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A B S T R A C T

This paper focuses on inventory models with a broad framework for the storage cost and the demand rate.
The cumulative storage cost is modelled with a power function, depending on both time and stock quantity,
by using two elasticity coefficients. Similarly, the demand rate has an isoelastic dependence on sale price and
stock quantity, modelled with another two elasticity coefficients. These four elasticity coefficients allow many
real practical situations to be modelled. A reference price is used to measure the effect of the sale price on
the demand rate. The goal is to maximize the income expense ratio (IER), and the sale price, the order level
and the reorder point are the decision variables. The operating expense ratio (OER) of the system, defined
as the quotient cost/income, is used to solve the problem. The optimum values are obtained with explicit
expressions, which is an interesting result for inventory managers. Under the optimum policy, the reorder
point is always equal to zero and the order quantity depends on the replenishing cost, the purchase price and
the four elasticity coefficients. However, the optimum ordering policy does not depend on the scale parameters
of the storage cost and the demand rate. A complete sensitivity analysis for most of the model parameters is
performed. A numerical example is used to compare the optimum policies for the maximum income expense
ratio and the maximum profit per unit time. Finally, some managerial insights derived from the results are
given.
1. Introduction

Nowadays, the intense competition and plurality of the markets
require an adequate diversification of the available resources. Investors
prefer to invest their money in products with high profitability. In
this way, a larger overall profit per unit of time would be achieved.
Indeed, if the inventory manager diversifies the available resources
into the most profitable items, instead of using them all in just one
of the items, the sum of the obtained profits per unit time could
increase. For this reason, the number of inventory models focused
on profitability maximization, instead of minimum cost or maximum
profit, is greatly increasing. Recent papers in this research line are the
works of Abdeltawab and Mohamed (2022) and Hussein (2022).

In inventory theory, different profitability measures have been de-
fined, with some differences between them. The residual income (RI)
was proposed by Morse and Scheiner (1979). Later, Otake et al. (1999)
used the return on investment (ROI) in setup operation policies of
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inventories. Pando et al. (2021a) introduced the name return on in-
ventory management expense (ROIME). The term return on assets
(ROA) was considered by Bradley and Arntzen (1999) and Patel and
Tsionas (2022). More recently, San-José et al. (2022) have defined
the term return on inventory investment (ROII). Usually, the terms
profitability index (PI) or income expense ratio (IER) are used in
many areas of economic theory (see, for example, Arnold (2008)).
Furthermore, Lubbe et al. (1995) proposed the operating expense ratio
(OER) as a profitability measure for life insurance companies.

The role of the sale price of goods in inventory models has been
evolving based on the pursued objectives. When the goal is to maxi-
mize profit or profitability, it is common to assume a price-dependent
demand and to use the sale price as a decision variable. High sale prices
lead to higher revenues but lower sales because demand decreases.
Thus, the inventory manager needs to find the optimum sale price
that maximizes either profit or profitability because both policies are
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different. Although many inventory models consider a price-dependent
demand, some of them do not use the sale price as a decision vari-
able. Avinadav et al. (2014), Cárdenas-Barrón et al. (2021), San-José
et al. (2021), Das et al. (2022) and Rahman et al. (2022) consider profit
maximization. Instead, Jaber et al. (2019) and Pando et al. (2021b) use
profitability maximization.

A power function with a negative exponent is the most commonly
used to model the price-dependent demand. It is known as isoelastic
demand because the quotient between the relative changes in the
demand rate and the sale price is a fixed constant named the elasticity
coefficient. Thus, Agrawal and Ferguson (2007), Chang et al. (2010)
and Duary et al. (2022) use this approach. In another way, Khan et al.
(2020) consider a multiplicative dependence of demand concerning
the sale price and the frequency of advertising. Also, Alfares and
Ghaithan (2016) analyse an inventory system with a demand linearly
decreasing with price, time-varying storage cost and quantity discounts.
Other ways to represent the price-dependent demand rate were used,
for example, by San-José et al. (2018, 2020). Macías-López et al.
(2021) define up to six different price-dependent demand functions.
Furthermore, Alfares and Ghaithan (2022) also consider a generalized
production–inventory model with price-dependent demand, variable
production and cost rates.

Another factor that influences demand in inventory models is the
stock quantity. It is a common fact in commercial activity that high
stock quantities lead to higher demand. In these models, the reorder
point when the stock is replenished is also a decision variable, because
restocking increases sales, helps to have an adequate stock of products,
and avoids falling into shortage. There is extensive literature on this
topic. Three recent papers are Barron (2022), Li and Mizuno (2022)
and Shah et al. (2023). Mostly, stock-dependent demand is modelled
by a power function of the inventory level with a positive exponent in
the interval [0, 1). Then, the dependence is also of an isoelastic type,
because the quotient between the relative changes in the demand rate
and the stock quantity is always the fixed exponent. Thus, Cárdenas-
Barrón et al. (2020) consider this dependence type for the demand rate,
with trade credit and non-linear stock-dependent storage cost.

Nevertheless, in many real practical situations, the stock level and
the sale price influence the demand rate simultaneously. A higher
stock quantity and a lower sale price together lead to greater customer
demand. This occurs, for example, with sales of style merchandise, such
as women’s dresses or sports clothes. Therefore, it seems very useful to
consider this issue in inventory models. Thus, Pal et al. (2014) proposed
a model where the demand rate depends on both the stock quantity and
the sale price, and the type of this dependence is multiplicative and
isoelastic. Later, Onal et al. (2016) and Feng et al. (2017) also used
this approach. It will also be used in this paper.

