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This paper presents a newsvendor model with backorders for customers who are willing to wait 
to be served. Demand follows a normal probability distribution, with the particularity that the 
expected value depends on the sale price and the variation coefficient is fixed. Three parameters 
are considered to characterize this dependence on the expected demand and the sale price: the 
population size of potential customers, the unit production cost of the item and an elasticity 
parameter with an isoelastic type. Backorders and lost sales are combined with a fixed proportion 
for the backorders. The quantities to be determined are the sale price and the order quantity. 
The goal is the maximization of the expected profit. The optimal solution is obtained in a closed 
form if there are no lost sales. In the case of a mixture of partial backordering and lost sales, 
a methodological proposal based on a numerical algorithm is given. The study reveals that the 
maximum expected profit and the optimal quantities to be determined are highly influenced by 
the unit purchasing cost and the degree of dependence of the demand concerning the sale price. 
Other parameters, such as the proportion of backorders and the variation coefficient of demand, 
are less influential. Numerical examples are used to illustrate the model, and a sensitivity analysis 
of the optimal solution regarding the nine initial parameters is presented. Some managerial 
insights deduced from the obtained results are also proposed.

1. Introduction

The newsvendor problem (see, for example, Hillier & Lieberman [1]) is a basic single-period stochastic inventory model that 
has been the subject of several papers throughout the history of the inventory literature. In brief, the original formulation of the 
newsvendor problem (also known as the newsboy problem) can be described as follows. The problem arises when a vendor has to 
order goods or items before the sales period starts and there is no possibility of reordering in case of need. It is also assumed that 
customer demand is described by a random variable that follows a known probability distribution and that the excess stock at the 
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end of the selling period cannot be sold. The objective is to determine the quantity to be ordered to maximize the expected profit. In 
commercial activity, this situation is common for seasonal products, fashion items or promotional launches.

Since this first formulation, the newsboy model has been extended in several ways and remains a current area of research within 
the Inventory Theory. This paper considers a further extension that combines some features not previously considered. First of all, it 
assumes a normal probability distribution for the stochastic demand. Although the Poisson distribution seems to be the most logical 
for customer demand, its discrete nature has meant that it is not often used when the population size of potential customers is high. 
Considering that the Poisson distribution can be approximated by a normal distribution with continuity correction when its expected 
value is large, we propose its use in the newsboy problem. Furthermore, this paper assumes that the stochastic demand depends on 
the sale price of the item. Then the retailer can increase demand by lowering the sale price. This assumption seems to be a more 
realistic scenario because, for a large majority of products, the demand is always higher when the sale price is lower. But in this case, 
the sale price is a decision variable along with the order size. The pricing decision is also essential for the vendor. In addition, this 
paper assumes that, in the event of a shortage, a certain proportion of customers will be served with backorders and the others will 
be lost. The vendor incurs an additional cost for the backorders and weighs a goodwill cost for the lost sales. Considering the sale 
price as an additional decision variable, we did not find any paper with all these features.

Then, the purpose of this paper is to establish a general solution methodology for the newsvendor problem with backorders 
and lost sales, considering a price-dependent normal probability distribution function for the demand and using the sale price as 
an additional decision variable. To this end, Section 2 presents a review of the more relevant literature on these topics. Section 3

includes the assumptions and notation, together with the calculation of the expected profit to be maximized. The formulation of the 
model is given in Section 4. The optimal solution to the inventory problem is proposed in Section 5, with a subsection for the case 
of total backorders and another subsection for the case of partial backorders with lost sales. Numerical examples with sensitivity 
analysis are given in Section 6. Finally, Section 7 contains a further discussion of the managerial insights derived from the obtained 
results and Section 8 includes the conclusions and some future research lines.

2. Literature review

There is an extensive literature on the newsboy problem. Proof of this is that many reviews have been published on the subject. 
Already in the 1990s, three review papers were published: Gallego & Moon [2], Khouja [3], Petruzzi & Dada [4]. Another three can 
be cited in the current century: Qin et al. [5], Sharma & Nandi [6], and Mu et al. [7]. The first extensions of the newsboy problem 
focused on the consideration of backorders to fill shortages during the sale period. Gallego & Moon [2] and Khouja [8] were the first 
authors to consider this possibility. In these papers, a fixed fraction of the unsatisfied demand was considered for backorders. Some 
years later, Lodree [9], Lodree et al. [10] and Lee & Lodree [11] extended this assumption by considering that the cited fraction 
depends on the extent of the shortage. Wee & Wang [12] developed a newsboy problem in the coordination of the supply chain with 
an option contract and partial backorders. Also, Li & Ou [13] considered a model where the unsatisfied demand due to shortages is 
partially backordered via an emergency channel with a relatively higher unit cost. Zhang et al. [14] proposed a model combining 
long-term contract procurement and spot replenishment.

All these extensions considered the sale price of the item as a fixed parameter of the system. However, the assumption that 
the expected demand for the item is not constant and depends on the sale price certainly seems to be a more realistic scenario. 
Therefore, recent enhancements have made the logical assumption that the demand is higher when the sale price is lower. In this 
way, the inventory manager can choose the appropriate sale price to maximize the expected profit. Thus, there are two variables to 
be determined in the newsvendor problem: the order quantity and the sale price. As in Petruzzi & Dada [4] or Hrabec et al. [15], 
two types of stochastic dependence have mostly been used: the additive case and the multiplicative case. The former considered that 
the sale price only affects the expected value of demand, assuming that it is the sum of a price-dependent deterministic function and 
a random variable. The second supposed that the sale price also influences the variance of demand, assuming it to be the product of 
a deterministic price-dependent function and a random variable.

Price-dependent demand has been widely used in both production-inventory models and newsboy models. For instance, Ahmadi & 
Shavandi [16] studied dynamic pricing in a production system with a single product demanded by several customer classes. Similarly, 
Singer & Khmelnitsky [17] considered a stochastic production-inventory problem with price-sensitive demand. Additionally, Yu et 
al. [18] proposed a newsvendor model with fuzzy price-dependent demand. Other papers that have studied newsboy models with 
price-dependent demand include Lau & Lau [19], Sana [20] and Zhang et al. [21].

In this paper, we consider an isoelastic function for the price-dependent demand, which has been widely used in different forms, 
both in deterministic and stochastic inventories. This approach has been studied by Agrawal & Ferguson [22], Chang et al. [23] and 
Duary et al. [24]. This paper employs the formulation introduced by Pando et al. [25] to describe price-dependent demand using 
three parameters: the population size of potential customers, price elasticity, and the production cost of the item. The production 
cost is the minimum sale price below which the item cannot be sold. Together, these parameters provide an adequate representation 
of the expected demand for the item. Yao et al. [26] compiled up to six other types of dependence used by other authors as possible 
extensions of the newsvendor problem with pricing. Raza et al. [27] studied a stochastic inventory model with pricing decisions and 
a multi-objective approach. Ullah et al. [28] introduced a multi-period newsvendor under stochastic price-dependent demand with 
dynamic pricing. Ma et al. [29] also studied the joint decision of the order quantity and sale prices for a stochastic inventory model 
with multiple discounts.

The probability distribution of demand is another issue that needs to be addressed in the newsvendor problem. Although the 
58

basic model can be solved for any probability distribution, this is not true for some extensions, such as the case of price-dependent 
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Table 1

Comparison table of the most related literature cited in this paper.

Paper Demand Sale Backlogging Price-dependent

distribution price type demand

Lau & Lau [19] Normal Variable No Yes

Khouja [8] Free Parameter Fixed No

Shore [30] Poisson Parameter No No

Lau [36] Uniform, Exponential, Normal Parameter No No

Yao et al. [26] Free Variable No Yes

Lodree [9] Free Parameter Variable No

Lodree et al. [10] Exponential, Normal Parameter Variable No

Lee & Lodree [11] Normal Parameter Variable No

Halkos & Kevork [37] Truncated normal Parameter No No

Su & Pearn [42] Normal Parameter No No

Sana [20] Free Variable No Yes

Pando et al. [34] Exponential Parameter Variable No

Saidane et al. [35] Gamma Parameter No No

Yu et al. [18] Fuzzy Variable No Yes

Pando et al. [33] Uniform Parameter Variable No

Rossi et al. [31] Binomial, Poisson, Exponential Parameter No No

Raza et al. [27] Normal Variable No Yes

Chen [32] Poisson Parameter No No

Ullah et al. [28] Free Variable No Yes

Ma et al. [29] Normal Variable No Yes

This paper Normal Variable Fixed Yes

stochastic demand or when the size of the backorders depends on the extent of the shortage. A particular probability distribution 
must then be specified for the demand. Although the Poisson distribution may seem the most logical for customer demand, its discrete 
nature has meant that it is not widely used. Some papers on the newsvendor problem with Poisson distribution demand are: Shore 
[30], Rossi et al. [31] and Chen [32]. However, continuous probability distributions have been used more often. For example, Pando 
et al. [33] considered uniform distribution, Pando et al. [34] worked with exponential distribution, and Saidane et al. [35] assumed 
gamma distribution.

