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Abstract

Environmental degradation due to carbon emissions occurring in the production, storage and marketing
of products has increased notably in recent years. To maintain a sustainable development, it is necessary
to penalize commercial activities that generate high carbon emissions. This paper develops and analyzes
a sustainable inventory system for a product whose demand follows a power pattern with respect to time.
It is considered that the stock items have an estimated life period, after which a percentage of these items
begins to deteriorate over time. The inventory system allows shortages which are fully backordered. Several
sources of carbon emissions are considered in this article: transportation, stock holding and deterioration.
The main objective is to determine the sustainable inventory policy that maximizes the benefit per unit
of time, which is given by the difference between the income obtained from sales and the costs associated
with inventory management and carbon emissions. Two scenarios are analyzed. In the first, the optimal

inventory policy for a system without deterioration is derived. In the second, an algorithm to determine
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the optimal policy for an inventory system with non-instantaneous deterioration is proposed. Thus, our
findings serve to determine the best inventory policy that helps decision-makers to obtain the lot size and
the reorder point that maximize the profit per unit time under carbon emission taxes in transporting, storage
and deteriorating of items. Some numerical examples are solved in order to illustrate the theoretical results
previously obtained. Finally, a sensitive analysis of the optimal inventory policy with respect to some input
parameters of the system is presented and interesting managerial insights from the numerical examples are
proposed.
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1 Introduction

1.1 Motivation

Over the last few decades, it has been possible to appreciate how the habitability conditions on our planet have
gradually been impoverished. Little by little, the air we breathe has been degrading due to the atmospheric
pollution from industry, transport and the inadequate conservation of waste generated by humans. At the
present time, it is well-known that global warming is a substantial threat to the world and carbon emissions are
a major source. Therefore, customers have a greater environmental awareness than before. Many governments
and non-governmental organizations have raised their voices indicating the need to seek formulas that allow the
sustainable growth of the planet. A good strategy is to impose higher taxes on those companies or factories
where the manufacturing or production process is highly polluting, or that carry out poor maintenance of the
items in stock needed in the production and supply chain. There should also be a high tax penalty for firms
that produce excess contamination in the transportation and distribution of products. From this perspective,
it is necessary for organizations around the world to develop and apply inventory models that take into account
sustainability issues in order to decrease the carbon emissions associated with their operations. It is imperative
to formulate new solutions aimed at adopting responsible practices that mitigate their negative impacts on local
and global ecosystems. The purpose is to help promote long-term sustainable development that will preserve

the environment for future generations.



In this work, we address a sustainable inventory management system that considers costs derived from carbon
emissions into the atmosphere produced in the transport or shipment of goods, in the incorrect maintenance
of products, as well as the disposal of deteriorated items or waste. The main novelty of this study lies in its
comprehensive and applied approach. It combines a set of assumptions, including environmental constraints,
that affect the current practices associated with inventory activities, providing a more accurate assessment of
their effects. In addition, it suggests concrete guidelines for companies to implement optimal and responsible

inventory management policies.

1.2 Literature review

In recent years, several articles have been published on sustainable inventory models. Andriolo et al. (2013)
raised the convenience of approaching the economic order quantity (EOQ model) from the perspective of sus-
tainability. They argued that there is a necessity for a sustainable inventory management framework. In a
subsequent paper, Andriolo et al. (2014) proposed that academics and researchers should build inventory mod-
els which include environmental issues, so as to reflect the impact of the amount of greenhouse gases that are
emitted to the atmosphere due to the activities carried out during the process of production, delivery and stor-
age. Along these lines, Battini et al. (2014) introduced a sustainable EOQ inventory model which incorporates
several sustainability aspects that affect the environment. Hovelaque and Bironneau (2015) stated that, if some
adjustments are made to the lot sizes, then the carbon emissions decrease. They developed an EOQ inventory
model linking the inventory and carbon emissions policies. They modeled the demand as price and carbon emis-
sions dependent. Taleizadeh et al. (2017) addressed and examined four sustainable inventory models: without
shortages, lost sales, partial and full backordering. Battini et al. (2018) developed a bi-objective EOQ model in
which costs and emissions are kept separate and analyzed using a Pareto frontier subject to a Cap and Trade
mitigation policy. Liao and Deng (2018) formulated a carbon-constrained EOQ model considering that the
demand is uncertain. They noted that inbcreasing the carbon tax decreases profits and changes the optimal
ordering decisions. Tiwari et al. (2018c) built an inventory model for deteriorating products when some of them
are of imperfect quality under carbon emissions. They stated that the inventory model effectively reduces both

the costs and the carbon emissions. Wang and Ye (2018) incorporated carbon emissions into the two basic



inventory models: JIT and EOQ. They mentioned that considering carbon emissions in both the JIT and EOQ
inventory models decreases the amount of carbon emissions compared to the case without considering carbon
emissions. Yu et al. (2020) derived an inventory model which involves deteriorating items when the processes of
ordering and storing of perishable products cause carbon emissions. Mishra et al. (2020) presented an economic
production quantity (EPQ) inventory model with carbon tax when the carbon emissions rate can be controlled
through investment in green technology. Mishra et al. (2021) examined an EOQ inventory model with shortages
and carbon emissions. Ruidas et al. (2021) investigated an imperfect production inventory model, considering
that the parameters related to carbon emissions may vary within a certain interval. Mandal et al. (2021) pro-
posed a sustainable stock-dependent inventory model with advertising demand and two progressive periods for
delay-in-payments. Taleizadeh et al. (2022) studied an EOQ model by incorporating environmental issues under
partial trade credit and partial backordering, in which the demand rate is sensitive to the selling price and to
carbon emissions. Kumar et al. (2022) developed an inventory model with a single manufacturer and retailer
by assuming that goods that have been remanufactured are as excellent as new items and the cost of carbon
emissions is incorporated into the manufacturer’s and supplier’s holding and degrading costs. An overview of
the scientific literature on sustainable inventory management models in the supply chain context up to the
year 2021 can be seen in Becerra et al. (2022). Jani et al. (2023) studied a perishable inventory model, with
credit predefined duration and shortages from the retailer’s perspective, in which demand is determined by the
perishable product’s quality.

It is well-known that a majority of the stored items available for sale suffer some deterioration over time.
Consequently, some of these products cannot be sold due to the fact that they are damaged and this generates an
economic loss for the company. One of the first studies of inventory management for articles with a deterioration
process is attributed to Ghare and Schrader (1963), who developed an inventory model with known and constant
demand and decay rate. Later, Misra (1975) proposed an economic production quantity (EPQ) inventory model
considering that goods could be damaged due to a process of deterioration. Then, Shah and Jaiswal (1977)
presented an inventory level model for items with a constant rate of deterioration. Subsequently, Aggarwal
(1978) corrected the average cost of inventory and modified the proposed policy in the research work of Shah

and Jaiswal (1977). A few years later, Dave and Patel (1981) derived an economic order quantity (EOQ)



inventory model without shortages, with deterioration and time proportional demand. After that, Hollier and
Mak (1983) formulated two inventory models with exponentially decreasing demand in which units deteriorate
at a constant rate. Raafat (1991) presented a comprehensive review of the inventory models for items with
deterioration. In the same direction, and completing the review of Raafat (1991), Goyal and Giri (2001)
published a detailed review of the literature related to inventories with deterioration. Then, Lin et al. (2006)
optimized the period of the production cycle for an inventory model when articles deteriorate. Li et al. (2010)
compiled an interesting review of works on inventory models with product deterioration. Widyadana et al. (2011)
introduced an economic order quantity inventory model for items with deterioration and planned shortages; they
presented an approximate solution to the inventory problem. More recently, Janssen et al. (2016) presented a
review and classification of more than three hundred deteriorated inventory models published between 2012 and
2015. Srivastava and Singh (2017) developed an inventory model for deteriorating items with linear demand,
partial backlogging and variable deterioration rate, where the rate of backlogging is variable and dependent on
the waiting time for the next replenishment. Sen and Saha (2018) developed an inventory model for deteriorating
items with time-dependent holding cost and shortages under permissible delay in payment. Tiwari et al.
(2018a) studied a two-echelon inventory model for deteriorating items in which the retailer’s warehouse has a
limited capacity of display for the products and the demand rate depends on the retailer’s selling price and
displayed stock level. Tiwari et al. (2018b) analyzed a supplier-retailer-customer supply chain for deteriorating
items, assuming a two-level partial trade credit and allowed shortages. This paper considers a non-decreasing
deterioration rate over time and the item is fully deteriorated close to its expiry date.