The modelling of the storage cost is another topic widely discussed
in inventory theory. The stock level and the storage time are the two
most commonly used factors. Naddor (1982) introduced a model where
the storage cost has a multiplicative and isoelastic dependence of time
and quantity of items (the general system). Since then, Pando et al.
(2013, 2018, 2019) have also considered this approach. It was included
by Alfares and Ghaithan (2018) in their review and classification of
EOQ and EPQ inventory models formulated under the assumption of
variable storage cost.

Specifically, the inventory model to be analysed combines the fol-
lowing features: (i) the demand rate has a multiplicative and isoelastic
dependence of the sale price and the stock quantity; (ii) the storage
cost depends on both the stock quantity and the stocking time, also
with a multiplicative and isoelastic dependence; (iii) the sale price, the
initial stock quantity and the reorder point are the decision variables;
and (iv) the purpose is to maximize profitability, instead of to maximize
profit per unit time. As far as we know, there are no inventory models
in the inventory theory that consider all these properties together,
2

simultaneously. t
To highlight the contribution of this work, Table 1 collects the most
related papers on EOQ models cited in this introduction, classified by
the demand rate type, the storage cost type, the objective function and
the sale price role (parameter or decision variable). Note that this paper
is the only one that considers profitability maximization with the sale
price as a decision variable, a demand rate dependent on both the sale
price and the stock level, and a storage cost rate dependent on both
time and stock level. This is the gap that this paper aims to fill.

The structure of the paper is as follows. Assumptions and notations
of the model are included in Section 2, along with the expressions
for the demand rate and the storage cost functions. The formulation
of the model, with all involved functions, is introduced in Section 3.
The core theorem of the paper with the solution of the model is
given in Section 4, along with the managerial insights addressed to
the inventory managers. Section 5 includes a sensitivity analysis of
the parameters of the system, based on the partial derivatives of the
optimum values. Computational results are shown in Section 6 and,
finally, Section 7 provides the conclusions and future research lines.

2. Assumptions and notation

The following assumptions are considered for the inventory system:
(i) it refers to a single item and is continuously reviewed, (ii) the
replenishment is instantaneous without lead time, (iii) inventory never
falls into shortage, (iv) the planning horizon is infinite, (v) the unit
purchase price 𝑐 > 0 is fixed, and (vi) the replenishing cost 𝐾 > 0 is
lso fixed and does not depend on the order quantity.

Regarding the storage cost, a broad framework is considered. Basic
odels suppose that the storage cost rate per unit per time is a constant
> 0, and therefore the cumulative storage cost for 𝑥 units during

he time 𝑡 is 𝐻 (𝑡, 𝑥) = ℎ𝑡𝑥. Nevertheless, in many situations, this cost
s not linear as concerns time or quantity, because the storage cost
peeds up as the quantity of items increases or time extends. Thus, the
odel proposed in this paper expresses the cumulative storage cost as
function of the number 𝑥 of units stored during the time 𝑡

(𝑡, 𝑥) = ℎ𝑡𝛾1𝑥𝛾2 (1)

ith 𝛾1 ≥ 1 and 𝛾2 ≥ 1. As a consequence, it can be non-linear regarding
ime and stock quantity if 𝛾1 > 1 and 𝛾2 > 1. The conditions 𝛾1 ≥ 1 and
2 ≥ 1 punish inventories with a long scheduling period or a large order
uantity. Moreover, the parameters 𝛾1 and 𝛾2 satisfy that 𝛾1 =

𝜕𝐻(𝑡,𝑥)∕𝜕𝑡
𝐻(𝑡,𝑥)∕𝑡

and 𝛾2 = 𝜕𝐻(𝑡,𝑥)∕𝜕𝑥
𝐻(𝑡,𝑥)∕𝑥 . Therefore, 𝛾1 depicts the relative change in the

cumulative storage cost regarding the relative change in time, and 𝛾2
depicts the relative change in the cumulative storage cost regarding the
relative change in the stock quantity. As a consequence, if, for example,
𝛾1 = 2.5 and 𝛾2 = 1.5, then the storage cost increases by 2.5% if time in
stock increases by 1% with a fixed quantity of items, and this storage
cost increases 1.5% if the quantity of items increases by 1% with a
fixed time. The parameter ℎ = 𝐻(1, 1) depicts the storage cost for one
single item during a unit of time. Furthermore, with this function, the
storage cost rate per unit per time to calculate the total storage cost
in a scheduling period is 𝜕2𝐻(𝑡,𝑥)

𝜕𝑡𝜕𝑥 = ℎ𝛾1𝛾2𝑡𝛾1−1𝑥𝛾2−1. Note that the three
parameters ℎ, 𝛾1 and 𝛾2 let us model a lot of real practical situations for
the storage cost in inventory models, and the basic models are achieved
when 𝛾1 = 𝛾2 = 1.

To model the behaviour of the customers, the demand is also con-
sidered with a very broad framework that allows the resulting model
to be adapted to many real situations. Thus, the demand rate depends
on the sale price 𝑝 (> 0) and the stock quantity 𝑥 (> 0) according to
the following function

𝐷(𝑝, 𝑥) = 𝜆 (𝑝∕𝜂)−𝛼 𝑥𝛽 (2)

ith the following conditions for the four parameters:
(i) 𝛽 is the elasticity coefficient of the demand rate with respect
o the number of items in stock, with 0 ≤ 𝛽 < 1 and 𝛽 ≤ 𝛾2∕𝛾1. It
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Table 1
Summary of most related literature cited in this paper.

