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We consider information-theoretical private information re-
trieval (PIR) from a coded database with colluding servers. 
We target, for the first time, locally repairable storage codes 
(LRCs). We consider any number of local groups g, locality 
r, local distance δ and dimension k. Our main contribution is 
a PIR scheme for maximally recoverable (MR) LRCs based 
on linearized Reed–Solomon codes, which achieve the small-
est field sizes among MR-LRCs for many parameter regimes. 
In our scheme, nodes are identified with codeword symbols 
and servers are identified with local groups of nodes. Only 
locally non-redundant information is downloaded from each 
server, that is, only r nodes (out of r + δ − 1) are down-
loaded per server. The PIR scheme achieves the (download) 
rate R = (N−k−rt +1)/N , where N = gr is the length of the 
MDS code obtained after removing the local parities, and for 
any t colluding servers such that k+rt ≤ N . For an unbounded 
number of stored files, the obtained rate is strictly larger than 
those of known PIR schemes that work for any MDS code. 
Finally, the obtained PIR scheme can also be adapted when 
communication between the user and each server is performed 
via linear network coding, achieving the same rate as previ-
ous PIR schemes for this scenario but with polynomial finite 
field sizes, instead of exponential. Our rates are equal to those 
of PIR schemes for Reed–Solomon codes, but Reed–Solomon 
codes are incompatible with the MR-LRC property or linear 
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network coding, thus our PIR scheme is less restrictive in its 
applications.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Private information retrieval (PIR), introduced in [6,7], consists in retrieving a file 
from a database without revealing the index of the retrieved file to the servers, hence 
keeping the user’s preference for a file private. In this work, we consider information-
theoretical privacy, meaning that an undesired observer (e.g., the servers) with un-
bounded computational power may not obtain any information on the file index. Origi-
nally [6,7], databases were considered to store files using a repetition code, that is, each 
server stores one copy of each file, and servers were not considered to communicate with 
each other (collude) in order to gain information on the file index.

As it was pointed out in these seminal works, an obvious solution to the PIR problem 
is to download the entire database. However, this turns out to be wasteful and much 
higher download rates, or simply rates (the size of the file divided by the amount of 
downloaded data), can be achieved when more than one server is used. It was also 
shown in these seminal works that downloading the whole database is the only solution 
in the single-server case (for information-theoretical privacy).

As is well-known, databases often suffer from data erasures (due to disk failures). 
Using a repetition code, that is, storing copies of the same files across multiple servers, 
yields an unacceptably high overhead (i.e., unacceptably low information rate). PIR from 
a database where data is stored after being encoded by a non-repetition code (coded 
database) was considered in [2,10,30]. However, the number of servers in these works 
is either larger than the number of files or grows as the overhead of the storage code 
decreases, which are not practical scenarios.

Explicit PIR schemes from a database that uses an MDS storage code, and for τ ≥ 1
colluding servers, were obtained in [11,36,37,42]. The optimal rate for a fixed number m
of stored files is

R = N − k − τ + 1
N

·
(

1 −
(
k + τ − 1

N

)m)−1

, (1)

for the cases τ = 1 [1,32] and k = 1 [33], although (1) is not optimal in general [34]. If the 
MDS storage code has dimension k and length N , universal PIR schemes (compatible 
with any (N, k) MDS storage code) were obtained in [36,37] with rate R = 1/N , for 
τ = N − k, and rate R = (N − k)/N for τ = 1. For τ = 1 or k = 1, these rates tend to 
the optimal rate (1) as the number of files m increases, and in fact they become very close 
already for moderate values of m (since m appears in the exponent). We also remark 
that, in practical scenarios, we usually have m � N .
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For τ > 1 and k > 1, the optimal rate is unknown in general, but the rate of the PIR 
scheme in [11],

R = N − k − τ + 1
N

, (2)

is the highest known (and it is unmatched by other schemes) for an unrestricted number 
of files and is always strictly larger than that of known universal PIR schemes [36].

However, we will disregard in our rate comparisons the scheme in [11], since it is more 
restrictive as it only works for generalized Reed–Solomon (GRS) storage codes [28], but 
not for other MDS storage codes, which makes them incompatible with any MR-LRC 
coded database (except for the trivial cases). More concretely, the scheme in [11] uses 
the coordinate-wise product, and the only MDS codes that satisfy the desired properties 
with respect to such products are GRS codes [21]. Furthermore, GRS codes are not 
LRCs and can never be (except for trivial cases) the MDS codes obtained after removing 
the local parities of an MR-LRC. This is because GRS codes have linear field sizes and 
MR-LRCs require super-linear field sizes [15]. Hence the scheme from [11] may not be 
adapted to be used in an MR-LRC coded database. For similar reasons, the PIR scheme 
from [11] is also incompatible with linear network coding (see Subsection 5.3 and [38]).

As pointed out in the distributed storage literature, MDS codes are not suitable for 
large databases, which are increasingly more important due to the spread of Big Data. 
This is because repairing one single failed node with an MDS code requires contacting and 
downloading the content of a large number of nodes, resulting in a high repair latency. 
Locally repairable codes (LRCs), introduced in [14,18] and already applied in practice 
(by, e.g., Microsoft [16] and Facebook [29]), allow to repair a single erasure (or generally 
δ − 1 erasures per local group, for a local distance δ) by contacting at most a number 
r, called locality, of other nodes. Maximally recoverable (MR) LRCs were introduced in 
[3,13] and are optimal in the following strong sense: Given parameters k, r, δ and number 
of local groups g, if there is an erasure pattern that an MR-LRC with such parameters 
cannot correct, then such a pattern cannot be corrected by any other LRC with such 
parameters. Such patterns can be described easily, see Definitions 1 and 2.

To the best of our knowledge, no work has provided PIR schemes with rates as high as 
(2) for optimal LRCs, MR-LRCs or MDS codes obtained from puncturing MR-LRCs for 
general parameters g, r, δ, k, τ and N = gr. As explained above, the only PIR schemes for 
some MDS coded databases with PIR rates as large as (2) are those from [11]. However, 
these PIR schemes only work for GRS codes, since they make use of coordinate-wise prod-
ucts and GRS codes are the only MDS codes suitable for such products [21]. Moreover, 
GRS codes can never be the MDS codes obtained from puncturing MR-LRCs (except 
for trivial cases) since they have linear field sizes and MR-LRCs require super-linear field 
sizes [15]. We will circumvent the limitations of [11] by making use of coordinate-wise 
matrix products (see Section 3).

In this work, we provide the first PIR scheme for a class of MR-LRC storage codes 
that cover general parameters. We consider the MR-LRCs from [24], based on linearized 



4 U. Martínez-Peñas / Finite Fields and Their Applications 96 (2024) 102421
Reed-Solomon codes [22]. We achieve download rates as in (2), matching GRS storage 
codes (which cannot be used in our scenario since they cannot be obtained as MDS codes 
from puncturing MR-LRCs, thus our scheme would be less restrictive).

It is worth mentioning that some works not only consider the download rate, but 
also the upload rate (see [31,40] and the references therein). However, in the case of 
our scheme, the upload cost may be considered negligible compared to the download 
one by folding the scheme by a large number (see the discussion before Definition 4). 
Thus, we do not consider the upload rate in this work. We also mention that PIR 
schemes for databases coded with Minimum Bandwidth Regenerating (MBR) codes were 
proposed in [19]. MBR codes are also used for local repair in distributed storage. However, 
their objective is minimizing the amount of downloaded data instead of the number of 
contacted nodes, as is the case for LRCs.

We remark that a PIR scheme from Gabidulin storage codes [12] has been recently 
given in [38]. Gabidulin codes can also be used to construct MR-LRCs [4], and the PIR 
scheme in [38] can be used for such MR-LRCs. However, the required field size would be 
at least 2gr (see Subsection 5.3), exponential in g and the code length N = gr, in contrast 
with polynomial field sizes max{r+δ−1, g}r for our scheme (note also that r is preferably 
small). The main objective in [38] is to give a PIR scheme where communication between 
the user and each server is via linear network coding [20]. We will see in Subsection 5.3
that our PIR scheme can be used in the same scenario, achieving the same rate, but with 
polynomial field sizes as noted above.

The paper is organized as follows. In Section 2, we formulate general PIR schemes 
for MR-LRC databases. In Section 3, we develop the mathematical tools for our PIR 
scheme. In Section 4, we explicitly describe our PIR scheme. Finally, in Section 5, we 
discuss some further considerations.

2. Private information retrieval from MR-LRC databases

In this section, we describe the private information retrieval (PIR) model that we 
consider in this work. To the best of our knowledge, no general information-theoretical 
PIR model has yet been proposed for LRC databases.

