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Abstract

Environmental degradation due to carbon emissions occurring in the production, storage and marketing

of products has increased notably in recent years. To maintain a sustainable development, it is necessary

to penalize commercial activities that generate high carbon emissions. This paper develops and analyzes

a sustainable inventory system for a product whose demand follows a power pattern with respect to time.

It is considered that the stock items have an estimated life period, after which a percentage of these items

begins to deteriorate over time. The inventory system allows shortages which are fully backordered. Several

sources of carbon emissions are considered in this article: transportation, stock holding and deterioration.

The main objective is to determine the sustainable inventory policy that maximizes the benefit per unit

of time, which is given by the difference between the income obtained from sales and the costs associated

with inventory management and carbon emissions. Two scenarios are analyzed. In the first, the optimal

inventory policy for a system without deterioration is derived. In the second, an algorithm to determine
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the optimal policy for an inventory system with non-instantaneous deterioration is proposed. Thus, our

findings serve to determine the best inventory policy that helps decision-makers to obtain the lot size and

the reorder point that maximize the profit per unit time under carbon emission taxes in transporting, storage

and deteriorating of items. Some numerical examples are solved in order to illustrate the theoretical results

previously obtained. Finally, a sensitive analysis of the optimal inventory policy with respect to some input

parameters of the system is presented and interesting managerial insights from the numerical examples are

proposed.

Keywords: Sustainable inventory; Power Demand Pattern; Non-instantaneous deteriorating; Backlogging;

Carbon emissions
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the optimal policy for an inventory system with non-instantaneous deterioration is proposed. Thus, our

findings serve to determine the best inventory policy that helps decision-makers to obtain the lot size and

the reorder point that maximize the profit per unit time under carbon emission taxes in transporting, storage

and deteriorating of items. Some numerical examples are solved in order to illustrate the theoretical results

previously obtained. Finally, a sensitive analysis of the optimal inventory policy with respect to some input

parameters of the system is presented and interesting managerial insights from the numerical examples are

proposed.

Keywords: Sustainable inventory; Power Demand Pattern; Non-instantaneous deteriorating; Backlogging;

Carbon emissions

1 Introduction

1.1 Motivation

Over the last few decades, it has been possible to appreciate how the habitability conditions on our planet ha

gradually been impoverished. Little by little, the air we breathe has been degrading due to the atmospher

pollution from industry, transport and the inadequate conservation of waste generated by humans. At t

present time, it is well-known that global warming is a substantial threat to the world and carbon emissions a

a major source. Therefore, customers have a greater environmental awareness than before. Many governmen

and non-governmental organizations have raised their voices indicating the need to seek formulas that allow t

sustainable growth of the planet. A good strategy is to impose higher taxes on those companies or factori

where the manufacturing or production process is highly polluting, or that carry out poor maintenance of t

items in stock needed in the production and supply chain. There should also be a high tax penalty for firm

that produce excess contamination in the transportation and distribution of products. From this perspectiv

it is necessary for organizations around the world to develop and apply inventory models that take into accou

sustainability issues in order to decrease the carbon emissions associated with their operations. It is imperati

to formulate new solutions aimed at adopting responsible practices that mitigate their negative impacts on loc

and global ecosystems. The purpose is to help promote long-term sustainable development that will preser

the environment for future generations.
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In this work, we address a sustainable inventory management system that considers costs derived from carb

emissions into the atmosphere produced in the transport or shipment of goods, in the incorrect maintenan

of products, as well as the disposal of deteriorated items or waste. The main novelty of this study lies in

comprehensive and applied approach. It combines a set of assumptions, including environmental constrain

that affect the current practices associated with inventory activities, providing a more accurate assessment

their effects. In addition, it suggests concrete guidelines for companies to implement optimal and responsib

inventory management policies.

1.2 Literature review

In recent years, several articles have been published on sustainable inventory models. Andriolo et al. (201

raised the convenience of approaching the economic order quantity (EOQ model) from the perspective of su

tainability. They argued that there is a necessity for a sustainable inventory management framework. In

subsequent paper, Andriolo et al. (2014) proposed that academics and researchers should build inventory mo

els which include environmental issues, so as to reflect the impact of the amount of greenhouse gases that a

emitted to the atmosphere due to the activities carried out during the process of production, delivery and sto

age. Along these lines, Battini et al. (2014) introduced a sustainable EOQ inventory model which incorporat

several sustainability aspects that affect the environment. Hovelaque and Bironneau (2015) stated that, if som

adjustments are made to the lot sizes, then the carbon emissions decrease. They developed an EOQ invento

model linking the inventory and carbon emissions policies. They modeled the demand as price and carbon em

sions dependent. Taleizadeh et al. (2017) addressed and examined four sustainable inventory models: witho

shortages, lost sales, partial and full backordering. Battini et al. (2018) developed a bi-objective EOQ model

which costs and emissions are kept separate and analyzed using a Pareto frontier subject to a Cap and Tra

mitigation policy. Liao and Deng (2018) formulated a carbon-constrained EOQ model considering that t

demand is uncertain. They noted that inbcreasing the carbon tax decreases profits and changes the optim

ordering decisions. Tiwari et al. (2018c) built an inventory model for deteriorating products when some of the

are of imperfect quality under carbon emissions. They stated that the inventory model effectively reduces bo

the costs and the carbon emissions. Wang and Ye (2018) incorporated carbon emissions into the two bas

3
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inventory models: JIT and EOQ. They mentioned that considering carbon emissions in both the JIT and EO

inventory models decreases the amount of carbon emissions compared to the case without considering carb

emissions. Yu et al. (2020) derived an inventory model which involves deteriorating items when the processes

ordering and storing of perishable products cause carbon emissions. Mishra et al. (2020) presented an econom

production quantity (EPQ) inventory model with carbon tax when the carbon emissions rate can be controll

through investment in green technology. Mishra et al. (2021) examined an EOQ inventory model with shortag

and carbon emissions. Ruidas et al. (2021) investigated an imperfect production inventory model, consideri

that the parameters related to carbon emissions may vary within a certain interval. Mandal et al. (2021) pr

posed a sustainable stock-dependent inventory model with advertising demand and two progressive periods f

delay-in-payments. Taleizadeh et al. (2022) studied an EOQ model by incorporating environmental issues und

partial trade credit and partial backordering, in which the demand rate is sensitive to the selling price and

carbon emissions. Kumar et al. (2022) developed an inventory model with a single manufacturer and retail

by assuming that goods that have been remanufactured are as excellent as new items and the cost of carb

emissions is incorporated into the manufacturer’s and supplier’s holding and degrading costs. An overview

the scientific literature on sustainable inventory management models in the supply chain context up to t

year 2021 can be seen in Becerra et al. (2022). Jani et al. (2023) studied a perishable inventory model, wi

credit predefined duration and shortages from the retailer’s perspective, in which demand is determined by t

perishable product’s quality.

It is well-known that a majority of the stored items available for sale suffer some deterioration over tim

Consequently, some of these products cannot be sold due to the fact that they are damaged and this generates

economic loss for the company. One of the first studies of inventory management for articles with a deteriorati

process is attributed to Ghare and Schrader (1963), who developed an inventory model with known and consta

demand and decay rate. Later, Misra (1975) proposed an economic production quantity (EPQ) inventory mod

considering that goods could be damaged due to a process of deterioration. Then, Shah and Jaiswal (197

presented an inventory level model for items with a constant rate of deterioration. Subsequently, Aggarw

(1978) corrected the average cost of inventory and modified the proposed policy in the research work of Sh

and Jaiswal (1977). A few years later, Dave and Patel (1981) derived an economic order quantity (EOQ

4
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inventory model without shortages, with deterioration and time proportional demand. After that, Hollier an

Mak (1983) formulated two inventory models with exponentially decreasing demand in which units deteriora

at a constant rate. Raafat (1991) presented a comprehensive review of the inventory models for items wi

deterioration. In the same direction, and completing the review of Raafat (1991), Goyal and Giri (200

published a detailed review of the literature related to inventories with deterioration. Then, Lin et al. (200

optimized the period of the production cycle for an inventory model when articles deteriorate. Li et al. (201

compiled an interesting review of works on inventory models with product deterioration. Widyadana et al. (201

introduced an economic order quantity inventory model for items with deterioration and planned shortages; th

presented an approximate solution to the inventory problem. More recently, Janssen et al. (2016) presented

review and classification of more than three hundred deteriorated inventory models published between 2012 an

2015. Srivastava and Singh (2017) developed an inventory model for deteriorating items with linear deman

partial backlogging and variable deterioration rate, where the rate of backlogging is variable and dependent

the waiting time for the next replenishment. Sen and Saha (2018) developed an inventory model for deteriorati

items with time-dependent holding cost and shortages under permissible delay in payment. Tiwari et

(2018a) studied a two-echelon inventory model for deteriorating items in which the retailer’s warehouse has

limited capacity of display for the products and the demand rate depends on the retailer’s selling price an

displayed stock level. Tiwari et al. (2018b) analyzed a supplier-retailer-customer supply chain for deteriorati

items, assuming a two-level partial trade credit and allowed shortages. This paper considers a non-decreasi

deterioration rate over time and the item is fully deteriorated close to its expiry date.

Most of the classic inventory models consider that demand is known and constant. However, consta

demand is not usually used today because customer demand is influenced by several factors such as time, pric

inventory level and quality, among other reasons. Naddor (1966) was one of the first researchers who suggest

the power demand pattern as a good and practical function to adapt consumer demand according to the reali

of their behavior in the purchase of items. The power demand pattern allows the demand behavior of differe

products to be represented and helps to determine the evolution of the inventory level over time. With th

type of demand, it is possible to model the following: i) products whose demand remains traditionally consta

throughout the whole management period; ii) real-life situations in which the items are highly consumed at t

5
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beginning of the inventory cycle period and then the inventory decays more smoothly. Products in this catego

are, for example, cooked foods such as cakes and breads, among others, due to the fact that buyers want the

products prepared freshly; and iii) situations in which the products are sold in large quantities at the end

the cycle because they become scarce. For example, basic necessities, such as diesel, gasoline, sugar, water an

flour, among others, are products whose demand increases considerably as the stocks start to decrease.