Paper Sale price Demand rate Storage cost Objective
role: type: rate type: function:

P V P S T S T C G R

Baker and Urban (1988) ✓ ✓ ✓

Otake et al. (1999) ✓ ✓

Chang et al. (2010) ✓ ✓ ✓ ✓

Pando et al. (2013) ✓ ✓ ✓ ✓ ✓

Pal et al. (2014) ✓ ✓ ✓ ✓

Onal et al. (2016) ✓ ✓ ✓ ✓

Alfares and Ghaithan (2016) ✓ ✓ ✓ ✓

Feng et al. (2017) ✓ ✓ ✓ ✓

San-José et al. (2018) ✓ ✓ ✓ ✓ ✓

Pando et al. (2019) ✓ ✓ ✓ ✓ ✓

San-José et al. (2020) ✓ ✓ ✓ ✓

Cárdenas-Barrón et al. (2020) ✓ ✓ ✓ ✓

Pando et al. (2020) ✓ ✓ ✓ ✓

Khan et al. (2020) ✓ ✓ ✓ ✓

Cárdenas-Barrón et al. (2021) ✓ ✓ ✓ ✓ ✓

Macías-López et al. (2021) ✓ ✓ ✓ ✓ ✓

Pando et al. (2021a) ✓ ✓ ✓ ✓

San-José et al. (2021) ✓ ✓ ✓ ✓

Pando et al. (2021b) ✓ ✓ ✓ ✓

Duary et al. (2022) ✓ ✓ ✓

San-José et al. (2022) ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓

Sale price role: P = parameter, V = decision variable.
Demand rate type: P = price-dependent, S = stock-dependent, T = time-dependent.
torage cost rate type: S = stock-dependent, T = time-dependent.
bjective function: C = minimum cost, G = maximum gain or profit, R = maximum profitability.
w

atisfies that 𝛽 = 𝜕𝐷(𝑝,𝑥)∕𝜕𝑥
𝐷(𝑝,𝑥)∕𝑥 and, therefore, depicts the ratio between

he relative change in the demand rate and the relative change in the
tock quantity. Then, as 𝛽 ≥ 0, a high stock quantity leads to a greater

demand rate. For example, if 𝛽 = 0.2, the demand rate increases by 0.2%
as the inventory level increases by 1%. The condition 𝛽 < 1 ensures that
the demand does not speed up by increasing the stock quantity, and the
condition 𝛽 ≤ 𝛾2∕𝛾1 is necessary for the model, as will be justified later.

(ii) 𝛼 is the elasticity coefficient of the demand rate with respect to
the sale price, with 𝛼 > 0. By the negative exponent (−𝛼), the demand
rate is greater with a lower sale price, as seems logical. This coefficient
satisfies that 𝛼 = − 𝜕𝐷(𝑝,𝑥)∕𝜕𝑝

𝐷(𝑝,𝑥)∕𝑝 and, therefore, it depicts the ratio between
he relative change in the demand rate and the relative change in the
ale price. Then, for example, if 𝛼 = 3, the demand rate decreases by

3% as the sale price increases by 1%.
(iii) 𝜂 is a reference price used to quantify the elasticity of the

demand rate with respect to the sale price 𝑝, with 0 < 𝜂 ≤ 𝑐, where
is the purchase price. It can be understood as the production cost of

he item, and below such a value the item cannot be sold, or it can be
nderstood as the factory price. It could perhaps be difficult for the
nventory manager to determine this parameter without information
rom the producer. Then, as a starting point, it could be useful to
uppose that 𝜂 = 𝑐.

(iv) 𝜆 is the scale parameter of the demand rate, with 𝜆 = 𝐷 (𝜂, 1).
t can be viewed as the population size of potential customers. This is
ecause, if only one unit of the item were available, and its sale price
as the lowest possible, all potential customers would be willing to buy

t.
Note that these four parameters for the demand rate let the inven-

ory model include a lot of real practical situations with different sale
rices or stock quantities.

The time spent in the scheduling period is denoted by 𝑡, and the
nventory level curve is depicted by 𝐼(𝑡). Finally, the decision variables
f the model are: the sale price 𝑝 (> 0), the order level 𝑆 (> 0), and the
eorder point 𝑟 where the inventory level is restored to the initial level,
ith 0 ≤ 𝑟 < 𝑆. Although the usual case is that 𝑝 > 𝑐 to obtain a profit,

he most general case with 𝑝 > 0 is considered in the mathematical
3

roblem. With these decision variables, the order quantity is 𝑞 = 𝑆 − 𝑟, 𝐼
Table 2
Inventory model notation.
𝑐 Unit purchase price (𝑐 > 0)
𝐾 Replenishing cost per order (𝐾 > 0)
ℎ Storage cost for a single item during a unit time period (ℎ > 0)
𝛾1 Elasticity coefficient of the storage cost regarding time

(

𝛾1 ≥ 1
)

𝛾2 Elasticity coefficient of the storage cost regarding the stock quantity
(

𝛾2 ≥ 1
)

𝜆 Population size of the potential customers per unit time (𝜆 > 0)
𝜂 Reference price or production cost of the item (0 < 𝜂 ≤ 𝑐)
𝛽 Elasticity coefficient of the demand rate regarding the stock quantity