The normal probability distribution has also been used, perhaps because the Poisson distribution can be approximated by a 
normal distribution with continuity correction when its expected value is large. In the basic newsvendor problem, when demand is 
normally distributed, the standard critical fractile formula solves the problem only when the variation coefficient is sufficiently small. 
Note that this is true when a Poisson distribution with an expected value greater than thirty is approximated by a normal probability 
distribution. In the basic newsvendor problem, Lau [36] provided a simple formula for computing the optimal order quantity and 
the maximum expected profit when demand is normal with a variation coefficient of less than 0.3. Halkos & Kevork [37] used a 
normal distribution singly truncated at point zero. Perakis & Roels [38] stated that a normal distribution with a small coefficient of 
variation is robust and also maximizes the entropy when only mean and variance are known. When the variation coefficient of the 
demand is large, Gallego et al. [39] suggested the fit of the empirical distribution to non-negative random variables such as gamma 
or lognormal. Other papers that used normal probability distribution in the newsvendor problem are Khouja [40], Ouyang et al. [41]

and Su & Pearn [42].

Table 1 presents a collection of papers on newsvendor models cited in this literature review that are most relevant to the model 
being presented. The papers are classified based on the probability distribution for demand, the role of the sale price (parameter or 
decision variable), the backlogging type (no backorder, fixed fraction or variable fraction), and the dependence or independence of 
demand on the sale price. They are arranged chronologically.

3. Assumptions and notation

In this paper, we consider a newsvendor problem with the following assumptions:

• The inventory manager has the ability to place an extraordinary order to satisfy the demand of those customers who could not 
be served with the initial order and are willing to wait for the arrival of a new order. The fraction of customers backlogged is 
denoted by 𝛽, with 0 ≤ 𝛽 ≤ 1, and the fraction of lost sales is 1 − 𝛽.

• If 𝑝 is the sale price of the item, the random demand 𝑋 has a normal distribution with positive expected value 𝜇𝑝 and variation 
coefficient 𝜈, where the dependence of 𝜇𝑝 concerning the sale price 𝑝 is isoelastic. In addition, the variation coefficient 𝜈 is 
fixed for any 𝑝 and the standard deviation is 𝜈𝜇𝑝. That is, we suppose that 𝑋 ⇝ 𝑁

(
𝜇𝑝, 𝜈𝜇𝑝

)
and, therefore, 𝑋 = 𝜇𝑝𝜀, where 𝜀

follows a normal probability distribution with expected value 1 and standard deviation 𝜈. Then, it is the multiplicative demand 
case considered by Petruzzi & Dada [4], but assuming a normal probability distribution for demand with expected value 𝜇𝑝 and 
variation coefficient 𝜈.

• The decision variables are the initial order quantity 𝑞 and the sale price 𝑝.
59

• The aim is to maximize the expected profit during the sales period.
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Table 2

Notation of the model.

𝑐 unit purchasing cost before the sale period (> 0)
𝜂 unit production cost (0 < 𝜂 ≤ 𝑐)
𝑜 unit overstocking cost excluding the purchasing cost (> −𝑐)
𝜔 unit extra cost of the backorders (> 0)
𝛾 unit goodwill cost of lost sale (> 0)
𝛽 intensity of backorder (0 ≤ 𝛽 ≤ 1)
𝑠 unit shortage cost, that is, 𝑠 = 𝛽 (𝑐 +𝜔) + (1 − 𝛽) 𝛾
𝑞 order quantity (decision variable) (≥ 0)
𝑝 sale price (decision variable) (≥ 𝑐)
𝑋 random demand in the sale period

𝑥 a specific value for demand

𝑓 (𝑥) density function of the random variable 𝑋

𝜈 variation coefficient of demand (𝜈 > 0)

𝜆 expected demand if 𝑝 = 𝜂 (𝜆 > 0)

𝛼 elasticity of the expected demand regarding the sale price (> 2)
𝜇𝑝 expected value for demand if the sale price is 𝑝, that is, 𝜇𝑝 = 𝐸(𝑋) = 𝜆 (𝑝∕𝜂)−𝛼

𝑧 standardized order quantity (auxiliary decision variable), that is, 𝑧 =
(
𝑞 − 𝜇𝑝

)
∕
(
𝜈𝜇𝑝

)
𝜑 (𝑧) standard normal density function, that is, 𝜑 (𝑧) = exp

(
−𝑧2∕2

)
∕
√
2𝜋

Φ(𝑧) standard normal distribution function, that is, Φ(𝑧) = ∫ 𝑧

−∞ 𝜑 (𝑡)𝑑𝑡

𝐿(𝑧) standard normal loss function, that is, 𝐿(𝑧) = ∫ ∞
𝑧

(𝑡− 𝑧)𝜑 (𝑡)𝑑𝑡

• The expected demand 𝜇𝑝 is defined by a negative power function of the sale price 𝑝, as is usual for inventory models with 
isoelastic price-dependent demand.

• To characterize the isoelastic dependence of demand regarding the sale price, we suppose that there exists a minimum reference 
price 𝜂 below which the item can not be sold. This value 𝜂 can be seen as the unit production cost or the factory price.

• The unit purchasing cost before the sale period is a value 𝑐, which has to be at least the unit production cost 𝜂.

• The maximum possible value 𝜆 for the expected demand 𝜇𝑝 would be obtained when 𝑝 = 𝜂. Thus, the value 𝜆 can be understood 
as the population size of potential customers that can only be achieved if the sale price 𝑝 is 𝜂 and, therefore, without profit on 
the sale because it is below the purchasing cost 𝑐.

• The function that defines the expected demand 𝜇𝑝 regarding the sale price 𝑝 is

𝜇𝑝 = 𝜆

(
𝑝

𝜂

)−𝛼

(1)

with 𝛼 > 2. The parameter 𝛼 reflects the dependence degree of the expected demand concerning the sale price. Note that it 
satisfies

𝛼 = −
𝜕𝜇𝑝∕𝜕𝑝

𝜇𝑝∕𝑝

and, therefore, it is the ratio between the relative decrease in the expected demand and the relative increase in the sale price. 
Jeuland & Shugan [43] introduced the condition 𝛼 > 2 for this type of price-dependent demand with a negative exponent of the 
sale price. In this way, the rational conjectural behavior and the Nash equilibrium for the demand functions are achieved, which 
is highly valued in economic theory. This assumption is logical in highly competitive markets where demand is very sensitive to 
the sales price.

• The leftover items at the end of the sale period have a unit additional cost 𝑜, which can be negative if they can be sold below 
the purchasing cost 𝑐. Therefore, we have 𝑜 > −𝑐.

• The unit purchasing cost for the items in the extraordinary order has a surplus cost 𝜔 > 0 and, as a consequence, they are 
purchased at a unit cost 𝑐 +𝜔.

• The inventory manager considers that each lost sale has a positive unit goodwill cost 𝛾 . This is an intangible value that takes 
into account the loss of customer confidence or the company’s brand reputation. This cost can influence the choice of the sale 
price or the optimal order quantity, even though it is not included in the warehouse accounting.

Table 2 collects the notation used in the stochastic inventory model to be developed.

4. Formulation of the model

Let 𝑝, 𝑞 and 𝑥 be the sale price, the order quantity and the observed value for the demand, respectively. If 𝑥 ≤ 𝑞 the income is 
𝑝𝑥, and the total cost is the sum of the purchasing cost 𝑐𝑞 and the overstocking cost 𝑜(𝑞 − 𝑥). Then the obtained profit is 𝐵(𝑝, 𝑞, 𝑥) =
𝑝𝑥 − 𝑐𝑞 − 𝑜(𝑞 − 𝑥).

On the other hand, if 𝑥 > 𝑞 the income from the initial order and the backordered items are 𝑝𝑞 and 𝛽𝑝 (𝑥− 𝑞) respectively. 
60

The total cost is the sum of the initial purchasing cost 𝑐𝑞, the purchasing cost of the backordered items 𝛽 (𝑐 +𝜔) (𝑥− 𝑞), and the 
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goodwill cost for the lost sales (1 − 𝛽) 𝛾 (𝑥− 𝑞). Then the unit shortage cost is 𝑠 = 𝛽 (𝑐 +𝜔) + (1 − 𝛽) 𝛾 and the obtained profit is 
𝐵(𝑝, 𝑞, 𝑥) = 𝑝𝑞 + 𝛽𝑝 (𝑥− 𝑞) − 𝑐𝑞 − 𝑠 (𝑥− 𝑞).