There exist some works that deal with inventory models which assume that demand follows a power deman

pattern. For example, Goel and Aggarwal (1981) built an inventory model with power demand pattern, taki

into account the fact that products worsen over time with a constant rate of deterioration. Later, Datta an

Pal (1988) introduced an inventory system with a power demand pattern in which the items have a variable ra

of deterioration. Then, Lee and Wu (2002) formulated an EOQ inventory model for an item that deteriorat

with a Weibull distribution rate, considering a power demand pattern. Dye (2004) revisited and extended t

inventory model of Lee and Wu (2002), modeling the rate of shortages as proportional to time, with the ma

idea of having a more complete and applicable inventory model in practice. Singh et al. (2009) construct

an EOQ inventory model with perishable products, partial backordering and a power demand pattern. Sin

and Sehgal (2011) studied an EOQ inventory model with a two parameter Weibull deterioration rate, a pow

demand pattern and shortages. Rajeswari and Vanjikkodi (2011) derived an inventory model for a produ

that deteriorates, considering the power demand pattern and partial backordering, where the rate of shortage

considered inversely proportional to the waiting time to the next replacement. In a subsequent paper, Rajeswa

and Vanjikkodi (2012) examined an inventory model with a power demand pattern which depends on time an

shortage, assuming that the products deteriorate with a two-parameter Weibull distribution. Sicilia et al. (201

provided a detailed study of inventory models for the case where the demand follows a power pattern. Th

analyzed both the optimal policy when no shortage is allowed and the policy that must be implemented wh

shortage is permitted. In this last situation, they discussed the inventory models with complete backorderi

and the situation in which the shortages turn into lost sales. In a subsequent article, Sicilia et al. (201

introduced an EOQ inventory model to study the optimal replenishment policy, allowing items to deteriora

and in which demand depends on time following a power pattern. They assumed that shortages are not allow

and that the replenishment cycle is not fixed and given; this is, however, a decision variable of the invento

6
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problem. Mishra and Singh (2013) presented an EOQ inventory model for perishable products with a quadrat

deterioration rate, considering a power demand pattern and shortages. Mandal and Islam (2013) develop

a fuzzy inventory model for products that do not deteriorate, assuming a power demand pattern, shortag

and inflation. Sicilia et al. (2014a) derived a deterministic inventory model for items with a constant ra

of deterioration and permitting shortages. Their inventory model assumes that demand varies over time an

follows a power pattern. In the same year, Sicilia et al. (2014b) formulated an EPQ inventory model wi

a power demand pattern, assuming that the production rate is proportional to the demand rate. In a lat

article, Sicilia et al. (2015) established the optimal inventory policies for an inventory system without shortage

in which the replenishment rate is uniform and the demand follows a power pattern. Rajeswari et al. (201

introduced a fuzzy inventory model for items that deteriorate constantly with a power demand pattern, in whi

shortages are permitted. The rate of shortages is in accordance with a decreasing exponential function of t

waiting time. Recently, San-José et al. (2017) addressed an inventory problem with a power demand patter

permitting shortages. Only one part of the demand that is pending within the time of shortage is covered an

the rest of the demand is taken as lost sales. They developed a solution procedure to determine both the optim

batch size and the duration of the inventory cycle. Other more recent works that consider a power deman

pattern are the papers of San-José et al. (2018), San-José et al. (2019), San-José et al. (2020) and Khan et

(2023a,b,c,d), which assume that demand also depends on the selling price of the product.

In the research works previously mentioned on inventory models for products susceptible to deterioration,

is generally assumed that the deterioration process begins from the moment in which the items are stored in t

inventory. This hypothesis is usually not true in practice, since the products have a period of life where th

remain perfect and therefore do not suffer any deterioration. This type of evolution is known as items with a no

instantaneous deterioration process. Several researchers have developed inventory models for products with th

deterioration pattern. Thus, Wu et al. (2006) analyzed an inventory model for non-instantaneous deteriorati

items with stock-dependent demand and partial backlogging. Ouyang et al. (2006) developed the optim

replenishment policy for non-instantaneous deteriorating items with permissible delay in payments. Sugapri

and Jeyaraman (2008) studied an economic production quantity model for non-instantaneous deteriorating item

in which the holding cost varies with time. Chang and Lin (2010) developed a partial backlogging invento

7
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model for non-instantaneous deteriorating items with stock-dependent demand rate and inflation over a fini

planning horizon. Soni (2013) studied an inventory system for non-instantaneous deteriorating items with pric

and-stock-dependent demand considering permissible delay in payment. Kaur et al. (2013) proposed the optim

replenishing policy for a two-warehouse inventory model of non-instantaneous deteriorating items under stoc

dependent demand where no shortage is allowed. Tat et al. (2013) analyzed the optimal inventory policy f

non-instantaneous deteriorating products in vendor-managed inventory systems. Maihami and Karimi (201

analyzed the best pricing and optimal ordering policy for non-instantaneous deteriorating items with stochast

demand, considering promotional efforts. Wu et al. (2014) developed an inventory model for non-instantaneo

deteriorating items with price and stock-sensitive demand under permissible delay in payment. Vandana an

Sharma (2016) proposed the inventory policy for non-instantaneous deteriorating items over a quadratic deman

rate with permissible delay in payments and time-dependent deterioration rate. Rangarajan and Karthikey

(2017) developed an inventory model for non-instantaneous deteriorating items with cubic demand rate an

cubic deterioration rate, where shortages are partially backlogged for the next replenishment cycle. Pal an

Samanta (2018) studied the optimal inventory policy for non-instantaneous deteriorating items with a rando

pre-deterioration period, where no shortages are allowed and demand occurs uniformly, but at different rat

during pre- and post-deterioration periods. Shah and Naik (2018) developed an inventory model with time an

price-sensitive demand for non-instantaneous deteriorating items, including the learning effect on various cos

and the preservation technology investment to reduce the deterioration rate.

Table 1 displays a list of selected papers that have been published since 2015. In this table, we show t

differences between this paper and the related literature, reflecting the gap with respect to previous researc

The papers are categorized considering demand pattern type, whether backorders are allowed or not, if there

a deterioration process of the items, and if there exist costs for carbon emissions due to transport, storage

deterioration.

Following this research line, this work develops a sustainable inventory model for products that meet t

characteristic of non-instantaneous deterioration, that is, items begin to deteriorate after a certain period of tim

in the inventory. It is also assumed that the demand follows a power demand pattern and that shortages, whi

are met with the arrival of the next replenishment of products, are allowed. Several sources of carbon emissio

8
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Authors Demand Backlogging Deterioration Carbon emissions Carbon emissions Carbon emissions

pattern in transporting in stocking due to deterioration

Battini et al. (2018) Constant No No Yes Yes —

Hovelaque and Bironneau (2015) Price-and-CO2-dependent No No Yes Yes —

Jani et al. (2023) Quality-dependent Yes Yes No No No

Khan et al. (2023a) Price-and-time-dependent No No No No —

Khan et al. (2023b) Price-and-time-dependent Yes No No No —

Khan et al. (2023c) Price-and-time-dependent Yes No No No —

Khan et al. (2023d) Price-and-time-dependent No No Yes Yes —

Kumar et al. (2022) Advertisement-dependent No Yes — Yes Yes

Liao and Deng (2018) Stochastic No No Yes Yes —

Mandal et al. (2021) Stock-dependent No Yes No No No

Mishra et al. (2020) Constant Yes No — Yes —

Mishra et al. (2021) Price-dependent Yes Yes Yes Yes Yes

Pal and Samanta (2018) Constant No Yes No No No

Rajeswari et al. (2015) Power-time-dependent Yes Yes No No No

Rangarajan and Karthikeyan (2017) Time-dependent Yes Yes No No No

Ruidas et al. (2021) Price-dependent No No Yes Yes —

San-José et al. (2017) Power-time-dependent Yes No No No —

San-José et al. (2018) Price-and-time-dependent Yes No No No —

San-José et al. (2019) Power and price-dependent No No No No —

San-José et al. (2020) Power and price-dependent Yes No No No —

Sen and Saha (2018) Time-dependent Yes Yes No No No

Shah and Naik (2018) Price-and-time-dependent Yes Yes No No No

Sicilia et al. (2015) Power-time-dependent No No No No —

Srivastava and Singh (2017) Time-dependent Yes Yes No No No

Taleizadeh et al. (2017) Constant Yes No Yes Yes —

Taleizadeh et al. (2022) Price-and-emissions-dependent Yes No Yes Yes —

Tiwari et al. (2018a) Price-and-stock-dependent Yes Yes No No No

Tiwari et al. (2018b) Price-dependent Yes Yes No No No

Tiwari et al. (2018c) Constant No Yes Yes Yes Yes

Vandana and Sharma (2016) Time-dependent Yes Yes No No No

Wang and Ye (2018) Constant No No Yes Yes —

Yu et al. (2020) Price-and-stock-dependent Yes Yes Yes Yes No

This paper Power-time-dependent Yes Yes Yes Yes Yes

9
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are considered in the paper. Thus, transportation, stock holding and deterioration can produce environment

degradation and the related costs must be incorporated into the formulation of the inventory model.

1.3 Contribution of this study

The sustainable approach to our inventory management model of deteriorating items that follow a power deman

pattern can help reduce the environmental impact and improve profitability and efficiency in the supply chai

This can be potentially beneficial for businesses, consumers, and the planet. In addition, its results may

relevant and valuable for researchers and practitioners interested in inventory systems.