Most of the classic inventory models consider that demand is known and constant. However, constant
demand is not usually used today because customer demand is influenced by several factors such as time, price,
inventory level and quality, among other reasons. Naddor (1966) was one of the first researchers who suggested
the power demand pattern as a good and practical function to adapt consumer demand according to the reality
of their behavior in the purchase of items. The power demand pattern allows the demand behavior of different
products to be represented and helps to determine the evolution of the inventory level over time. With this
type of demand, it is possible to model the following: i) products whose demand remains traditionally constant

throughout the whole management period; ii) real-life situations in which the items are highly consumed at the



beginning of the inventory cycle period and then the inventory decays more smoothly. Products in this category
are, for example, cooked foods such as cakes and breads, among others, due to the fact that buyers want these
products prepared freshly; and iii) situations in which the products are sold in large quantities at the end of
the cycle because they become scarce. For example, basic necessities, such as diesel, gasoline, sugar, water and
flour, among others, are products whose demand increases considerably as the stocks start to decrease.

There exist some works that deal with inventory models which assume that demand follows a power demand
pattern. For example, Goel and Aggarwal (1981) built an inventory model with power demand pattern, taking
into account the fact that products worsen over time with a constant rate of deterioration. Later, Datta and
Pal (1988) introduced an inventory system with a power demand pattern in which the items have a variable rate
of deterioration. Then, Lee and Wu (2002) formulated an EOQ inventory model for an item that deteriorates
with a Weibull distribution rate, considering a power demand pattern. Dye (2004) revisited and extended the
inventory model of Lee and Wu (2002), modeling the rate of shortages as proportional to time, with the main
idea of having a more complete and applicable inventory model in practice. Singh et al. (2009) constructed
an EOQ inventory model with perishable products, partial backordering and a power demand pattern. Singh
and Sehgal (2011) studied an EOQ inventory model with a two parameter Weibull deterioration rate, a power
demand pattern and shortages. Rajeswari and Vanjikkodi (2011) derived an inventory model for a product
that deteriorates, considering the power demand pattern and partial backordering, where the rate of shortage is
considered inversely proportional to the waiting time to the next replacement. In a subsequent paper, Rajeswari
and Vanjikkodi (2012) examined an inventory model with a power demand pattern which depends on time and
shortage, assuming that the products deteriorate with a two-parameter Weibull distribution. Sicilia et al. (2012)
provided a detailed study of inventory models for the case where the demand follows a power pattern. They
analyzed both the optimal policy when no shortage is allowed and the policy that must be implemented when
shortage is permitted. In this last situation, they discussed the inventory models with complete backordering
and the situation in which the shortages turn into lost sales. In a subsequent article, Sicilia et al. (2013)
introduced an EOQ inventory model to study the optimal replenishment policy, allowing items to deteriorate
and in which demand depends on time following a power pattern. They assumed that shortages are not allowed

and that the replenishment cycle is not fixed and given; this is, however, a decision variable of the inventory



problem. Mishra and Singh (2013) presented an EOQ inventory model for perishable products with a quadratic
deterioration rate, considering a power demand pattern and shortages. Mandal and Islam (2013) developed
a fuzzy inventory model for products that do not deteriorate, assuming a power demand pattern, shortages
and inflation. Sicilia et al. (2014a) derived a deterministic inventory model for items with a constant rate
of deterioration and permitting shortages. Their inventory model assumes that demand varies over time and
follows a power pattern. In the same year, Sicilia et al. (2014b) formulated an EPQ inventory model with
a power demand pattern, assuming that the production rate is proportional to the demand rate. In a later
article, Sicilia et al. (2015) established the optimal inventory policies for an inventory system without shortages,
in which the replenishment rate is uniform and the demand follows a power pattern. Rajeswari et al. (2015)
introduced a fuzzy inventory model for items that deteriorate constantly with a power demand pattern, in which
shortages are permitted. The rate of shortages is in accordance with a decreasing exponential function of the
waiting time. Recently, San-José et al. (2017) addressed an inventory problem with a power demand pattern,
permitting shortages. Only one part of the demand that is pending within the time of shortage is covered and
the rest of the demand is taken as lost sales. They developed a solution procedure to determine both the optimal
batch size and the duration of the inventory cycle. Other more recent works that consider a power demand
pattern are the papers of San-José et al. (2018), San-José et al. (2019), San-José et al. (2020) and Khan et al.
(2023a,b,c,d), which assume that demand also depends on the selling price of the product.

In the research works previously mentioned on inventory models for products susceptible to deterioration, it
is generally assumed that the deterioration process begins from the moment in which the items are stored in the
inventory. This hypothesis is usually not true in practice, since the products have a period of life where they
remain perfect and therefore do not suffer any deterioration. This type of evolution is known as items with a non-
instantaneous deterioration process. Several researchers have developed inventory models for products with this
deterioration pattern. Thus, Wu et al. (2006) analyzed an inventory model for non-instantaneous deteriorating
items with stock-dependent demand and partial backlogging. Ouyang et al. (2006) developed the optimal
replenishment policy for non-instantaneous deteriorating items with permissible delay in payments. Sugapriya
and Jeyaraman (2008) studied an economic production quantity model for non-instantaneous deteriorating items

in which the holding cost varies with time. Chang and Lin (2010) developed a partial backlogging inventory



model for non-instantaneous deteriorating items with stock-dependent demand rate and inflation over a finite
planning horizon. Soni (2013) studied an inventory system for non-instantaneous deteriorating items with price-
and-stock-dependent demand considering permissible delay in payment. Kaur et al. (2013) proposed the optimal
replenishing policy for a two-warehouse inventory model of non-instantaneous deteriorating items under stock-
dependent demand where no shortage is allowed. Tat et al. (2013) analyzed the optimal inventory policy for
non-instantaneous deteriorating products in vendor-managed inventory systems. Maihami and Karimi (2014)
analyzed the best pricing and optimal ordering policy for non-instantaneous deteriorating items with stochastic
demand, considering promotional efforts. Wu et al. (2014) developed an inventory model for non-instantaneous
deteriorating items with price and stock-sensitive demand under permissible delay in payment. Vandana and
Sharma (2016) proposed the inventory policy for non-instantaneous deteriorating items over a quadratic demand
rate with permissible delay in payments and time-dependent deterioration rate. Rangarajan and Karthikeyan
(2017) developed an inventory model for non-instantaneous deteriorating items with cubic demand rate and
cubic deterioration rate, where shortages are partially backlogged for the next replenishment cycle. Pal and
Samanta (2018) studied the optimal inventory policy for non-instantaneous deteriorating items with a random
pre-deterioration period, where no shortages are allowed and demand occurs uniformly, but at different rates
during pre- and post-deterioration periods. Shah and Naik (2018) developed an inventory model with time and
price-sensitive demand for non-instantaneous deteriorating items, including the learning effect on various costs
and the preservation technology investment to reduce the deterioration rate.

Table 1 displays a list of selected papers that have been published since 2015. In this table, we show the
differences between this paper and the related literature, reflecting the gap with respect to previous research.
The papers are categorized considering demand pattern type, whether backorders are allowed or not, if there is
a deterioration process of the items, and if there exist costs for carbon emissions due to transport, storage or
deterioration.

Following this research line, this work develops a sustainable inventory model for products that meet the
characteristic of non-instantaneous deterioration, that is, items begin to deteriorate after a certain period of time
in the inventory. It is also assumed that the demand follows a power demand pattern and that shortages, which

are met with the arrival of the next replenishment of products, are allowed. Several sources of carbon emissions



Journal Pre-proof

Table 1. Summary of selected literature from the year 2015

Authors Demand Backl Carbon Carbon Carbon

pattern in transporting in stocking due to deterioration
Battini et al. (2018) Constant No No Yes. Yes. —
Hovelaque and Bironneau (2015) Price-and-CO2-dependent No No Yes. Yes —
Jani et al. (2023) Quality-dependent Yes Yes No No No
Khan et al. (2023a) Price-and-time-dependent No No No No —
Khan et al. (2023b) Price-and-time-dependent Yes. No No No —
Khan et al. (2023c) Price-and-time-dependent Yes No No No —
Khan et al. (2023d) Price-and-time-dependent No No Yes. Yes —
Kumar et al. (2022) Advertisement-dependent No Yes — Yes Yes
Liao and Deng (2018) Stochastic No No Yes Yes —
Mandal et al. (2021) Stock-dependent No Yes No No No
Mishra et al. (2020) Constant Yes No — Yes —
Mishra et al. (2021) Price-dependent Yes Yes Yes Yes Yes
Pal and Samanta (2018) Constant No Yes No No No
Rajeswari et al. (2015) Power-time-dependent Yes Yes No No No
Rangarajan and Karthikeyan (2017) Time-dependent Yes Yes No No No
Ruidas et al. (2021) Price-dependent No No Yes Yes —
San-José et al. (2017) Power-time-dependent Yes. No No No —
San-José et al. (2018) Price-and-time-dependent Yes. No No No —
San-José et al. (2019) Power and price-dependent No No No No —
San-José et al. (2020) Power and price-dependent Yes. No No No —
Sen and Saha (2018) Time-dependent, Yes Yes No No No
Shah and Naik (2018) Price-and-time-dependent Yes Yes No No No
Sicilia et al. (2015) Power-time-dependent No No No No —
Srivastava and Singh (2017) Time-dependent Yes. Yes No No No
Taleizadeh et al. (2017) Constant Yes. No Yes. Yes —
Taleizadeh et al. (2022) Price-and-emissions-dependent Yes No Yes Yes o
Tiwari et al. (2018a) Price-and-stock-dependent Yes Yes No No No
Tiwari et al. (2018b) Price-dependent Yes Yes No No No
Tiwari et al. (2018¢) Constant No Yes Yes Yes Yes
Vandana and Sharma (2016) Time-dependent Yes. Yes No No No
Wang and Ye (2018) Constant No No Yes Yes —
Yu et al. (2020) Price-and-stock-dependent Yes Yes Yes Yes No
This paper Power-time-dependent Yes Yes Yes Yes Yes




are considered in the paper. Thus, transportation, stock holding and deterioration can produce environmental

degradation and the related costs must be incorporated into the formulation of the inventory model.

