset is
𝜌 = 0.81(p-value = 0.05).

The heatmap and the Spearman Rank correlation provide the fol-
lowing insights.

(a) The feature–feature interaction is not symmetric. In the fully
connected graph we have two independent edges 𝑗1 → 𝑗2 and 𝑗2 →
𝑗1 and the Eq. (3) is not invariant by 𝑗1 ⟷ 𝑗2 interchange. Our
experiments demonstrate that inducing 𝑗1 ⟷ 𝑗2 invariance in Eq. (3)
results in a learning bias that negatively affects INCE performance.
9

Table 3
Spearman Rank Correlation between KernelShap and feature–feature interaction.

HELOC Cal. Hous. Adult Inc. Forest Cov.

𝜌(p-value) 0.82(0.04) 0.80(0.06) 0.85(0.03) 0.81(0.04)

(b) From heatmap, it is possible to discern logical patterns. For
example, is_alone = 1 does not add information (high 𝑝-value) when
family_size is 0 or 1 and on the contrary, the value family_size is very
relevant (low 𝑝-value) for any value of title.

(c) Considering that KernelShap evaluates global model behavior
(including the decoder) and that IN models separately

(

𝑗1 → 𝑗2
)

and
(

𝑗2 → 𝑗1
)

and that we have to aggregate and average them to compare
with KernelShap, the Spearman Rank correlation analysis result can be
considered encouraging.

Finally, Table 3 summarizes the Spearman Rank correlation
achieved on various datasets and demonstrates how the results are
consistent regardless of the dataset under consideration.

7. Conclusions

Let us highlight the main contributions of this article:

• As far as we know, this is the first time that model architecture
proposes the use of GNN for contextual embedding to solve
supervised tasks involving tabular data.

• Literature discusses mainly about the usage of Transformer. This
manuscript shows that GNN, particularly IN, are a valid alterna-
tive. It shows better performance with a lower number of training
parameters.

• As a matter of fact, this innovative architecture outperforms
the state of the art DL benchmark based on 7 different diverse
datasets. Moreover, it closes the gap with classical ML models
(tree-based), outperforming them in 2 of these datasets, and being
very close in two more. The tradeoff versus tree-based models
is additional computational load in the form of training time,
and scalability issues with the number of features (nodes) of
the dataset, which constitute future lines of research to keep
improving its practical implementation.

• Finally, the interpretability of GNN is explored. This is a key topic
for industry environments, and apparently this is the first study
for GNN and tabular data.

CRediT authorship contribution statement

Mario Villaizán-Vallelado: Conceptualization, Formal analysis, In-
vestigation, Methodology, Software, Supervision, Validation, Visual-
ization, Writing – original draft, Writing – review & editing. Matteo
Salvatori: Conceptualization, Formal analysis, Investigation, Method-
ology, Software, Supervision, Validation, Visualization, Writing – orig-
inal draft, Writing – review & editing. Belén Carro: Funding acqui-
sition, Project administration, Supervision, Writing – review & edit-
ing. Antonio Javier Sanchez-Esguevillas: Funding acquisition, Project
administration, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data is public. The code is public on github. The code is in
CodeOcean.



Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.

h
f
(
r
w

R

A

A

B

B

B

B

B

B

B

B

C

C

C

D

D

D

D

F

F

F

Acknowledgments

Grant PID2021-122210OB-I00, funded by MCIN/AEI/10.13039/
501100011033 and ‘‘ERDF A way of making Europe’’, European Union.

Appendix A. Normalized metric

Algorithm 1 Normalized metric
Input: 𝑙∶ latent space, 𝑟∶ dataset
Output: 𝐶𝑑 , 𝐶𝑛 two lists of normalized metric