As a consequence, the mathematical function for the profit is

𝐵(𝑝, 𝑞, 𝑥) =
{

𝑝𝑥− 𝑐𝑞 − 𝑜(𝑞 − 𝑥) if 𝑥 ≤ 𝑞

𝑝𝑞 + 𝛽𝑝 (𝑥− 𝑞) − 𝑐𝑞 − 𝑠 (𝑥− 𝑞) if 𝑥 > 𝑞
(2)

Thus, if 𝑓 (𝑥) is the density function of the random demand, the expected profit 𝐸 (𝐵(𝑝, 𝑞, 𝑥)) is

𝐺 (𝑝, 𝑞) = 𝐸 (𝐵(𝑝, 𝑞, 𝑥)) =

𝑞

∫
−∞

(𝑝𝑥− 𝑐𝑞 − 𝑜(𝑞 − 𝑥))𝑓 (𝑥)𝑑𝑥+

∞

∫
𝑞

(𝑝𝑞 + 𝛽𝑝 (𝑥− 𝑞) − 𝑐𝑞 − 𝑠 (𝑥− 𝑞))𝑓 (𝑥)𝑑𝑥

The first integral can be evaluated as

𝑞

∫
−∞

(𝑝𝑥− 𝑐𝑞 − 𝑜(𝑞 − 𝑥))𝑓 (𝑥)𝑑𝑥 = (𝑝+ 𝑜)

∞

∫
−∞

𝑥𝑓 (𝑥)𝑑𝑥− (𝑐 + 𝑜)

∞

∫
−∞

𝑞𝑓 (𝑥)𝑑𝑥−

∞

∫
𝑞

(𝑝𝑥− 𝑐𝑞 − 𝑜(𝑥− 𝑞))𝑓 (𝑥)𝑑𝑥

= (𝑝+ 𝑜)𝜇𝑝 − (𝑐 + 𝑜) 𝑞 −

∞

∫
𝑞

(𝑝𝑥− 𝑐𝑞 − 𝑜(𝑥− 𝑞))𝑓 (𝑥)𝑑𝑥

and, adding the second integral, the function 𝐺 (𝑝, 𝑞) can be expressed as

𝐺 (𝑝, 𝑞) = (𝑝+ 𝑜)𝜇𝑝 − (𝑐 + 𝑜) 𝑞 +

∞

∫
𝑞

(−𝑝 (𝑥− 𝑞) + 𝛽𝑝 (𝑥− 𝑞) − (𝑠+ 𝑜) (𝑥− 𝑞))𝑓 (𝑥)𝑑𝑥

= (𝑝+ 𝑜)𝜇𝑝 − (𝑐 + 𝑜) 𝑞 − ((1 − 𝛽)𝑝+ 𝑠+ 𝑜)

∞

∫
𝑞

(𝑥− 𝑞)𝑓 (𝑥)𝑑𝑥 (3)

To maximize the expected profit, we can reformulate the problem by using the standardized initial order quantity 𝑧 =(
𝑞 − 𝜇𝑝

)
∕ 
(
𝜈𝜇𝑝

)
as an auxiliary decision variable. Thus, 𝑞 = 𝜇𝑝 + 𝜈𝜇𝑝𝑧 and, using the change of variable 𝑡 =

(
𝑥− 𝜇𝑝

)
∕ 
(
𝜈𝜇𝑝

)
in 

the integral given in (3), we have 𝑥 = 𝜇𝑝 + 𝜈𝜇𝑝𝑡, 𝑑𝑥 = 𝜈𝜇𝑝𝑑𝑡 and

∞

∫
𝑞

(𝑥− 𝑞)𝑓 (𝑥)𝑑𝑥 = 𝜈𝜇𝑝

∞

∫
𝑧

(𝑡− 𝑧)𝑓 (𝜇𝑝 + 𝜈𝜇𝑝𝑡)𝜈𝜇𝑝𝑑𝑡

Moreover, as 𝑋 ⇝ 𝑁
(
𝜇𝑝, 𝜈𝜇𝑝

)
, we have

𝑓 (𝜇𝑝 + 𝜈𝜇𝑝𝑡) =

exp

(
−0.5

(
𝜇𝑝+𝜈𝜇𝑝𝑡−𝜇𝑝

𝜈𝜇𝑝

)2
)

√
2𝜋𝜈𝜇𝑝

=
exp(−0.5𝑡2)√

2𝜋𝜈𝜇𝑝

As a consequence, the expected profit can be formulated as a function of 𝑝 and 𝑧 as follows:

Λ(𝑝, 𝑧) = (𝑝+ 𝑜)𝜇𝑝 − (𝑐 + 𝑜)
(
𝜇𝑝 + 𝜈𝜇𝑝𝑧

)
− ((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜈𝜇𝑝

∞

∫
𝑧

(𝑡− 𝑧)𝑓 (𝜇𝑝 + 𝜈𝜇𝑝𝑡)𝜈𝜇𝑝𝑑𝑡

= (𝑝− 𝑐)𝜇𝑝 − (𝑐 + 𝑜) 𝜈𝜇𝑝𝑧− ((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜈𝜇𝑝

∞

∫
𝑧

(𝑡− 𝑧)
exp(−0.5𝑡2)√

2𝜋
𝑑𝑡

= 𝜇𝑝 ((𝑝− 𝑐) − (𝑐 + 𝑜) 𝜈𝑧− ((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜈𝐿(𝑧)) (4)

where 𝜑 (𝑡) = exp(−0.5𝑡2)√
2𝜋

is the standard normal density function and 𝐿(𝑧) = ∫ ∞
𝑧

(𝑡 − 𝑧)𝜑 (𝑡)𝑑𝑡 is the standard normal loss function.

5. Solution of the model

First of all, the next lemma allows us to obtain the optimal value of 𝑧 for each fixed 𝑝 ∈ [𝑐,∞).

Lemma 1. For each fixed sale price 𝑝, the maximum value of the expected profit Λ (𝑝, 𝑧) given by (4) is obtained when the standardized 
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order quantity is
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𝑧∗
𝑝
=Φ−1

(
1 − 𝑐 + 𝑜

(1 − 𝛽)𝑝+ 𝑠+ 𝑜

)
(5)

where Φ−1 is the inverse cumulative standard normal distribution function.

Proof. Please see the proof in the Appendix. □

Note that, as 𝑝 ≥ 𝑐, 𝑜 > −𝑐, 𝜔 > 0, 𝛾 > 0 and 𝑠 = 𝛽 (𝑐 +𝜔) + (1 − 𝛽) 𝛾 , then we can ensure that

(1 − 𝛽)𝑝+ 𝑠+ 𝑜 ≥ (1 − 𝛽) 𝑐 + 𝑠+ 𝑜 = 𝑐 + 𝛽𝜔+ (1 − 𝛽) 𝛾 + 𝑜 > 𝑐 + 𝑜 > 0

As a consequence, we have

0 <
𝑐 + 𝑜

(1 − 𝛽)𝑝+ 𝑠+ 𝑜
< 1

and the value 𝑧∗
𝑝

is always well defined.

From the previous lemma, the problem of the expected profit maximization consists in the maximization of the price-dependent 
function

𝑔(𝑝) = Λ
(
𝑝, 𝑧∗

𝑝

)
= 𝜇𝑝

(
𝑝− 𝑐 − 𝜈 (𝑐 + 𝑜)𝑧∗

𝑝
− 𝜈((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝐿(𝑧∗

𝑝
)
)

(6)

with 𝑝 ≥ 𝑐, 𝜇𝑝 = 𝜆 (𝑝∕𝜂)−𝛼 and 𝑧∗
𝑝
=Φ−1

(
1 − 𝑐+𝑜

(1−𝛽)𝑝+𝑠+𝑜

)
.

Now, taking into account that 𝐿(𝑧) = 𝜑 (𝑧) − 𝑧 (1 −Φ(𝑧)) and 1 −Φ 
(
𝑧∗

𝑝

)
= 𝑐+𝑜

(1−𝛽)𝑝+𝑠+𝑜
, we have

((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝐿(𝑧∗
𝑝
) = ((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑

(
𝑧∗

𝑝

)
− ((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝑧∗

𝑝

(
1 −Φ

(
𝑧∗

𝑝

))
= ((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑

(
𝑧∗

𝑝

)
− (𝑐 + 𝑜)𝑧∗

𝑝

and therefore the function 𝑔(𝑝) can also be written as

𝑔(𝑝) = Λ
(
𝑝, 𝑧∗

𝑝

)
= 𝜇𝑝𝜉 (𝑝) (7)

where 𝜉 (𝑝) is the function

𝜉 (𝑝) = 𝑝− 𝑐 − 𝜈((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑
(
𝑧∗

𝑝

)
(8)

Note that, for each sale price 𝑝, the function 𝜉 (𝑝) is the ratio between the expected profit 𝑔 (𝑝) and the expected demand 𝜇𝑝 if 
the order quantity is optimally chosen for that 𝑝. Then, it can be seen as a measure of the average profit per demanded unit in the 
inventory.

Hence, the problem of expected profit maximization is

max
𝑝∈[𝑐,∞)

𝑔 (𝑝) = max
𝑝∈[𝑐,∞)

𝜇𝑝𝜉 (𝑝) (9)

To solve the problem, we first need to calculate the derivatives of 𝑧∗
𝑝

and 𝜉 (𝑝). Taking into account that Φ′ (𝑧) = 𝜑 (𝑧), 𝜑′ (𝑧) =
−𝑧𝜑 (𝑧) and (5), the derivative of 𝑧∗

𝑝
regarding 𝑝 is

𝑑𝑧∗
𝑝

𝑑𝑝
= (1 − 𝛽) (𝑐 + 𝑜)

((1 − 𝛽)𝑝+ 𝑠+ 𝑜)2 𝜑

(
𝑧∗

𝑝

) =
(1 − 𝛽)

(
1 −Φ

(
𝑧∗

𝑝

))
((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑

(
𝑧∗

𝑝

) (10)

As a consequence, the first derivative of 𝜉 (𝑝) is

𝜉′ (𝑝) = 1 − 𝜈 (1 − 𝛽)𝜑
(
𝑧∗

𝑝

)
+ 𝜈((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝑧∗

𝑝
𝜑

(
𝑧∗

𝑝

)(𝑑𝑧∗
𝑝

𝑑𝑝

)
= 1 − 𝜈 (1 − 𝛽)

(
𝜑

(
𝑧∗

𝑝

)
− 𝑧∗

𝑝

(
1 −Φ

(
𝑧∗

𝑝

)))
= 1 − 𝜈 (1 − 𝛽)𝐿

(
𝑧∗

𝑝

)
(11)

Then, from (7), the first derivative of the function 𝑔 (𝑝) is

𝑔′ (𝑝) = 𝜆𝜂𝛼

(
𝜉1 (𝑝)
𝑝𝛼+1

)
(12)

with
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𝜉1 (𝑝) = 𝑝𝜉′ (𝑝) − 𝛼𝜉 (𝑝) (13)
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Note that, as the signs of the functions 𝑔′ (𝑝) and 𝜉1 (𝑝) are equal for any sale price 𝑝, the critical values of the function 𝑔 (𝑝) are 
the roots of the equation 𝜉1 (𝑝) = 0.