1.3 Contribution of this study

The sustainable approach to our inventory management model of deteriorating items that follow a power demand
pattern can help reduce the environmental impact and improve profitability and efficiency in the supply chain.
This can be potentially beneficial for businesses, consumers, and the planet. In addition, its results may be
relevant and valuable for researchers and practitioners interested in inventory systems.

Following the research lines previously commented, the main contributions of this work to the literature on

inventory models are:

(a) It describes the displayed stock behavior when demand is power dependent on time, which represents
real-life situations. This power demand pattern includes the inventory system with a constant demand
rate, as well as other consumer behaviors in which the requested quantity starts off low and increases over
time; or conversely, where the demand is initially high and gradually tapers off during the inventory cycle.

(b) It considers a process of deterioration of the elements to reduce the amount of waste generated. It also
offers solutions for non-instantaneous deterioration of the stock. Thus, it helps companies to minimize
the risk of inventory management due to obsolescence, facilitating the sale of items before they lose their
quality and value, since they have a limited useful life and can spoil or expire if they are not sold or
consumed by a certain date. This in turn can improve customer satisfaction and loyalty.

(c¢) Shortages are allowed and backlogged, satisfying all customer demands, although the requests of some
clients can be fulfilled with delay.

(d) It incorporates environmental constraints that allow inventory management in a sustainable way. Thus,
it considers several sources of carbon emissions: transportation, stock holding, and deterioration.

o It includes taxes on transportation, maintenance and deterioration processes that are highly polluting.
o It contributes to generating a positive impact on the environment by promoting the reduction of
greenhouse gas emissions, or the carbon footprint associated with product maintenance and trans-

portation.

10



o It takes into account the effect of carbon taxes, reflecting the growing concern over the environmental

impact of companies and their social responsibility.

(e) It presents an algorithmic procedure to determine the optimal inventory policy that maximizes the profit
per unit time of the retailer, that is, the difference between the income obtained from sales and the costs
associated with inventory management and carbon emissions.

(f) The results obtained are applicable to various economic sectors, such as the food, pharmaceutical, elec-
tronics, and chemical industries, among others, which trade in a wide range of perishable products.

(g) It is in line with the Sustainable Development Goal 12 of the UN 2030 Agenda (United Nations, 2015),

which aims to achieve sustainable consumption and production patterns.

To the best of our knowledge, there is no published model that determines the best policy for an inventory
system with a power demand pattern, full backlogging and non-instantaneous deterioration, considering three
sources of carbon emissions.

The rest of this paper is as follows. Section 2 provides the properties and assumptions that characterize the
sustainable inventory system. Section 3 formulates the mathematical model of the inventory system. Section 4
presents the necessary conditions that must be satisfied to obtain the optimal inventory policy and proposes an
algorithm to determine the best inventory policy. Section 5 solves some numerical examples. Section 6 presents
a sensitivity analysis of the optimal inventory policy with respect to several input parameters of the system
and derives some useful managerial insights. Finally, Section 7 gives relevant conclusions and potential future

research work.

2 Notation

Table 2 shows the notation used for the development of the inventory model.

3 Assumptions

The inventory model has the following assumptions:

1. The inventory system considers a single product.

11
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Table 2 Notation

Parameters

ko fixed shipment cost

k1 shipment cost per transported unit
T life period of the item

deterioration rate

o) fixed carbon emissions in transporting

o variable carbon emissions in transporting

Bo fixed carbon emissions in holding

51 carbon emission per unit held in stock and per unit of time

¥ carbon kilogram emission per deteriorated unit

c unit purchasing cost

» unit selling price

h unit holding cost per time unit

w unit backordering cost

A ordering cost

v unit deteriorating cost

1 tax charged on carbon emissions in transporting ($/per carbon kilogram emission)
12 tax charged on carbon emissions in storage ($/per carbon kilogram emission)

143 tax charged on carbon emissions in deteriorating ($/per carbon kilogram emission)
r average demand per cycle

n index of demand pattern

Variables and functions

T length of inventory cycle (decision variable) (> 0)

S initial inventory level

t instant in which the inventory runs out of stock (decision variable) (0 <t; <T)
B maximum number of backorders. Thus, the order level or replacement level is —B
Q replenishment or lot size

U number of units deteriorated during an inventory cycle

D(t) demand rate at time ¢

I(t) inventory level at time ¢

C(ty1,T) total cost per unit time

Ci(t1,T) total cost per unit time for scenario i, with i = 1,2
C3(T) total cost per unit time for scenario 2 when t; =T
Cy(T) total cost per unit time for scenario 2 when t; = 7

m(t1,T)  benefit function per unit time

12



10.

11.

12.

13.

14.

16.

17.

18.

19.

. The inventory cycle or planning period 7" is a decision variable.

. The behavior of the inventory level during a period is repeated later in successive periods.

. At the beginning of the inventory cycle, the stock of the product is replenished up to the level of S units.
. The time that occurs from when the order is placed until it is delivered to the inventory is insignificant.
. The instant ¢, in which the inventory runs out of stock, is a decision variable.

. Shortages are allowed and these are fully backordered at the beginning of the next period.

. When the total shortages reach the amount of B units, the inventory must be replenished.

. Replenishment time is considered instantaneous.

The size of the replenishment or lot size @ is constant, but it is not known and must be determined by
the inventory model.

The cost of shipment includes a fixed cost ky and a variable cost k1Q).

It is considered that there is a period of time 7 in which the articles do not suffer any deterioration.
After the period [0, 7], a fraction € of the units in stock starts to deteriorate.

Deteriorated units cannot be repaired.

. The carbon emissions for transporting an order of () units is the sum of a fixed amount «q plus a variable

amount oy Q.

The carbon emissions in the inventory are represented by a fixed part [y plus an amount 3; multiplied
by the average amount held in stock.

The removal of deteriorated items or waste disposal is assumed to be a source of air carbon emissions.
There are taxes charged on carbon emissions, depending on how they are generated. Thus, it is considered
that p; is the tax charged on carbon emissions in transport, ps is the tax charged on carbon emissions in
stock holding, and 3 is the tax charged on carbon emissions in the deterioration process of the item.
Demand of the product is deterministic at a ratio of r units per inventory cycle T', but the way in which
the units are taken from the inventory in order to satisfy the demand of the clients depends on the time
when these are requested. Thus, let f(¢) be the demand function of the product until time ¢ (0 <t < T).

This demand varies with time and it is assumed that it has the following mathematical expression



where n is the index of the demand pattern, with n > 0. Thus, the demand ratio D(t) at time ¢t (0 < ¢ < T)
is given by

,,,tl/'nfl

D(t) = 2)

- nT1l/n—1
This form of demand is known as a power demand pattern (see Naddor, 1966; Datta and Pal, 1988; Lee

and Wu, 2002; Sicilia et al., 2012, 2013, 2014b; and San-José et al., 2017).

There is a large group of products that follow the assumptions supposed in this inventory system. For
example, products such as pastries, cakes, sweets, breads, and freshly prepared meals, among others, reflect the
common characteristic that they have a greater demand at the beginning of the period, since they are fresh
products attracting a greater number of customers. Fish, vegetables, fruit, and yoghurts, among others, are also
part of this group, as they can deteriorate over time and their sales decrease considerably when the expiry date
approaches. This situation is represented in the power demand pattern with a demand pattern index n > 1.

However, there are items whose demand increases as the end of the inventory cycle. Thus, for example,
basic household products, such as bottled water, coffee, milk, flour, and sugar, among others, increase their
demand at the end of the inventory cycle. They are products of first necessity, and when customers notice that
there are few products displayed for sale, demand rises and the stock level decreases considerably. In addition,
petroleum products such as gasoline or diesel fuel increase their demand when the stored product begins to be
scarce. This situation can be modeled by the power demand pattern with an index n < 1.

Finally, there are also other types of product where demand remains more or less uniform throughout the
whole inventory cycle (which is represented in the power demand pattern with an index of n = 1). For example,
items such as construction materials, furniture, decoration products, electrical components, cleaning products,
and kitchen utensils, among others, usually have a stable demand. These products are not basic or fundamental,

so their demand does not change excessively over time.