(0 ≤ 𝛽 < 1 and 𝛽 ≤ 𝛾2∕𝛾1)
𝛼 Elasticity coefficient of the demand rate regarding the sale price (𝛼 > 0)
𝑇 Length of the scheduling period (𝑇 > 0)
𝑡 Elapsed time in the scheduling period (0 ≤ 𝑡 ≤ 𝑇 )
𝐼(𝑡) Inventory level at time 𝑡
𝑥 Quantity of items in stock at time 𝑡, that is, 𝑥 = 𝐼(𝑡)
𝑝 Unit sale price, decision variable (𝑝 > 0)
𝑆 Order level, decision variable (𝑆 > 0)
𝑟 Reorder point, decision variable (0 ≤ 𝑟 < 𝑆)
𝑞 Order quantity, that is, 𝑞 = 𝑆 − 𝑟
𝐻(𝑡, 𝑥) Cumulative storage cost for 𝑥 items during time 𝑡, with

𝐻(𝑡, 𝑥) = ℎ𝑡𝛾1𝑥𝛾2 ≥ 0
𝐷(𝑝, 𝑥) Demand rate with sale price 𝑝 and 𝑥 items in stock, with

𝐷(𝑝, 𝑥) = 𝜆 (𝑝∕𝜂)−𝛼 𝑥𝛽

𝜉 Auxiliary parameter, with 𝜉 = (1 − 𝛽) 𝛾1 + 𝛾2 > 1

and the length of the scheduling period 𝑇 is determined by the three
decision variables, 𝑇 = 𝑇 (𝑝, 𝑆, 𝑟) > 0.

The notation used throughout the paper is collected in Table 2.

3. Model formulation

With the previous assumptions and notation, the differential equa-
tion that defines the inventory level function 𝐼(𝑡) is

𝑑
𝑑𝑡

𝐼(𝑡) = −𝜆 (𝑝∕𝜂)−𝛼 (𝐼(𝑡))𝛽 (3)

ith the conditions given by the decision variables 𝑆 and 𝑟, namely,
(0) = 𝑆 and 𝐼(𝑇 ) = 𝑟. Solving the differential Eq. (3) and using the
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first boundary condition, the inventory level function is

𝐼(𝑡) =
(

𝑆1−𝛽 − (1 − 𝛽) 𝜆𝜂𝛼𝑝−𝛼𝑡
)1∕(1−𝛽) (4)

Moreover, by the second boundary condition 𝐼(𝑇 ) = 𝑟, the length of
the scheduling period 𝑇 is

𝑇 = 𝑇 (𝑝, 𝑆, 𝑟) = 𝑆1−𝛽 − 𝑟1−𝛽

(1 − 𝛽)𝜆𝜂𝛼𝑝−𝛼
(5)

The storage cost during a scheduling period is evaluated in the next
emma.

emma 1. Consider an inventory system with the cumulative storage cost
iven by (1), the inventory level curve given by (4), and the scheduling period
iven by (5). Then, the storage cost during an inventory cycle depends on
he sale price 𝑝, the order level 𝑆 and the reorder point 𝑟, and it is given by

𝐶 (𝑝, 𝑆, 𝑟) =
(

ℎ𝛾1
(1 − 𝛽)𝛾1−1 (𝜆𝜂𝛼𝑝−𝛼)𝛾1

)

∫

𝑆

𝑟

(

𝑆1−𝛽 − 𝑥1−𝛽
)𝛾1−1 𝑥𝛾2−𝛽𝑑𝑥

(6)

Proof. Please see the proof in Appendix A. □

For each scheduling period, the total expense is the sum of the
purchase cost 𝑐𝑞 = 𝑐 (𝑆 − 𝑟), the replenishing cost 𝐾, and the storage
cost 𝐻𝐶 (𝑝, 𝑆, 𝑟), that is,

𝑇𝐶 (𝑝, 𝑆, 𝑟) = 𝑐 (𝑆 − 𝑟) +𝐾 +𝐻𝐶 (𝑝, 𝑆, 𝑟) (7)

The sales income in each scheduling period is

𝐼𝑁 (𝑝, 𝑆, 𝑟) = 𝑝𝑞 = 𝑝 (𝑆 − 𝑟) (8)

and the profit obtained during each inventory cycle is 𝐼𝑁 (𝑝, 𝑆, 𝑟) −
𝑇𝐶 (𝑝, 𝑆, 𝑟).

The profitability of the inventory system can be measured in three
ways:

(i) The return on inventory management expense (ROIME or ROI). This
is defined as the ratio profit/cost, that is, 𝑊 (𝑝, 𝑆, 𝑟) = 𝐼𝑁(𝑝,𝑆,𝑟)−𝑇𝐶(𝑝,𝑆,𝑟)

𝑇𝐶(𝑝,𝑆,𝑟) .

(ii) The profitability index (PI) or income expense ratio (IER). This is
efined as the ratio income/expense, that is, 𝑅 (𝑝, 𝑆, 𝑟) = 𝐼𝑁(𝑝,𝑆,𝑟)

𝑇𝐶(𝑝,𝑆,𝑟) .
(iii) The operating expense ratio (OER). This is defined as the ratio ex-

pense/income, that is, 𝑂 (𝑝, 𝑆, 𝑟) = 𝑇𝐶(𝑝,𝑆,𝑟)
𝐼𝑁(𝑝,𝑆,𝑟) . This index is an efficiency

ratio of the inventory management expense because it quantifies the
necessary expense to enter a currency unit. The lower the OER, the
higher the efficiency, and, as a consequence, the higher the profitabil-
ity. Maximizing the income expense ratio is equivalent to minimizing
the operating expense ratio. For example, if 𝑂 (𝑝, 𝑆, 𝑟) = 0.8 then the
inventory system needs to expend 0.8 currency units for each currency
unit entered, and the income expense ratio is 1∕0.8 = 1.25, that is, the
profitability of the inventory system is 25%.