Depending on the intensity of backorder (that is, the value of the parameter 𝛽), two cases will be considered in the resolution of 
the problem.

5.1. Case 𝛽 = 1 (total backordering, there are no lost sales)

In this scenario, when there is no stock, all the customers are willing to wait for the arrival of the extraordinary order to receive 
the item. In this case, as 𝛽 = 1, from (5) it follows that 𝑧∗

𝑝
is constant and does not depend on 𝑝 because

𝑧∗
𝑝
= 𝑧∗ = Φ−1

(
1 − 𝑐 + 𝑜

𝑠+ 𝑜

)
(14)

for any 𝑝. Then, as 𝛽 = 1, the objective function given by (7) is

𝑔 (𝑝) = 𝜆𝜂𝛼

(
𝑝− 𝑐 − 𝜈(𝑠+ 𝑜)𝜑 (𝑧∗)

𝑝𝛼

)
From (11), as 𝛽 = 1, the function 𝜉′ (𝑝) is also constant with 𝜉′ (𝑝) = 1 for any 𝑝 ≥ 𝑐, and 𝜉1 (𝑝) is:

𝜉1 (𝑝) = (1 − 𝛼)𝑝+ 𝛼
(
𝑐 + 𝜈(𝑠+ 𝑜)𝜑

(
𝑧∗
))

Then the unique solution of 𝜉1 (𝑝) = 0 is

𝑝∗ = 𝛼 (𝑐 + 𝜈(𝑠+ 𝑜)𝜑 (𝑧∗))
𝛼 − 1

(15)

Note that 𝜉1 (𝑝) > 0 if 𝑝 ∈ [𝑐, 𝑝∗) and 𝜉1 (𝑝) < 0 if 𝑝 ∈ (𝑝∗,∞). As a consequence, 𝑔 (𝑝) increases on [𝑐, 𝑝∗) and decreases on (𝑝∗,∞), 
which means that the point (𝑝∗, 𝑔(𝑝∗)) is the global maximum of 𝑔 (𝑝) in [𝑐,∞). Moreover, the value of 𝑔(𝑝∗) is

𝑔(𝑝∗) = 𝜆𝜂𝛼

(
𝑝∗ − 𝑐 − 𝜈(𝑠+ 𝑜)𝜑 (𝑧∗)

(𝑝∗)𝛼

)
= 𝜆𝜂𝛼

(
𝑐 + 𝜈(𝑠+ 𝑜)𝜑 (𝑧∗)

(𝛼 − 1) (𝑝∗)𝛼

)
Finally, as 𝑞 = 𝜇𝑝 + 𝜈𝜇𝑝𝑧 = 𝜇𝑝 (1 + 𝜈𝑧), from (1) the optimal order quantity is

𝑞∗ = 𝜆𝜂𝛼

(
1 + 𝜈𝑧∗

(𝑝∗)𝛼

)
(16)

with maximum profit

𝐺∗ = 𝐺
(
𝑝∗, 𝑞∗

)
=Λ

(
𝑝∗, 𝑧∗

)
= 𝑔(𝑝∗) = 𝜆𝜂𝛼

(
𝑐 + 𝜈(𝑠+ 𝑜)𝜑 (𝑧∗)

(𝛼 − 1) (𝑝∗)𝛼

)
(17)

5.2. Case 0 ≤ 𝛽 < 1 (partial backordering, there are lost sales)

In this case, the following lemma provides a lower bound for the optimal sale price.

Lemma 2. Let 𝜉 (𝑝) be the function given by (8), with 0 ≤ 𝛽 < 1, and 𝑧∗
𝑝

given by (5). Then, the following is satisfied:

(i) The function 𝜉 (𝑝) is strictly convex on the interval (𝑐,∞).
(ii) There is a unique solution 𝑝𝑙 of the equation 𝜉 (𝑝) = 0 in the interval (𝑐,∞).
(iii) 𝜉 (𝑝) < 0 if 𝑝 ∈

[
𝑐, 𝑝𝑙

)
, 𝜉 (𝑝) > 0 if 𝑝 ∈

(
𝑝𝑙,∞

)
and 𝜉′ (𝑝) > 0 if 𝑝 ≥ 𝑝𝑙 .

Proof. Please see the proof in the Appendix. □

Corollary 1. Under the hypotheses of Lemma 2, it follows that 𝜉 (𝑝) is positive and strictly convex on the interval 
(
𝑝𝑙,∞

)
.

Proof. Obvious by Lemma 2 and because 𝑐 < 𝑝𝑙 . □

As 𝜇𝑝 > 0, and from (7), it follows that, for each value 𝑝 ≥ 𝑐, the functions 𝑔 (𝑝) and 𝜉 (𝑝) have the same sign. Therefore, by (7), 
Lemma 2 and Corollary 1, we can ensure that 𝑔 (𝑝) < 0 if 𝑝 ∈

[
𝑐, 𝑝𝑙

)
, 𝑔 (𝑝) > 0 if 𝑝 ∈

(
𝑝𝑙,∞

)
and the problem of the expected profit 

maximization can be reduced to

max
𝑝∈

(
𝑝𝑙 ,∞

)𝑔 (𝑝) (18)

where the function 𝑔(𝑝) is positive on the interval 
(
𝑝𝑙,∞

)
.
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Now, Lemma 3 provides an upper bound for the optimal sale price.
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Lemma 3. Let 𝜉1 (𝑝) be the function given by (13), with 0 ≤ 𝛽 < 1, and 𝑧∗
𝑝

given by (5). Let 𝑝𝑙 be the value in the interval (𝑐,∞) such that 
𝜉
(
𝑝𝑙

)
= 0, and let 𝑢 (𝑝) be the function given by

𝑢 (𝑝) = 1 − 𝛼𝜉 (𝑝)
𝑝

(19)

Then, the following statements are true:

(i) The function 𝑢 (𝑝) is strictly decreasing on the interval 
(
𝑝𝑙,∞

)
.

(ii) There is a unique solution 𝑝𝑢 of the equation 𝑢 (𝑝) = 0 in the interval 
(
𝑝𝑙,∞

)
.

(iii) 𝜉1 (𝑝) < 0 for 𝑝 ∈
(
𝑝𝑢,∞

)
.

Proof. Please see the proof in the Appendix. □

Note that the equation 𝑢 (𝑝) = 0 is equivalent to 𝜉 (𝑝) = 𝑝∕𝛼 and therefore 𝜉
(
𝑝𝑢

)
= 𝑝𝑢∕𝛼.

From (12) it follows that, for each value 𝑝 ≥ 𝑐, the functions 𝑔′ (𝑝) and 𝜉1 (𝑝) have the same sign. In addition, from Lemma 3, we 
can ensure that 𝑔′ (𝑝) < 0 for any 𝑝 ≥ 𝑝𝑢 and the problem of the expected profit maximization can be reduced from (18) to

max
𝑝∈

(
𝑝𝑙 ,𝑝𝑢

)𝑔 (𝑝) (20)

Once the search interval for the optimal sale price has been limited to the interval 
(
𝑝𝑙, 𝑝𝑢

)
, the following lemma allows us to find 

the roots of equation 𝜉1 (𝑝) = 0 in such an interval 
(
𝑝𝑙, 𝑝𝑢

)
and, therefore, the critical values of the function 𝑔 (𝑝).

Lemma 4. Let 𝜉 (𝑝) and 𝜉1 (𝑝) be the functions given by (8) and (13), respectively, with 0 ≤ 𝛽 < 1, and 𝑧∗
𝑝

given by (5). Let 𝑝𝑙 and 𝑝𝑢 be the 
values given in Lemmas 2 and 3, respectively. Then, the following statements are true:

(i) 𝜉1 (𝑝) is a strictly concave function on the interval 
(
𝑝𝑙, 𝑝𝑢

)
.

(ii) There is a unique solution 𝑝∗ of the equation 𝜉1 (𝑝) = 0 in the interval 
(
𝑝𝑙, 𝑝𝑢

)
.

(iii) 𝜉1 (𝑝) > 0 for 𝑝 ∈
(
𝑝𝑙, 𝑝

∗), 𝜉1 (𝑝) < 0 for 𝑝 ∈
(
𝑝∗, 𝑝𝑢

)
, and 𝜉′1 (𝑝) < 0 for 𝑝 ∈

(
𝑝∗, 𝑝𝑢

)
.

Proof. Please see the proof in the Appendix. □

Now, the solution of the problem (20) is proposed in the next theorem.

Theorem 1. Let 𝑔 (𝑝) be the function given by (7), with 0 ≤ 𝛽 < 1 and 𝑧∗
𝑝

given by (5). Let 𝑝𝑙 , 𝑝𝑢 and 𝑝∗ be the sale prices given by Lemmas 2, 
3 and 4, respectively. Then, the following is satisfied:

(i) 𝑝∗ is the unique local maximum of 𝑔 (𝑝) in the interval 
(
𝑝𝑙,∞

)
.