4 Development of the inventory model

Note that, if items have a life period 7 longer than or equal to the length of the inventory cycle 7', then the

deterioration process of products does not affect the stored products. Thus, in this situation, the inventory

14



system to be analyzed does not consider the deterioration of products. Therefore, in the rest of this section, we
consider that the life period 7 of the items is less than the inventory cycle T" of the system.

The behavior of the inventory level is described as follows. Denote by I(t) the level of net stock in inventory
at time ¢, with 0 < ¢ < T. The inventory level begins with I(0) = S units in stock. Then, two different scenarios
or situations can occur, depending on whether the period of time 7 is greater than or equal to the period ¢; in

which there is stock in the inventory system, or whether 7 is less than ¢;.

Case 1. Suppose that 7 > ¢, this means that the demand is able to absorb all the stock stored in the inventory
system before the products start to deteriorate. In that case, there is no deterioration in the articles and the

differential equation that governs the behavior of the inventory level of the system is given by

Ity rtt/nt
dt —  npTln-1

0<t<T (3)

Solving the above equation, the function that describes the evolution of the inventory level is obtained:

rtt/n
I(t):SfW,OgtST (4)

In this scenario, the maximum number of backorders is B = —I(T) = —S+rT and the lot sizeis @ = S+B =rT.

In this case, the holding cost HC'; per unit of time is calculated as follows

t1
h h rtt/n h mtl/"Jrl
H = — ML AR = I S
0= 2 [ i T/(s Tl/n_l)dt = <St1 TES Ty (5)
0 0

The order cost OC per unit of time is computed with the quotient A/T. The shipping cost SC; per unit of

time is ko/T + k1r. The backlogging cost BC'; per unit of time is calculated by the following formula

7‘171/” w nr <T1/n+1 _ t}/nle)
BC, = /[ I(t /(W*S)dtzf St —T)+ S (6)

Since I(t1) = 0, and from equation (4), we obtain that the initial stock level is

Ttl/n

S:Tl/n 17ift1§T (7)

Substituting S into equations (5) and (6), it follows that the holding cost per unit of time is given by

hr tl/n+1
HC = 8
L / ERCES A ®
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and the shortage or backlogging cost per unit of time is computed as follows

T n 1/n+1
w/[ 78 ﬂ(t _T)+nr<T1/ +1_t1/n )
— 7 | 7t/n—1\1 (n+ )T /1

BC,

nTl/n+1 t}/n+1

n—+1 n+1

(9)

In this case, the carbon emissions occur in transport and inventory holding. Hence, the carbon emissions in

transporting @ units are ag + a1Q = ap + a17T and the carbon emissions in the holding of stock are

t
617.ti/n+1
I(t)dt = ——
50+/31/ (t) 60+(n+1)T1/"—1
0

Then, the total carbon emissions cost £C; per unit of time is

1/n+1
_ ap Bo | Burty
ECl = 1 <? +CV17‘) +,l12 <T i (n_H)T,l/n)

(10)
The total cost per unit of time is determined as the sum of the shipping cost, holding cost, ordering cost,

backordering cost and carbon emissions costs. Thus, the total cost of the inventory system per unit of time is

expressed as

(h+ o) rty ™ A4 ko + pag + pefo - wr Vng, | nTH/nEL g/
Ci(ta,T) = CES A T T im | Th i1 T | TGt man)r
(h+ papr + w)rt}/nﬂ do nr’l rti/"
- a1 9\ g e ) TR ey (11)
where
do = A+ ko + 1110 + 120- (12)

Case 2. Now, let us analyze the other possible situation, when 7 < t;. At the beginning of the inventory
cycle, the inventory level decreases over time due to customer demand until the time period 7 is completed.
Then, the inventory level continues to decrease, not only due to demand, but also due to the effect of the
deterioration of the items, until that stock level is zero at time ¢ = ¢;. Later, when there is no stock of the
product, shortages appear during the period (¢1,7). When a total of shortages of B units is reached, then the
inventory is replenished with a sufficient quantity to meet the shortages and leave some units in stock to satisfy
customer demand from the next inventory cycle. Taking this scenario into account, the differential equations

that describe the inventory level I(t) during the period [0, 7] are given below
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dI(t) rtt/n=t

g7y ifo<t<r
T 1/n—1
dI(t /=1

dg):—ng/Wl ifty <t<T

with the boundary conditions I(0) = S, I(t1) = 0 and I(T) = B. The solutions to the differential equations

expressed in (13) are

T 4
I(t) = S = mt!" fo<t<r
t
I(t) = €_e(t_T) (S - %7—1/” - fee(z_f)%zl/n_ldz) if 7 <t S tl (14)
n— b n n—
1) = o (A7 = 0) it <t<T

Since the inventory level at ¢, is zero, I(t1) = 0, then for this scenario the initial stock level is
t1
/ee(z—f)zl/n—ldz (15)

T

S 1/n

_ T T
- Tl/n—lT + nT1/n—1

So, replacing S in equation (14), we have

” t1
I(t) _ ﬁ (Tl/n _ tl/n) + ﬁewr f e@zzl/nfldz if 0 <t<r
n T
r —ot F gz /n—1 : 16
I(t):We tfezz/” dz ifr<t<t (16)
T 1 n .
1) = 7y (07" = £77) it <t<T

By calculating the value of the function I(¢) at ¢ = T', the maximum number B of shortages is obtained by the

1/n
! <t1>
T

The quantity to be ordered, or lot size @, is equal to S + B. Therefore, from equations (15) and (17), it can be

following formula

B=-IT)=—" (t}/” - Tl/") =rT

T1/n—1 (17)

deduced that the lot size is computed with the expression

ty

Q T 797/69z21/n71dz+

> 1/n 1/n _ 1/")
YT (T +T t (18)

T
T1/n—1

T

The number of deteriorated units U is obtained as the difference between the size of the replenishment ¢ and

the units demanded, 77", throughout the inventory cycle. So, this amount is

t1

U= Q —rT = #B_OT/eezzl/n_le + Tl/rn—l <T1/n — t}/n> (19)

T
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The amount carried in the inventory is

ty T t1
/I(t)dt = /I(t)dt+/](t)dt
0 0 T
t ty t1
rrt/mt rT 0 021 T
_ —Or z,1/n—1 —0t 0z 1/n—1
 (n+1)TYn-1 Ry /e # dz + nTL/n—1 /e /e Z dz | dt
T T t
ty t1 z
rrt/mt rT 0 0z 1 T
_ —0T z,1/n—1 = 0z 1/n—1 —0t
- (n+ 1)T1/n71 + nTl/nfle /6 z /" dZ+ nTl/nfl /8 s /6 dt | dz
_ rrl/ntl r 1\ o ty or A/t g r Un _ /n
ECE + nT1/n—1 Tty)e ez Z+7«9T1/"*1 (T -1 ) (20)

T

Now, the carbon emissions occur in transport, inventory holding and disposal of deteriorated items. Thus, the
carbon emissions are
ty
040+041Q+30+51/I(t)dt+’YU (21)
0
From (18), (19) and (20), the total carbon emissions are

ty

aQr _ _ aqr
0+ T HT/eezzl/n et e (T =) B+

/317"7'1/n+1
(n+ 1)Tt/n-1

pa
ty

Blr 1 —0T 0z 1/n—1 61T 1/n 1/n
+W T+§ e /e 2V dz+7€T1/"*1 (7-/ -t )

ty

r —0T 0z, 1/n—1 mr 1/n 1/n
+7nT1/n716 /e z dz + T/ (T -t >

T

In this scenario, the total cost during the inventory cycle is the sum of the holding, ordering, shipping,
shortage and deterioration costs, plus the total carbon emissions cost.