Let q be a prime power. We will denote by F an arbitrary field, and by Fq the 
finite field with q elements. Usually, we will consider F = Fqr , where r ≥ 1 will be the 
locality of the considered storage codes. We will also denote by Fm×n the set of m × n

matrices with entries in F , and we denote Fn = F1×n. For a positive integer n, we 
denote [n] = {1, 2, . . . , n}. Given R ⊆ [n], we denote by cR ∈ F |R|, A|R ∈ Fm×|R| and 
CR ⊆ F |R| the restrictions of a vector c ∈ Fn, a matrix A ∈ Fm×n and a code C ⊆ Fn, 
respectively, to the coordinates indexed by R.

Next, we recall the definitions of locally repairable codes [14,18].
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Definition 1 (Locally repairable codes [14,18]). We say that a code C ⊆ Fn is a locally 
repairable code (LRC) with (r, δ) localities if there exists a partition [n] = Γ1∪Γ2∪. . .∪Γg, 
where Γi ∩ Γj = ∅ if i �= j, such that

1. |Γj | = r + δ − 1, and
2. dH(CΓj

) ≥ δ,

for j = 1, 2, . . . , g. The set Γj is called the jth local group, r is called the locality, and δ
is called the local distance. A node will simply be an index j ∈ [n].

Note that n = (r + δ − 1)g, but necessarily it must hold that k = dim(C) ≤ gr. 
Maximally recoverable LRCs, introduced in [3, Def. 2.1] and [13, Def. 6], can correct all 
information-theoretically correctable erasure patterns for the given locality constraints 
r, δ, k and g. Such patterns are formed by any δ − 1 erasures per local group, plus any 
h = gr − k extra erasures anywhere else, as the following definition shows.

Definition 2 (Maximal recoverability [3,13]). We say that an LRC C ⊆ Fn with (r, δ)
localities is maximally recoverable (MR) if, for any Δj ⊆ Γj with |Δj | = r, for j =
1, 2, . . . , g, the restricted code CΔ ⊆ FN is MDS, where Δ =

⋃g
j=1 Δj and N = |Δ| = gr. 

We say for short that C is an MR-LRC. We will usually call CΔ ⊆ FN a remaining MDS 
code of C (there is one for each choice of Δj ’s).

MR-LRCs can correct more erasure patterns than most LRCs with optimal minimum 
distance with respect to the bound in [18, Th. 2.1], such as Tamo-Barg codes [39].

Our PIR schemes will work for the MDS codes that remain after puncturing an MR-
LRC, as in Definition 2. As explained in Section 1, the PIR schemes from [11] only work 
for GRS codes, which may not be the MDS code CΔ that remains after puncturing an 
MR-LRC C as in Definition 2 since GRS have linear field sizes and MR-LRCs require 
super-linear field sizes (in the code length).

We will consider collusion patterns formed by unions of local groups. Note that col-
lusion patterns strongly depend on each particular scenario. We now argue why in the 
LRC case it actually makes more sense to consider collusion patterns formed by unions 
of local groups than any set of nodes corresponding to codeword symbols:

1. Communication is much more frequent and necessary among nodes inside a local 
group, as local correction is the most frequent type and global correction is only left 
to catastrophic erasure patterns. For this reason, local groups could be considered as 
separate storage units or even be placed geographically apart. In the extreme case 
h = gr − k = 0, MR-LRCs are simply Cartesian products of codes. In this case, 
no communication across local groups is needed and they could store completely 
independent data. In contrast, for repetition codes and MDS codes, communication 
across servers is needed to correct average erasure patterns. For these reasons, we will 
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consider local groups Γj ⊆ [n], rather than individual nodes j ∈ [n], as corruptable 
units. In other words, the jth server will be identified with the jth local group. Thus 
a subset T ⊆ [g] of colluding servers is the same as the corresponding |T | local groups 
and (r + δ − 1)|T | colluding nodes.

2. To help reduce the downloaded amount of data from the jth server (i.e. jth local 
group, see Item 1), we assume that only r stored symbols from each codeword are 
downloaded from that server, since the remaining δ − 1 nodes only contain locally 
redundant information. This means that we consider an MDS code that remains 
after puncturing the MR-LRC as in Definition 2. As explained above, GRS codes 
(the MDS codes considered in [11]) cannot come from MR-LRC after puncturing 
since GRS codes have linear field sizes and MR-LRCs require super-linear field sizes 
[15], hence the scheme in [11] does not apply to the MR-LRC scenario.

Fix now positive integers b, m and k ≤ N = gr, and let x1, x2, . . ., xm ∈ Fb×k
qr be the 

m files to be stored. Arrange them as

X =

⎛⎜⎝ x1

...
xm

⎞⎟⎠ ∈ Fbm×k
qr .

Consider an arbitrary MR-LRC Cglob ⊆ Fn
qr (the global code) with a generator matrix of 

the form

Gglob = Gout Diagg(A) ∈ Fk×n
qr , (3)

where n = g(r+δ−1), N = gr, Gout ∈ Fk×N
qr is a generator matrix of some k-dimensional 

outer code Cout ⊆ FN
qr , A ∈ Fr×(r+δ−1)

q is a generator matrix of an (r + δ − 1, r) MDS 
code (the local code), and Diagg(A) = Diag(A, A, . . . , A) ∈ FN×n

q is the block-diagonal 
matrix with A repeated in the main block-diagonal g times.

Each file xi is then encoded into yi = xiGglob ∈ Fb×n
qr , where yi

Γj
∈ Fb×(r+δ−1)

qr is 
stored in the jth server. Let Δj ⊆ Γj be the first r coordinates in Γj and assume that the 
first r columns of A form the identity matrix (i.e. A is systematic). Then if we disregard 
the nodes in Γj \ Δj , the part of the ith file stored in the jth server is zij ∈ Fb×r

qr , for 
j = 1, 2, . . . , g, where

Z = XGout =

⎛⎜⎝ z1

...
zm

⎞⎟⎠ = (z1, z2, . . . , zg) =

⎛⎜⎝ z1
1 . . . z1

g
...

. . .
...

zm1 . . . zmg

⎞⎟⎠ ∈ Fbm×N
qr . (4)

Thus the remaining MDS code coincides with the outer code: CΔ = Cout.
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The parameter b will be called the folding parameter. It is a common parameter that 
is usually considered in Coding Theory implicitly. It allows to store a larger amount of 
data while the encoding and decoding operations grow linearly with b.

We now formalize general private information retrieval schemes for MR-LRCs.

Definition 3. A private information retrieval (PIR) scheme for an MR-LRC distributed 
storage system as described above consists, for each i = 1, 2, . . . , m, of:

1. Random queries sent to the jth server to retrieve the ith file:

qi
j =

(
qi,1
j ,qi,2

j , . . . ,qi,m
j

)
∈ Fbmr

qr ,

where qi,�
j ∈ Fbr

qr , for � = 1, 2, . . . , m and j = 1, 2, . . . , g.
2. The corresponding response rij = zj · qi

j ∈ Fr
qr of the jth server when requested the 

ith file (the server only knows zj and qi
j in principle), for j = 1, 2, . . . , g. The product 

· will be given in (14). We will denote ri = (ri1, ri2, . . . , rig) ∈ FN
qr .

3. A number s of iterations of Items 1 and 2, until the ith file can be recovered from 
the responses ri in Item 2.

4. A reconstruction function with input the s responses ri and output the ith file xi.

A major difference with [9,11] is that we do not use the usual inner product z ·q, but 
a generalization of it (see Definition 8 below).

As usual in the PIR literature, our goal is to maximize the download rate, which is 
defined as the file size divided by the amount of downloaded data. The upload cost may 
be considered negligible by further folding the scheme b′ � 1 times, thus a total of bb′
times. Disregarding also local redundancies, the download rate is as follows.

Definition 4. We define the download rate, or simply rate, of a PIR scheme given as in 
Definition 3 as

R = bk

Ns
. (5)

We require information-theoretical privacy for a given number t of colluding servers 
(i.e. colluding local groups).

Definition 5. We say that a PIR scheme as in Definition 3 protects against t colluding 
servers (i.e., colluding local groups) if, for every T ⊆ [g] of size t, in each iteration of the 
scheme we have that

I
((

qi
j

)
j∈T

; i
)

= 0,

where I(X; Y ) denotes the mutual information between two random variables X and Y
(see [8, Ch. 12]).
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3. Coordinate-wise and inner matrix products

In this section, we define and collect the main properties of inner and coordinate-wise 
matrix products used in our PIR scheme (see Item 2 in Definition 3). Such products 
will be crucial for the MR-LRCs from [24] based on linearized Reed-Solomon codes [22]. 
Thus we start by revisiting such codes.

3.1. MR-LRCs based on linearized Reed-Solomon codes

Fix r ≥ 1 and let σ : Fqr −→ Fqr be given by σ(a) = aq, for all a ∈ Fqr . We next 
define linear operators as in [22, Def. 20].