(ii) 𝑝∗ is the global maximum of 𝑔 (𝑝) in the interval [𝑐,∞).
(iii) The function 𝑔 (𝑝) is strictly pseudoconcave on the interval 

(
𝑝𝑙,∞

)
.

Proof. Please see the proof in the Appendix. □

Once this optimal sale price 𝑝∗ has been obtained, we can do the following

𝑧∗ = 𝑧∗
𝑝∗ = Φ−1

(
1 − 𝑐 + 𝑜

(1 − 𝛽)𝑝∗ + 𝑠+ 𝑜

)
𝜇∗ = 𝜇∗

𝑝∗ = 𝜆
(
𝑝∗∕𝜂

)−𝛼

𝜉∗ = 𝜉
(
𝑝∗
)
= 𝑝∗ − 𝑐 − 𝜈((1 − 𝛽)𝑝∗ + 𝑠+ 𝑜)𝜑

(
𝑧∗
)

and

𝑔
(
𝑝∗
)
= 𝜇∗𝜉

(
𝑝∗
)
= 𝜇∗𝜉∗

Then the maximum value of 𝐺 (𝑝, 𝑞) is reached for the point (𝑝∗, 𝑞∗) with

𝑞∗ = 𝜇∗ (1 + 𝜈𝑧∗
)

and the maximum expected profit is( ) ( ) ( ) ( )
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𝐺∗ = 𝐺 𝑝∗, 𝑞∗ = Λ 𝑝∗, 𝑧∗ = 𝑔 𝑝∗ = 𝜇∗𝜉 𝑝∗ = 𝜇∗𝜉∗



Applied Mathematical Modelling 132 (2024) 57–72V. Pando, L.A. San-José, J. Sicilia et al.

Fig. 1. Solution procedure flow chart.

Note that the equation 𝜉1 (𝑝) = 0 does not depend on the parameters 𝜆 or 𝜂 of the expected demand. Therefore the optimal sale 
price 𝑝∗ does not depend on these parameters. Nor does 𝑧∗ depend on 𝜆 or 𝜂. As a consequence, the optimal selling price 𝑝∗ does not 
change if the population size of the potential customers 𝜆 or the reference price 𝜂 move.

If 0 ≤ 𝛽 < 1, the calculation process to obtain the optimal solution is summarized by the next algorithm.

Algorithm 1. Optimal solution for the inventory model when 0 ≤ 𝛽 < 1:

1. Program the functions

𝜉 (𝑝) = 𝑝− 𝑐 − 𝜈((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑
(
Φ−1

(
1 − 𝑐 + 𝑜

(1 − 𝛽)𝑝+ 𝑠+ 𝑜

))
and

𝜉′ (𝑝) = 1 − 𝜈 (1 − 𝛽)𝐿
(
Φ−1

(
1 − 𝑐 + 𝑜

(1 − 𝛽)𝑝+ 𝑠+ 𝑜

))
2. Solve the equation 𝜉 (𝑝) = 0, with 𝑝 > 𝑐, to obtain the unique root 𝑝𝑙 .

3. Program the function 𝑢 (𝑝) = 1 − 𝛼𝜉 (𝑝) ∕𝑝.

4. Solve the equation 𝑢 (𝑝) = 0, with 𝑝 > 𝑝𝑙 , to obtain the unique root 𝑝𝑢.

5. Program the function 𝜉1 (𝑝) = 𝑝𝜉′ (𝑝) − 𝛼𝜉 (𝑝).
6. Solve the equation 𝜉1 (𝑝) = 0, with 𝑝 ∈

(
𝑝𝑙, 𝑝𝑢

)
, to obtain the unique root 𝑝∗, which is the optimal sale price.

7. Calculate the optimal expected demand 𝜇∗ = 𝜆 (𝑝∗∕𝜂)−𝛼 .

8. Calculate the optimal standardized order quantity

𝑧∗ = Φ−1
(
1 − 𝑐 + 𝑜

(1 − 𝛽)𝑝∗ + 𝑠+ 𝑜

)
9. Calculate the optimal order quantity 𝑞∗ = 𝜇∗ (1 + 𝜈𝑧∗).

10. Calculate the maximum expected profit 𝐺∗ = 𝜇∗𝜉∗, with 𝜉∗ = 𝑝∗ − 𝑐 − 𝜈((1 − 𝛽)𝑝∗ + 𝑠 + 𝑜)𝜑 (𝑧∗).

A flow chart of the optimal solution search procedure is shown in Fig. 1.

6. Numerical examples with sensitivity analysis

In this section, the proposed model is illustrated with numerical examples where the optimal inventory policy is obtained. A 
sensitivity analysis is also included to analyse the effect of the parameters of the model on the maximum expected profit and the 
optimal quantities to be determined.

Example 1. Let us suppose that a fashion clothing store needs to place an order of swimsuits to sell during the upcoming summer 
season. The unit production cost of each swimsuit is 𝜂 = $18 and the retailer purchases it from a producer at a price 𝑐 = $30. The 
leftover swimsuits at the end of the summer are stored for the following season at a holding cost of $5 per item. Then, the overstocking 
cost is 𝑜 = $5. In case of shortage, the retailer can order the swimsuit from the manufacturer for $38 as long as the customer is willing 
to wait for the product to arrive. Then, the extra cost of the backorders is 𝜔 = $8. It is estimated that only 70% of customers would 
be willing to wait for backordered items, that is, the intensity of the backorder is 𝛽 = 0.7. Also, the retailer considers a unit goodwill 
cost 𝛾 = $4 for the lost sales due to the loss of customer confidence and the company’s brand reputation. The expected demand at 
a sale price equal to the production cost is 𝜆 = 8000 and the dependence degree of the expected demand concerning the sale price 
is 𝛼 = 3. It is also assumed that the probability distribution of demand is a normal distribution with a variation coefficient 𝜈 = 0.25, 
that is, 25% of the expected demand. With these assumptions, the retailer wants to know how many swimsuits should be ordered 
from the manufacturer and what the sale price should be to maximize the expected profit during the summer season.

With these values, the unit shortage cost is 𝑠 = 𝛽 (𝑐 +𝜔) + (1 − 𝛽) 𝛾 = $27.8. In this case, the solution of the equation 𝜉(𝑝) = 0 is 
𝑝𝑙 = 32.79. Thus, the expected profit is positive if the sale price is larger than $32.79 and the order quantity is optimally chosen. 
Furthermore, if the sale price is lower than this value, the expected profit is negative for any order quantity. Now, to find an upper 
bound for the sale price, we need to solve the equation 𝑢 (𝑝) = 0. In this example, the solution is 𝑝𝑢 = 50.99, that is, if the sale price 
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is greater than $50.99, then the expected profit can no longer be improved. So, the optimal sale price must belong to the interval 
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Fig. 2. Graphic view of the function 𝑔 (𝑝) = 𝐺

(
𝑝, 𝑞∗

𝑝

)
for Example 1.

Fig. 3. Graphic view of the surface 𝐺 (𝑝, 𝑞) for Example 1.

(32.79,50.99). Solving the equation 𝜉1 (𝑝) = 0 in this interval we obtained 𝑝∗ = 49.39 and, therefore, if the sale price is $49.39, the 
maximum expected profit is reached. As a result, the expected demand for this sale price, given by (1), is 𝜇∗ = 𝜆 (𝑝∗∕𝜂)−𝛼 = 387.33. 
The optimal value 𝑧∗

𝑝
can be evaluated with the expression (5) to obtain 𝑧∗ = −0.6282, which leads to an optimal order quantity 

𝑞∗ = 𝜇∗ (1 + 𝜈𝑧∗) = 326.51. Note that, in this case, the order quantity is below the expected demand. Now, by using the expression 
(8), we have 𝜉∗ = 𝜉 (𝑝∗) = 15.4877, that is, the optimal measure of the average profit per unit in the inventory is $15.4877. Finally, 
the maximum expected profit is 𝐺∗ = 𝜇∗𝜉∗ = $5998.91. If the retailer rounds up to 327 swimsuits and a price of $50, the expected 
profit would be $5984.72.

Fig. 2 plots the function 𝑔 (𝑝) = 𝐺

(
𝑝, 𝑞∗

𝑝

)
with the points 𝑝𝑙 , 𝑝∗ and 𝑝𝑢 used to solve the problem. Note that this function has an 

inflection point at 𝑝 = 74.4 and is convex on the interval (74.4,∞), but it is a pseudoconcave function on the interval (30,∞).
Furthermore, the surface defined by the function 𝐺 (𝑝, 𝑞) for 𝑝 ∈ [30,80] and 𝑞 ∈ [200,500] is plotted in Fig. 3 to show that the 

global maximum is obtained for 𝑝∗ = 49.39 and 𝑞∗ = 326.51 with a maximum expected profit of 𝐺∗ = $5998.91.

To illustrate the use of the model, we performed a simulation study considering this optimal policy and using a sample of size 
𝑛 = 1000 drawn from a normal distribution with expected value 387.33 and variation coefficient 0.25. Then we evaluated the profit 
for each case by using the expression (2) to obtain a sampling distribution of the profit. The obtained results show an average sample 
profit of $5972.53, a sample median of $6793.99, and a variation coefficient of 38.58%. The sampling distribution of the profit is 
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highly skewed to the left, and the optimal value 𝐺∗ = $5998.91 turns out to be, approximately, the first quartile of the sample profit. 
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Table 3

Effects of the parameters on the optimal policy and the maximum expected profit.