𝑏𝑎𝑠𝑒 ← 𝑀𝑒𝑡𝑟𝑖𝑐𝑟(𝑑 = 1, 𝑛 = 1, 𝑙, 𝑟)
𝐶𝑑 ← 𝑀𝑒𝑡𝑟𝑖𝑐𝑟(𝑑, 𝑛 = 1, 𝑙, 𝑟) ∀𝑑 ∈ {1, 2, 3, 4}
𝐶𝑛 ← 𝑀𝑒𝑡𝑟𝑖𝑐𝑟(𝑑 = 1, 𝑛, 𝑙, 𝑟) ∀𝑛 ∈ {1, 2, 3, 4}
𝑏𝑒𝑠𝑡 ← 𝐵𝑒𝑠𝑡𝑟(𝐶𝑑 , 𝐶𝑛)

𝐶𝑑 ←
𝐶𝑑 − 𝑏𝑎𝑠𝑒
𝑏𝑒𝑠𝑡 − 𝑏𝑎𝑠𝑒

∀𝑑 ∈ {1, 2, 3, 4}

𝐶𝑛 ←
𝐶𝑛 − 𝑏𝑎𝑠𝑒
𝑏𝑒𝑠𝑡 − 𝑏𝑎𝑠𝑒

∀𝑛 ∈ {1, 2, 3, 4}

return 𝐶𝑑 , 𝐶𝑛

∀𝑙, 𝑟∕ 𝑟 ∈ {HELOC, Gas, Cal. Hous., Adult Inc., Otto, Forest Cov.,
HIGGS }, 𝑙 ∈ {16, 32, 64, 128}. In Algorithm 1 𝑀𝑒𝑡𝑟𝑖𝑐𝑟 and 𝐵𝑒𝑠𝑡𝑟 are
Accuracy/MSE and 𝑚𝑎𝑥/𝑚𝑖𝑛 depending on 𝑟, 𝑑 is the MLPN, E depth
and 𝑛 is the number of stacked IN. Notice that computing 𝑀𝑒𝑡𝑟𝑖𝑐𝑟
means train–test the model 5 times with different seeds and average
the results.

The curves of Fig. 6 are obtained by computing the average and the
standard-deviation from results of Algorithm 1.

Appendix B. Hyperparameters search space

Baseline - Tree Based models.

• LightGBM: leaves number ∈ [2, 4096], 𝜆𝑙1 = Uniform
(

10−8, 10
)

,
𝜆𝑙2 = Uniform

(

10−8, 10
)

, learning rate = Uniform (0.01, 0.3).
• XGBoost: max depth ∈ [2, 12], 𝛼 = Uniform

(

10−8, 1
)

, 𝜆 =
Uniform

(

10−8, 1
)

, 𝜂 = Uniform (0.01, 0.3).
• CatBoost: max depth ∈ [2, 12], learning rate = Uniform (0.01, 0.3),

l2 leaf reg = Uniform (0.5, 30).

Baseline - Deep Learning models.

• MLP: latent space size 𝑙 ∈ {32, 64, 128}, hidden dim ℎ𝑑 ∈
{64, 128, 256, 512}, layer number 𝑙𝑛 ∈ [2, 8].

• DeepFM: latent space size 𝑙 ∈ {32, 64, 128}, layer number 𝑙𝑛 ∈
[2, 8], dropout ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

• TabTransformer: latent space size 𝑙 ∈ {32, 64, 128}, number of
attention heads ℎ ∈ {1, 2, 4, 8}, transformer depth 𝑑 ∈ [1, 12],
dropout ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

• FT-Transformer: latent space size 𝑙 ∈ {32, 64, 128}, number of
attention heads ℎ ∈ {1, 2, 4, 8}, transformer depth 𝑑 ∈ [1, 12],
dropout ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

• SAINT: latent space size 𝑙 ∈ {32, 64, 128}, number of attention
heads ℎ ∈ {1, 2, 4, 8}, transformer depth 𝑑 ∈ [1, 12], dropout
∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

Cross-Entropy and Mean Squared Error (MSE) are the loss functions
used in classification and regression tasks, respectively. We train all the
models 200 epochs using Adam optimizer with a learning rate of 0.001
and with batches of size 256.

INCE. All the INCE versions used in the comparison follow the
workflow depicted in Fig. 1: they share columnar embedding and
decoder and differ by the contextual embedding implementation: GCN,
GAT, IN or Transformer Encoder. The search space for the contextual
10

embedding hyperparameters is the following:
• GCN: number of stacked GCN encoders 𝑛 ∈ [1, 4] and latent space
size 𝑙 ∈ {16, 32, 64, 128}.