Following the research lines previously commented, the main contributions of this work to the literature

inventory models are:

(a) It describes the displayed stock behavior when demand is power dependent on time, which represen

real-life situations. This power demand pattern includes the inventory system with a constant deman

rate, as well as other consumer behaviors in which the requested quantity starts off low and increases ov

time; or conversely, where the demand is initially high and gradually tapers off during the inventory cyc

(b) It considers a process of deterioration of the elements to reduce the amount of waste generated. It al

offers solutions for non-instantaneous deterioration of the stock. Thus, it helps companies to minimi

the risk of inventory management due to obsolescence, facilitating the sale of items before they lose the

quality and value, since they have a limited useful life and can spoil or expire if they are not sold

consumed by a certain date. This in turn can improve customer satisfaction and loyalty.

(c) Shortages are allowed and backlogged, satisfying all customer demands, although the requests of som

clients can be fulfilled with delay.

(d) It incorporates environmental constraints that allow inventory management in a sustainable way. Thu

it considers several sources of carbon emissions: transportation, stock holding, and deterioration.

◦ It includes taxes on transportation, maintenance and deterioration processes that are highly pollutin

◦ It contributes to generating a positive impact on the environment by promoting the reduction

greenhouse gas emissions, or the carbon footprint associated with product maintenance and tran

portation.

10
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◦ It takes into account the effect of carbon taxes, reflecting the growing concern over the environment

impact of companies and their social responsibility.

(e) It presents an algorithmic procedure to determine the optimal inventory policy that maximizes the pro

per unit time of the retailer, that is, the difference between the income obtained from sales and the cos

associated with inventory management and carbon emissions.

(f) The results obtained are applicable to various economic sectors, such as the food, pharmaceutical, ele

tronics, and chemical industries, among others, which trade in a wide range of perishable products.

(g) It is in line with the Sustainable Development Goal 12 of the UN 2030 Agenda (United Nations, 2015

which aims to achieve sustainable consumption and production patterns.

To the best of our knowledge, there is no published model that determines the best policy for an invento

system with a power demand pattern, full backlogging and non-instantaneous deterioration, considering thr

sources of carbon emissions.

The rest of this paper is as follows. Section 2 provides the properties and assumptions that characterize t

sustainable inventory system. Section 3 formulates the mathematical model of the inventory system. Section

presents the necessary conditions that must be satisfied to obtain the optimal inventory policy and proposes

algorithm to determine the best inventory policy. Section 5 solves some numerical examples. Section 6 presen

a sensitivity analysis of the optimal inventory policy with respect to several input parameters of the syste

and derives some useful managerial insights. Finally, Section 7 gives relevant conclusions and potential futu

research work.

2 Notation

Table 2 shows the notation used for the development of the inventory model.

3 Assumptions

The inventory model has the following assumptions:

1. The inventory system considers a single product.

11
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Table 2 Notation

Parameters

k0 fixed shipment cost

k1 shipment cost per transported unit

τ life period of the item

θ deterioration rate

α0 fixed carbon emissions in transporting

α1 variable carbon emissions in transporting

β0 fixed carbon emissions in holding

β1 carbon emission per unit held in stock and per unit of time

γ carbon kilogram emission per deteriorated unit

c unit purchasing cost

p unit selling price

h unit holding cost per time unit

ω unit backordering cost

A ordering cost

v unit deteriorating cost

µ1 tax charged on carbon emissions in transporting ($/per carbon kilogram emission)

µ2 tax charged on carbon emissions in storage ($/per carbon kilogram emission)

µ3 tax charged on carbon emissions in deteriorating ($/per carbon kilogram emission)

r average demand per cycle

n index of demand pattern

Variables and functions

T length of inventory cycle (decision variable) (> 0)

S initial inventory level

t1 instant in which the inventory runs out of stock (decision variable) (0 ≤ t1 ≤ T )

B maximum number of backorders. Thus, the order level or replacement level is −B

Q replenishment or lot size

U number of units deteriorated during an inventory cycle

D(t) demand rate at time t

I(t) inventory level at time t

C(t1, T ) total cost per unit time

Ci(t1, T ) total cost per unit time for scenario i, with i = 1, 2

C3(T ) total cost per unit time for scenario 2 when t1 = T

C4(T ) total cost per unit time for scenario 2 when t1 = τ

π(t1, T ) benefit function per unit time

12
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2. The inventory cycle or planning period T is a decision variable.

3. The behavior of the inventory level during a period is repeated later in successive periods.

4. At the beginning of the inventory cycle, the stock of the product is replenished up to the level of S uni

5. The time that occurs from when the order is placed until it is delivered to the inventory is insignifican

6. The instant t1, in which the inventory runs out of stock, is a decision variable.

7. Shortages are allowed and these are fully backordered at the beginning of the next period.

8. When the total shortages reach the amount of B units, the inventory must be replenished.

9. Replenishment time is considered instantaneous.

10. The size of the replenishment or lot size Q is constant, but it is not known and must be determined

the inventory model.

11. The cost of shipment includes a fixed cost k0 and a variable cost k1Q.

12. It is considered that there is a period of time τ in which the articles do not suffer any deterioration.

13. After the period [0, τ ], a fraction θ of the units in stock starts to deteriorate.

14. Deteriorated units cannot be repaired.

15. The carbon emissions for transporting an order of Q units is the sum of a fixed amount α0 plus a variab

amount α1Q.

16. The carbon emissions in the inventory are represented by a fixed part β0 plus an amount β1 multipli

by the average amount held in stock.

17. The removal of deteriorated items or waste disposal is assumed to be a source of air carbon emissions.

18. There are taxes charged on carbon emissions, depending on how they are generated. Thus, it is consider

that µ1 is the tax charged on carbon emissions in transport, µ2 is the tax charged on carbon emissions

stock holding, and µ3 is the tax charged on carbon emissions in the deterioration process of the item.

19. Demand of the product is deterministic at a ratio of r units per inventory cycle T , but the way in whi

the units are taken from the inventory in order to satisfy the demand of the clients depends on the tim

when these are requested. Thus, let f(t) be the demand function of the product until time t (0 ≤ t ≤ T

This demand varies with time and it is assumed that it has the following mathematical expression

f(t) = rT

(
t

T

)1/n

(

13
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where n is the index of the demand pattern, with n > 0. Thus, the demand ratioD(t) at time t (0 < t < T

is given by

D(t) =
rt1/n−1

nT 1/n−1
(

This form of demand is known as a power demand pattern (see Naddor, 1966; Datta and Pal, 1988; L

and Wu, 2002; Sicilia et al., 2012, 2013, 2014b; and San-José et al., 2017).

There is a large group of products that follow the assumptions supposed in this inventory system. F

example, products such as pastries, cakes, sweets, breads, and freshly prepared meals, among others, reflect t

common characteristic that they have a greater demand at the beginning of the period, since they are fre

products attracting a greater number of customers. Fish, vegetables, fruit, and yoghurts, among others, are al

part of this group, as they can deteriorate over time and their sales decrease considerably when the expiry da

approaches. This situation is represented in the power demand pattern with a demand pattern index n > 1.

However, there are items whose demand increases as the end of the inventory cycle. Thus, for examp

basic household products, such as bottled water, coffee, milk, flour, and sugar, among others, increase the

demand at the end of the inventory cycle. They are products of first necessity, and when customers notice th

there are few products displayed for sale, demand rises and the stock level decreases considerably. In additio

petroleum products such as gasoline or diesel fuel increase their demand when the stored product begins to

scarce. This situation can be modeled by the power demand pattern with an index n < 1.

Finally, there are also other types of product where demand remains more or less uniform throughout t

whole inventory cycle (which is represented in the power demand pattern with an index of n = 1). For examp

items such as construction materials, furniture, decoration products, electrical components, cleaning produc

and kitchen utensils, among others, usually have a stable demand. These products are not basic or fundament

so their demand does not change excessively over time.

4 Development of the inventory model

Note that, if items have a life period τ longer than or equal to the length of the inventory cycle T , then t

deterioration process of products does not affect the stored products. Thus, in this situation, the invento

14
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system to be analyzed does not consider the deterioration of products. Therefore, in the rest of this section, w

consider that the life period τ of the items is less than the inventory cycle T of the system.

The behavior of the inventory level is described as follows. Denote by I(t) the level of net stock in invento

at time t, with 0 ≤ t ≤ T . The inventory level begins with I(0) = S units in stock. Then, two different scenari

or situations can occur, depending on whether the period of time τ is greater than or equal to the period t1

which there is stock in the inventory system, or whether τ is less than t1.