Definition 6 ([22]). Fix a ∈ Fqr , and define its ith norm as Ni(a) = σi−1(a) · · ·σ(a)a, for 
i ∈ N. We define the Fq-linear operator Di

a : Fqr −→ Fqr by

Di
a(β) = σi(β)Ni(a), (6)

for all β ∈ Fqr , and all i ∈ N. Define also Da = D1
a and observe that Di+1

a = Da ◦ Di
a, 

for i ∈ N. Denote by Fqr [Da] the polynomial ring in the operator Da, for a ∈ Fqr .

Recall that the skew polynomial ring Fqr [x; σ], introduced in [27], is the polynomial 
ring on the variable x but with non-commutative product given by the rule

xβ = σ(β)x, (7)

for all β ∈ Fqr . For F =
∑d

i=0 Fix
i ∈ Fqr [x; σ], we define

FDa =
d∑

i=0
FiDi

a ∈ Fqr [Da], (8)

for a ∈ Fqr . In the following, for F =
∑d

i=0 Fix
i ∈ Fqr [x; σ], for a ∈ Fqr and for 

β = (β1, β2, . . . , βr) ∈ Fr
qr , we use the notation

FDa(β) =
(
FDa(β1), FDa(β2), . . . , FDa(βr)

)
∈ Fr

qr . (9)

Next, given a = (a1, a2, . . . , ag) ∈ Fg
qr , we define the total evaluation vector of F at 

(a, β) as

FDa(β) =
(
FDa1 (β), FDa2 (β), . . . , FDag (β)

)
∈ FN

qr , (10)

where N = gr. The following definition is a particular case of [22, Def. 31].
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Definition 7 (Linearized Reed-Solomon codes [22]). Fix a primitive element γ ∈ F∗
qr and 

let a = (γ0, γ1, . . . , γg−1) ∈ Fg
qr . Fix an ordered basis β = (β1, β2, . . . , βr) ∈ Fr

qr of 
Fqr over Fq. For k = 0, 1, 2, . . . , N , where N = gr, we define the (N, k) linearized Reed-
Solomon (LRS) code as

CN,k(a,β) =
{
FDa(β) ∈ FN

qr | F ∈ Fqr [x;σ],deg(F ) < k or F = 0
}
⊆ FN

qr .

Here, the degree deg(F ) of a non-zero skew polynomial F =
∑

i∈N Fix
i ∈ Fqr [x; σ], 

where Fi ∈ Fqr for i ∈ N, is defined as the maximum i ∈ N such that Fi �= 0.

Linearized Reed-Solomon codes recover Reed-Solomon codes [28] by setting r = 1 and 
β1 = 1, and they recover Gabidulin codes [12] by setting g = 1.

In [24, Const. 1], a construction of MR-LRCs was given based on linearized Reed-
Solomon codes (Definition 7). This construction recovers Reed-Solomon codes if r = δ =
1, and it recovers Cartesian products of codes if h = gr − k = 0.

Construction 1 (LRS-based MR-LRC [24]). Fix the positive integers g, r and δ, and 
choose any base field size q > max{r+δ−3, g}. Next choose a dimension k = 1, 2, . . . , N , 
where N = gr, and:

1. Outer code: An (N, k) linearized Reed-Solomon code Cout = CN,k(a, β) ⊆ FN
qr as in 

Definition 7.
2. Local codes: Any linear (r + δ − 1, r) MDS code Cloc ⊆ Fr+δ−1

q .
3. Global code: Let Cglob ⊆ Fn

qr , with n = (r + δ − 1)g = N + (δ − 1)g, be given by

Cglob = Cout Diagg(A) ⊆ Fn
qr ,

where A ∈ Fr×(r+δ−1)
q is any generator matrix of Cloc.

The following result is [24, Th. 2] and states the MR and LRC properties of the global 
code Cglob in Construction 1.

Theorem 1 ([24]). Let Cglob ⊆ Fn
qr be the global code from Construction 1, and let Γj ⊆ [n]

be the subset of coordinates from (r+δ−1)(j−1) +1 to (r+δ−1)j, for j = 1, 2, . . . , g. Then 
Cglob ⊆ Fn

qr has (r, δ) localities, local groups Γ1, Γ2, . . . , Γg, and is maximally recoverable. 
Furthermore, its field size may be chosen as max{r + δ − 3, g}r.

3.2. Definition and linearity properties of the products

Fix an ordered basis β = (β1, β2, . . ., βr) ∈ Fr
qr of Fqr over Fq. Denote by Mβ :

Fr
qr −→ Fr×r

q the corresponding matrix-representation map, given by
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Mβ (x) =

⎛⎜⎜⎜⎜⎝
x1

1 x1
2 . . . x1

r

x2
1 x2

2 . . . x2
r

...
...

. . .
...

xr
1 xr

2 . . . xr
r

⎞⎟⎟⎟⎟⎠ , (11)

for x = (x1, x2, . . . , xr) ∈ Fr
qr , where x1

j , x
2
j , . . . , x

r
j ∈ Fq are the unique scalars such that 

xj =
∑r

i=1 βix
i
j ∈ Fqr , for j = 1, 2, . . . , r. Observe that Mβ is an Fq-linear vector space 

isomorphism, and it is the identity map if r = 1 and β1 = 1.

Definition 8. Given x, y ∈ Fr
qr , we define their matrix product with respect to β as

x � y = M−1
β (Mβ(x)Mβ(y)) ∈ Fr

qr . (12)

For N = gr, x = (x1, x2, . . . , xg) ∈ FN
qr and y = (y1, y2, . . ., yg) ∈ FN

qr , where xj , yj ∈
Fr
qr , for j = 1, 2, . . . , g, we define their coordinate-wise matrix product as

x ∗ y = (x1 � y1,x2 � y2, . . . ,xg � yg) ∈ FN
qr , (13)

and we define their inner matrix product · as

x · y =
g∑

j=1
xj � yj ∈ Fr

qr . (14)

The products �, ∗ and · all depend on the subfield Fq ⊆ Fqr (thus q and r) and the 
ordered basis β, but we will not denote this dependence for simplicity. The classical 
coordinate-wise and inner products in FN

q , used in [11] for PIR (and in general in the 
literature, see [9]), are recovered by setting r = 1 and β1 = 1 (thus N = g).

From the definitions, we note also that, if x = (x1, x2, . . ., xr) ∈ Fr
qr and y =∑r

i=1 βiyi ∈ Fr
qr , with xi ∈ Fqr and yi ∈ Fr

q , for i = 1, 2, . . . , r, then

M−1
β (Mβ(x)Mβ(y)) =

r∑
i=1

xiyi ∈ Fr
qr . (15)

From Equation (15) applied coordinate-wise, we deduce the following.

Lemma 9. The coordinate-wise matrix product ∗ is Fq-bilinear and Fqr -linear in the first 
component, that is,

1. (x + x′) ∗ y = x ∗ y + x′ ∗ y and x ∗ (y + y′) = x ∗ y + x ∗ y′,
2. (ax) ∗ y = a(x ∗ y) and x ∗ (by) = b(x ∗ y),

for all x, x′, y, y′ ∈ FN
qr , all a ∈ Fqr and all b ∈ Fq.
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3.3. Products of skew and linearized polynomials

We have the following important connection between the rings Fqr [x; σ] and Fqr [Da], 
for all a ∈ Fqr . We consider Fqr [Da] as a ring with conventional addition and with 
composition of maps as multiplication, denoted by ◦.

Lemma 10. For all F, G ∈ Fqr [x; σ] and all a ∈ Fqr , it holds that

(FG)Da = FDa ◦GDa .

In particular, the map Fqr [x; σ] −→ Fqr [Da] given by (8) is a (surjective) ring morphism.

Proof. Observe that

Da ◦ (βId) = σ(β)Da, (16)

for all β ∈ Fqr , where Id = D0
a is the multiplicative identity of Fqr [Da], and note that 

(16) coincides with (7) if we set x = Da. Since (7) is the defining property of the product 
in the skew polynomial ring Fqr [x; σ], the result follows. �

The main result of this section is showing that products of skew polynomials become 
coordinate-wise matrix products after evaluation via the operators Da.

Theorem 2. Let β = (β1, β2, . . . , βr) ∈ Fr
qr be an ordered basis of Fqr over Fq, and let 

coordinate-wise matrix products ∗ be defined via β. Then it holds that

(FG)Da(β) = FDa(β) ∗GDa(β),

for all vectors a = (a1, a2, . . . , ag) ∈ Fg
qr and all skew polynomials F, G ∈ Fqr [x; σ].

Proof. In [25, Prop. 1], it was proven that

σ�(β) � y = σ�(y), (17)

for all � ∈ N and all y ∈ Fr
qr . We recall the proof of (17) for convenience of the reader. 