The relation between these three profitability measurements is

𝑊 (𝑝, 𝑆, 𝑟) = 𝑅 (𝑝, 𝑆, 𝑟) − 1 = 1
𝑂 (𝑝, 𝑆, 𝑟)

− 1 (9)

and it is clear that maximizing 𝑊 (𝑝, 𝑆, 𝑟) is equivalent to maximizing
𝑅 (𝑝, 𝑆, 𝑟), which is equivalent to minimizing 𝑂 (𝑝, 𝑆, 𝑟).

Note that, for any fixed sale price 𝑝, we can consider the parameter
𝛬 = 𝜆 (𝑝∕𝜂)−𝛼 , so that the demand rate only depends on the stock
quantity 𝐷(𝑡) = 𝛬 (𝐼(𝑡))𝛽 . Then the inventory model exactly matches
the system studied by Pando et al. (2019) with 𝜆 = 𝛬. That paper,
using the function 𝑊 (𝑝, 𝑆, 𝑟) with a fixed 𝑝, showed that the reorder
oint for the maximum profitability is 𝑟∗ = 0 as long as 𝛽 ≤ 𝛾2∕𝛾1
please see Theorem 2 in that paper). Furthermore, it showed that, if
> 𝛾2∕𝛾1, the maximum profitability ratio 𝑊 (𝑝, 𝑆, 𝑟) is 𝑝∕𝑐 −1 (please,

see Theorem 1 in that paper). Then, if 𝑝 is now a decision variable of the
inventory system and 𝛽 > 𝛾2∕𝛾1, the maximum profitability ratio will
be ∞ and it is obtained with 𝑝 → ∞. This case is not a real practical
4

situation, because there are no inventories with infinite income expense
ratio. This is why the problem is limited to the case 𝛽 ≤ 𝛾2∕𝛾1, and this
assumption has been considered in this section.

As a consequence, if 𝛽 ≤ 𝛾2∕𝛾1, for any fixed 𝑝 the optimum value
for the reorder point is 𝑟∗ = 0 and the problem that uses 𝑝 as a decision
variable can be restricted to the case 𝑟 = 0. Then the order level 𝑆
equals the order quantity 𝑞 and the maximizing profitability problem
can be reduced to maximizing the income expense ratio where the
decision variables are now 𝑝 and 𝑞. To solve this problem, we use
the minimization of the operating expense ratio with 𝑟 = 0. Thus, we
ormulate the mathematical problem as

min
𝑝,𝑞)∈𝛺

𝑂 (𝑝, 𝑞) (10)

here

(𝑝, 𝑞) =
𝑇𝐶 (𝑝, 𝑞, 0)
𝐼𝑁 (𝑝, 𝑞, 0)

=
𝑐𝑞 +𝐾 +𝐻𝐶 (𝑝, 𝑞, 0)

𝑝𝑞
(11)

and 𝛺 =
{

(𝑝, 𝑞) ∈ R2∕𝑝 > 0, 𝑞 > 0
}

.
By Lemma 1, and using the change of variable 𝑢 = (𝑥∕𝑞)1−𝛽 , the

function 𝐻𝐶 (𝑝, 𝑞, 0) can be evaluated as follows:

𝐻𝐶 (𝑝, 𝑞, 0) =
(

ℎ𝛾1
(1 − 𝛽)𝛾1−1 (𝜆𝜂𝛼𝑝−𝛼)𝛾1

)

∫

𝑞

0

(

𝑞1−𝛽 − 𝑥1−𝛽
)𝛾1−1 𝑥𝛾2−𝛽𝑑𝑥

=
(

ℎ𝛾1𝑞(1−𝛽)𝛾1+𝛾2

(1 − 𝛽)𝛾1 (𝜆𝜂𝛼𝑝−𝛼)𝛾1

)

∫

1

0
(1 − 𝑢)𝛾1−1 𝑢

𝛾2
1−𝛽 𝑑𝑢 = 𝐴𝑝𝛼𝛾1𝑞𝜉

(12)

where

𝐴 =
𝛾1𝐵

(

𝛾1, 1 + 𝛾2∕ (1 − 𝛽)
)

ℎ
(1 − 𝛽)𝛾1 𝜆𝛾1𝜂𝛼𝛾1

> 0, (13)

= (1 − 𝛽) 𝛾1 + 𝛾2 > 1, (14)

nd 𝐵 (𝑎, 𝑏) = ∫ 1
0 (1 − 𝑢)𝑎−1 𝑢𝑏−1𝑑𝑢 is the beta function with 𝑎 ≥ 1 and

≥ 1.
As a consequence, the objective function to minimize is

(𝑝, 𝑞) = 𝑐
𝑝
+ 𝐾

𝑝𝑞
+ 𝐴𝑝𝛼𝛾1−1𝑞𝜉−1 (15)

subject to (𝑝, 𝑞) ∈ 𝛺.

4. Solution of the model

Three possible scenarios can be analysed, depending on the relation
between the values 𝛼𝛾1 and 𝜉: (i) 𝛼𝛾1 < 𝜉, (ii) 𝛼𝛾1 = 𝜉, and (iii) 𝛼𝛾1 > 𝜉.