Case 1. Suppose that τ ≥ t1, this means that the demand is able to absorb all the stock stored in the invento

system before the products start to deteriorate. In that case, there is no deterioration in the articles and t

differential equation that governs the behavior of the inventory level of the system is given by

dI(t)

dt
= − rt1/n−1

nT 1/n−1
, 0 < t < T (

Solving the above equation, the function that describes the evolution of the inventory level is obtained:

I(t) = S − rt1/n

T 1/n−1
, 0 ≤ t ≤ T (

In this scenario, the maximum number of backorders is B = −I(T ) = −S+rT and the lot size isQ = S+B = r

In this case, the holding cost HC1 per unit of time is calculated as follows

HC1 =
h

T

t1∫

0

I(t)dt =
h

T

t1∫

0

(
S − rt1/n

T 1/n−1

)
dt =

h

T

(
St1 −

nrt
1/n+1
1

(n+ 1)T 1/n−1

)
(

The order cost OC1 per unit of time is computed with the quotient A/T . The shipping cost SC1 per unit

time is k0/T + k1r. The backlogging cost BC1 per unit of time is calculated by the following formula

BC1 =
ω

T

T∫

t1

[−I(t)] dt =
ω

T

T∫

t1

(
rt1/n

T 1/n−1
− S

)
dt =

ω

T


S(t1 − T ) +

nr
(
T 1/n+1 − t

1/n+1
1

)

(n+ 1)T 1/n−1


 (

Since I(t1) = 0, and from equation (4), we obtain that the initial stock level is

S =
rt

1/n
1

T 1/n−1
, if t1 ≤ τ (

Substituting S into equations (5) and (6), it follows that the holding cost per unit of time is given by

HC1 =
h

T

t1∫

0

I(t)dt =
hrt

1/n+1
1

(n+ 1)T 1/n
(

15
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and the shortage or backlogging cost per unit of time is computed as follows

BC1 =
ω

T

T∫

t1

[−I(t)] dt =
ω

T


 rt

1/n
1

T 1/n−1
(t1 − T ) +

nr
(
T 1/n+1 − t

1/n+1
1

)

(n+ 1)T 1/n−1




=
ωr

T 1/n

[
−t

1/n
1 T +

nT 1/n+1

n+ 1
+

t
1/n+1
1

n+ 1

]
(

In this case, the carbon emissions occur in transport and inventory holding. Hence, the carbon emissions

transporting Q units are α0 + α1Q = α0 + α1rT and the carbon emissions in the holding of stock are

β0 + β1

t1∫

0

I(t)dt = β0 +
β1rt

1/n+1
1

(n+ 1)T 1/n−1

Then, the total carbon emissions cost EC1 per unit of time is

EC1 = µ1

(α0

T
+ α1r

)
+ µ2

(
β0

T
+

β1rt
1/n+1
1

(n+ 1)T 1/n

)
(1

The total cost per unit of time is determined as the sum of the shipping cost, holding cost, ordering co

backordering cost and carbon emissions costs. Thus, the total cost of the inventory system per unit of time

expressed as

C1(t1, T ) =
(h+ µ2β1) rt

1/n+1
1

(n+ 1)T 1/n
+

A+ k0 + µ1α0 + µ2β0

T
+

ωr

T 1/n

[
−t

1/n
1 T +

nT 1/n+1

n+ 1
+

t
1/n+1
1

n+ 1

]
+ (k1 + µ1α

=
(h+ µ2β1 + ω)rt

1/n+1
1

(n+ 1)T 1/n
+

δ0
T

+ ω

(
nrT

n+ 1
− rt

1/n
1

T 1/n−1

)
+ (k1 + µ1α1) r

where

δ0 = A+ k0 + µ1α0 + µ2β0. (1

Case 2. Now, let us analyze the other possible situation, when τ < t1. At the beginning of the invento

cycle, the inventory level decreases over time due to customer demand until the time period τ is complete

Then, the inventory level continues to decrease, not only due to demand, but also due to the effect of t

deterioration of the items, until that stock level is zero at time t = t1. Later, when there is no stock of t

product, shortages appear during the period (t1, T ). When a total of shortages of B units is reached, then t

inventory is replenished with a sufficient quantity to meet the shortages and leave some units in stock to satis

customer demand from the next inventory cycle. Taking this scenario into account, the differential equatio

that describe the inventory level I(t) during the period [0, T ] are given below

16
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dI(t)

dt
= − rt1/n−1

nT 1/n−1
if 0 < t < τ

dI(t)

dt
+ θI(t) = − rt1/n−1

nT 1/n−1
if τ < t < t1

dI(t)

dt
= − rt1/n−1

nT 1/n−1
if t1 < t < T

(1

with the boundary conditions I(0) = S, I(t1) = 0 and I(T ) = B. The solutions to the differential equatio

expressed in (13) are

I(t) = S − r

T 1/n−1
t1/n if 0 ≤ t ≤ τ

I(t) = e−θ(t−τ)

(
S − r

T 1/n−1
τ1/n −

t∫
τ

eθ(z−τ) r

nT 1/n−1
z1/n−1dz

)
if τ < t ≤ t1

I(t) =
r

T 1/n−1

(
t
1/n
1 − t1/n

)
if t1 < t < T

(1

Since the inventory level at t1 is zero, I(t1) = 0, then for this scenario the initial stock level is

S =
r

T 1/n−1
τ1/n +

r

nT 1/n−1

t1∫

τ

eθ(z−τ)z1/n−1dz (1

So, replacing S in equation (14), we have

I(t) =
r

T 1/n−1

(
τ1/n − t1/n

)
+

r

nT 1/n−1
e−θτ

t1∫
τ

eθzz1/n−1dz if 0 ≤ t ≤ τ

I(t) =
r

nT 1/n−1
e−θt

t1∫
t

eθzz1/n−1dz if τ < t ≤ t1

I(t) =
r

T 1/n−1

(
t
1/n
1 − t1/n

)
if t1 < t < T

(1

By calculating the value of the function I(t) at t = T , the maximum number B of shortages is obtained by t

following formula

B = −I(T ) =
−r

T 1/n−1

(
t
1/n
1 − T 1/n

)
= rT

[
1−

(
t1
T

)1/n
]

(1

The quantity to be ordered, or lot size Q, is equal to S +B. Therefore, from equations (15) and (17), it can

deduced that the lot size is computed with the expression

Q =
r

nT 1/n−1
e−θτ

t1∫

τ

eθzz1/n−1dz +
r

T 1/n−1

(
τ1/n + T 1/n − t

1/n
1

)
(1

The number of deteriorated units U is obtained as the difference between the size of the replenishment Q an

the units demanded, rT , throughout the inventory cycle. So, this amount is

U = Q− rT =
r

nT 1/n−1
e−θτ

t1∫

τ

eθzz1/n−1dz +
r

T 1/n−1

(
τ1/n − t

1/n
1

)
(1
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The amount carried in the inventory is

t1∫

0

I(t)dt =

τ∫

0

I(t)dt+

t1∫

τ

I(t)dt

=
rτ1/n+1

(n+ 1)T 1/n−1
+

rτ

nT 1/n−1
e−θτ

t1∫

τ

eθzz1/n−1dz +
r

nT 1/n−1

t1∫

τ

e−θt




t1∫

t

eθzz1/n−1dz


 dt

=
rτ1/n+1

(n+ 1)T 1/n−1
+

rτ

nT 1/n−1
e−θτ

t1∫

τ

eθzz1/n−1dz +
r

nT 1/n−1

t1∫

τ

eθzz1/n−1




z∫

τ

e−θtdt


 dz

=
rτ1/n+1

(n+ 1)T 1/n−1
+

r

nT 1/n−1

(
τ +

1

θ

)
e−θτ

t1∫

τ

eθzz1/n−1dz +
r

θT 1/n−1

(
τ1/n − t

1/n
1

)
(2

Now, the carbon emissions occur in transport, inventory holding and disposal of deteriorated items. Thus, t

carbon emissions are

α0 + α1Q+ β0 + β1

t1∫

0

I(t)dt+ γU (2

From (18), (19) and (20), the total carbon emissions are

α0 +
α1r

nT 1/n−1
e−θτ

t1∫

τ

eθzz1/n−1dz +
α1r

T 1/n−1

(
τ1/n + T 1/n − t

1/n
1

)
+ β0 +

β1rτ
1/n+1

(n+ 1)T 1/n−1

+
β1r

nT 1/n−1

(
τ +

1

θ

)
e−θτ

t1∫

τ

eθzz1/n−1dz +
β1r

θT 1/n−1

(
τ1/n − t

1/n
1

)

+
γr

nT 1/n−1
e−θτ

t1∫

τ

eθzz1/n−1dz +
γr

T 1/n−1

(
τ1/n − t

1/n
1

)

In this scenario, the total cost during the inventory cycle is the sum of the holding, ordering, shippin

shortage and deterioration costs, plus the total carbon emissions cost.

From (20), the holding cost per unit of time is

HC2 =
h

T

t1∫

0

I(t)dt =
hrτ1/n+1

(n+ 1)T 1/n
+

hr

nT 1/n

(
τ +

1

θ

)
e−θτ

t1∫

τ

eθzz1/n−1dz +
hr

θT 1/n

(
τ1/n − t

1/n
1

)
(2

The cost of placing an order per unit of time is OC2 = A/T . The shipping cost per unit of time is SC2

k0/T + k1r. The cost of the deteriorated units per unit of time is

DC2 =
vU

T
=

vr

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz +
vr

T 1/n

(
τ1/n − t

1/n
1

)
(2
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The shortage cost per unit of time is

BC2 =
ω

T

T∫

t1

[−I(t)] dt =
ω

T

T∫

t1

−r
T 1/n−1

(
t
1/n
1 − t1/n

)
dt =

ωr

T 1/n

T∫

t1

(
t1/n − t

1/n
1

)
dt

=
ωrn

n+ 1
T +

ωr

(n+ 1)T 1/n
t
1/n+1
1 − ωr

T 1/n−1
t
1/n
1 (2

In this case, the total carbon emissions cost, EC2, per unit of time is

EC2 = µ1
α0

T
+

µ1α1r

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz +
µ1α1r

T 1/n

(
τ1/n + T 1/n − t

1/n
1

)
+ µ2

β0

T
+

µ2β1rτ
1/n+1

(n+ 1)T 1/n

+
µ2β1r

nT 1/n

(
τ +

1

θ

)
e−θτ

t1∫

τ

eθzz1/n−1dz +
µ2β1r

θT 1/n

(
τ1/n − t

1/n
1

)
+

µ3γr

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz

+
µ3γr

T 1/n

(
τ1/n − t

1/n
1

)
(2

As a result, the total cost per unit of time is expressed as follows

C2(t1, T ) =
k0
T

+ k1r +
hrτ1/n+1

(n+ 1)T 1/n
+

hr

nT 1/n

(
τ +

1

θ

)
e−θτ

t1∫

τ

eθzz1/n−1dz +
hr

θT 1/n

(
τ1/n − t

1/n
1

)