If y =
∑r

i=1 βiyi, where yi ∈ Fr
q , for i = 1, 2, . . . , r, then

σ�(β) � y =
r∑

i=1
σ�(βi)yi = σ�

(
r∑

i=1
βiyi

)
= σ�(y),

where the first equality is (15).
Since � is Fqr -linear in the first component (Lemma 9), and D�

a = N�(a)σ�, where 
N�(a) ∈ Fqr , then we deduce from (17) that
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D�
a(β) � y = (N�(a)σ�(β)) � y = N�(a)(σ�(β) � y) = N�(a)σ�(y) = D�

a(y),

for all a ∈ Fqr , all y ∈ Fr
qr and all � ∈ N. Thus the case g = 1 follows by combining 

Lemmas 9 and 10.
Finally, the theorem for general g follows by applying the case g = 1 separately in 

each of the g coordinates over the alphabet Fr
qr , and applying Lemma 10. �

Setting r = 1 and β1 = 1, the previous theorem is nothing but the well-known fact 
that coordinate-wise evaluation transforms conventional polynomial products into the 
conventional coordinate-wise product.

We conclude by deducing that the product of two linearized Reed-Solomon codes over 
the same ordered basis β is again a linearized Reed-Solomon code. For this purpose, 
given Fqr -linear codes C1, C2 ⊆ FN

qr , we define their coordinate-wise matrix product as

C1 ∗ C2 = 〈{c1 ∗ c2 | c1 ∈ C1, c2 ∈ C2}〉 ⊆ FN
qr ,

where 〈A〉 denotes the Fq-linear vector space generated by A ⊆ FN
qr .

Corollary 11. Let β = (β1, β2, . . . , βr) ∈ Fr
qr be an ordered basis of Fqr over Fq, and let 

coordinate-wise matrix products ∗ be defined via β. Let also a = (γ0, γ1, . . . , γg−1) ∈ Fg
qr , 

for a primitive element γ ∈ F∗
qr . For any k1, k2 = 0, 1, 2, . . . , N , with k1 ≥ 1,

CN,k1(a,β) ∗ CN,k2(a,β) = CN,k1+k2−1(a,β)

if k1 + k2 − 1 ≤ N , and CN,k1(a, β) ∗ CN,k2(a, β) = FN
qr otherwise.

Proof. It follows by combining Lemma 9, Theorem 2 and the fact that

deg(FG) = deg(F ) + deg(G),

for all skew polynomials F, G ∈ Fqr [x; σ]. �
Setting r = 1 and β1 = 1, Corollary 11 recovers the well-known fact that the classical 

coordinate-wise product of two Reed-Solomon codes is again a Reed-Solomon code. See 
for instance [11, Prop. 3]. Setting g = 1, Corollary 11 recovers the fact that the matrix 
product of two Gabidulin codes is again a Gabidulin code. See for instance [25, Lemma 
10] or [38].

4. PIR schemes for LRS-based MR-LRC databases

In this section, we provide a concrete and explicit PIR scheme, as in Definition 3, 
for the MR-LRC storage codes from Construction 1. To that end, we will show how 
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to construct the queries and how to reconstruct the file from the responses. The set of 
server responses, given the queries, are as described in Definition 3.

Let the notation be as in Section 2, fix an ordered basis β = (β1, β2, . . . , βr) ∈ Fr
qr of 

Fqr over Fq, and let coordinate-wise matrix products ∗ be defined via β. We set through-
out this section t ≥ 1 as the target number of colluding servers, with the restriction

k + rt ≤ N, (18)

and we will set c = N − k − rt + 1 > 0.
For clarity, we present two schemes, being the first one (Subsection 4.1) a particular 

case of the second one (Subsection 4.2) by setting b = 1. The first scheme is added 
because it is a particular case that is simpler, it is easier to understand and does not 
require folding by setting b > 1. However, it requires that k is divisible by c. The second 
scheme is added simply because it is an extension of the first scheme that works for any 
set of parameters.

Both schemes will achieve the PIR rate

R = c

N
= N − k − rt + 1

N
, (19)

coinciding with the rate of the PIR scheme in [11] for (N, k) GRS storage codes. How-
ever, as explained in Section 1, one cannot compare these two PIR schemes, since [11]
only works for GRS codes, which cannot be the MDS codes obtained from puncturing 
MR-LRCs (since GRS have linear field sizes and MR-LRCs require super-linear field 
sizes [15]). Moreover, the PIR scheme from [11] only works for GRS codes since it uses 
coordinate-wise products, and GRS codes are the only MDS codes that satisfy the de-
sired properties with respect to such products [21]. We circumvent this limitation by 
considering coordinate-wise matrix products and LRS codes.

We also remark here that, mathematically speaking, the scheme in [11] is precisely 
the particular case of our second scheme by setting r = δ = 1. Being able to extend it to 
arbitrary r and δ requires a somewhat different partition of the considered vectors and 
matrices, and the careful use of the coordinate-wise matrix products from Section 3. On 
the Coding-Theoretic side, the obvious and important difference with [11] is that setting 
r = δ = 1 simply does not allow for local repair.

4.1. First scheme: no folding

Our first scheme assumes no minimum folding of the files, that is, b = 1, and is 
precisely the particular case of our second scheme obtained by setting b = 1. Note that 
the stored codewords may however be further folded b′ � 1 times without folding the 
PIR scheme. The main disadvantage of choosing b = 1 is that the dimension k must be 
divisible by c = N − k− rt + 1. Relaxing this divisibility assumption is the advantage of 
the second scheme.



14 U. Martínez-Peñas / Finite Fields and Their Applications 96 (2024) 102421
As stated above, assume that k = sc, for some s ∈ N, which will be the number of 
iterations of the scheme. This can be trivially assumed if k + rt = N , thus c = 1 and 
s = k. Note that this is the best choice for the competing parameters k and t satisfying 
(18), but it gives the smallest PIR rate R = 1/N ≤ c/N among our schemes, although 
R = 1/N is still far better than downloading the whole database (which gives rate 1/m), 
since m � N in practice.

Fix file and iteration indices i = 1, 2, . . . , m and u = 1, 2, . . ., s, respectively. We now 
describe the two steps of the uth iteration in Definition 3 to privately retrieve the ith 
file.

Step 1, Queries: Choose m codewords d� = (d�
1, d�

2, . . ., d�
g) ∈ FN

qr uniformly at 
random from CN,rt(a, β), where d�

j ∈ Fr
qr , for � = 1, 2, . . . , m and j = 1, 2, . . . , g. The 

random vectors d� = d�(u) depend on the iteration index u (i.e. d�(1), d�(2), . . . , d�(s)
are identically distributed and independent), but we sometimes omit the index u for 
simplicity. Set

dj = (d1
j ,d2

j , . . . ,dm
j ) ∈ Frm

qr ,

for j = 1, 2, . . . , g. Define the set

Ju = c(u− 1) + [c],

where we use the notation a + B = {a + b | b ∈ B}, for a ∈ Z and B ⊆ Z. Finally, for 
each server j = 1, 2, . . . , g, we define its query by

qi
j(u) = dj(u) + eij(u) ∈ Frm

qr , (20)

where we define eij(u) ∈ Frm
qr as being zero everywhere except in the ith block of r

coordinates over Fqr , where it is defined as

M−1
β (I((j−1)r+[r])∩Ju

) ∈ Fr
qr . (21)

Here, we define IJ ∈ Fr×r
q , for a set J ⊆ (j − 1)r + [r], as the diagonal matrix IJ =

Diag(δJ1 , δJ2 , . . . , δJr ), where δJκ = 1 if (j − 1)r + κ ∈ J , and δJκ = 0 otherwise. Note that 
I∅ ∈ Fr×r

q is the zero matrix.
Step 2, Responses: Due to the definition of the queries in (20) and the inner matrix 

product (14), the total response in the uth iteration is

ri(u) =
m∑
�=1

(z� ∗ d�(u)) + (0(u−1)c, ziJu
,0N−uc) ∈ FN

qr ,

where 0M ∈ FM
qr is a zero vector of length M . This is because, by the definition of the 

inner matrix product · in Frm
qr , the response by the jth server is given by
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rij(u) = zj · qi
j(u) =

m∑
�=1

z�j � qi,�
j (u) =

m∑
�=1

(
z�j � d�

j(u) + z�j � ei,�j (u)
)

=
m∑
�=1

(z�j � d�
j(u)) +

m∑
�=1

z�j � ei,�j (u)

=
m∑
�=1

(z�j � d�
j(u)) + zijI((j−1)r+[r])∩Ju

,

where ei,�j (u) ∈ Fr
qr is the �th block of r coordinates of the vector eij(u) ∈ Frm

qr , and 
finally, (

zijI((j−1)r+[r])∩Ju

)g
j=1 =

(
zi1I[r]∩Ju

, . . . , zigI((g−1)r+[r])∩Ju

)
= (0(u−1)c, ziJu

,0N−uc) ∈ FN
qr .

In our view, this is the key step where we use that the jth server (i.e., jth corruptable 
unit) is the jth local group after removing the local redundancies. This allows the cor-
responding stored data z�j and query q�

j to be seen as r × r matrices over Fq, and thus 
we may perform the above operations.