From (20), the holding cost per unit of time is

ty

ty

h hrrl/ntl hr 1 0 0s 1 hr )

_ 2 _ - —0r /n—1 1/n _ 41/n

He: =7 /I(t)dt (n+ )T T (T * 0) ‘ /6 S (T h > #2)
0 T

The cost of placing an order per unit of time is OCy = A/T. The shipping cost per unit of time is SCy =

ko/T + kyr. The cost of the deteriorated units per unit of time is

i1
707/692Z1/n71dz+ T’li?n (Tl/n _ti/'n> (23)

T

vU ur
DCy = —=——c¢
G2 =7 = Lpim©
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The shortage cost per unit of time is

T T T
_w _w /n _ 1/n _ wr 1/n _ 41/n
BszT/[—I(t)]dth/Tl/nl(t t/)dtfm/@/ — ¢! )dt
t1 t1 t1
_owrn wr 1/n+1 W7 1/n
nril b (n+1)T/n ! T/n-Th 24
In this case, the total carbon emissions cost, EC5, per unit of time is
i 5 B 1/n+1
Qo | ot g f 6s 1/n—1 pioar (g 1n _ 41/n 0, pefirt /"
ECy = j1— T + Tl/ne /e Pz + Tin <T THTH -t + po— T + 7(n+ T/
8 8
pa T 1IN\ _er 2 1/n-1 p2par ( 1n _ 1/n) H3YT _gr 2 1/n—1
+nT1/" (T-I-e)e / dz +0T1/ T ) +nT1/”e ef% 2 dz
T T
o (=) (25)
As a result, the total cost per unit of time is expressed as follows
t
ko hprt/ntt hr 1 —or 0z _1/n—1 hr 1/n 1/n
Co(th,T) = T+k17’+ (n+1)T/n +nT1/n T+§ ¢ /6 # dz +6?T1/ (T —h )
t A
ur g, or ( Un 1/n) A wrn wr 1/n+1
+7nT1/"e /e z el i +T+n+1T+(n+1)T1/"t1

.
ty

—Tlu/): T /n + m— + M}O;}:e_%/ 1y 4 l;O;ﬁ (Tl/” + 71" ti/n> +/12&

p
ty
pofrt /M sy 1\ o o071 /n—1 2B (1 iy
Ty Tarm \TTe) ¢ s+ g (7" - 0")
ty

n M3y efﬁf/eﬁzzl/nfldz + /"37: <T1/n _ t}/")

nT1l/n T1
t
= (h t:fi;;;linﬂ n;;h?"/n o b7 /169221/71 19, 4 7:52/2 <T1/n l/n) n 5?0 n winl

+ﬁti/n+l - %ti " (kA man) T (26)

where 4y is given by (12),
= (h+ p2p1) (T + %) +v+ pon + pgy (27)

and

0 = h%ﬂzﬁl + 0+ o + pgy. (28)
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Since the total demand throughout the whole inventory cycle is 7T, the total revenue obtained from the
sales of the product is calculated with the expression (p — ¢)rT. Let m(t1,T) be the benefit per unit of time
obtained by the company, in other words, the income minus the expenses per unit of time. Considering the

costs of the two scenarios given by equations (11) and (26), the benefit function is determined by

p—cr—Ci(t1,T) fT<7T7or0<t13 <7<T
ﬂ'(tl,T): (29)
(p—c)r—Co(t1,T) ifT7<t <T

The main objective is to determine the optimal policy (¢, T*) for the inventory system that maximizes the

benefit given by equation (29). This is equivalent to minimizing the cost function C(t1,T") defined by

Cl(tl,T) fr<rtor0<t; <7<T
Ct,T) = (30)

Cg(t17T) ifr<t;<T
subject to the constraints 0 < ¢t; < T and 7" > 0. Notice that, if ¢; = 7, then both cost functions are equal,

that iS, Cl(tl,T) = Cz(tl,T).

5 Necessary conditions to determine the optimal policy

In this section, we present the approaches to find the optimal inventory policies for the two scenarios.

Case 1. To find the optimal policy for the first scenario (if T < 7 or 0 < t; < 7 < T), we have to calculate the

partial derivatives of the function Cy(t1,7’) given in (11), that is,

oC, rti/n wrt}/"fl
9 (h"‘w‘f‘/tz/ﬁ)m—m (31)
0Cy  (h+wHp2p) rt}/n+1 (1- n)wrti/" wrn &g (32)
or n(n+1)TL/n+1 nTt/n n+1 1?2
Equalizing the partial derivative (31) to zero, the first condition is obtained. Thus, we have
wT
tHH=— 33
YT htw+ b (33)

Substituting the above ¢; in equation (32) and equating to zero, we obtain

1/n
(e
<h+w+/12[)’1>
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Thus, the optimal cycle period is given by

+1)dg
70 = (n 34
\/wnr [1 —(w/(h+w+ u2)) 1/"} (34)
and the time in which the inventory is zero is
+1)do
=1 - (n 35
1 htw+pefy  h+wppr\| wnr [1— (w/(h 4w+ p2pr)) /7] (35)

In addition, in this case, the corresponding initial stock level is

1/n 1/n
P w B (n+ 1)rdo ( w )
ST =rT (h+w+,u251> \/wn [1— (w/(h+w+papr)) /"] \h+w+ p2p (36)

Next, we prove that the policy (t9,7°), given by (34) and (35), is the optimal inventory policy for this
scenario. To do so, we first determine the second partial derivatives and then we calculate the Hessian at the

point (9, 7°). Thus, we have

92C Ttl/n72
61521 = anTl/n (t1 (bt w+ Bip) + (n — 1) wT)
1
820 ’I‘tl/n_l
gnor ~ i (0t fus) & (- 1)uT)
92C T’tl/n 26,
(9T21 = nQTi/n+2 (tl (h TwH BIMQ) + (n N 1) WT) + Tig

and the Hessian determinant is

Ht T)iaQCl °C1 (90 200t/
DT o2 ar? 00T ) — n2Ti/n+3

(tl (h +w+ 51/12) + (n — 1) UJT)

Taking into account that 9 (h +w + Biji2) + (n — 1 wT® = nwT® > 0, it is clear that the second partial
derivative with respect to T} at the point (¢],7°) is positive and the Hessian determinant at the point (¢9,7°)
is positive. Therefore, (¢7,7°) is the policy that minimizes the total cost of the inventory system under this

scenario, that is, when products are sold before they begin to deteriorate.

Thus, the minimum cost per unit of time is

+ (k1 + paaq) T (37)

oo dwnrdg [1— (w/(h+w + paBy)) /7]
N n+1

and the maximum benefit per unit of time is

10 =xt9,T% = (p—c)r - C°
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Remark 1 This policy extends the optimal inventory policies for some systems studied by other authors. Thus,
the inventory system without deterioration, with power demand and full backlogging proposed by Sicilia et al.
(2012) is a particular case of the model analyzed here. So, if the parameters related to the carbon emissions are
zero, then we obtain the same policy given by these authors. Also, the policy given by equations (34) to (36)
extends the environmental economic order quantity model analyzed by Bonney and Jaber (2011). In addition,
the inventory model proposed here extends the model developed by Hua et al. (2011) when the firm has no carbon

emission quotas per unit of time and neither buys nor sells any carbon credit.

Case 2. Now, the optimal policy for the case 7 < t; < T is analyzed in detail. First, the solution of the
inventory problem expressed in (30) is analyzed at the upper bound of the feasible region determined by the
constraints. Thus, if it is assumed that t; = T, then the cost function Cy(t1,T) given in equation (26) is reduced

to the following univariable function

T
(h+ /L2/31)T71/n+1 o1r —or 0z ,1/n—1 dor 1/n do
(n + 1)T1/n + nTl/ne €z dz + Tl/nT — 07 + ?

C3(T) = + (k1 + pra)r (38)

pr

By calculating the derivative of the function (38), the necessary condition to determine the scheduling period

T that minimizes the cost function C3(7") can be obtained. Thus, we have

T
_ (h + H’Qﬁl) prt/ntl MeQ(T—T) _ oir 6—07' erzl/n—le _ 52T71/n _ 670 =0
n(n+1)T1/n+1 nT n2 L/ n+1 nTl/n+l T2
T
This condition is equivalent to
T
1/n 0(T—1 —0T
—rr" (W4 pofr) T L6 5y ref )Tl/" _ dyre /69221/%16& — 5TV =0 (39)
n n+1 n n2

T

Solving equation (39), the value of T is obtained. Replacing this value T; in the function C5(T") given in
equation (38), the minimum cost C5 = C5(T}) is determined.

Now let us analyze the other lower bound of the feasible region, that is, when ¢; = 7. In this case, the cost
function given in (26) is reduced to

_(h+w )t/ N do L wrn wr

T T —
Cy(T) (n+1)TYn T n+1 T1/n

I T (ky 4 pran) T (40)

Deriving and equating to zero, the following equation is determined

(R 4w + pofy)rrt /7t 5 L wrn (1- n)wTTl/n

n(n + 1)T1/n+1 BT —Ti/n =0 (41)
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Now, by solving Equation (41), the value of T5 that minimizes the cost function Cy4(T') is obtained. If T5 is
substituted in the function C4(T) given in equation (40), the minimum cost Cy = C4(T3) is calculated.