+
vr

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz +
vr

T 1/n

(
τ1/n − t

1/n
1

)
+

A

T
+

ωrn

n+ 1
T +

ωr

(n+ 1)T 1/n
t
1/n+1
1

− ωr

T 1/n−1
t
1/n
1 + µ1

α0

T
+

µ1α1r

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz +
µ1α1r

T 1/n

(
τ1/n + T 1/n − t

1/n
1

)
+ µ2

β0

T

+
µ2β1rτ

1/n+1

(n+ 1)T 1/n
+

µ2β1r

nT 1/n

(
τ +

1

θ

)
e−θτ

t1∫

τ

eθzz1/n−1dz +
µ2β1r

θT 1/n

(
τ1/n − t

1/n
1

)

+
µ3γr

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz +
µ3γr

T 1/n

(
τ1/n − t

1/n
1

)

=
(h+ µ2β1) rτ

1/n+1

(n+ 1)T 1/n
+

δ1r

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz +
δ2r

T 1/n

(
τ1/n − t

1/n
1

)
+

δ0
T

+
ωrn

n+ 1
T

+
ωr

(n+ 1)T 1/n
t
1/n+1
1 − ωr

T 1/n−1
t
1/n
1 + (k1 + µ1α1) r (2

where δ0 is given by (12),

δ1 = (h+ µ2β1)

(
τ +

1

θ

)
+ v + µ1α1 + µ3γ (2

and

δ2 =
h+ µ2β1

θ
+ v + µ1α1 + µ3γ. (2
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Since the total demand throughout the whole inventory cycle is rT , the total revenue obtained from t

sales of the product is calculated with the expression (p − c)rT . Let π(t1, T ) be the benefit per unit of tim

obtained by the company, in other words, the income minus the expenses per unit of time. Considering t

costs of the two scenarios given by equations (11) and (26), the benefit function is determined by

π(t1, T ) =





(p− c)r − C1(t1, T ) if T < τ or 0 < t1 ≤ τ ≤ T

(p− c)r − C2(t1, T ) if τ < t1 ≤ T

(2

The main objective is to determine the optimal policy (t∗1, T
∗) for the inventory system that maximizes t

benefit given by equation (29). This is equivalent to minimizing the cost function C(t1, T ) defined by

C(t1, T ) =





C1(t1, T ) if T < τ or 0 < t1 ≤ τ ≤ T

C2(t1, T ) if τ < t1 ≤ T

(3

subject to the constraints 0 < t1 ≤ T and T > 0. Notice that, if t1 = τ , then both cost functions are equ

that is, C1(t1, T ) = C2(t1, T ).

5 Necessary conditions to determine the optimal policy

In this section, we present the approaches to find the optimal inventory policies for the two scenarios.

Case 1. To find the optimal policy for the first scenario (if T < τ or 0 < t1 ≤ τ ≤ T ), we have to calculate t

partial derivatives of the function C1(t1, T ) given in (11), that is,

∂C1

∂t1
= (h+ ω + µ2β1)

rt
1/n
1

nT 1/n
− ωrt

1/n−1
1

nT 1/n−1
(3

∂C1

∂T
= − (h+ ω + µ2β1) rt

1/n+1
1

n (n+ 1)T 1/n+1
+

(1− n)ωrt
1/n
1

nT 1/n
+

ωrn

n+ 1
− δ0

T 2
(3

Equalizing the partial derivative (31) to zero, the first condition is obtained. Thus, we have

t1 =
ωT

h+ ω + µ2β1
(3

Substituting the above t1 in equation (32) and equating to zero, we obtain

ωrn

n+ 1

[
1−

(
ω

h+ ω + µ2β1

)1/n
]
− δ0

T 2
= 0
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Thus, the optimal cycle period is given by

T 0 =

√
(n+ 1)δ0

ωnr
[
1− (ω/(h+ ω + µ2β1)) 1/n

] (3

and the time in which the inventory is zero is

t01 = T 0 ω

h+ ω + µ2β1
=

ω

h+ ω + µ2β1

√
(n+ 1)δ0

ωnr
[
1− (ω/(h+ ω + µ2β1)) 1/n

] (3

In addition, in this case, the corresponding initial stock level is

S0 = rT 0

(
ω

h+ ω + µ2β1

)1/n

=

√
(n+ 1)rδ0

ωn
[
1− (ω/(h+ ω + µ2β1)) 1/n

]
(

ω

h+ ω + µ2β1

)1/n

(3

Next, we prove that the policy (t01, T
0), given by (34) and (35), is the optimal inventory policy for th

scenario. To do so, we first determine the second partial derivatives and then we calculate the Hessian at t

point (t01, T
0). Thus, we have

∂2C1

∂t21
=

rt
1/n−2
1

n2T 1/n
(t1 (h+ ω + β1µ2) + (n− 1)ωT )

∂2C1

∂t1∂T
= − rt

1/n−1
1

n2T 1/n+1
(t1 (h+ ω + β1µ2) + (n− 1)ωT )

∂2C1

∂T 2
=

rt
1/n
1

n2T 1/n+2
(t1 (h+ ω + β1µ2) + (n− 1)ωT ) +

2δ0
T 3

and the Hessian determinant is

H(t1, T ) =
∂2C1

∂t21

∂2C1

∂T 2
−
(

∂2C1

∂t1∂T

)2

=
2δ0rt

1/n−2
1

n2T 1/n+3
(t1 (h+ ω + β1µ2) + (n− 1)ωT )

Taking into account that t01 (h+ ω + β1µ2) + (n− 1)ωT 0 = nωT 0 > 0, it is clear that the second part

derivative with respect to T1 at the point (t01, T
0) is positive and the Hessian determinant at the point (t01, T

is positive. Therefore, (t01, T
0) is the policy that minimizes the total cost of the inventory system under th

scenario, that is, when products are sold before they begin to deteriorate.

Thus, the minimum cost per unit of time is

C0 =

√
4ωnrδ0

[
1− (ω/(h+ ω + µ2β1)) 1/n

]

n+ 1
+ (k1 + µ1α1) r (3

and the maximum benefit per unit of time is

π0 = π(t01, T
0) = (p− c)r − C0
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Remark 1 This policy extends the optimal inventory policies for some systems studied by other authors. Thu

the inventory system without deterioration, with power demand and full backlogging proposed by Sicilia et

(2012) is a particular case of the model analyzed here. So, if the parameters related to the carbon emissions a

zero, then we obtain the same policy given by these authors. Also, the policy given by equations (34) to (3

extends the environmental economic order quantity model analyzed by Bonney and Jaber (2011). In additio

the inventory model proposed here extends the model developed by Hua et al. (2011) when the firm has no carb

emission quotas per unit of time and neither buys nor sells any carbon credit.

Case 2. Now, the optimal policy for the case τ < t1 ≤ T is analyzed in detail. First, the solution of t

inventory problem expressed in (30) is analyzed at the upper bound of the feasible region determined by t

constraints. Thus, if it is assumed that t1 = T , then the cost function C2(t1, T ) given in equation (26) is reduc

to the following univariable function

C3(T ) =
(h+ µ2β1) rτ

1/n+1

(n+ 1)T 1/n
+

δ1r

nT 1/n
e−θτ

T∫

τ

eθzz1/n−1dz +
δ2r

T 1/n
τ1/n − δ2r +

δ0
T

+ (k1 + µ1α1)r (3

By calculating the derivative of the function (38), the necessary condition to determine the scheduling peri

T1 that minimizes the cost function C3(T ) can be obtained. Thus, we have

− (h+ µ2β1) rτ
1/n+1

n (n+ 1)T 1/n+1
+

δ1r

nT
eθ(T−τ) − δ1r

n2T 1/n+1
e−θτ

T∫

τ

eθzz1/n−1dz − δ2rτ
1/n

nT 1/n+1
− δ0

T 2
= 0

This condition is equivalent to

−rτ1/n

n

(
(h+ µ2β1) τ

n+ 1
+ δ2

)
+

δ1re
θ(T−τ)

n
T 1/n − δ1re

−θτ

n2

T∫

τ

eθzz1/n−1dz − δ0T
1/n−1 = 0 (3

Solving equation (39), the value of T1 is obtained. Replacing this value T1 in the function C3(T ) given

equation (38), the minimum cost C3 = C3(T1) is determined.

Now let us analyze the other lower bound of the feasible region, that is, when t1 = τ . In this case, the co

function given in (26) is reduced to

C4(T ) =
(h+ ω + µ2β1)rτ

1/n+1

(n+ 1)T 1/n
+

δ0
T

+
ωrn

n+ 1
T − ωr

T 1/n−1
τ1/n + (k1 + µ1α1) r (4

Deriving and equating to zero, the following equation is determined

− (h+ ω + µ2β1)rτ
1/n+1

n(n+ 1)T 1/n+1
− δ0

T 2
+

ωrn

n+ 1
+

(1− n)ωr

nT 1/n
τ1/n = 0 (4
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Now, by solving Equation (41), the value of T2 that minimizes the cost function C4(T ) is obtained. If T2

substituted in the function C4(T ) given in equation (40), the minimum cost C4 = C4(T2) is calculated.