Δ −40% −20% −10% 10% 20% 40%

𝑐 Δ𝑝∗(%) −37.8499 −18.8776 −9.4293 9.4136 18.8140 37.5828
Δ𝑞∗(%) 334.8704 90.8278 35.7733 −24.2421 −41.2470 −62.6091
Δ𝐺∗(%) 161.0632 52.5110 22.1149 −16.5950 −29.3681 −47.4501

𝑜 Δ𝑝∗(%) −0.1686 −0.0831 −0.0411 0.0407 0.0808 0.1593
Δ𝑞∗(%) 1.5182 0.7456 0.3695 −0.3632 −0.7202 −1.4165
Δ𝐺∗(%) 0.5359 0.2639 0.1310 −0.1291 −0.2563 −0.5052

𝜔 Δ𝑝∗(%) −1.9113 −0.9190 −0.4511 0.4356 0.8567 1.6598
Δ𝑞∗(%) 1.8374 0.9166 0.4568 −0.4524 −0.8994 −1.7745
Δ𝐺∗(%) 3.1133 1.4882 0.7283 −0.6993 −1.3715 −2.6424

𝛾 Δ𝑝∗(%) −0.3856 −0.1913 −0.0953 0.0946 0.1885 0.3742
Δ𝑞∗(%) 0.3913 0.1953 0.0975 −0.0973 −0.1945 −0.3881
Δ𝐺∗(%) 0.6224 0.3085 0.1535 −0.1522 −0.3031 −0.6011

𝛽 Δ𝑝∗(%) 0.5951 0.2550 0.1157 −0.0890 −0.1474 −0.1505
Δ𝑞∗(%) 3.5705 2.0846 1.1265 −1.3190 −2.8612 −6.7900
Δ𝐺∗(%) −5.0194 −2.6207 −1.3403 1.4059 2.8841 6.0915

𝜈 𝑝∗(%) −3.7302 −1.8962 −0.9559 0.9718 1.9598 3.9854
𝑞∗(%) 19.9024 9.5207 4.6563 −4.4553 −8.7166 −16.6837
𝐺∗(%) 10.5137 5.1448 2.5447 −2.4901 −4.9264 −9.6403

𝜆 𝑝∗(%) 0 0 0 0 0 0
𝑞∗(%) −40 −20 −10 10 20 40
𝐺∗(%) −40 −20 −10 10 20 40

𝜂 𝑝∗(%) 0 0 0 0 0 0
𝑞∗(%) −78.4 −48.8 −27.1 33.1 72.8 174.4
𝐺∗(%) −78.4 −48.8 −27.1 33.1 72.8 174.4

𝛼 𝑝∗(%) 14.6618 6.0184 −4.4314 −7.8304 −12.7015
𝑞∗(%) 35.6699 17.0003 −15.0120 −28.0439 −48.7940
𝐺∗(%) 90.1462 36.5010 −25.6007 −43.9706 −67.3287

So, for this numerical example, more than 75% of the time, the inventory manager will make a profit greater than the optimal 
expected profit.

We also evaluated the percentage changes in the optimal policy and the maximum expected profit when each individual initial 
parameter of the inventory system is moved, while keeping all the others fixed. The change values for each parameter were ±10%, 
±20% and ±40%. The obtained results are included in Table 3.

Some findings obtained from this sensitivity analysis are now listed:

(i) The purchasing cost 𝑐 is the most influential parameter in the sale price 𝑝∗, with changes in percentage terms roughly resembling 
the changes in 𝑐. As expected, this effect is always positive, that is, when 𝑐 is increased, the value 𝑝∗ is also increased. The 
elasticity parameter 𝛼 of the expected demand with respect to the sale price is also very influential in the optimal sale price, 
with changes between −12% and 14% for changes in 𝛼 between −20% and 40%. Note that changes in 𝛼 of −40% have not been 
evaluated because in that case 𝛼 = 1.8 < 2. The effect of this parameter is always negative, that is, the optimal sale price 𝑝∗
decreases if parameter 𝛼 increases. The remaining parameters are much less influential, with changes in 𝑝∗ of less than 4% for 
the variation coefficient 𝜈 and less than 2% for the others when the parameters change between −40% and 40%. For parameter 
𝛽, the effect is negative, that is, a larger intensity of backorder leads to a smaller sale price 𝑝∗. Instead, the effect is positive for 
the cost parameters 𝑜, 𝜔 or 𝛾 . Finally, the optimal sale price 𝑝∗ does not change if either the population size of the potential 
customers 𝜆 or the production cost of the item 𝜂 changes.

(ii) The purchasing cost 𝑐 is also very influential in the order quantity 𝑞∗, with changes between 334% and −62% for changes in 
𝑐 between −40% and 40%. The effect is now negative, that is, there is a decrease in the order quantity 𝑞∗ when 𝑐 increases. 
The variations in the optimal order quantity 𝑞∗ are also notable for the parameter 𝛼 (between 35% and −48% for changes in 𝑐
between −20% and 40%). It also has an effect with a negative sign, that is, there is a decrease in the order quantity 𝑞∗ when 𝛼
increases. Regarding the parameters 𝜆 and 𝜂 of the expected demand, the influence is positive, that is, there is an increase in 
the order quantity 𝑞∗ when any of the parameters 𝜆 or 𝜂 increases. The relative changes in 𝑞∗ are equal to the relative changes 
in parameter 𝜆, and equal to the power of order 𝛼 in parameter 𝜂. The effect of parameter 𝛽 on the order quantity 𝑞∗ goes 
from 3.5% to −6.8% and has a negative effect, that is, the optimal order quantity 𝑞∗ decreases when the intensity of backorder 
𝛽 increases. Finally, the effect of the cost parameters 𝑜, 𝜔 and 𝛾 are much less influential, with relative changes of less than 
±2%, always with a positive effect, that is, there is an increase in the order quantity 𝑞∗ when any of the parameters 𝑜, 𝜔 or 𝛾
67

increases.
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Fig. 4. Graphic view of the function 𝑔 (𝑝) = 𝐺

(
𝑝, 𝑞∗

𝑝

)
for Example 3.

(iii) There is a decrease in the maximum expected profit 𝐺∗ when any of the cost parameters 𝑐, 𝑜, 𝜔 or 𝛾 increases, with large relative 
changes for the purchasing cost 𝑐 and small ones for 𝑜, 𝜔 or 𝛾 . The effect of parameter 𝜈 in the maximum expected profit is also 
negative, that is, 𝐺∗ decreases if the variation coefficient 𝜈 increases, with relative changes between −10% and 10% for relative 
changes in 𝜈 between −40% and 40%. On the other hand, the effect of parameter 𝛽 is positive, that is, the maximum expected 
profit increases if the intensity of backorder 𝛽 increases, with relative changes between −5% and 6% for relative changes in 
𝛽 between −40% and 40%. The effects of the expected demand parameters 𝜆 and 𝜂 in the maximum expected profit 𝐺∗ and 
the optimal order quantity 𝑞∗ are exactly equal, and with the same sign, that is, an increase in either of the parameters 𝜆 or 
𝜂 leads to an increase in the maximum expected profit 𝐺∗. Finally, the elasticity parameter 𝛼 is now the most influential in 
the maximum expected profit 𝐺∗, with relative changes between 90% and −67% for relative changes in 𝛼 between −20% and 
40%. This effect is now negative, that is, an increase in the elasticity parameter 𝛼 leads to a decrease in the maximum expected 
profit 𝐺∗. Note that, the larger relative changes in the maximum expected profit are stronger if either of the parameters 𝑐 or 𝛼
decreases, than when such a parameter increases.

Example 2. To illustrate the case of full backordering (without lost sales) we consider the same parameters as in Example 1 with 
𝛽 = 1 instead of 𝛽 = 0.7. As 𝛽 = 1, from (14) and (15), we have 𝑧∗ = −0.8926 and 𝑝∗ = 49.32. Then, from (1), the expected demand 
is 𝜇∗ = 388.92 and, from (16), the optimal order quantity is 𝑞∗ = 302.13. Finally, from (17), the maximum expected profit is 𝐺∗ =
6393.69. As expected, we obtain a lower sale price, a lower order quantity and a higher maximum expected profit than in Example 1

with 𝛽 = 0.7.

Example 3. Consider now an inventory system with the following values for the parameters: 𝑐 = $20, 𝑜 = $7, 𝜔 = $0.1, 𝛾 = $0.1, 
𝜂 = $15, 𝛽 = 0.1, 𝜈 = 0.7, 𝜆 = 8000 and 𝛼 = 5. In this case, the unit shortage cost is 𝑠 = $2.1 and the unique solution of 𝜉 (𝑝) = 0 is 
𝑝𝑙 = 25.19. Next, we solve the equation 𝑢 (𝑝) = 0 to obtain 𝑝𝑢 = 40.45 and, finally, we solve the equation 𝜉1 (𝑝) = 0 in the interval (
𝑝𝑙, 𝑝𝑢

)
to obtain 𝑝∗ = 33.52. Then, the optimal sale price that gives us the maximum expected profit is now $33.52. For this sale price, 

the expected demand given by (1), is 𝜇∗ = 143.62 and the optimal value for 𝑧∗
𝑝
, given in (5), is 𝑧∗ = −0.4891. As a consequence, 

the optimal order quantity is 𝑞∗ = 𝜇∗ (1 + 𝜈𝑧∗) = 94.45, and the optimal value for the function 𝜉 (𝑝) given by (8) is 𝜉∗ = 3.7881, 
that is, the optimal measure of the average profit per unit in the inventory is $3.7881. Finally, the maximum expected profit is 
𝐺∗ = 𝜇∗𝜉∗ = $544.06. Fig. 4 plots the function 𝑔 (𝑝) = 𝐺

(
𝑝, 𝑞∗

𝑝

)
with the points 𝑝𝑙 , 𝑝∗ and 𝑝𝑢 obtained in this case. Note that now 

this function is not pseudoconcave on the interval (𝑐,∞) because it has a local minimum at 𝑝 = 21.1. Moreover, it has two inflection 
points at 𝑝 = 23.3 and 𝑝 = 43.7. However, it is pseudoconcave on the interval 

(
𝑝𝑙,∞

)
, as Theorem 1 establishes.