Step 3, File reconstruction: We now describe how to recover the ith file by combining 
the responses from all s iterations. Let H ∈ Fc×N

qr be a parity-check matrix (any of them) 
of the linear code

CN,k+rt−1(a,β) = CN,k(a,β) ∗ CN,rt(a,β)

(recall Corollary 11). For u = 1, 2, . . . , s, we compute

ri(u)HT = (0(u−1)c, ziJu
,0N−uc)HT ,

which holds since
m∑
�=1

(z� ∗ d�(u)) ∈ CN,k+rt−1(a,β).

Since CN,k+rt−1(a, β) is MDS by Theorem 1, its dual is also MDS, and we can recover 
the vector ziJu

∈ Fc
qr from ri(u)HT . Since we have that

[k] = J1 ∪ J2 ∪ . . . ∪ Js,

collecting all such s restrictions ziJu
, we obtain

(zi1, zi2, . . . , zik) = xi(Gout)[k] ∈ Fk
qr .

Now, since CN,k(a, β) is MDS, again by Theorem 1, we may recover the ith file, xi ∈ Fk
qr , 

and we are done.
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Note that the MDS property in this last step is not necessary: If we take the generator 
matrix Gout of the outer code CN,k(a, β) to be systematic, with the identity in the first 
k columns, then it simply holds that xi = (zi1, zi2, . . . , zik).

Proof of privacy: We now show that the proposed PIR scheme protects against any 
t colluding servers as in Definition 5. Recall from Section 2 that we identify servers 
with local groups. Let T ⊆ [g], such that |T | = t, be the set of colluding local groups. 
Therefore, this can be understood as an adversary gaining as information the values 
qi
j(u) ∈ Frm

qr , for j ∈ T , and for all iterations u = 1, 2, . . . , s. We will just write qi
j = qi

j(u)
for simplicity. We need to prove that, for a given iteration, it holds that

I((qi
j)j∈T ; i) = 0.

Since CN,rt(a, β) ⊆ FN
qr has dimension rt and is MDS by Theorem 1, it holds that any set 

of rt coordinates in [N ] constitute an information set for CN,rt(a, β). In other words, the 
restricted code CN,rt(a, β)T̃ = Frt

qr is the whole space, where T̃ =
⋃

j∈T ((j − 1)r + [r]) ⊆
[N ] is the actual set of colluding nodes. This implies that the vectors

(d�
j)j∈T ∈ Frt

qr

are uniform random variables in Frt
qr . Since the Cartesian product of independent and 

uniform random variables is again a uniform random variable, we deduce that

(dj)j∈T ∈ Frtm
qr

is a uniform random variable in Frtm
qr . Since the vector of queries (qi

j)j∈T is a translation 
of the random variable (dj)j∈T by a deterministic vector, we deduce that (qi

j)j∈T is a 
uniform random variable in Frtm

qr . Since there is only one uniform random variable in 
Frtm
qr , independently of i, we deduce that I((qi

j)j∈T ; i) = 0, and we are done.

4.2. Second scheme: folding

In our second scheme, we avoid the constraint that k must be divisible by c = N−k−
rt + 1. To that end, we will make use of the folding parameter b as done in [11]. Again, 
the stored codewords may be further folded b′ � 1 times without further folding the PIR 
scheme. We emphasize here that the scheme in [11] is actually recovered from this second 
scheme by setting r = δ = 1, which is the case in which linearized Reed-Solomon codes 
recover Reed-Solomon codes (see Subsection 3.1). Our first scheme is also recovered from 
this second scheme by setting b = 1. To avoid the divisibility assumption, we define

b = lcm(c, k)
k

and s = lcm(c, k)
c

,

hence guaranteeing that bk = sc. Thus we may define
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h = k

s
= c

b
.

Fix file and iteration indices i = 1, 2, . . . , m and u = 1, 2, . . ., s, respectively. We now 
describe the two steps of uth iteration in Definition 3 to privately retrieve the ith file.

Step 1, Queries: Choose mb codewords d�,v = (d�,v
1 , d�,v

2 , . . ., d�,v
g ) ∈ FN

qr , uniformly 

at random from CN,rt(a, β), where d�,v
j ∈ Fr

qr , for � = 1, 2, . . . , m, v = 1, 2, . . . , b, and 
j = 1, 2, . . . , g. As before, d�,v = d�,v(u) depends on u, but we sometimes drop this in 
the notation. We set

d�
j = (d�,1

j ,d�,2
j , . . . ,d�,b

j ) ∈ Frb
qr and

dj = (d1
j ,d2

j , . . . ,dm
j ) ∈ Frbm

qr ,

for � = 1, 2, . . . , m and j = 1, 2, . . . , g. Define the sets

J1
u = h(u− 1) + [h], J2

u = h + J1
u, . . . , J

b
u = h(b− 1) + J1

u.

Finally, for each server j = 1, 2, . . . , g, we define its query by

qi
j(u) = dj(u) + eij(u) ∈ Frbm

qr . (22)

In this case, we define eij(u) ∈ Frbm
qr as being zero everywhere except in the (b(i −1) +v)th 

block of r coordinates over Fqr , for v = 1, 2, . . . , b, where it is defined as

M−1
β (I((j−1)r+[r])∩Jv

u
) ∈ Fr

qr . (23)

As before, we define IJ ∈ Fr×r
q , for a set J ⊆ (j − 1)r + [r], as the diagonal matrix 

IJ = Diag(δJ1 , δJ2 , . . . , δJr ), where δJκ = 1 if (j − 1)r + κ ∈ J , and δJκ = 0 otherwise. As 
before, I∅ ∈ Fr×r

q is the zero matrix.
Step 2, Responses: The reader can check that, from the definition of the queries in 

(22) and the inner matrix product (14), the total response in the first iteration is

ri =
m∑
�=1

b∑
v=1

(z�,v ∗ d�,v) + (zi,1
J1
1
, zi,2

J2
1
, . . . , zi,b

Jb
1
,0) ∈ FN

qr , (24)

where 0 has length N−c. In the uth iteration, the response is obtained similarly, replacing 
zi,vJv

1
by zi,vJv

u
, but placed in the coordinates indexed by Jv

u taking the cyclicity of the 
coordinates in [N ] into account, for v = 1, 2, . . . , b.

Step 3, File reconstruction: We now describe how to recover the ith file by combining 
the responses from all s iterations. As before, let H ∈ Fc×N

qr be a parity-check matrix of

CN,k+rt−1(a,β) = CN,k(a,β) ∗ CN,rt(a,β)

(recall Corollary 11). In the first iteration, we compute
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riHT = (zi,1
J1
1
, zi,2

J2
1
, . . . , zi,b

Jb
1
,0)HT ,

which holds since

m∑
�=1

b∑
v=1

(z�,v ∗ d�,v) ∈ CN,k+rt−1(a,β).

As before, CN,k+rt−1(a, β) is MDS by Theorem 1, and thus its dual is also MDS. There-
fore we may recover zi,1

J1
1
, zi,2

J2
1
, . . . , zi,b

Jb
1
∈ Fh

qr from riHT .
In a similar way, in the uth iteration, we recover zi,1J1

u
, zi,2J2

u
, . . . , zi,b

Jb
u
∈ Fh

qr , for u =
1, 2, . . . , s. For a given v = 1, 2, . . ., b, the reader can check from their definition that 
the sets Jv

1 , J
v
2 , . . . , J

v
s are disjoint and the size of their union is sh = k. Therefore, we 

recover k symbols of zi,v ∈ FN
qr over the alphabet Fqr , together with their indices, given 

by Jv
1 ∪ Jv

2 ∪ . . . ∪ Jv
s ⊆ [N ]. Since CN,k(a, β) is MDS, we recover the vth row of the 

ith file, that is, xi,v ∈ Fk
qr , for v = 1, 2, . . . , b. Thus we are done by collecting all b rows, 

xi,1, xi,2, . . . , xi,b, of the ith file.
Proof of privacy: Analogous to that in Subsection 4.1.

4.3. Summary of parameters and complexity

We now discuss the complexity of the three steps of the PIR scheme in this section. 
We only discuss the scheme without folding, since all complexities simply get multiplied 
by b in the folded case. We consider the three main steps of the scheme:

1. Queries: We need to generate sm uniformly random vectors in Frt
qr and multiply each 

of them by a generator matrix of CN,rt(a, β), that is, a matrix of size rt ×N . Thus 
this step has a complexity of O(smrtN) = O(smN2) operations in Fqr .

2. Responses: We need to perform sm products of two matrices in Fr×r
q in order to 

compute the vectors rij = zj · qi
j , hence this step has a complexity of O(smr3)

operations in Fq.
3. Reconstruction: We need to compute s products of a vector in FN

qr with a matrix 
in FN×c

qr in order to compute ri(u)HT , hence this step has a complexity of O(scN)
operations over Fqr . Finally, computing xi(Gout)[k] is trivial if Gout is systematic 
(i.e. (Gout)[k] is the identity).