• GAT: number of attention heads ℎ ∈ {1, 2, 4, 8}, number of stacked
GAT encoders 𝑛 ∈ [1, 4] and latent space size 𝑙 ∈ {16, 32, 64, 128}.

• IN: latent space size 𝑙 ∈ {16, 32, 64, 128}, number of stacked INs
𝑛 ∈ [1, 4] and depth of MLP𝐸 , MLP𝑁 ∈ [1, 4].

• Transformer Encoder: number of attention heads ℎ ∈ {1, 2, 4, 8},
FeedForward layer space size 𝑓 ∈ {512, 1024, 2048}, number of
stacked Transformer Encoders 𝑛 ∈ [1, 4] and latent space size
𝑙 ∈ {16, 32, 64, 128}.

In all the experiments, we consider a decoder MLPDEC with two
idden layers and ReLU is the non-linear activation function used
or MLPE, MLPN and MLPDEC. Cross-Entropy and Mean Squared Error
MSE) are the loss functions used in classification and regression tasks,
espectively. We train all the models 200 epochs using Adam optimizer
ith a learning rate of 0.001 and with batches of size 256.

eferences

kiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining (pp.
2623–2631). New York, NY, USA: Association for Computing Machinery.

rik, S. Ö., & Pfister, T. (2021). TabNet: Attentive Interpretable Tabular Learning.
In Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 8 (pp.
6679–6687).

ai, J., Wang, J., Li, Z., Ding, D., Zhang, J., & Gao, J. (2021). ATJ-Net: Auto-table-join
network for automatic learning on relational databases. In Proceedings of the web
conference 2021 (pp. 1540–1551). New York, NY, USA: Association for Computing
Machinery, ISBN: 9781450383127.

aldi, P., Sadowski, P., & Whiteson, D. (2014). Searching for exotic particles in
high-energy physics with deep learning. Nature Communications, 5(1), 1–9.

attaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., et al. (2018). Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261.

attaglia, P., Pascanu, R., Lai, M., Rezende, D., & Kavukcuoglu, K. (2016). Interaction
networks for learning about objects, relations and physics. Advances in Neural
Information Processing Systems, 4509–4517.

ecker, B., & Kohavi, R. (1996). Adult. http://dx.doi.org/10.24432/C5XW20, UCI
Machine Learning Repository.

lackard, J. (1998). Covertype. http://dx.doi.org/10.24432/C50K5N, UCI Machine
Learning Repository.

orisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2022).
Deep neural networks and tabular data: A survey. IEEE Transactions on Neural
Networks and Learning Systems, 1–21.

ossan, B., Feigl, J., & Kan, W. (2015). Otto group product classification challenge. Kaggle,
URL: https://kaggle.com/competitions/otto-group-product-classification-challenge.

hen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 785–794). New York, NY, USA: Association for Computing Machinery.

heng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al.
(2016). Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems (pp. 7–10). New York, NY, USA:
Association for Computing Machinery.

vitkovic, M. (2020). Supervised learning on relational databases with graph neural
networks. arXiv preprint arXiv:2002.02046.

evlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
conference of the North American chapter of the association for computational linguistics:
human language technologies, volume 1 (long and short papers) (pp. 4171–4186).
Minneapolis, Minnesota: Association for Computational Linguistics.

osovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., et
al. (2021). An image is worth 16x16 words: Transformers for image recognition at
scale. In International conference on learning representations.

u, K., Zhang, W., Zhou, R., Wang, Y., Zhao, X., Jin, J., et al. (2022). Learning enhanced
representation for tabular data via neighborhood propagation. In Advances in neural
information processing systems: vol. 35, (pp. 16373–16384). Curran Associates, Inc.

ua, D., & Graff, C. (2017). UCI machine learning repository. University of California,
Irvine, School of Information and Computer Sciences, URL: http://archive.ics.uci.
edu/ml.

ey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch
Geometric. In ICLR workshop on representation learning on graphs and manifolds.