In this case, Fig. 5 plots the surface defined by the function 𝐺 (𝑝, 𝑞) for 𝑝 ∈ [20,60] and 𝑞 ∈ [50,150]. It shows that the global 
maximum is obtained for 𝑝∗ = 33.52 and 𝑞∗ = 94.45 with a maximum expected profit of 𝐺∗ = $544.06.

7. Managerial insights

In this section, some managerial insights are given to assist the inventory manager in deciding the optimal policy. From the results 
obtained in sections 5 and 6, the following statements can be highlighted:

(i) The dependence degree of the expected demand concerning the sale price is the most relevant parameter on the optimal policy 
and the maximum expected profit. Then, the inventory manager needs to estimate this parameter as precisely as possible before 
68

choosing the order quantity and the sale price.
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Fig. 5. Graphic view of the surface 𝐺 (𝑝, 𝑞) for Example 3.

(ii) The unit purchasing cost of the item also has a great influence on the optimal policy and the maximum expected profit. A 
smaller order quantity, a higher sale price and larger maximum profit are obtained when the unit purchasing cost is close to 
the unit production cost of the item, which is the real market value for customers.

(iii) The optimal sale price does not depend on the unit production cost of the item, but only on the unit purchasing cost. However, 
the optimal order quantity and the maximum expected profit are deeply influenced by the unit production cost. Usually, a 
higher unit production cost (i.e., a more expensive item) leads to a higher sale price and a higher expected profit, despite 
reduced demand.

(iv) The optimal sale price does not change when the expected size of the potential customers changes. Furthermore, the relative 
changes in the optimal order quantity and the maximum expected profit are equal to the relative changes in this parameter.

(v) The proportion of customers who are willing to wait for the extraordinary order (i.e., the intensity backorder parameter) has 
little influence on the optimal solution. The optimal values for the order quantity and the sale price decrease if this parameter 
increases. Otherwise, the maximum expected profit increases if this parameter increases. Nevertheless, the degree of influence 
is low.

(vi) When the variation coefficient of the demand increases, the maximum expected profit and the optimal order quantity decrease. 
However, the optimal sale price increases.

(vii) The optimal policy and the maximum expected profit hardly change if the unit overstocking cost, the unit extra cost of the 
backorders or the unit goodwill cost change.

8. Conclusions and future research

This paper presents a methodological proposal for calculating the optimal solution for the newsvendor problem with a normal 
probability distribution for demand. It is assumed that the expected demand is a function of the sale price with three parameters: 
the population size of potential customers, the price elasticity, and the production cost of the item below which it can not be 
sold. However, the variation coefficient of demand does not change with the sale price. Furthermore, a combination of partial 
backorders and lost sales is considered for the customers not served with the initial order. A portion of them are willing to wait for 
an extraordinary order. The values to be determined are the initial order quantity and the sale price. The goal is the maximization of 
the expected profit in the sales period.

Given a sale price, the optimal order quantity is obtained in a closed form. Then, the optimal expected profit is evaluated, and the 
problem is reduced to an optimization problem to obtain the optimal sale price. Lower and upper bounds are obtained by solving two 
equations that ensure the optimal solution is always between them. Then, the maximization problem is solved in this interval. The 
function defined by the expected profit for each optimal order quantity turns out to be pseudoconcave in this interval. The unique 
critical value is calculated in a closed form in the case of total backorder without lost sales, and numerically in the case of a mixture 
of partial backorders and lost sales. An algorithmic procedure is proposed in this latter situation.

Numerical examples are used to illustrate the relevance of the proposed model. A sensitivity analysis of the optimal policy 
concerning the nine initial parameters is also developed.

Note that the unit production cost and the elasticity parameter of the expected demand regarding the sale price are decisive 
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parameters for the optimal solution. Then, they must be well estimated from previous data on the market, especially the demand 
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elasticity. If the inventory manager does not know the unit production cost from the producer, it may be useful to assume that it is 
equal to the unit purchasing cost as a starting point. Perhaps, these issues could be considered as a limitation for this model.

Possible extensions to the newsvendor model under consideration could be the use of different probability distributions for de-

mand. Furthermore, an interesting work would be to develop the inventory model considering a different type of demand dependence 
on the selling price. Finally, another study could be to analyze the inventory problem assuming that the fraction of backorders is not 
fixed and that it depends on the extent of the shortage.
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Appendix A

This appendix includes the proofs of the four lemmas and the theorem included in the paper.

Proof of Lemma 1. Taking into account that the derivative of the function 𝐿(𝑧) is 𝐿′(𝑧) =Φ (𝑧) − 1, for each fixed 𝑝 ≥ 𝑐 we have

𝜕Λ(𝑝, 𝑧)
𝜕𝑧

= 𝜈𝜇𝑝 (− (𝑐 + 𝑜) + ((1 − 𝛽)𝑝+ 𝑠+ 𝑜) (1 −Φ(𝑧)))

and

𝜕2Λ (𝑝, 𝑧)
𝜕𝑧2

= −𝜈𝜇𝑝((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑 (𝑧) < 0

Then, the unique solution of the equation 𝜕Λ(𝑝,𝑧)
𝜕𝑧

= 0 is the value 𝑧∗
𝑝

given by (5). Moreover, as 𝜕2Λ(𝑝,𝑧)
𝜕𝑧2

< 0 for any 𝑧, the maximum 

value of Λ (𝑝, 𝑧) is Λ 
(
𝑝, 𝑧∗

𝑝

)
for each fixed sale price 𝑝. □

Proof of Lemma 2. The second derivative of the function 𝜉 (𝑝) is

𝜉′′ (𝑝) = 𝜈 (1 − 𝛽)
(
1 −Φ

(
𝑧∗

𝑝

))(𝑑𝑧∗
𝑝

𝑑𝑝

)
= 𝜈 (1 − 𝛽)2 (𝑐 + 𝑜)2

((1 − 𝛽)𝑝+ 𝑠+ 𝑜)3 𝜑

(
𝑧∗

𝑝

)
As 0 ≤ 𝛽 < 1, we can ensure that 𝜉′′ (𝑝) > 0 for any 𝑝 ∈ [𝑐,∞) and, therefore, 𝜉 (𝑝) is strictly convex on this interval, which proves (i). 
On the other hand, as lim𝑝→∞ 𝑧∗

𝑝
=∞ and lim𝑝→∞ 𝜑 

(
𝑧∗

𝑝

)
= 0, then, from (8),

lim
𝑝→∞

𝜉 (𝑝) = lim
𝑝→∞

𝑝

⎛⎜⎜⎜⎝1 −
𝑐 + 𝜈((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑

(
𝑧∗

𝑝

)
𝑝

⎞⎟⎟⎟⎠ = lim
𝑝→∞

𝑝 =∞

Moreover, 𝜉 (𝑐) < 0 and, therefore, the equation 𝜉 (𝑝) = 0 has at least one root 𝑝𝑙 in (𝑐,∞). Furthermore, since 𝜉 (𝑝) is strictly convex, 
𝑝𝑙 is the unique root of the equation 𝜉 (𝑝) = 0 in the interval (𝑐,∞) and (ii) is proved. In addition, it has to be 𝜉 (𝑝) < 0 if 𝑝 ∈

[
𝑐, 𝑝𝑙

)
and 𝜉 (𝑝) > 0 if 𝑝 ∈

(
𝑝𝑙,∞

)
. Also, 𝜉′

(
𝑝𝑙

)
> 0 because, if 𝜉′

(
𝑝𝑙

)
= 0, then 𝑝𝑙 would be an inflection point of 𝜉 (𝑝) and this is impossible 

because 𝜉 (𝑝) is a strictly convex function on the interval (𝑐,∞). Similarly, 𝜉′ (𝑝) > 0 if 𝑝 ∈
(
𝑝𝑙,∞

)
because, as 𝜉 (𝑝) is a strictly convex 

function on this interval, 𝜉′ (𝑝) is strictly increasing on the interval 
(
𝑝𝑙,∞

)
. Then, the proof is finished. □

Proof of Lemma 3. The derivative of the function 𝑢 (𝑝) is

′ 𝛼𝜉2 (𝑝)
70

𝑢 (𝑝) = −
𝑝2
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with 𝜉2 (𝑝) = 𝑝𝜉′ (𝑝) − 𝜉 (𝑝), whose derivative is 𝜉′2 (𝑝) = 𝑝𝜉′′ (𝑝). Then, the function 𝜉2 (𝑝) is an increasing function on the interval (
𝑝𝑙,∞