As we can see, if the number of files m is much larger than the other parameters, then 
we may consider the total computational complexity as linear in m (recall that m � N

and s, r, t ≤ N).
We next summarize the general PIR scheme (Subsection 4.2) in the following theorem 

by describing its parameters and computational complexity.
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Theorem 3. There exists a k-dimensional MR-LRC C ⊆ Fn
qr with (r, δ) localities as in 

Definitions 1 and 2 and, for a database coded with C, there exists a PIR scheme as in 
Definition 3, with PIR rate

R = N − k − rt + 1
N

,

where N = gr and the other parameters are as follows:

Parameter Restrictions Parameter Restrictions
r, δ, g None Field size q q > max{r + δ − 3, g}
No. files m None No. servers n n = g(r + δ − 1)
Dimension k 1 ≤ k ≤ N Colluding servers t k + rt ≤ N

Iterations s s = lcm(k,N−k+rt+1)
N−k+rt+1 Folding b b = lcm(k,N−k+rt+1)

k

In addition, such a PIR scheme has a complexity of O(smN2) operations in Fqr for the 
queries, O(smr3) operations in Fq for the responses, and O(scN) operations over Fqr

for the file reconstruction. If m grows while all other parameters remain constant, such 
complexities are linear in m.

4.4. Worked example

In this subsection, we provide an example of the PIR scheme proposed in this 
manuscript. We will consider the simpler case of Subsection 4.1 (no folding or b = 1). 
We will consider dimension k = 2, locality r = 2, local distance δ = 2, number of local 
groups g = 2 and protection against t = 1 colluding servers. The total number of nodes 
is n = g(r + δ − 1) = 6, but after removing δ − 1 = 1 redundant node per local groups, 
the number of remaining nodes is N = gr = 4. In order to consider Construction 1, we 
choose the field size q = 3 > max{g, r + δ − 3}. Hence qr = 9. Choosing s = 2 iterations 
and c = N − k− rt +1 = 1, we notice that the hypotheses of Subsection 4.1 are satisfied 
(k = sc and k + rt = N). We keep the number of files m unrestricted (its value is not 
important for the example).

By considering the local codes in Construction 1 to be systematic, we may assume 
that, after removing the local redundancies, the remaining data is encoded with Cout, 
that is, CΔ = Cout as explained right after (4). Let α ∈ F9 be such that α2 = 2α + 1, 
which is a primitive element of F9. Let now a1 = 1, a2 = α, β1 = 1 and β2 = α. Notice 
that β1 and β2 are F3-linearly independent. Then we have

Gout =
(

β1 β2 β1 β2
a1β

q
1 a1β

q
2 a2β

q
1 a2β

q
2

)
=

(
1 α 1 α

1 2α + 2 α 2

)
∈ F2×4

9 .

Thus if xi = (xi
1, x

i
2) ∈ Fk

qr = F2
9 is the ith file, we may consider its encoding as

(z1
1 , z

1
2 , z

1
3 , z

1
4) = (z1

1, z1
2) = (xi

1, x
i
2)

(
1 α 1 α

1 2α + 2 α 2

)
=
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(
xi

1 + xi
2, αxi

1 + (2α + 2)xi
2 xi

1 + αxi
2, αxi

1 + 2xi
2

)
∈ F4

9 .

The first server stores z1
1 = (xi

1 +xi
2, αx

i
1 +(2α+2)xi

2) ∈ F2
9 and the second server stores 

z1
2 = (xi

1 + αxi
2, αx

i
1 + 2xi

2) ∈ F2
9 .

We now show the three steps of the scheme for the first of the two iterations in order 
to recover the first file (i.e. i = 1):

Step 1, Queries: Generate independently and uniformly at random w�
1, w�

2 ∈ F2
9 and, 

for j = 1, 2, compute

d�
j = (w�

j,1, w
�
j,2)

(
1 α 1 α

1 2α + 2 α 2

)
=

(
w�

j,1 + w�
j,2, αw�

j,1 + (2α + 2)w�
j,2 w�

j,1 + αw�
j,2, αw�

j,1 + 2w�
j,2

)
∈ F4

9 .

By (11) and (21), we have

e1
1 =

(
M−1

β

(
1 0
0 0

)
,0

)
= (β1, 0, . . . , 0) = (1, 0, . . . , 0) ∈ F2m

9 ,

and e1
2 = 0 ∈ F2m

9 . Hence the queries for the two servers are the vectors in F2m
9

q1
1 = (d1

1,d2
1, . . . ,dm

1 ) + (1, 0, . . . , 0), and
q1

2 = (d1
2,d2

2, . . . ,dm
2 ),

respectively.
Step 2, Responses: The responses from the servers are the vectors in F2

9

r1
1 =

∑m
�=1(z�1 � d�

1) + z1
1

(
1 0
0 0

)
=

∑m
�=1(z�1 � d�

1) + (z1
1 , 0), and

r1
2 =

∑m
�=1(z�2 � d�

2),

respectively.
Step 3, File reconstruction: The vector 

∑m
�=1(z�1 � d�

1) is a codeword in C4,3(a, β). 
Generator and parity-check matrices of such a code can be chosen, respectively, as

G =

⎛⎜⎝ 1 α 1 α

1 2α + 2 α 2
1 α 2 2α

⎞⎟⎠ and H =
(

2α 1 1 2α + 2
)
.

Hence we have that

r1HT = (r1
1, r1

2)HT = (z1
1 , 0, 0, 0)HT = 2αz1

1 .
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Clearly we can recover z1
1 from 2αz1

1 since 2α �= 0 is known. In this way, at the end 
of the first iteration we have obtained z1

1 . Analogously, in the second iteration we would 
obtain z1

2 . In other words, at the end of the whole process we recover

(z1
1 , z

1
2) = z1

1 = (x1
1, x

1
2)

(
1 α

1 2α + 2

)
,

and since such a matrix is invertible, we may recover the first file (x1
1, x

1
2) ∈ F2

9 .

5. Further considerations

5.1. Unequal localities and local distances

The results in this work may be extended, in a straightforward way, to the case where 
each local group Γj has a different locality rj and local distance δj , for j = 1, 2, . . . , g. 
See the next subsection for a further extension. The MR-LRC in Construction 1 based on 
linearized Reed-Solomon codes can be extended to arbitrary equal or unequal localities 
and local distances as long as the field is Fqr , where q > g and r ≥ max{r1, r2, . . . , rg}. 
See [24, Sec. III]. By choosing systematic generator matrices of the MDS local linear 
codes (which now are different), the remaining MDS storage code after removing all 
local redundancies is again a k-dimensional linearized Reed-Solomon code, although of 
length N =

∑g
j=1 rj .

For τ ≥ 1 colluding nodes, the achieved rate would still be R = (N − k − τ +
1)/N . However, t ≥ 1 colluding local groups correspond in this case to a number of 
colluding servers that is different for different sets of local groups. In other words, the 
collusion pattern [35] is generated by maximal collusion sets of different sizes. We may 
still proceed with the strategy in this work, that is, we may consider protecting against 
any τ = max{

∑
j∈T rj | T ⊆ [g], |T | = t} colluding nodes. Improvements on the rate 

R = (N − k − τ + 1)/N may be possible for certain cases (as in [35, Sec. V]), which we 
leave open.

Finally, the main motivation behind unequal localities and local distances is that some 
local groups may require faster and/or more robust repair, for instance due to hot data, 
while global erasure correction may be improved by considering the different localities 
and local distances. See [5,17,41] for more details.

5.2. Arbitrary local linear codes and hierarchical localities

As before, the results in this work may be extended, in a straightforward way, to 
the case where each local group Γj uses an arbitrary rj-dimensional local linear code 
Cj
loc ⊆ F

nj
q , where Γj = |nj | and rj + δj − 1 ≤ nj , where δj = d(Cj

loc), for j = 1, 2, . . . , g. 
Construction 1 still gives an MR-LRC for any choice of local linear codes, see [24, Sec. 
IV]. Furthermore, the local codes may be dynamically, efficiently and locally updated in 
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order to adapt to different distributed storage configurations, as discussed in [24, Subsec. 
V-A]. In particular, the local codes may be in turn MR-LRCs, giving rise to multi-layer 
or hierarchical MR-LRCs (see [24, Def. 7], [24, Subsec. V-B] and [26, Sec. II]), which 
have optimal global distance by [24, Th. 4]. As before, by choosing systematic generator 
matrices of the local codes, the remaining MDS storage code after removing the local 
redundancies is a linearized Reed-Solomon code of length N =

∑g
j=1 rj .