4.1. Scenario 𝛼𝛾1 < 𝜉 (or equivalently 𝛼 < 1 − 𝛽 + 𝛾2∕𝛾1)

In this scenario, we can consider a value 𝛿 with 𝛼𝛾1
𝜉 < 𝛿 < 1 and

𝑞 = 𝑝−𝛿 to obtain

lim
𝑝→∞,𝑞=𝑝−𝛿

𝑂 (𝑝, 𝑞) = lim
𝑝→∞

(

𝑐
𝑝
+ 𝐾

𝑝1−𝛿
+ 𝐴𝑝𝛼𝛾1−1−𝛿(𝜉−1)

)

= 0

Then, the maximal income expense ratio 𝑅 (𝑝, 𝑞, 0) = 1∕𝑂 (𝑝, 𝑞)
would be ∞, obtained with 𝑝 infinitely large and 𝑞 infinitely small. This
case is not a real practical situation, because there are no inventories
with zero order quantity and zero operating cost ratio, that is, with
infinite income expense ratio.

4.2. Scenario 𝛼𝛾1 = 𝜉 (or equivalently 𝛼 = 1 − 𝛽 + 𝛾2∕𝛾1)

In this case the function to minimize is

𝑂(𝑝, 𝑞) = 𝑐
𝑝
+ 𝐾

𝑝𝑞
+ 𝐴𝑝𝜉−1𝑞𝜉−1

For each fixed 𝑝, the minimum value of the function

(𝑞) = 𝑐 + 𝐾 + 𝐴𝑝𝜉−1𝑞𝜉−1

𝑝 𝑝𝑞
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is obtained at the unique positive solution of the equation

𝑓 ′(𝑞) = − 𝐾
𝑝𝑞2

+ (𝜉 − 1)𝐴𝑝𝜉−1𝑞𝜉−2 = 0

hich is given by

∗
𝑝 =

(

𝐾
(𝜉−1)𝐴

)1∕𝜉

𝑝
This is due to the fact that lim𝑞→0+ 𝑓 (𝑞) = lim𝑞→∞ 𝑓 (𝑞) = ∞ and

𝑓 ′′(𝑞∗𝑝 ) =
2𝐾 + (𝜉 − 1) (𝜉 − 2)𝐴𝑝𝜉

(

𝑞∗𝑝
)𝜉

𝑝
(

𝑞∗𝑝
)3

=
𝜉𝐾

𝑝
(

𝑞∗𝑝
)3

> 0

As a consequence, for fixed 𝑝, the minimum value is given by
(

𝑝, 𝑞∗𝑝
)

= 𝑓
(

𝑞∗𝑝
)

= 𝑐
𝑝
+ 𝐾

(

𝐾
(𝜉−1)𝐴

)1∕𝜉
+ 𝐴

(

𝐾
(𝜉 − 1)𝐴

)(𝜉−1)∕𝜉

= 𝑐
𝑝
+

𝜉𝐾

(𝜉 − 1)
(

𝐾
(𝜉−1)𝐴

)1∕𝜉

Then, as the function 𝑂
(

𝑝, 𝑞∗𝑝
)

is decreasing on 𝑝, the minimum
value for 𝑂(𝑝, 𝑞) is obtained when 𝑝 → ∞, and it is given by

lim
𝑝→∞

⎛

⎜

⎜

⎜

⎝

𝑐
𝑝
+

𝜉𝐾

(𝜉 − 1)
(

𝐾
(𝜉−1)𝐴

)1∕𝜉

⎞

⎟

⎟

⎟

⎠

=
𝜉𝐾

(𝜉 − 1)
(

𝐾
(𝜉−1)𝐴

)1∕𝜉
=

𝜉𝐴1∕𝜉𝐾1−1∕𝜉

(𝜉 − 1)1−1∕𝜉
> 0

Therefore, the minimum value for the function 𝑂 (𝑝, 𝑞) is obtained with
𝑝 infinitely large and 𝑞 infinitely small, although the minimum value
is not 0 and, therefore, the maximal income expense ratio is finite.
In addition, this scenario is not a real solution, because there are no
inventories with 𝑝 infinitely large and 𝑞 infinitely small.

4.3. Scenario 𝛼𝛾1 > 𝜉 (or equivalently 𝛼 > 1 − 𝛽 + 𝛾2∕𝛾1)

Note that, in this case, necessarily 𝛼 > 1 because 𝛽 ≤ 𝛾2∕𝛾1. In
this scenario, the solution of the model can be obtained by closed ex-
pressions for the sale price, the order quantity, the minimum operating
expense ratio, and the maximum income expense ratio. The following
theorem gives the solution and provides the essential results that we
wish to disclose in this paper.

Theorem 1. Consider an inventory system with the cumulative storage
cost function given by (1), the demand rate function given by (2), and the
auxiliary parameters 𝜉 = (1 − 𝛽) 𝛾1 + 𝛾2 and

𝐴 =
𝛾1𝐵

(

𝛾1, 1 + 𝛾2∕ (1 − 𝛽)
)

ℎ
(1 − 𝛽)𝛾1 𝜆𝛾1𝜂𝛼𝛾1

here 𝐵 (𝑎, 𝑏) = ∫ 1
0 (1 − 𝑢)𝑎−1 𝑢𝑏−1𝑑𝑢 is the beta function with 𝑎 ≥ 1 and

≥ 1. Suppose that the four elasticity coefficients of the system satisfy the
onditions 𝛽 < 1, 𝛽 ≤ 𝛾2∕𝛾1 and 𝛼𝛾1 > 𝜉 and that the goal is to maximize
rofitability. Then, the following statements are true:

(i) The optimum reorder point is 𝑟∗ = 0.
(ii) The optimum order quantity is equal to the order level, and is given

by

𝑞∗ = 𝑆∗ =

(

𝛼𝛾1 − 𝜉
)

𝐾
(𝜉 − 1) 𝑐

(16)

(iii) The optimum sale price is

𝑝∗ =
(

𝐾 (𝑞∗)−𝜉

(𝜉 − 1)𝐴

)1∕(𝛼𝛾1)

= 𝜂

(

(𝜉 − 1)𝜉−1 (1 − 𝛽)𝛾1𝜆𝛾1 𝑐𝜉
( )𝜉 ( )

𝜉−1

)1∕(𝛼𝛾1)
(17)
5

𝛼𝛾1 − 𝜉 𝛾1𝐵 𝛾1, 1 + 𝛾2∕(1 − 𝛽) 𝐾 ℎ
(iv) The minimum operating expense ratio is

𝑂∗ = 𝑂
(

𝑝∗, 𝑞∗
)

=
(

𝛼𝛾1
𝛼𝛾1 − 𝜉

)(

𝑐
𝑝∗

)

(18)

(v) The maximum income expense ratio is

𝑅∗ =
(

1 −
𝜉
𝛼𝛾1

)(

𝑝∗

𝑐

)

= 𝜂

(
(

𝛼𝛾1 − 𝜉
)𝛼𝛾1−𝜉 (𝜉 − 1)𝜉−1 (1 − 𝛽)𝛾1𝜆𝛾1

(

𝛼𝛾1
)𝛼𝛾1 𝛾1𝐵

(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

ℎ𝐾𝜉−1𝑐𝛼𝛾1−𝜉

)1∕(𝛼𝛾1)

(19)

(vi) The optimum scheduling period is

𝑇 ∗ =
(𝑞∗)1−𝛽 (𝑝∗)𝛼

(1 − 𝛽)𝜆𝜂𝛼
=

(

(𝜉 − 1)𝛾2−1 𝑐𝛾2
(

𝛼𝛾1 − 𝜉
)𝛾2 𝛾1𝐵

(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

𝐾𝛾2−1ℎ

)1∕𝛾1

(20)

(vii) For each inventory cycle, the optimum storage cost is equal to 𝐾
𝜉−1

and the optimum total expense is 𝛼𝛾1𝐾
𝜉−1 .

(viii) The optimum costs follow a proportional distribution for the stor-
age cost, the replenishing cost, and the purchase cost, and these
proportions are, respectively, 1

𝛼𝛾1
, 𝜉−1

𝛼𝛾1
, and 1 − 𝜉

𝛼𝛾1
.

roof. Please see the proof in Appendix A. □

The following managerial insights for the inventory managers are
educed from the optimum solution of the inventory problem:

(i) To maximize profitability, replenishment should be done when
stock is depleted, that is, the reorder point is equal to zero.

(ii) The optimum order quantity 𝑞∗ does not depend on the popula-
tion size of potential customers 𝜆, the reference price of the item
𝜂, or the scale parameter of the storage cost ℎ. Only the elasticity
coefficients of the demand rate and the storage cost influence
the optimum order quantity, along with the unit purchase price
𝑐 and the replenishing cost 𝐾. Even more, the optimum order
quantity is proportional to 𝐾 and inversely proportional to 𝑐.

(iii) The optimum scheduling period 𝑇 ∗ does not depend on the
population size of potential customers 𝜆 or the reference price
of the item 𝜂. Furthermore, if the storage cost rate per unit per
time is fixed (𝛾1 = 𝛾2 = 1) then the optimum length of the
scheduling period 𝑇 ∗ is proportional to the purchase price 𝑐,
inversely proportional to the storage cost parameter ℎ, and does
not depend on the replenishing cost 𝐾.

(iv) The total demand per unit time served with this optimum policy
is

𝑞∗∕𝑇 ∗ = (1 − 𝛽) 𝜆
(

𝑝∗∕𝜂
)−𝛼 (𝑞∗

)𝛽 = (1 − 𝛽)𝐷(𝑝∗, 𝑞∗)

and, therefore, the ratio between the total sales per unit time
and the initial demand rate is equal to 1 − 𝛽.

(v) The optimum sale price 𝑝∗ and the maximum income expense
ratio 𝑅∗ are proportional to the reference price 𝜂.

(vi) As the maximum income expense ratio is given by (19) and 𝑝∗∕𝑐
would be the income expense ratio if there are no costs in the
inventory, then the ratio 𝜉∕(𝛼𝛾1) represents the relative loss of
profitability due to the total expense in the inventory system. As
a particular case, in the basic model where the storage cost rate
per unit per time is fixed (𝛾1 = 𝛾2 = 1) and the demand rate does
not depend on the stock quantity (𝛽 = 0), this value is 2∕𝛼.

(vii) If the auxiliary parameter 𝜉 is equal to 2, then the storage cost
per scheduling period is equal to the replenishing cost, as in
Harris’ rule of the basic EOQ model. For example, this occurs if
the storage cost rate per unit per time is fixed (𝛾1 = 𝛾2 = 1) and
the demand rate does not depend on the stock quantity (𝛽 = 0).
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Table 3
Profitability thresholds for the parameters 𝐾, ℎ, 𝑐, 𝜆, and 𝜂 of the inventory system.