In the following paragraphs, the optimality necessary conditions of the problem given in (30) are established
when it is assumed that 7 < ¢; < 7. To find these conditions, the partial derivatives of the cost function

C5(t1,T) given in equation (26) with respect to ¢; and T must be calculated. So,

602 (517‘ 0(t; —7),1/n—1 T’tl/n_l
T’)tl = TTl/ne (t1 )tl/ + (wtl —wT — 52) 77;111/" (42)
ty
o0,  r (h+ pofy) TH/mH1 44 e 02 ,1/n=1 4,
oT —  nTi/nHl n+1 !
7
1/n+1
g wiy _ yn| T wrn G
+ o (0 =7 L (-l | e S (43)
Equalizing the partial derivative (42) to zero, the first condition is obtained
é 1
T =t + ;leg(tl_ﬂ = ; (44)
Now, if the other partial derivative (43) is equal to zero, the second condition is determined
t1
__r (h+ popr) /41 N 0™ [ a1y,
nT1/n+1 n+1 n
z
1/n+1
l/n_l/n>_wt17 _ iyl T wrn o
+ |6 (1= r L (Tt | e S =0
This last equation is equivalent to
: _or B 1/n+1
(4 poBy) TV e 07 _ 1 wt 1
o + - ez 1/n=1 4, 48 (tl/nle/n> _ n1+1 +(1 77L)th1/"

T

2
n UJZ 1T1/n+l _ L(S()Tl/nfl =0 (45)
n r

Substituting the value of T given by expression (44) in equation (45), the following nonlinear equation with a

single variable ¢; is stated.

ty

—0r 1/n+1
(h+ paBy) TH/mH1 N S1e~? 1| g, (tl/n B Tl/”> B wtl/
n+1 n ! n+1
T
5 5 2 5 5 1/n+1
+(1 N n)wt}/" |:t1 + ieﬁ(tl—T) _ £:| + wn |:t1 + ieG(tl—T) o £:|
w w n+1 w w
5 5 5 1/n—1
_ 1% {tl 1+ N blt-m) _ i} =0 (46)

r w w
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It is important to remark that the above equation could be solved by a numerical method to obtain the
period of time 7;. Then, substituting 7, into equation (44), the length of the inventory cycle T can be found.

The second partial derivatives of Cz(t1,T) are as follows

0°Cy _ 51 pptti=m) [gyt/n—t 1 - /-2 N wrty/ " (1= n)wrtl/"?
ot? LTt/ 1 n n2T1/n n2T1/n—1
(1—n)rty/"2
BT 7)
1/n—1 1/n—1 1
8202 —_ rtl/n (5 69(t1*T) _ > + (1 - n)OJTtl/n _ wrtl/n (48)
00T~ n2Tl/nt+l 1 2 n2T1/n n2T1/n+1
t1
Cy  (n+Dr | (h+pepy) /"t e 1/n-1g4 ) (nt+Dr (1 J/m
9T — n2Ti/ni? N+l L R A A U
T
wrt/" 20wl —nyrt ™ "
n2TYn+2 T 3 T 21/t (49)

The solution (fl.QN“) of equations (44) and (46) must satisfy the Hessian matrix for a positive definite in

order to be a minimum. The second partial derivatives at that point (t;, T) are

2 T T\1/n—1 -

b cg(tQhT) _ (k) . [052+0w (T_tl> JW] (50)
oty n(f) &

2 T T\1/n—1

8 CQ(tl,T) _ _U.)T(tl) (51)
o0t,0T n (T>1/n

PCo(h,T) _ wr(l=m)(E@)"  (n—1dy  wr (52)

2 ) .\ 1/n+1 ~\ 3 T

aT n(7) n(7) T

From equation (50), it is observed that the second partial derivative with respect to ¢; is positive at the

point (11, f) Therefore, it is sufficient to check that the Hessian at that point (1, 7~") is positive, i.e.

H(t;.T) =

2Co(t,,T) 02Co(11.7) _ <8202(?1’T)>2 0 (53)

ot3 oT? ot,0T
where the second partial derivatives of Cy(t1,T) at the point (i1, 7) are given by the expressions (50), (51) and
(52).

Considering the theoretical results obtained above, the following algorithm is developed to determine the
optimal policy for an inventory system where the products in stock are kept in perfect conditions for a period
of time 7; after which a process of deterioration begins for the stored items, so the products deteriorate with a

constant deterioration rate of 6 units per unit of time.
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Algorithm 1

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Determine the values of T° and t9 by using equations (34) and (35), respectively. If T® < 7, then go
to Step 3. Otherwise, go to Step 2.
If the value of t9 is greater than T, then go to Step 5. Otherwise, go to Step 3.

The optimal policy is (t7,7%) = (t9,T°). Go to Step 4.

Il
3
I

From (37), calculate the minimum cost C* = C% = C1(t9,T°). Obtain the optimal benefit 7
7(t9,T%) by using equation (29), that is, ° = (p — c)r — C°. Stop.

Generate the set Q2 of solutions of equation (46) that are greater than T by using some numerical method.
Select a solution t1 of the set ).

From (44), obtain the value of T associated with t1. Compute the Hessian value H(t1,T) given by
equation (53).

If H(t1,T) > 0 then include the pair (t1,T) in the set P of candidate inventory policies, determine the
cost Ca(t1, T) with equation (26) and go to Step 8. Otherwise, go directly to Step 8.

Set Q@ =Q —{t1}. If Card () =0, then go to Step 9. Otherwise, select a new positive solution for t;
of the set Q). Go to Step 6.

Compute the value of Ty, solving equation (39) by using a numerical method. If Ty > 7, then include the
pair (Th,T1) in the set P of candidate inventory policies, calculate the cost Cs = C3(T) with equation
(38) and go to Step 10. Otherwise, go to Step 10 directly.

Calculate the value of Ty, solving equation (41) by using a numerical method. If To > 7, then include
the pair (1,T3) in the set P of candidate inventory policies, compute the cost Cy = Cy(Ts) with equation
(40) and go to Step 11. Otherwise, go to Step 11 directly.

Determine the policy (¢5,T%*) such that its cost C* = C(t5,T*) is the lowest cost of the inventory
policies included in the set P of candidate inventory policies. Obtain the optimal benefit * = mw(t],T")

by equation (29), which is 7 = (p — ¢)r — C*. Stop.

Note that the algorithm described previously also determines the optimal inventory policy for a system with

a constant process of deterioration from the beginning of the inventory cycle. For this, it is sufficient to consider

only Step 5 through to Step 11, and set 7 = 0 in all the equations where 7 appears.
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Remark 2 The inventory model analyzed for this scenario extends the basic sustainable EOQ model and the
sustainable EOQ model with full backordering proposed by Taleizadeh et al. (2017). Moreover, the inventory
policy proposed here extends the optimal policy for an inventory system with deteriorated items and power
demand developed by Sicilia et al. (2013) and the optimal policy for an inventory system with a power demand

pattern, deterioration and full backlogging analyzed by Sicilia et al. (2014a).

6 Numerical examples

This section presents some numerical examples to help to understand the steps of the algorithm proposed above
to find the optimal inventory policy.

Example 1 Consider an inventory system for a certain type of cake or pie, which may deteriorate over
time. The estimated period without deterioration of these cakes is 7 = 3 days. Assume that the system has
the characteristics described in this paper and consider the following parameters: average demand r = 100
kilograms of cake per week, index of the power demand pattern n = 2, deterioration rate 6§ = 0.1, order cost
A = $20, unit holding cost h = $1.5 per kilogram and week, unit deterioration cost v = $13 per kilogram and
week, and unit backlogging cost w = $10 per kilogram and week. The purchase cost of a unit of the product
is ¢ = $20 and the sale price is p = $40. The cost of transporting a batch of @ units has a fixed cost kg = $20
per shipment and a variable cost k; = $0.5 per unit. The carbon emissions for transporting an order of @ units
are a fixed amount of oy = 200 kilograms plus «; = 0.8 kilograms per unit ordered. The carbon emissions
in the inventory are the sum of a fixed part of 5y = 100 kilograms plus an amount 1 = 1 kilogram per unit
held in stock and per week. The carbon emissions in disposing of deteriorated items are v = 1.2 kilograms per
deteriorated unit. Finally, the taxes charged on carbon emissions are p; = $0.5 per carbon emission kilogram in
transportation, ps = $0.3 per carbon emission kilogram in storage and p3 = $0.4 per carbon emission kilogram
for deterioration. Applying the algorithm to determine the optimal inventory policy, the following results are
obtained:

Step 1 T° = 1.79180 weeks, t = 1.51848 weeks, 7 = 3/7 = 0.428571 weeks.

Step 2 19 > 7.

Step 5 € = {1.12408}, t; = 1.12408.
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Step 6 T = 1.43639, H(t1,T) = 66651.3.

Step 7 P = {(t, = 1.12408,T = 1.43639)} and Ca(t;, T) = 303.086.

Step 9 Ty = 1.28115, C'5 = 325.039.

Step 10 Tp = 0.843384, Cy = 372.784.

Step 11 The optimal policy is ¢} = 1.12408 weeks, T* = 1.43639 weeks, C* = $303.086 per week and 7* =
$1696.91 per week.

From (18), the optimal lot size is Q* = 145.232 and, from (17), the order level is —B* = —16.5719.

Example 2 Consider the same parameters as in the previous example, but changing the without-deterioration
period 7 to 7 = 13 days.
Step 1 T° = 1.79180 weeks, t{ = 1.51848 weeks, 7 = 13/7 = 1.85714 weeks. Then 7° < 7.
Step 3 The optimal policy is (7, 7%) = (t9,7°), with 9 = 1.51848 weeks and 70 = 1.79180 weeks.
Step 4 The optimal cost is C* = C° = $279.753 per week and the maximum profit is 7* = 7° = $1720.25 per
week.