In the following paragraphs, the optimality necessary conditions of the problem given in (30) are establish

when it is assumed that τ < t1 < T . To find these conditions, the partial derivatives of the cost functi

C2(t1, T ) given in equation (26) with respect to t1 and T must be calculated. So,

∂C2

∂t1
=

δ1r

nT 1/n
eθ(t1−τ)t

1/n−1
1 + (ωt1 − ωT − δ2)

rt
1/n−1
1

nT 1/n
(4

∂C2

∂T
= − r

nT 1/n+1


 (h+ µ2β1) τ

1/n+1

n+ 1
+ δ1

e−θτ

n

t1∫

τ

eθzz1/n−1dz




+

[
δ2

(
t
1/n
1 − τ1/n

)
− ωt

1/n+1
1

n+ 1
+ (1− n)ωTt

1/n
1

]
r

nT 1/n+1
+

ωrn

n+ 1
− δ0

T 2
(4

Equalizing the partial derivative (42) to zero, the first condition is obtained

T = t1 +
δ1
ω
eθ(t1−τ) − δ2

ω
(4

Now, if the other partial derivative (43) is equal to zero, the second condition is determined

− r

nT 1/n+1


 (h+ µ2β1) τ

1/n+1

n+ 1
+

δ1e
−θτ

n

t1∫

τ

eθzz1/n−1dz




+

[
δ2

(
t
1/n
1 − τ1/n

)
− ωt

1/n+1
1

n+ 1
+ (1− n)ωTt

1/n
1

]
r

nT 1/n+1
+

ωrn

n+ 1
− δ0

T 2
= 0

This last equation is equivalent to

−


 (h+ µ2β1) τ

1/n+1

n+ 1
+

δ1e
−θτ

n

t1∫

τ

eθzz1/n−1dz


+ δ2

(
t
1/n
1 − τ1/n

)
− ωt

1/n+1
1

n+ 1
+ (1− n)ωTt

1/n
1

+
ωn2

n+ 1
T 1/n+1 − nδ0

r
T 1/n−1 = 0 (4

Substituting the value of T given by expression (44) in equation (45), the following nonlinear equation with

single variable t1 is stated.

−


 (h+ µ2β1) τ

1/n+1

n+ 1
+

δ1e
−θτ

n

t1∫

τ

eθzz1/n−1dz


+ δ2

(
t
1/n
1 − τ1/n

)
− ωt

1/n+1
1

n+ 1

+(1− n)ωt
1/n
1

[
t1 +

δ1
ω
eθ(t1−τ) − δ2

ω

]
+

ωn2

n+ 1

[
t1 +

δ1
ω
eθ(t1−τ) − δ2

ω

]1/n+1

−nδ0
r

[
t1 +

δ1
ω
eθ(t1−τ) − δ2

ω

]1/n−1

= 0 (4
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It is important to remark that the above equation could be solved by a numerical method to obtain t

period of time t̃1. Then, substituting t̃1 into equation (44), the length of the inventory cycle T̃ can be found

The second partial derivatives of C2(t1, T ) are as follows

∂2C2

∂t21
= δ1

r

nT 1/n
eθ(t1−τ)

(
θt

1/n−1
1 +

1− n

n
t
1/n−2
1

)
+

ωrt
1/n−1
1

n2T 1/n
− (1− n)ωrt

1/n−2
1

n2T 1/n−1

−δ2
(1− n)rt

1/n−2
1

n2T 1/n
(4

∂2C2

∂t1∂T
= − rt

1/n−1
1

n2T 1/n+1

(
δ1e

θ(t1−τ) − δ2

)
+

(1− n)ωrt
1/n−1
1

n2T 1/n
− ωrt

1/n
1

n2T 1/n+1
(4

∂2C2

∂T 2
=

(n+ 1)r

n2T 1/n+2


 (h+ µ2β1) τ

1/n+1

n+ 1
+

δ1e
−θτ

n

t1∫

τ

eθzz1/n−1dz


+ δ2

(n+ 1)r

n2T 1/n+2

(
τ1/n − t

1/n
1

)

+
ωrt

1/n+1
1

n2T 1/n+2
+

2δ0
T 3

− ω(1− n)rt
1/n
1

n2T 1/n+1
(4

The solution (t̃1, T̃ ) of equations (44) and (46) must satisfy the Hessian matrix for a positive definite

order to be a minimum. The second partial derivatives at that point (t̃1, T̃ ) are

∂2C2(t̃1, T̃ )

∂t21
=

r(t̃1)
1/n−1

n
(
T̃
)1/n

[
θδ2 + θω

(
T̃ − t̃1

)
+ ω

]
(5

∂2C2(t̃1, T̃ )

∂t1∂T
= −ωr(t̃1)

1/n−1

n
(
T̃
)1/n (5

∂2C2(t̃1, T̃ )

∂T 2
=

ωr(1− n)(t̃1)
1/n

n
(
T̃
)1/n+1

+
(n− 1)δ0

n
(
T̃
)3 +

ωr

T̃
(5

From equation (50), it is observed that the second partial derivative with respect to t1 is positive at t

point (t̃1, T̃ ). Therefore, it is sufficient to check that the Hessian at that point (t̃1, T̃ ) is positive, i.e.

H(t̃1, T̃ ) =
∂2C2(t̃1, T̃ )

∂t21

∂2C2(t̃1, T̃ )

∂T 2
−
(
∂2C2(t̃1, T̃ )

∂t1∂T

)2

> 0 (5

where the second partial derivatives of C2(t1, T ) at the point (t̃1, T̃ ) are given by the expressions (50), (51) an

(52).

Considering the theoretical results obtained above, the following algorithm is developed to determine t

optimal policy for an inventory system where the products in stock are kept in perfect conditions for a peri

of time τ ; after which a process of deterioration begins for the stored items, so the products deteriorate with

constant deterioration rate of θ units per unit of time.
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Algorithm 1

Step 1 Determine the values of T 0 and t01 by using equations (34) and (35), respectively. If T 0 ≤ τ , then

to Step 3. Otherwise, go to Step 2.

Step 2 If the value of t01 is greater than τ , then go to Step 5. Otherwise, go to Step 3.

Step 3 The optimal policy is (t∗1, T
∗) = (t01, T

0). Go to Step 4.

Step 4 From (37), calculate the minimum cost C∗ = C0 = C1(t
0
1, T

0). Obtain the optimal benefit π∗ = π0

π(t01, T
0) by using equation (29), that is, π0 = (p− c)r − C0. Stop.

Step 5 Generate the set Ω of solutions of equation (46) that are greater than τ by using some numerical metho

Select a solution t1 of the set Ω.

Step 6 From (44), obtain the value of T associated with t1. Compute the Hessian value H(t1, T ) given

equation (53).

Step 7 If H(t1, T ) > 0 then include the pair (t1, T ) in the set P of candidate inventory policies, determine t

cost C2(t1, T ) with equation (26) and go to Step 8. Otherwise, go directly to Step 8.

Step 8 Set Ω = Ω− {t1}. If Card (Ω) = 0, then go to Step 9. Otherwise, select a new positive solution for

of the set Ω. Go to Step 6.

Step 9 Compute the value of T1, solving equation (39) by using a numerical method. If T1 > τ , then include t

pair (T1, T1) in the set P of candidate inventory policies, calculate the cost C3 = C3(T1) with equati

(38) and go to Step 10. Otherwise, go to Step 10 directly.

Step 10 Calculate the value of T2, solving equation (41) by using a numerical method. If T2 > τ , then inclu

the pair (τ, T2) in the set P of candidate inventory policies, compute the cost C4 = C4(T2) with equati

(40) and go to Step 11. Otherwise, go to Step 11 directly.

Step 11 Determine the policy (t∗1, T
∗) such that its cost C∗ = C(t∗1, T

∗) is the lowest cost of the invento

policies included in the set P of candidate inventory policies. Obtain the optimal benefit π∗ = π(t∗1, T

by equation (29), which is π∗ = (p− c)r − C∗. Stop.

Note that the algorithm described previously also determines the optimal inventory policy for a system wi

a constant process of deterioration from the beginning of the inventory cycle. For this, it is sufficient to consid

only Step 5 through to Step 11, and set τ = 0 in all the equations where τ appears.
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Remark 2 The inventory model analyzed for this scenario extends the basic sustainable EOQ model and t

sustainable EOQ model with full backordering proposed by Taleizadeh et al. (2017). Moreover, the invento

policy proposed here extends the optimal policy for an inventory system with deteriorated items and pow

demand developed by Sicilia et al. (2013) and the optimal policy for an inventory system with a power dema

pattern, deterioration and full backlogging analyzed by Sicilia et al. (2014a).

6 Numerical examples

This section presents some numerical examples to help to understand the steps of the algorithm proposed abo

to find the optimal inventory policy.

Example 1 Consider an inventory system for a certain type of cake or pie, which may deteriorate ov

time. The estimated period without deterioration of these cakes is τ = 3 days. Assume that the system h

the characteristics described in this paper and consider the following parameters: average demand r = 1

kilograms of cake per week, index of the power demand pattern n = 2, deterioration rate θ = 0.1, order co

A = $20, unit holding cost h = $1.5 per kilogram and week, unit deterioration cost v = $13 per kilogram an

week, and unit backlogging cost ω = $10 per kilogram and week. The purchase cost of a unit of the produ

is c = $20 and the sale price is p = $40. The cost of transporting a batch of Q units has a fixed cost k0 = $

per shipment and a variable cost k1 = $0.5 per unit. The carbon emissions for transporting an order of Q un

are a fixed amount of α0 = 200 kilograms plus α1 = 0.8 kilograms per unit ordered. The carbon emissio

in the inventory are the sum of a fixed part of β0 = 100 kilograms plus an amount β1 = 1 kilogram per un

held in stock and per week. The carbon emissions in disposing of deteriorated items are γ = 1.2 kilograms p

deteriorated unit. Finally, the taxes charged on carbon emissions are µ1 = $0.5 per carbon emission kilogram

transportation, µ2 = $0.3 per carbon emission kilogram in storage and µ3 = $0.4 per carbon emission kilogra

for deterioration. Applying the algorithm to determine the optimal inventory policy, the following results a

obtained:

Step 1 T 0 = 1.79180 weeks, t01 = 1.51848 weeks, τ = 3/7 = 0.428571 weeks.

Step 2 t01 > τ.

Step 5 Ω = {1.12408}, t1 = 1.12408.
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Step 6 T = 1.43639, H(t1, T ) = 66651.3.