5.3. PIR over linearly coded networks

Linear network coding [20] permits maximum information flow over a network from 
a source to several sinks simultaneously in one shot (multicast). In [38], PIR is con-
sidered where each server is formed by a number r ≥ 1 of nodes in the database and 
communication between the user and each server is through a linearly coded network.

To avoid mixing information through the network for non-colluding sets of servers, 
it is assumed in [38] that the linearly coded networks between the user and the 
servers are pair-wise disjoint (after removing the user node). This makes the total 
transfer matrix from the user to the database and back have a block-diagonal shape 
Diag(A1, A2, . . . , Ag) ∈ Fgr

q , where Aj ∈ Fr
qr is the transfer matrix from the jth server 

to the user (we assume square transfer matrices for simplicity). In other words, the total 
linearly coded network from the user to the servers and back can be considered as a 
multishot linearly coded network as in [23], with one shot per server. The effect of such 
a channel is simply multiplying codewords by Diag(A1, A2, . . . , Ag).

It was shown in [23, Subsec. V-F] that multiplying on the right a linearized Reed-
Solomon code, as in Definition 7, by a block-diagonal matrix Diag(A1, A2, . . . , Ag) ∈ Fgr

q

gives again a linearized Reed-Solomon code, possibly with erasures if the matrices Aj

are not full-rank. Using this fact, our PIR scheme (Subsection 4.2) may be used mutatis 
mutandis in the scenario described in this subsection and in [38]. In the error-free and 
erasure-free case, the rate obtained in both works is

R = N − k − rt + 1
N

.

However, since Gabidulin codes [12] are used in [38], the required field size is qgr0 , where 
q0 ≥ 2 is the field size of the underlying linear network code. Note that qgr0 is exponential 
in the number of servers g, whereas our scheme would still require the field size gr, which 
is polynomial in the number of servers g.

5.4. Systematic and non-systematic codes

All of the results in this manuscript hold for any generator and parity-check matrix 
of the linear codes involved. Observe that we only need: 1) The fact that the coordinate-
wise matrix product of two linearized Reed-Solomon codes is a linearized Reed-Solomon 
code, in Step 3 of our PIR scheme; 2) Using a parity-check matrix, systematic or not, of 
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such a coordinate-wise matrix product of linearized Reed-Solomon codes, in Step 3 of our 
PIR scheme; and 3) the fact that the remaining MDS code CΔ, after removing all local 
redundancies Γj \ Δj , is a linearized Reed-Solomon code. To ensure the last condition, 
we made the assumption in Section 2 that the generator matrix A ∈ Fr×(r+δ−1)

q is 
systematic, having its first r columns equal to those of the identity matrix. However, 
this assumption can be easily lifted. This is because, if Ar ∈ Fr×r

q is formed by the 
first r columns of the matrix A, whether Ar is the identity matrix or not, it holds 
that

CN,k(a,β)Ar = CN,k(a,βAr),

with notation as in Definition 7, where βAr ∈ Fr
qr is another ordered basis of Fqr over 

Fq (see also [23, Subsec. V-F]). Thus our PIR scheme still works in this case, simply by 
replacing β by βAr.

Data availability

No data was used for the research described in the article.

Acknowledgment

The author gratefully acknowledges the support from The Independent Research Fund 
Denmark (Grant No. DFF-7027-00053B). The author also wishes to thank the anony-
mous reviewers, who helped improve the presentation of the manuscript.

References

[1] K. Banawan, S. Ulukus, The capacity of private information retrieval from coded databases, IEEE 
Trans. Inf. Theory 64 (3) (2018).

[2] S.R. Blackburn, T. Etzion, M.B. Paterson, PIR schemes with small download complexity and low 
storage requirements, in: Proc. IEEE Int. Symp. Info. Theory, June 2017, pp. 146–150.

[3] M. Blaum, J.L. Hafner, S. Hetzler, Partial-MDS codes and their application to RAID type of 
architectures, IEEE Trans. Inf. Theory 59 (7) (July 2013) 4510–4519.

[4] G. Calis, O.O. Koyluoglu, A general construction for PMDS codes, IEEE Commun. Lett. 21 (3) 
(March 2017) 452–455.

[5] B. Chen, S.T. Xia, J. Hao, Locally repairable codes with multiple (ri, δi)-localities, in: Proc. IEEE 
Int. Symp. Info. Theory, June 2017, pp. 2038–2042.

[6] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan, Private information retrieval, in: Proce. 36th 
Annual Symposium on Foundations of Computer Science, FOCS ’95, 1995, p. 41.

[7] B. Chor, E. Kushilevitz, O. Goldreich, M. Sudan, Private information retrieval, J. ACM 45 (6) 
(November 1998) 965–981.

[8] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley-Interscience, 2006.
[9] R.G.L. D’Oliveira, S. El Rouayheb, One-shot PIR: refinement and lifting, IEEE Trans. Inf. Theory 

66 (4) (2020) 2443–2455.
[10] A. Fazeli, A. Vardy, E. Yaakobi, Codes for distributed PIR with low storage overhead, in: Proc. 

IEEE Int. Symp. Info. Theory, June 2015, pp. 2852–2856.
[11] R. Freij-Hollanti, O. Gnilke, C. Hollanti, D. Karpuk, Private information retrieval from coded 

databases with colluding servers, SIAM J. Appl. Algebra Geom. 1 (1) (2017) 647–664.

http://refhub.elsevier.com/S1071-5797(24)00060-1/bib3104FCA4EA89AE056CA4FE65AA88AF95s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib3104FCA4EA89AE056CA4FE65AA88AF95s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib10D17F83D9D742B39D692E2DBF516C54s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib10D17F83D9D742B39D692E2DBF516C54s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib24B255358EE01BC415C7332DA47E2D36s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib24B255358EE01BC415C7332DA47E2D36s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib0AF8F481CD38D287E618DF4DB733E683s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib0AF8F481CD38D287E618DF4DB733E683s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibEB3CD361BCE48481C1D5A19CB5617269s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibEB3CD361BCE48481C1D5A19CB5617269s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibBD73BBC9FDCF5F3D24F9E29EF4FC5C64s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibBD73BBC9FDCF5F3D24F9E29EF4FC5C64s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib1A391259EB6637AF8AF2BB3EE4885D33s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib1A391259EB6637AF8AF2BB3EE4885D33s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib41D0E299CA1ABEB2094852DA042165C7s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib3D9C0B6E0B8C31D44E2D378D9632F00As1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib3D9C0B6E0B8C31D44E2D378D9632F00As1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibDA07E8D5490641DC04644FF978F53193s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibDA07E8D5490641DC04644FF978F53193s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib73D60B5D2B4C959BDE2BEF5BC5C7FAAEs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib73D60B5D2B4C959BDE2BEF5BC5C7FAAEs1


24 U. Martínez-Peñas / Finite Fields and Their Applications 96 (2024) 102421
[12] E.M. Gabidulin, Theory of codes with maximum rank distance, Probl. Inf. Transm. 21 (1) (1985) 
1–12.

[13] P. Gopalan, C. Huang, B. Jenkins, S. Yekhanin, Explicit maximally recoverable codes with locality, 
IEEE Trans. Inf. Theory 60 (9) (Sept 2014) 5245–5256.

[14] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, On the locality of codeword symbols, IEEE Trans. 
Inf. Theory 58 (11) (Nov 2012) 6925–6934.

[15] S. Gopi, V. Guruswami, S. Yekhanin, On maximally recoverable local reconstruction codes, Electron. 
Colloq. Comput. Complex. 24 (183) (2017).

[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, S. Yekhanin, Erasure coding 
in Windows Azure storage, in: 2012 USENIX Annual Technical Conference, Boston, MA, 2012, 
pp. 15–26.

[17] S. Kadhe, A. Sprintson, Codes with unequal locality, in: Proc. IEEE Int. Symp. Info. Theory, July 
2016, pp. 435–439.

[18] G.M. Kamath, N. Prakash, V. Lalitha, P.V. Kumar, Codes with local regeneration and erasure 
correction, IEEE Trans. Inf. Theory 60 (8) (Aug 2014) 4637–4660.

[19] J. Lavauzelle, R. Tajeddine, R. Freij-Hollanti, C. Hollanti, Private information retrieval schemes 
with product-matrix MBR codes, IEEE Trans. Inf. Forensics Secur. 16 (2020) 441–450.

[20] S.-Y.R. Li, R.W. Yeung, Ning Cai, Linear network coding, IEEE Trans. Inf. Theory 49 (2) (February 
2003) 371–381.

[21] I. Márquez-Corbella, R. Pellikaan, A characterization of MDS codes that have an error correcting 
pair, Finite Fields Appl. 40 (2016) 224–245.

[22] U. Martínez-Peñas, Skew and linearized Reed-Solomon codes and maximum sum rank distance 
codes over any division ring, J. Algebra 504 (2018) 587–612.