Now, the optimal lot size is Q@* = rT™* = 179.180 and, from (36), the initial inventory level is S* = 164.949.

The maximum number of backorders is B* = 14.2315.

Example 3 Consider the same parameters as in Example 1, but changing 7 to 7 = 0 days, that is, the
deterioration process of products starts from the beginning of the inventory cycle.

Step 1 T° = 1.79180 weeks, t{ = 1.51848 weeks, 7 = 0.

Step 2 19 > T.

Step 5 Q = {1.02566}, t; = 1.02566.

Step 6 T =1.37000, H(t1,T) = 77342.55.

Step 7 P = {(t; = 1.02566,T = 1.37000)} and Cs(t1,T) = 335.127.

Step 9 Ty = 1.21908, C'3 = 363.876.

Step 10 T, = 0.504975, Cy = 763.300.

Step 11 The optimal policy is ¢} = 1.02566 weeks, T* = 1.37000 weeks, C* = $335.127 per week and 7* =
$1664.87 per week.

In this case, the optimal lot size is Q* = 141.181 and the replacement level is —B* = —18.4607.
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Example 4 We keep the same parameters as in the previous example, but changing the index of the demand
pattern n to n = 0.5.

Step 1 TO = 1.34525 weeks, t = 1.14004 weeks, 7 = 3/7 = 0.428571 weeks.

Step 2 19 > 7.

Step 5 Q= {0.868656}, t; = 0.868656.

Step 6 T =1.09270, H(t1,T) = 543179.

Step 7 P = {(t; = 0.868656,7 = 1.09270)} and Cy(t;,7T") = 368.865.

Step 9 Ty = 0.894321, C'3 = 417.858.

Step 10 T, = 0.699888, Cy = 430.176.

Step 11 The optimal policy is 7 = 0.868656 weeks, T* = 1.09270 weeks, C* = $368.865 per week and
7 = $1631.13 per week.

Thus, the optimal lot size is @* = 110.570 and the order level is —B* = —40.2153.

Example 5 Consider the same parameters as in Example 4, but changing the without-deterioration period 7
to 7 = 8 days.

Step 1 T° = 1.34525 weeks, 1) = 1.14004 weeks, 7 = 8/7 = 1.14286 weeks.

Step 2 19 <.

Step 8 The optimal policy is (7, T%) = (t7,7°), with ¢ = 1.14004 weeks and T° = 1.34525 weeks.

Step 4 The optimal cost is C* = C0 = $342.741 per week and the maximum profit is 7* = 70 = $1657.26 per
week.

In this case, the optimal lot size is @* = 134.525 and the replacement level is —B* = —37.4334.

Example 6 Consider the same parameters as in Example 4, but changing 7 to 7 = 0 days, that is, the
deterioration process of products starts from the beginning of the inventory cycle.

Step 1 T° = 1.34525 weeks, t§ = 1.14004 weeks, T = 0.

Step 2 19 > 7.

Step 5 Q = {0.806380}, t; = 0.806380.

Step 6 T =1.07410, H(t1,T) = 526049.

Step 7 P = {(t;, = 0.806380, T = 1.07410)} and Cy(t;,T) = 403.494.
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Step 9 Ty = 0.865728, C'3 = 476.476.

Step 10 Ty = 0.714143, Cy = 566.095.

Step 11 The optimal policy is t; = 0.806380 weeks, T = 1.07410 weeks, C* = $403.494 per week and
7 = $1596.51 per week.

Now, the optimal lot size is @* = 110.765 and the order level is —B* = —46.8715.

Example 7 Consider the same parameters as in Example 1, but changing the index of the demand pattern n
ton =1.

Step 1 T° = 1.49295 weeks, t) = 1.26521 weeks, 7 = 3/7 = 0.428571 weeks.

Step 2 ) > 1.

Step 5 Q = {0.952116}, t; = 0.952116.

Step 6 T = 1.20476, H(t1,T) = 237050.

Step 7 P = {(t; = 0.952116, 7 = 1.20476)} and Cs(t;,T) = 342.642.

Step 9 Ty = 1.04459, C'3 = 374.606.

Step 10 Ty = 0.746147, Cy = 407.575.

Step 11 The optimal policy is t§ = 0.952116 weeks, T = 1.20476 weeks, C* = $342.642 per week and
m* = $1657.36 per week.

Therefore, the optimal lot size is Q* = 121.871 and the order level is —B* = —25.2642.

6.1 The effect of the sustainable costs in the inventory system

In this section, the optimal inventory policy obtained from the proposed model is compared with the one
obtained from a model where the carbon emissions costs are not taken into consideration.

Let us denote by C* the optimal objective function value of the model with carbon emissions costs. That is,
C™* is the value of the cost associated to the optimal policy proposed in this paper. Also, we can work with the
cost of the optimal policy for the inventory model without considering the sustainable costs, and this is denoted
by C. To make the comparison of both inventory policies, it is necessary to calculate this last cost C. To do

so, we first need the objective function C'(¢;,T) to be optimized in the model that does not consider carbon
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emissions costs. This function is given by

Cl(tl,T) fTr<tor0<t;<7<T

C(ty,T) = B

Oz(tl,T) ifr<t;<T
Thus, for case 1, the function C(t;,T) is deduced from (11), considering p; = 0 for i = 1,2,3. Therefore, we

have

_ ()t Atk wT ™
Cl(thT) = (n+ I)Tl/n T + ntl - Tl/n—l +k’17‘

Similarly, for case 2, the cost function C(t1,T) follows from (26), taking u; = 0 for i = 1,2, 3. That is,

t1
o 1/n+1 1 h
Cg(tl,T) _ hrr (h (T+ 6) +U) r6797/69221/n71dz+ (9 + U) r (7‘1/" o ti/n) + A+ kO

mt DTV" T aTum T T
T
wrn wr 1/n+1 wro 1/m
+n+1T+(n+1)T1/”t1 _Tl/n—ltl + ki

Now, considering the function objective C(t1,T) and applying Algorithm 1, we obtain the optimal policy (a, QA“)
for the inventory model without considering the sustainable costs. Then, the cost C associated to that policy
(t,T) is obtained from C = C(fy,T), where C(ty, T) is given by (30).

Afterwards, the relative gap RG as a percentage of the two solutions can be calculated as the difference
between C' and C* divided by C*, as indicated in the following equation:

C-c*

RG(%) = 100~

The values of the measures RG(%) for the results obtained in the numerical examples are presented in Table 3.

Table 3. Comparison of the optimal policies of numerical examples

Example t T* Q* th T Q C* C RG (%)
1 1.12408  1.43639 145.232 0.666242 0.799419 80.1086 303.086 348.119 14.8582
2 1.51848 1.79180  179.180 0.819863 0.942843 94.2843 279.753 320.376 14.5210
3 1.02566  1.37000 141.181 0.550538 0.709011 72.0668 335.127 391.799 16.9105
4 0.868656 1.09270 110.570 0.521123  0.61204 61.2729 368.865 426.917 15.7380
5 1.14004  1.34525 134.525 0.609994 0.701493 70.1493 342.741 398.586 16.2936
6 0.806380 1.07410 110.765 0.426820 0.548916 55.8513 403.494 478.566 18.6057
7 0.952116  1.20476 121.871 0.571665 0.677232 67.8261 342.642 394.918 15.2569
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Note that, for Example 1, the inventory cycle for the model without considering the sustainable costs is
T = 0.799419, which is 44.3455% lower than the optimal inventory cycle 7. The optimal lot size for this
model is @ = 80.1086, which is 44.8409% lower than the optimal lot size Q*. Moreover, the relative gap RG
as a percentage is around 15%. This means that, to apply the optimal policy obtained for the inventory model
without considering sustainable costs, leads to an additional cost over the minimum cost corresponding to the

optimal solution deduced considering sustainable costs.

7 Sensitivity analysis

7.1 Impact of some parameters

In this section, we include an analysis of the behavior of the optimal inventory policy and the maximum profit
when the index of the demand pattern or the parameters of the deterioration rate vary.

We assume the following parameters of the inventory system: ¢ = 30, p = 50, A = 30, kg = 4, k1 = 3,
ag =5, a1 =08 h=25 6o=706=1,v=19, v =12, 1 = po = pu3 = 0.5, w = 10 and r = 100.
Table 4 shows some computational results when the parameters 7, § and n vary, that is, 7 € {0,1/7,2/7,3/7},

6 € {0.04,0.06,0.08,0.10,0.12} and n € {0.5,1,2, 4}.

7.2 Discussion on numerical results

These results provide certain insights into the inventory model developed here. Some issues are the following:

1. With fixed 7 and 0, if the value of the index of the demand pattern n is increasing, then the optimal
length of the inventory cycle where the net stock is positive ¢, the optimal inventory cycle T* and the
maximum profit 7* are all also increasing.