Step 7 P = {(t1 = 1.12408, T = 1.43639)} and C2(t1, T ) = 303.086.

Step 9 T1 = 1.28115, C3 = 325.039.

Step 10 T2 = 0.843384, C4 = 372.784.

Step 11 The optimal policy is t∗1 = 1.12408 weeks, T ∗ = 1.43639 weeks, C∗ = $303.086 per week and π∗

$1696.91 per week.

From (18), the optimal lot size is Q∗ = 145.232 and, from (17), the order level is −B∗ = −16.5719.

Example 2 Consider the same parameters as in the previous example, but changing the without-deteriorati

period τ to τ = 13 days.

Step 1 T 0 = 1.79180 weeks, t01 = 1.51848 weeks, τ = 13/7 = 1.85714 weeks. Then T 0 < τ.

Step 3 The optimal policy is (t∗1, T
∗) = (t01, T

0), with t01 = 1.51848 weeks and T 0 = 1.79180 weeks.

Step 4 The optimal cost is C∗ = C0 = $279.753 per week and the maximum profit is π∗ = π0 = $1720.25 p

week.

Now, the optimal lot size is Q∗ = rT ∗ = 179.180 and, from (36), the initial inventory level is S∗ = 164.94

The maximum number of backorders is B∗ = 14.2315.

Example 3 Consider the same parameters as in Example 1, but changing τ to τ = 0 days, that is, t

deterioration process of products starts from the beginning of the inventory cycle.

Step 1 T 0 = 1.79180 weeks, t01 = 1.51848 weeks, τ = 0.

Step 2 t01 > τ.

Step 5 Ω = {1.02566}, t1 = 1.02566.

Step 6 T = 1.37000, H(t1, T ) = 77342.55.

Step 7 P = {(t1 = 1.02566, T = 1.37000)} and C2(t1, T ) = 335.127.

Step 9 T1 = 1.21908, C3 = 363.876.

Step 10 T2 = 0.504975, C4 = 763.300.

Step 11 The optimal policy is t∗1 = 1.02566 weeks, T ∗ = 1.37000 weeks, C∗ = $335.127 per week and π∗

$1664.87 per week.

In this case, the optimal lot size is Q∗ = 141.181 and the replacement level is −B∗ = −18.4607.
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Example 4 We keep the same parameters as in the previous example, but changing the index of the deman

pattern n to n = 0.5.

Step 1 T 0 = 1.34525 weeks, t01 = 1.14004 weeks, τ = 3/7 = 0.428571 weeks.

Step 2 t01 > τ.

Step 5 Ω = {0.868656}, t1 = 0.868656.

Step 6 T = 1.09270, H(t1, T ) = 543179.

Step 7 P = {(t1 = 0.868656, T = 1.09270)} and C2(t1, T ) = 368.865.

Step 9 T1 = 0.894321, C3 = 417.858.

Step 10 T2 = 0.699888, C4 = 430.176.

Step 11 The optimal policy is t∗1 = 0.868656 weeks, T ∗ = 1.09270 weeks, C∗ = $368.865 per week an

π∗ = $1631.13 per week.

Thus, the optimal lot size is Q∗ = 110.570 and the order level is −B∗ = −40.2153.

Example 5 Consider the same parameters as in Example 4, but changing the without-deterioration period

to τ = 8 days.

Step 1 T 0 = 1.34525 weeks, t01 = 1.14004 weeks, τ = 8/7 = 1.14286 weeks.

Step 2 t01 ≤ τ.

Step 3 The optimal policy is (t∗1, T
∗) = (t01, T

0), with t01 = 1.14004 weeks and T 0 = 1.34525 weeks.

Step 4 The optimal cost is C∗ = C0 = $342.741 per week and the maximum profit is π∗ = π0 = $1657.26 p

week.

In this case, the optimal lot size is Q∗ = 134.525 and the replacement level is −B∗ = −37.4334.

Example 6 Consider the same parameters as in Example 4, but changing τ to τ = 0 days, that is, t

deterioration process of products starts from the beginning of the inventory cycle.

Step 1 T 0 = 1.34525 weeks, t01 = 1.14004 weeks, τ = 0.

Step 2 t01 > τ.

Step 5 Ω = {0.806380}, t1 = 0.806380.

Step 6 T = 1.07410, H(t1, T ) = 526049.

Step 7 P = {(t1 = 0.806380, T = 1.07410)} and C2(t1, T ) = 403.494.
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Step 9 T1 = 0.865728, C3 = 476.476.

Step 10 T2 = 0.714143, C4 = 566.095.

Step 11 The optimal policy is t∗1 = 0.806380 weeks, T ∗ = 1.07410 weeks, C∗ = $403.494 per week an

π∗ = $1596.51 per week.

Now, the optimal lot size is Q∗ = 110.765 and the order level is −B∗ = −46.8715.

Example 7 Consider the same parameters as in Example 1, but changing the index of the demand pattern

to n = 1.

Step 1 T 0 = 1.49295 weeks, t01 = 1.26521 weeks, τ = 3/7 = 0.428571 weeks.

Step 2 t01 > τ.

Step 5 Ω = {0.952116}, t1 = 0.952116.

Step 6 T = 1.20476, H(t1, T ) = 237050.

Step 7 P = {(t1 = 0.952116, T = 1.20476)} and C2(t1, T ) = 342.642.

Step 9 T1 = 1.04459, C3 = 374.606.

Step 10 T2 = 0.746147, C4 = 407.575.

Step 11 The optimal policy is t∗1 = 0.952116 weeks, T ∗ = 1.20476 weeks, C∗ = $342.642 per week an

π∗ = $1657.36 per week.

Therefore, the optimal lot size is Q∗ = 121.871 and the order level is −B∗ = −25.2642.

6.1 The effect of the sustainable costs in the inventory system

In this section, the optimal inventory policy obtained from the proposed model is compared with the o

obtained from a model where the carbon emissions costs are not taken into consideration.

Let us denote by C∗ the optimal objective function value of the model with carbon emissions costs. That

C∗ is the value of the cost associated to the optimal policy proposed in this paper. Also, we can work with t

cost of the optimal policy for the inventory model without considering the sustainable costs, and this is denot

by Ĉ. To make the comparison of both inventory policies, it is necessary to calculate this last cost Ĉ. To

so, we first need the objective function C(t1, T ) to be optimized in the model that does not consider carb
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emissions costs. This function is given by

C(t1, T ) =





C1(t1, T ) if T < τ or 0 < t1 ≤ τ ≤ T

C2(t1, T ) if τ < t1 ≤ T

Thus, for case 1, the function C1(t1, T ) is deduced from (11), considering µi = 0 for i = 1, 2, 3. Therefore, w

have

C1(t1, T ) =
(h+ ω)rt

1/n+1
1

(n+ 1)T 1/n
+

A+ k0
T

+ ω

(
nrT

n+ 1
− rt

1/n
1

T 1/n−1

)
+ k1r

Similarly, for case 2, the cost function C2(t1, T ) follows from (26), taking µi = 0 for i = 1, 2, 3. That is,

C2(t1, T ) =
hrτ1/n+1

(n+ 1)T 1/n
+

(
h
(
τ + 1

θ

)
+ v
)
r

nT 1/n
e−θτ

t1∫

τ

eθzz1/n−1dz +

(
h
θ + v

)
r

T 1/n

(
τ1/n − t

1/n
1

)
+

A+ k0
T

+
ωrn

n+ 1
T +

ωr

(n+ 1)T 1/n
t
1/n+1
1 − ωr

T 1/n−1
t
1/n
1 + k1r

Now, considering the function objective C(t1, T ) and applying Algorithm 1, we obtain the optimal policy (t̂1, T

for the inventory model without considering the sustainable costs. Then, the cost Ĉ associated to that poli

(t̂1, T̂ ) is obtained from Ĉ = C(t̂1, T̂ ), where C(t1, T ) is given by (30).

Afterwards, the relative gap RG as a percentage of the two solutions can be calculated as the differen

between Ĉ and C∗ divided by C∗, as indicated in the following equation:

RG(%) = 100
Ĉ − C∗

C∗

The values of the measures RG(%) for the results obtained in the numerical examples are presented in Table

Table 3. Comparison of the optimal policies of numerical examples

Example t∗1 T ∗ Q∗ t̂1 T̂ Q̂ C∗ Ĉ RG(%)

1 1.12408 1.43639 145.232 0.666242 0.799419 80.1086 303.086 348.119 14.8582

2 1.51848 1.79180 179.180 0.819863 0.942843 94.2843 279.753 320.376 14.5210

3 1.02566 1.37000 141.181 0.550538 0.709011 72.0668 335.127 391.799 16.9105

4 0.868656 1.09270 110.570 0.521123 0.61204 61.2729 368.865 426.917 15.7380

5 1.14004 1.34525 134.525 0.609994 0.701493 70.1493 342.741 398.586 16.2936

6 0.806380 1.07410 110.765 0.426820 0.548916 55.8513 403.494 478.566 18.6057

7 0.952116 1.20476 121.871 0.571665 0.677232 67.8261 342.642 394.918 15.2569
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Note that, for Example 1, the inventory cycle for the model without considering the sustainable costs

T̂ = 0.799419, which is 44.3455% lower than the optimal inventory cycle T ∗. The optimal lot size for th

model is Q̂ = 80.1086, which is 44.8409% lower than the optimal lot size Q∗. Moreover, the relative gap R

as a percentage is around 15%. This means that, to apply the optimal policy obtained for the inventory mod

without considering sustainable costs, leads to an additional cost over the minimum cost corresponding to t

optimal solution deduced considering sustainable costs.

7 Sensitivity analysis

7.1 Impact of some parameters

In this section, we include an analysis of the behavior of the optimal inventory policy and the maximum pro

when the index of the demand pattern or the parameters of the deterioration rate vary.