ICO (2019). Home equity line of credit (HELOC) dataset. URL: https://community.
fico.com/s/explainable-machine-learning-challenge.

rosst, N., & Hinton, G. (2017). Distilling a neural network into a soft decision tree.
arXiv preprint arXiv:1711.09784.

http://refhub.elsevier.com/S0893-6080(24)00104-7/sb1
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb1
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb1
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb1
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb1
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb1
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb1
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb2
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb2
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb2
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb2
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb2
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb3
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb3
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb3
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb3
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb3
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb3
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb3
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb4
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb4
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb4
http://arxiv.org/abs/1806.01261
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb6
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb6
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb6
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb6
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb6
http://dx.doi.org/10.24432/C5XW20
http://dx.doi.org/10.24432/C50K5N
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb9
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb9
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb9
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb9
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb9
https://kaggle.com/competitions/otto-group-product-classification-challenge
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb11
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb11
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb11
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb11
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb11
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb12
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb12
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb12
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb12
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb12
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb12
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb12
http://arxiv.org/abs/2002.02046
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb14
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb15
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb15
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb15
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb15
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb15
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb16
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb16
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb16
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb16
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb16
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb18
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb18
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb18
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
http://arxiv.org/abs/1711.09784


Neural Networks 173 (2024) 106180M. Villaizán-Vallelado et al.

G

G

H

H

H

J

K

K

K

K

K

L

Gorishniy, Y., Rubachev, I., Khrulkov, V., & Babenko, A. (2021). Revisiting deep
learning models for tabular data. 34, In Advances in Neural Information Processing
Systems (pp. 18932–18943). Curran Associates, Inc.

uo, X., Quan, Y., Zhao, H., Yao, Q., Li, Y., & Tu, W. (2021). TabGNN: Multiplex
graph neural network for tabular data prediction. In 3rd workshop on deep learning
practice for high-dimensional sparse data with KDD.

uo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: A factorization-machine based
neural network for ctr prediction. In Proceedings of the twenty-sixth international joint
conference on artificial intelligence, IJCAI-17 (pp. 1725–1731).

amilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 14(3), 1–159.

e, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative
filtering. In Proceedings of the 26th international conference on world wide web (pp.
173–182). Republic and Canton of Geneva, CHE: International World Wide Web
Conferences Steering Committee.

uang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). TabTransformer: Tabular
data modeling using contextual embeddings. arXiv preprint arXiv:2012.06678.

oseph, M., & Raj, H. (2022). GATE: Gated additive tree ensemble for tabular
classification and regression. arXiv preprint arXiv:2207.08548.

atzir, L., Elidan, G., & El-Yaniv, R. (2021). Net-DNF: Effective deep modeling of tabular
data. In International conference on learning representations.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm:
A highly efficient gradient boosting decision tree. Advances in Neural Information
Processing Systems, 30, 3146–3154.

e, G., Xu, Z., Zhang, J., Bian, J., & Liu, T.-Y. (2019). DeepGBM: A deep learning
framework distilled by GBDT for online prediction tasks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining (pp.
384–394). New York, NY, USA: Association for Computing Machinery.

e, G., Zhang, J., Xu, Z., Bian, J., & Liu, T.-Y. (2019). TabNN: A universal neu-
ral network solution for tabular data. URL: https://openreview.net/forum?id=
r1eJssCqY7.

ipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In International conference on learning representations.

otelnikov, A., Baranchuk, D., Rubachev, I., & Babenko, A. (2023). TabDDPM: Mod-
elling tabular data with diffusion models. In International conference on machine
learning (pp. 17564–17579). PMLR.

am, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., et
al. (2023). Learning skillful medium-range global weather forecasting. Science.

Langley, P., & Sage, S. (1994). Oblivious decision trees and abstract cases. In Working
notes of the AAAI-94 workshop on case-based reasoning (pp. 113–117).