2. In general, assuming fixed 7 and 6, the optimal profit 7* is more sensitive to variations in the parameter
n when the value of 7 is short. However, the optimal inventory cycle T™ is more sensitive to n when the
value 7 is large.

3. With fixed 6 and n, the optimal inventory cycle T* and the optimal positive inventory cycle ¢ both
increase as the parameter 7 increases. However, the maximum profit 7* is first decreasing and later
increasing.
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4. In general, given 6 and n, the optimal inventory cycle 7 and the maximum profit 7* are more sensitive
to variations in the parameter 7 when the value of n is large.

5. Supposing that 7 and n are fixed, if the value of the deterioration rate 6 increases, then the maximum
profit 7* and the optimal positive inventory cycle ¢] are decreasing. However, the optimal inventory cycle
T* is first increasing and later decreasing.

6. In general, given 7 and n, the maximum profit 7* is more sensitive to changes in the parameter § when

the value of n is large or when the value of 7 is short.

8 Managerial insights and policy implications

Next, managerial implications based on the sensitivity analysis of the parameters are set out. Some suggestions
are provided to inventory managers that could help them to improve the efficiency of their inventory control.

From the computational results, and the above comments described in the paper, we can deduce the following

managerial insights:

1. The largest increase in profit per unit of time is obtained when the power demand pattern index n increases.
When this index n is greater than one, a larger portion of the demand occurs towards the beginning of the
inventory cycle and the remaining demand decreases along the scheduling period. Then, the practitioners
and inventory managers should encourage customers to purchase products preferably towards the first half
of the inventory cycle. To do so, managers can increment demand by increasing advertising or marketing
campaigns (for example, increasing advertisements about the goodness of the product in the press, radio,
television or social networks), or by giving incentives to customers to increase the purchase of the product
(for example, considering a discount in the sale price, or offering an additional free unit of the product for
the purchase of several items of that product).

2. Another way to increase the profit per unit of time is to reduce the deterioration rate . If this reduction
is small, then the increase in profit is minimal. To achieve a higher profit, the deterioration rate should be
noticeably reduced, which is not easy to achieve; since a reduction in the deterioration rate requires a con-
siderable economic investment to improve the infrastructures and hygienic and environmental conditions

of the warehouses where the products are stored.
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3. Another alternative to increase the benefit per unit of time would be to decrease the replenishment cost
A per order. To do this, the fixed cost of the transportation of products should be reduced. This
transportation cost includes the cost of the conveyances used, insurance, taxes, and also the cost of the
machinery and labor used in loading and unloading the products. Any reduction achieved in the price of
transporting the merchandise or products will suppose an increase in the benefit.

4. Furthermore, the reduction of the unit holding cost h per unit of time, or the reduction of the unit
backlogging cost w per unit of time, leads to an increase in the benefit per unit of time. Decreasing the
unit shortage cost is difficult for practitioners, but it is possible to reduce the unit holding cost by acting
on the fixed costs related to the warehouse where the stock of products is held. Thus, for example, an
increment in the profit could be obtained by reducing costs for insurance, cleaning, electricity, water,
heating or cooling items.

5. In general, from the computational results, it can be deduced that, when the power demand pattern index
n is less than one, an increase in the time period 7 in which the product does not suffer any deterioration
leads to an increment in the benefit per unit of time. From the point of view of practitioners or inventory
managers, it is not possible to act directly on the time period 7, since it is an intrinsic characteristic of the
product. However, it can be done indirectly, by improving the conservation and maintenance conditions

of stored products.

Additionally, the inventory model considers that the carbon emission taxes applied to transport (1), mainte-
nance (p2) and the item deterioration process (p3) increase the inventory management costs. Incorporating the
new total carbon emissions cost into the inventory system forces companies to modify their stock management
policies, making them more sustainable.

The enterprises could use the results of this study to improve their business models. It encourages compli-
ance with increasingly demanding environmental and health regulations by promoting the sustainable storage
and transport of products. It also makes it possible to improve the company’s image and brand reputation by
demonstrating its commitment to the environment and sustainability. Moreover, it could strengthen relation-
ships with supply chain actors by minimizing risks and supporting sustainable maintenance and transport of

stocks. In parallel, the paper provides several direct and indirect policy implications. Its underlying analysis
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could suggest that authorities could generate fiscal incentives to stimulate companies to implement strategies
aimed at increasing customer demand in specific periods; promote economic support programs to invest in
sustainable infrastructure; establish regulations that require storage standards and environmental conditions
that help reduce the rate of deterioration of items; as well as encourage efficient policies in the fields of logistics
and transportation. Also, decisions could focus on driving energy efficiency practices to reduce costs; favoring
the adoption of cleaner technologies in warehouses; or recognizing companies that adopt socially responsible
inventory management practices.

Finally, a sustainable approach to the inventory management model for deteriorated items with a power
demand pattern can offer several significant benefits, including reducing waste from product maintenance and
transport, enhancing item quality guarantees, reducing greenhouse gas emissions, improving risk management,
and strengthening the image and reputation of the company, among others. By adopting responsible and sustain-
able inventory management practices, companies can increase their profitability, efficiency, and competitiveness

while contributing to the reduction of the environmental and social impact of their operations.

9 Conclusions

This paper studies an economic order quantity model for a sustainable inventory system with power demand
pattern and backlogged shortages, considering a carbon emissions tax. In this inventory system, it is assumed
that there is a period where the items are kept in the inventory in perfect conditions but, after that time, a
deterioration process starts in the stored items that causes a percentage of these products to deteriorate and
thus they cannot be sold.

Two scenarios are presented and studied. In the first, it is considered that the lifetime of the articles is
greater than the time-period when these items are stored in the inventory. In this case, the optimal inventory
policy is derived for an inventory system without deterioration, with power demand pattern and shortages
completely backlogged, assuming a carbon emissions tax. This model extends to the inventory system analyzed
by Sicilia et al. (2012), who developed the optimal inventory policy for items with a power demand pattern and
backlogged shortages, but without analyzing the effect of a carbon tax on the inventory system. In addition,

the inventory model developed in this paper extends the environmental EOQ model proposed by Bonney and
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Jaber (2011) and the inventory model analyzed by Hua et al. (2011) when the firm has no carbon emissions
quotas and neither buys nor sells any carbon credit.

In the second scenario, it is assumed that the lifetime of the articles is less than the period that these articles
stay in the inventory. Thus, the behavior pattern of the inventory level is as follows: the inventory starts with
an initial stock level and then that level is gradually decreasing to meet the demand of the customers. From a
certain point, the inventory level not only decreases to satisfy the orders of customers, but also decreases due
to the loss of products because of the deterioration process. When the inventory runs out of stock, shortages
appear which are covered with the arrival of the next inventory replenishment. In this case, the inventory model
with a carbon emissions tax proposed in this paper extends the sustainable EOQ models without shortages and
with full backlogging studied by Taleizadeh et al. (2017). Furthermore, the inventory policy proposed here
extends the optimal policy for deteriorated items with a power demand pattern analyzed by Sicilia et al. (2013)
and the optimal policy for an inventory system with a power demand pattern, deterioration and full backlogging
developed by Sicilia et al. (2014a).

Considering the different evolution of the net level of inventory for each scenario throughout the planning
period, the costs involved in inventory management are determined in each situation, and the general problem
of profit maximization per inventory cycle is formulated. Subsequently, the necessary optimality conditions
that the best inventory policy should satisfy are developed and an algorithm that allows us to determine the
optimal inventory policy is proposed. In all the cases analyzed, through numerical examples, it is confirmed
that the solutions obtained reflect substantial reductions in inventory management costs with respect to models
in which carbon emissions rates are not taken into account. Furthermore, optimal policies that incorporate
economic, operational, as well as environmental parameters (taxes applied to transport, maintenance, and the
item deterioration process) in inventory management provide a more holistic view that raises awareness of the
importance of implementing business activities that reduce pollution, protect the environment, and increase the
well-being of society in general.

This paper makes a significant contribution to business knowledge and practice by helping to promote
sustainable and efficient practices in the inventory management and commercial distribution of perishable items

within the supply chain. It can help managers in organizations to make more informed decisions that allow
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them to generate a positive impact on the profitability of the business and, at the same time, reduce their
carbon emissions. It also offers suggestions to political actors to implement actions that contribute to reducing
deterioration and waste generation by organizations, satisfying the growing demands of customers who value
sustainability, and fulfilling SDG 12 of the UN Agenda 2030.

As future works of research, it would be interesting to study the effect of a carbon-tax on some of the
inventory systems characterized by the following hypothesis: (i) a system with deterioration and power demand
pattern considering partial backlogging; (ii) a system for items with deterioration assuming power demand
pattern and loss of sales; (iii) a system for items with a process of deterioration, power demand pattern and
backlogging when the replenishment is not instantaneous and a finite rate of replenishment of the products is

considered.
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