We assume the following parameters of the inventory system: c = 30, p = 50, A = 30, k0 = 4, k1 =

α0 = 5, α1 = 0.8, h = 2.5, β0 = 7, β1 = 1, v = 19, γ = 1.2, µ1 = µ2 = µ3 = 0.5, ω = 10 and r = 10

Table 4 shows some computational results when the parameters τ , θ and n vary, that is, τ ∈ {0, 1/7, 2/7, 3/7

θ ∈ {0.04, 0.06, 0.08, 0.10, 0.12} and n ∈ {0.5, 1, 2, 4}.

7.2 Discussion on numerical results

These results provide certain insights into the inventory model developed here. Some issues are the following

1. With fixed τ and θ, if the value of the index of the demand pattern n is increasing, then the optim

length of the inventory cycle where the net stock is positive t∗1, the optimal inventory cycle T ∗ and t

maximum profit π∗ are all also increasing.

2. In general, assuming fixed τ and θ, the optimal profit π∗ is more sensitive to variations in the paramet

n when the value of τ is short. However, the optimal inventory cycle T ∗ is more sensitive to n when t

value τ is large.

3. With fixed θ and n, the optimal inventory cycle T ∗ and the optimal positive inventory cycle t∗1 bo

increase as the parameter τ increases. However, the maximum profit π∗ is first decreasing and lat

increasing.
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4. In general, given θ and n, the optimal inventory cycle T ∗ and the maximum profit π∗ are more sensiti

to variations in the parameter τ when the value of n is large.

5. Supposing that τ and n are fixed, if the value of the deterioration rate θ increases, then the maximu

profit π∗ and the optimal positive inventory cycle t∗1 are decreasing. However, the optimal inventory cyc

T ∗ is first increasing and later decreasing.

6. In general, given τ and n, the maximum profit π∗ is more sensitive to changes in the parameter θ wh

the value of n is large or when the value of τ is short.

8 Managerial insights and policy implications

Next, managerial implications based on the sensitivity analysis of the parameters are set out. Some suggestio

are provided to inventory managers that could help them to improve the efficiency of their inventory control

From the computational results, and the above comments described in the paper, we can deduce the followi

managerial insights:

1. The largest increase in profit per unit of time is obtained when the power demand pattern index n increase

When this index n is greater than one, a larger portion of the demand occurs towards the beginning of t

inventory cycle and the remaining demand decreases along the scheduling period. Then, the practitione

and inventory managers should encourage customers to purchase products preferably towards the first h

of the inventory cycle. To do so, managers can increment demand by increasing advertising or marketi

campaigns (for example, increasing advertisements about the goodness of the product in the press, rad

television or social networks), or by giving incentives to customers to increase the purchase of the produ

(for example, considering a discount in the sale price, or offering an additional free unit of the product f

the purchase of several items of that product).

2. Another way to increase the profit per unit of time is to reduce the deterioration rate θ. If this reducti

is small, then the increase in profit is minimal. To achieve a higher profit, the deterioration rate should

noticeably reduced, which is not easy to achieve; since a reduction in the deterioration rate requires a co

siderable economic investment to improve the infrastructures and hygienic and environmental conditio

of the warehouses where the products are stored.
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3. Another alternative to increase the benefit per unit of time would be to decrease the replenishment co

A per order. To do this, the fixed cost of the transportation of products should be reduced. Th

transportation cost includes the cost of the conveyances used, insurance, taxes, and also the cost of t

machinery and labor used in loading and unloading the products. Any reduction achieved in the price

transporting the merchandise or products will suppose an increase in the benefit.

4. Furthermore, the reduction of the unit holding cost h per unit of time, or the reduction of the un

backlogging cost ω per unit of time, leads to an increase in the benefit per unit of time. Decreasing t

unit shortage cost is difficult for practitioners, but it is possible to reduce the unit holding cost by acti

on the fixed costs related to the warehouse where the stock of products is held. Thus, for example,

increment in the profit could be obtained by reducing costs for insurance, cleaning, electricity, wate

heating or cooling items.

5. In general, from the computational results, it can be deduced that, when the power demand pattern ind

n is less than one, an increase in the time period τ in which the product does not suffer any deteriorati

leads to an increment in the benefit per unit of time. From the point of view of practitioners or invento

managers, it is not possible to act directly on the time period τ , since it is an intrinsic characteristic of t

product. However, it can be done indirectly, by improving the conservation and maintenance conditio

of stored products.

Additionally, the inventory model considers that the carbon emission taxes applied to transport (µ1), maint

nance (µ2) and the item deterioration process (µ3) increase the inventory management costs. Incorporating t

new total carbon emissions cost into the inventory system forces companies to modify their stock manageme

policies, making them more sustainable.

The enterprises could use the results of this study to improve their business models. It encourages comp

ance with increasingly demanding environmental and health regulations by promoting the sustainable stora

and transport of products. It also makes it possible to improve the company’s image and brand reputation

demonstrating its commitment to the environment and sustainability. Moreover, it could strengthen relatio

ships with supply chain actors by minimizing risks and supporting sustainable maintenance and transport

stocks. In parallel, the paper provides several direct and indirect policy implications. Its underlying analy
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could suggest that authorities could generate fiscal incentives to stimulate companies to implement strategi

aimed at increasing customer demand in specific periods; promote economic support programs to invest

sustainable infrastructure; establish regulations that require storage standards and environmental conditio

that help reduce the rate of deterioration of items; as well as encourage efficient policies in the fields of logisti

and transportation. Also, decisions could focus on driving energy efficiency practices to reduce costs; favori

the adoption of cleaner technologies in warehouses; or recognizing companies that adopt socially responsib

inventory management practices.

Finally, a sustainable approach to the inventory management model for deteriorated items with a pow

demand pattern can offer several significant benefits, including reducing waste from product maintenance an

transport, enhancing item quality guarantees, reducing greenhouse gas emissions, improving risk managemen

and strengthening the image and reputation of the company, among others. By adopting responsible and sustai

able inventory management practices, companies can increase their profitability, efficiency, and competitivene

while contributing to the reduction of the environmental and social impact of their operations.

9 Conclusions

This paper studies an economic order quantity model for a sustainable inventory system with power deman

pattern and backlogged shortages, considering a carbon emissions tax. In this inventory system, it is assum

that there is a period where the items are kept in the inventory in perfect conditions but, after that time,

deterioration process starts in the stored items that causes a percentage of these products to deteriorate an

thus they cannot be sold.

Two scenarios are presented and studied. In the first, it is considered that the lifetime of the articles

greater than the time-period when these items are stored in the inventory. In this case, the optimal invento

policy is derived for an inventory system without deterioration, with power demand pattern and shortag

completely backlogged, assuming a carbon emissions tax. This model extends to the inventory system analyz

by Sicilia et al. (2012), who developed the optimal inventory policy for items with a power demand pattern an

backlogged shortages, but without analyzing the effect of a carbon tax on the inventory system. In additio

the inventory model developed in this paper extends the environmental EOQ model proposed by Bonney an
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Jaber (2011) and the inventory model analyzed by Hua et al. (2011) when the firm has no carbon emissio

quotas and neither buys nor sells any carbon credit.

In the second scenario, it is assumed that the lifetime of the articles is less than the period that these articl

stay in the inventory. Thus, the behavior pattern of the inventory level is as follows: the inventory starts wi

an initial stock level and then that level is gradually decreasing to meet the demand of the customers. From

certain point, the inventory level not only decreases to satisfy the orders of customers, but also decreases d

to the loss of products because of the deterioration process. When the inventory runs out of stock, shortag

appear which are covered with the arrival of the next inventory replenishment. In this case, the inventory mod

with a carbon emissions tax proposed in this paper extends the sustainable EOQ models without shortages an

with full backlogging studied by Taleizadeh et al. (2017). Furthermore, the inventory policy proposed he

extends the optimal policy for deteriorated items with a power demand pattern analyzed by Sicilia et al. (201

and the optimal policy for an inventory system with a power demand pattern, deterioration and full backloggi

developed by Sicilia et al. (2014a).

Considering the different evolution of the net level of inventory for each scenario throughout the planni

period, the costs involved in inventory management are determined in each situation, and the general proble

of profit maximization per inventory cycle is formulated. Subsequently, the necessary optimality conditio

that the best inventory policy should satisfy are developed and an algorithm that allows us to determine t

optimal inventory policy is proposed. In all the cases analyzed, through numerical examples, it is confirm

that the solutions obtained reflect substantial reductions in inventory management costs with respect to mode

in which carbon emissions rates are not taken into account. Furthermore, optimal policies that incorpora

economic, operational, as well as environmental parameters (taxes applied to transport, maintenance, and t

item deterioration process) in inventory management provide a more holistic view that raises awareness of t

importance of implementing business activities that reduce pollution, protect the environment, and increase t

well-being of society in general.

This paper makes a significant contribution to business knowledge and practice by helping to promo

sustainable and efficient practices in the inventory management and commercial distribution of perishable item

within the supply chain. It can help managers in organizations to make more informed decisions that allo
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them to generate a positive impact on the profitability of the business and, at the same time, reduce the

carbon emissions. It also offers suggestions to political actors to implement actions that contribute to reduci

deterioration and waste generation by organizations, satisfying the growing demands of customers who val

sustainability, and fulfilling SDG 12 of the UN Agenda 2030.

As future works of research, it would be interesting to study the effect of a carbon-tax on some of t

inventory systems characterized by the following hypothesis: (i) a system with deterioration and power deman

pattern considering partial backlogging; (ii) a system for items with deterioration assuming power deman

pattern and loss of sales; (iii) a system for items with a process of deterioration, power demand pattern an

backlogging when the replenishment is not instantaneous and a finite rate of replenishment of the products

considered.
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