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model
predictions. In Proceedings of the 31st international conference on neural information
processing systems (pp. 4768–4777). Red Hook, NY, USA: Curran Associates Inc.
11
Luo, H., Cheng, F., Yu, H., & Yi, Y. (2021). SDTR: Soft decision tree regressor for
tabular data. IEEE Access, 9, 55999–56011.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., et al. (2018). Ray:
A distributed framework for emerging AI applications. In Proceedings of the 13th
USENIX conference on operating systems design and implementation (pp. 561–577).
USA: USENIX Association.

Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sundaraman, N., Park, J.,
et al. (2019). Deep learning recommendation model for personalization and
recommendation systems. arXiv preprint arXiv:1906.00091.

Pace, R. K., & Barry, R. (1997). Sparse spatial autoregressions. Statistics & Probability
Letters, 33(3), 291–297.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: An imperative style, high-performance deep learning library. vol. 32, In
Advances in neural information processing systems. Curran Associates, Inc.

Popov, S., Morozov, S., & Babenko, A. (2019). Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). Cat-
Boost: unbiased boosting with categorical features. Advances in Neural Information
Processing Systems, 31.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language
understanding by generative pre-training. OpenAI.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., & Battaglia, P.
W. (2020). Learning to simulate complex physics with graph networks. In 37th
International conference on machine learning, vol. PartF168147-11 (pp. 8428–8437).

Somepalli, G., Schwarzschild, A., Goldblum, M., Bruss, C. B., & Goldstein, T. (2022).
SAINT: Improved neural networks for tabular data via row attention and contrastive
pre-training. In NeurIPS 2022 first table representation workshop.

Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2022). Efficient transformers: A survey.
ACM Computing Surveys, 55(6).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. In Advances in neural information processing
systems: vol. 30, Curran Associates, Inc.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018).
Graph attention networks. In International conference on learning representations.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., & Huerta, R. (2012).
Chemical gas sensor drift compensation using classifier ensembles. Sensors and
Actuators B (Chemical), [ISSN: 0925-4005] 166–167, 320–329.

Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong, L., et al. (2021). DCN V2:
Improved deep & cross network and practical lessons for web-scale learning to rank
systems. In Proceedings of the web conference 2021 (pp. 1785–1797). New York, NY,
USA: Association for Computing Machinery.

http://refhub.elsevier.com/S0893-6080(24)00104-7/sb21
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb21
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb21
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb21
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb21
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb22
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb22
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb22
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb22
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb22
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb23
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb23
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb23
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb23
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb23
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb24
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb24
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb24
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb25
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb25
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb25
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb25
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb25
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb25
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb25
http://arxiv.org/abs/2012.06678
http://arxiv.org/abs/2207.08548
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb28
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb28
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb28
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb29
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb29
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb29
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb29
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb29
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb30
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb30
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb30
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb30
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb30
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb30
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb30
https://openreview.net/forum?id=r1eJssCqY7
https://openreview.net/forum?id=r1eJssCqY7
https://openreview.net/forum?id=r1eJssCqY7
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb32
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb32
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb32
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb33
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb33
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb33
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb33
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb33
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb34
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb34
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb34
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb35
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb35
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb35
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb36
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb36
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb36
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb36
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb36
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb37
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb37
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb37
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb38
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb38
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb38
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb39
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb39
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb39
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb39
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb39
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb39
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb39
http://arxiv.org/abs/1906.00091
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb41
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb41
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb41
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb42
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb42
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb42
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb42
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb42
http://arxiv.org/abs/1909.06312
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb44
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb44
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb44
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb44
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb44
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb45
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb45
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb45
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb46
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb46
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb46
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb46
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb46
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb47
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb47
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb47
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb47
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb47
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb48
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb48
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb48
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb49
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb49
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb49
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb49
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb49
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb50
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb50
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb50
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb51
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb51
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb51
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb51
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb51
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb52
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb52
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb52
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb52
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb52
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb52
http://refhub.elsevier.com/S0893-6080(24)00104-7/sb52

	gnn contextual embedding for dl on tabular data
	Introduction
	Related Work
	ince 
	Experiments
	Results

	Deep Dive in in 
	in vs. Transformer

	Interpretability of contextual embedding
	Columnar vs. Contextual embedding
	Feature importance from Feature–Feature interaction

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Normalized Metric
	Appendix B. Hyperparameters search space
	References