[23] U. Martínez-Peñas, F.R. Kschischang, Reliable and secure multishot network coding using linearized 
Reed-Solomon codes, IEEE Trans. Inf. Theory 65 (8) (2019) 4785–4803.

[24] U. Martínez-Peñas, F.R. Kschischang, Universal and dynamic locally repairable codes with maximal 
recoverability via sum-rank codes, IEEE Trans. Inf. Theory 65 (12) (2019) 7790–7805.

[25] U. Martínez-Peñas, R. Pellikaan, Rank error-correcting pairs, Des. Codes Cryptogr. 84 (1–2) (2017) 
261–281.

[26] A.M. Nair, V. Lalitha, Maximally recoverable codes with hierarchical locality, in: 2019 National 
Conference on Communications (NCC), 2019, pp. 1–6, Preprint, https://arxiv .org /abs /1901 .02867.

[27] O. Ore, Theory of non-commutative polynomials, Ann. Math. (2) 34 (3) (1933) 480–508.
[28] I.S. Reed, G. Solomon, Polynomial codes over certain finite fields, J. Soc. Ind. Appl. Math. 8 (2) 

(1960) 300–304.
[29] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A.G. Dimakis, R. Vadali, S. Chen, D. Borthakur, 

XORing elephants: novel erasure codes for big data, in: Proc. 39th Int. Conf. Very Large Data 
Bases, PVLDB’13, 2013, pp. 325–336.

[30] N.B. Shah, K.V. Rashmi, K. Ramchandran, One extra bit of download ensures perfectly private 
information retrieval, in: Proc. IEEE Int. Symp. Info. Theory, June 2014, pp. 856–860.

[31] V. Skachek, Batch and PIR codes and their connections to locally repairable codes, in: Network 
Coding and Subspace Designs, 2018, pp. 427–442.

[32] H. Sun, S.A. Jafar, The capacity of private information retrieval, IEEE Trans. Inf. Theory 63 (7) 
(July 2017) 4075–4088.

[33] H. Sun, S.A. Jafar, The capacity of robust private information retrieval with colluding databases, 
IEEE Trans. Inf. Theory 64 (4) (April 2018) 2361–2370.

[34] H. Sun, S.A. Jafar, Private information retrieval from MDS coded data with colluding servers: 
settling a conjecture by Freij-Hollanti et al., IEEE Trans. Inf. Theory 64 (2) (Feb 2018) 1000–1022.

[35] R. Tajeddine, O.W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti, S.E. Rouayheb, Private 
information retrieval schemes for coded data with arbitrary collusion patterns, in: Proc. IEEE Int. 
Symp. Info. Theory, June 2017, pp. 1908–1912.

[36] R. Tajeddine, O.W. Gnilke, S. El Rouayheb, Private information retrieval from MDS coded data in 
distributed storage systems, IEEE Trans. Inf. Theory 64 (11) (Nov 2018) 7081–7093.

[37] R. Tajeddine, S. El Rouayheb, Private information retrieval from MDS coded data in distributed 
storage systems, in: Proc. IEEE Int. Symp. Info. Theory, July 2016, pp. 1411–1415.

[38] R. Tajeddine, A. Wachter-Zeh, C. Hollanti, Private information retrieval over random linear net-
works, IEEE Trans. Inf. Forensics Secur. 15 (2020) 790–799.

[39] I. Tamo, A. Barg, A family of optimal locally recoverable codes, IEEE Trans. Inf. Theory 60 (8) 
(Aug 2014) 4661–4676.

http://refhub.elsevier.com/S1071-5797(24)00060-1/bib93D43B8B956DDC1E9B7C732CC5DCF846s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib93D43B8B956DDC1E9B7C732CC5DCF846s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibC4CA14FA5F736297A464CF5DCF2579DAs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibC4CA14FA5F736297A464CF5DCF2579DAs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibD7C7C48D0BBD09FCEF2E617BA230473Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibD7C7C48D0BBD09FCEF2E617BA230473Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib29D43616152A018E7B23B51104D25B0Ds1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib29D43616152A018E7B23B51104D25B0Ds1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibCF04A02E37B774FC311A48F605C3C597s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibCF04A02E37B774FC311A48F605C3C597s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibCF04A02E37B774FC311A48F605C3C597s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib1D542B1849713C231350A4E5175CD914s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib1D542B1849713C231350A4E5175CD914s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibFED7E4D7F77A34360047EB8C38A45E8Ds1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibFED7E4D7F77A34360047EB8C38A45E8Ds1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibDCDD03C590C9EBB925CE8072D556564Bs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibDCDD03C590C9EBB925CE8072D556564Bs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibFE4613D42E2AE48228EC7C5D38F5FEBAs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibFE4613D42E2AE48228EC7C5D38F5FEBAs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib6C9F28A7BFA28DB7D9DB7B2986593857s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib6C9F28A7BFA28DB7D9DB7B2986593857s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib91F25ABB0607E3570446ADA794BB3A3Es1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib91F25ABB0607E3570446ADA794BB3A3Es1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib1F55F885B60843A647AD062FF07C716Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib1F55F885B60843A647AD062FF07C716Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib363DF0C2C994E59D2F9E070423EA6668s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib363DF0C2C994E59D2F9E070423EA6668s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibA60E8547373C774CC3270419914BA7DFs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibA60E8547373C774CC3270419914BA7DFs1
https://arxiv.org/abs/1901.02867
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibBE98D2FDA00D8768F28B0D464BF8AACDs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib2EE6F5527BF4A07A6F190CC14FA3C49Ds1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib2EE6F5527BF4A07A6F190CC14FA3C49Ds1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibD069DEAEA4822D14D057C8640F1FD466s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibD069DEAEA4822D14D057C8640F1FD466s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibD069DEAEA4822D14D057C8640F1FD466s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib14E2B7DD7DD98FA2338AB953FD6070EFs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib14E2B7DD7DD98FA2338AB953FD6070EFs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib937319CDA176F9E4AD9B1863A4B7BA26s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib937319CDA176F9E4AD9B1863A4B7BA26s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib8EA5FED4AFCA6E72F5CC9475D694B27Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib8EA5FED4AFCA6E72F5CC9475D694B27Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib9F968B528C32E133717412D0C943C188s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib9F968B528C32E133717412D0C943C188s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib84FB2E12992924E15A3A3EADFB996BA8s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib84FB2E12992924E15A3A3EADFB996BA8s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib84FD2AA4A02721ABCABE461C22330676s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib84FD2AA4A02721ABCABE461C22330676s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib84FD2AA4A02721ABCABE461C22330676s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibA01CFC9B17099157B745D4E779714F53s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibA01CFC9B17099157B745D4E779714F53s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib6BDAC6112E008D85578BAC036F40FA0Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib6BDAC6112E008D85578BAC036F40FA0Cs1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibF77CB7474F54ACD87ADDF73366452388s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibF77CB7474F54ACD87ADDF73366452388s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib942F60799A2ACAB77F95F41AC0B0563As1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib942F60799A2ACAB77F95F41AC0B0563As1


U. Martínez-Peñas / Finite Fields and Their Applications 96 (2024) 102421 25
[40] S. Yekhanin, Locally Decodable Codes and Private Information Retrieval Schemes. Information 
Theory and Security, 1st edition, Springer, 2010.

[41] A. Zeh, E. Yaakobi, Bounds and constructions of codes with multiple localities, in: Proc. IEEE Int. 
Symp. Info. Theory, July 2016, pp. 640–644.

[42] Y. Zhang, G. Ge, A general private information retrieval scheme for MDS coded databases with 
colluding servers, Preprint, https://arxiv .org /abs /1704 .06785, 2017.

http://refhub.elsevier.com/S1071-5797(24)00060-1/bibDEB48A22C00B8BCD779F236A0FB13502s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bibDEB48A22C00B8BCD779F236A0FB13502s1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib942FBCE6849004AB75DB54B63319E15Es1
http://refhub.elsevier.com/S1071-5797(24)00060-1/bib942FBCE6849004AB75DB54B63319E15Es1
https://arxiv.org/abs/1704.06785

	Private information retrieval from locally repairable databases with colluding servers
	1 Introduction
	2 Private information retrieval from MR-LRC databases
	3 Coordinate-wise and inner matrix products
	3.1 MR-LRCs based on linearized Reed-Solomon codes
	3.2 Definition and linearity properties of the products
	3.3 Products of skew and linearized polynomials

	4 PIR schemes for LRS-based MR-LRC databases
	4.1 First scheme: no folding
	4.2 Second scheme: folding
	4.3 Summary of parameters and complexity
	4.4 Worked example

	5 Further considerations
	5.1 Unequal localities and local distances
	5.2 Arbitrary local linear codes and hierarchical localities
	5.3 PIR over linearly coded networks
	5.4 Systematic and non-systematic codes

	Data availability
	Acknowledgment
	References