)
because 𝜉′′ (𝑝) > 0 for any 𝑝 ∈

(
𝑝𝑙,∞

)
. Moreover, from Lemma 2, 𝜉

(
𝑝𝑙

)
= 0 and 𝜉′

(
𝑝𝑙

)
> 0, then we have 𝜉2

(
𝑝𝑙

)
= 𝑝𝑙𝜉

′ (𝑝𝑙

)
>

0. Consequently, as 𝜉2 (𝑝) increases on 
(
𝑝𝑙,∞

)
, we have 𝜉2 (𝑝) > 0 for any 𝑝 ∈

(
𝑝𝑙,∞

)
and the function 𝑢 (𝑝) is strictly decreasing on 

the interval 
(
𝑝𝑙,∞

)
, which proves (i). Furthermore, as 𝜉

(
𝑝𝑙

)
= 0 we have 𝑢 

(
𝑝𝑙

)
= 1 > 0 and, from (8)

lim
𝑝→∞

𝑢 (𝑝) = lim
𝑝→∞

(
1 − 𝛼𝜉 (𝑝)

𝑝

)
= 1 − 𝛼 + 𝛼 lim

𝑝→∞

⎛⎜⎜⎜⎝
𝑐 + 𝜈((1 − 𝛽)𝑝+ 𝑠+ 𝑜)𝜑

(
𝑧∗

𝑝

)
𝑝

⎞⎟⎟⎟⎠ = 1 − 𝛼 < 0

because lim𝑝→∞ 𝑧∗
𝑝
= ∞ and lim𝑝→∞ 𝜑 

(
𝑧∗

𝑝

)
= 0. As a consequence, in the interval 

(
𝑝𝑙,∞

)
, there is a unique root 𝑝𝑢. Then (ii) is 

proved. Moreover, if 𝑝 ∈
(
𝑝𝑢,∞

)
, we have 𝑢 (𝑝) < 0, 𝜉′ (𝑝) < 1 and 𝜉1 (𝑝) = 𝑝𝜉′ (𝑝) − 𝑝 + 𝑝𝑢 (𝑝) < 0. Then the proof is finished. □

Proof of Lemma 4. As 𝜉1 (𝑝) = 𝑝𝜉′ (𝑝) − 𝛼𝜉 (𝑝), the two first derivatives of the function 𝜉1 (𝑝) are 𝜉′1 (𝑝) = 𝑝𝜉′′ (𝑝) − (𝛼 − 1) 𝜉′ (𝑝) and 
𝜉′′1 (𝑝) = 𝑝𝜉′′′ (𝑝) − (𝛼 − 2) 𝜉′′ (𝑝). Moreover, as 𝜉′′ (𝑝) > 0 in the interval 

(
𝑝𝑙, 𝑝𝑢

)
, taking (5) and (10) into account, the third derivative 

of the function 𝜉 (𝑝) is

𝜉′′′ (𝑝) = 𝜉′′ (𝑝)

(
𝑑
(
ln 𝜉′′ (𝑝)

)
𝑑𝑝

)
= −𝜉′′ (𝑝)

(
3 (1 − 𝛽)

(1 − 𝛽)𝑝+ 𝑠+ 𝑜
− 𝑧∗

𝑝

(
𝑑𝑧∗

𝑝

𝑑𝑝

))

= −(1 − 𝛽) 𝜉′′ (𝑝)
(1 − 𝛽)𝑝+ 𝑠+ 𝑜

⎛⎜⎜⎜⎝2 +
𝜑

(
𝑧∗

𝑝

)
− 𝑧∗

𝑝

(
1 −Φ

(
𝑧∗

𝑝

))
𝜑

(
𝑧∗

𝑝

) ⎞⎟⎟⎟⎠
=
(

−(1 − 𝛽) 𝜉′′ (𝑝)
(1 − 𝛽)𝑝+ 𝑠+ 𝑜

)⎛⎜⎜⎜⎝2 +
𝐿

(
𝑧∗

𝑝

)
𝜑

(
𝑧∗

𝑝

) ⎞⎟⎟⎟⎠ < 0

Therefore, as 0 ≤ 𝛽 < 1 and 𝛼 > 2, we have 𝜉′′1 (𝑝) < 0 and the function 𝜉1 (𝑝) is strictly concave on the interval 
(
𝑝𝑙, 𝑝𝑢

)
, which proves 

statement (i).
Now, to prove statement (ii), from Lemmas 2 and 3, we have 𝜉

(
𝑝𝑙

)
= 0, 𝜉′

(
𝑝𝑙

)
> 0, 𝑢 

(
𝑝𝑢

)
= 0, 𝜉

(
𝑝𝑢

)
= 𝑝𝑢∕𝛼, and taking (11) into 

account, we observe that

𝜉1
(
𝑝𝑙

)
= 𝑝𝑙𝜉

′ (𝑝𝑙

)
− 𝛼𝜉

(
𝑝𝑙

)
> 0

𝜉1
(
𝑝𝑢

)
= 𝑝𝑢𝜉

′ (𝑝𝑢

)
− 𝛼𝜉

(
𝑝𝑢

)
= 𝑝𝑢

(
𝜉′
(
𝑝𝑢

)
− 1

)
= −𝜈 (1 − 𝛽)𝑝𝑢𝐿

(
𝑧∗

𝑝𝑢

)
< 0

As a consequence, the equation 𝜉1 (𝑝) = 0 has at least one root 𝑝∗ in the interval 
(
𝑝𝑙, 𝑝𝑢

)
. Moreover, it is the unique root because, in 

any other case, 𝜉1 (𝑝) would have to have a local minimum, and this is not possible because 𝜉1 (𝑝) is a strictly concave function in the 
interval 

(
𝑝𝑙, 𝑝𝑢

)
. Then, 𝑝∗ is the unique root of the equation 𝜉1 (𝑝) = 0 in the interval 

(
𝑝𝑙, 𝑝𝑢

)
and statement (ii) is proved.

From statement (ii), 𝜉1 (𝑝) is necessarily strictly positive on the interval 
(
𝑝𝑙, 𝑝

∗) and 𝜉1 (𝑝) is strictly negative on the interval (
𝑝∗, 𝑝𝑢

)
. Moreover, 𝜉′1 (𝑝) < 0 if 𝑝 ∈

(
𝑝∗, 𝑝𝑢

)
because, otherwise, the function 𝜉1 (𝑝) would have to have a local minimum, and this 

is impossible because 𝜉1 (𝑝) is a strictly concave function on the interval 
(
𝑝𝑙, 𝑝𝑢

)
. Then, statement (iii) is proved and the proof is 

finished. □

Proof of Theorem 1. From (12), 𝑔′ (𝑝) and 𝜉1 (𝑝) have the same sign. Then, the previous lemmas ensure that, on the interval 
(
𝑝𝑙, 𝑝𝑢

)
, 

the value 𝑝∗ is the unique critical value of 𝑔 (𝑝). Moreover, 𝑔 (𝑝) is strictly increasing on the interval 
(
𝑝𝑙, 𝑝

∗) and strictly decreasing 
on the interval 

(
𝑝∗, 𝑝𝑢

)
. As a consequence, 𝑝∗ is the global maximum of 𝑔 (𝑝) on the interval 

(
𝑝𝑙, 𝑝𝑢

)
. Furthermore, from Lemma 3, 

𝜉1 (𝑝) < 0 if 𝑝 ∈
(
𝑝𝑢,∞

)
and, in the interval 

(
𝑝𝑢,∞

)
, 𝑔 (𝑝) is strictly decreasing. Therefore, the unique local maximum of the function 

𝑔 (𝑝) in the interval 
(
𝑝𝑙,∞

)
is attained at 𝑝∗, which proves statement (i). In addition, from (7), 𝑔 (𝑝∗) > 0 because 𝑝∗ > 𝑝𝑙 and 

𝜉 (𝑝) > 0 for any 𝑝 > 𝑝𝑙 . However, 𝑔 (𝑝) < 0 if 𝑝 ∈
(
𝑐, 𝑝𝑙

)
and 𝑔 (𝑝) is strictly decreasing if 𝑝 ≥ 𝑝𝑢 because, from Lemma 3, 𝜉1 (𝑝) < 0 if 

𝑝 ∈
[
𝑝𝑢,∞

)
. What is more, from (7) and (8), and considering that lim𝑝→∞ 𝜑 

(
𝑧∗

𝑝

)
= 0, we have

lim
𝑝→∞

𝑔 (𝑝) = 𝜆𝜂𝛼 lim
𝑝→∞

𝜉 (𝑝)
𝑝𝛼

= 𝜆𝜂𝛼 lim
𝑝→∞

1 −
𝑐+𝜈((1−𝛽)𝑝+𝑠+𝑜)𝜑

(
𝑧∗𝑝

)
𝑝

𝑝𝛼−1 = 0

Finally, as 𝑔 (𝑝) has the global maximum on the interval 
(
𝑝𝑙, 𝑝𝑢

)
at the point 𝑝∗, and 𝑔 (𝑝) is a strictly decreasing function if 𝑝 ≥ 𝑝𝑢, 

we can ensure that 𝑝∗ is also the global maximum of 𝑔 (𝑝) on the interval 
(
𝑝𝑙,∞

)
. Moreover, as 𝑝∗ is the unique point in the interval (

𝑝𝑙, 𝑝𝑢

)
with 𝑔′ (𝑝∗) = 0, the function 𝑔 (𝑝) is strictly pseudoconcave on the interval 

(
𝑝𝑙,∞

)
(see for example Cambini & Martein [44], 
71

Theorem 3.2.7, p. 45). Then, the proof is complete. □
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