Parameter: 𝐾 < ℎ < 𝑐 < 𝜂 > 𝜆 >

Threshold:
(

𝛥𝜆𝛾1 𝜂𝛼𝛾1
𝑐𝛼𝛾1−𝜉ℎ

)1∕(𝜉−1) 𝛥𝜆𝛾1 𝜂𝛼𝛾1
𝐾𝜉−1𝑐𝛼𝛾1−𝜉

(

𝛥𝜆𝛾1 𝜂𝛼𝛾1
𝐾𝜉−1ℎ

)1∕(𝛼𝛾1−𝜉) (

𝐾𝜉−1𝑐𝛼𝛾1−𝜉ℎ
𝛥𝜆𝛾1

)1∕(𝛼𝛾1) (

𝐾𝜉−1𝑐𝛼𝛾1−𝜉ℎ
𝛥𝜂𝛼𝛾1

)1∕𝛾1
c
o
o
o
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From these results, the following corollary characterizes, a priori,
rofitability as a function of only the initial parameters of the system.

orollary 1. Consider an inventory system with all the conditions given in
heorem 1. Then the following statements are true:

(i) The inventory system is profitable (𝑅∗ > 1) if, and only if, the
parameters satisfy the condition

𝐾𝜉−1𝑐𝛼𝛾1−𝜉ℎ
𝜆𝛾1𝜂𝛼𝛾1

< 𝛥 (21)

where

𝛥 =
(𝜉 − 1)𝜉−1 (1 − 𝛽)𝛾1

(

𝛼𝛾1 − 𝜉
)𝛼𝛾1−𝜉

𝛾1
(

𝛼𝛾1
)𝛼𝛾1 𝐵

(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

(22)

is an auxiliary parameter obtained from the four elasticity coeffi-
cients.

(ii) If the condition (21) is true, then the optimum sale price 𝑝∗ is greater
than the unit purchase price 𝑐.

(iii) If the purchase price 𝑐 satisfies that

𝑐 ≥

(

(𝜉 − 1)𝜉−1
(

𝛼𝛾1 − 𝜉
)𝜉 𝐴𝐾𝜉−1

)1∕(𝛼𝛾1−𝜉)

(23)

then 𝑝∗ ≤ 𝑐 and the inventory system never makes a profit (𝑅∗ < 1).

Proof. Please see the proof in Appendix A. □

From (21) and (22), the inventory manager can evaluate the prof-
itability threshold for each parameter of the system, keeping all the
others fixed. Indeed, clearing each parameter in (21), the profitability
thresholds given in Table 3 are obtained, with upper bounds for the cost
parameters 𝐾, ℎ, and 𝑐, and lower bounds for the demand parameters
𝜆 and 𝜂.

The inventory manager can also evaluate the total expense and the
total profit per unit time for the solution with maximum profitability.
Indeed, the total cost per unit time 𝐶 (𝑝, 𝑆, 𝑟) is given by

𝐶 (𝑝, 𝑆, 𝑟) =
𝑇𝐶 (𝑝, 𝑆, 𝑟)
𝑇 (𝑝, 𝑆, 𝑟)

=
𝑐 (𝑆 − 𝑟) +𝐾 +𝐻𝐶 (𝑝, 𝑆, 𝑟)

𝑇 (𝑝, 𝑆, 𝑟)
(24)

and, for the maximum profitability solution, by statements (vi) and (vii)
of Theorem 1, we have

𝐶
(

𝑝∗, 𝑞∗, 0
)

=
𝛼𝛾1𝐾
𝜉−1

𝑇 ∗

=

(

𝛼𝛾1
(

𝛼𝛾1 − 𝜉
)𝛾2 (𝛾1

)𝛾1+1 𝐵
(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

𝐾𝛾1+𝛾2−1ℎ

(𝜉 − 1)𝛾1+𝛾2−1 𝑐𝛾2

)1∕𝛾1

(25)

In a similar way, the profit per unit time 𝐺 (𝑝, 𝑆, 𝑟) is given by

𝐺 (𝑝, 𝑆, 𝑟) =
𝐼𝑁 (𝑝, 𝑆, 𝑟) − 𝑇𝐶 (𝑝, 𝑆, 𝑟)

𝑇 (𝑝, 𝑆, 𝑟)

=
(

𝐼𝑁 (𝑝, 𝑆, 𝑟) − 𝑇𝐶 (𝑝, 𝑆, 𝑟)
𝑇𝐶 (𝑝, 𝑆, 𝑟)

)(

𝑇𝐶 (𝑝, 𝑆, 𝑟)
𝑇 (𝑝, 𝑆, 𝑟)

)

= (𝑅 (𝑝, 𝑆, 𝑟) − 1)𝐶 (𝑝, 𝑆, 𝑟)

and, for the maximum profitability solution, we have

𝐺
(

𝑝∗, 𝑞∗, 0
)

=
(

𝑅∗ − 1
)

𝐶
(

𝑝∗, 𝑞∗, 0
)

(26)

here 𝑅∗ is given by (19) and 𝐶 (𝑝∗, 𝑞∗, 0) is given by (25).
A special case of the inventory model solved with Theorem 1 is
6

btained when 𝛽 = 0 and 𝜂 = 𝛾1 = 𝛾2 = 1. With these values, the storage
ost rate per unit per time is a fixed constant ℎ which does not depend
n time or stock quantity. In addition, the demand rate only depends
n the sale price through the function 𝐷(𝑝) = 𝜆𝑝−𝛼 and does not depend
n the stock quantity. This demand function has already been used in
nventory theory and is known as isoelastic price-dependent demand
see, for example, Arcelus and Srinivasan (1987)). For this case, 𝜉 = 2,
𝐵
(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

= 𝐵 (1, 2) = 1∕2, and, if 𝛼 > 2, the optimum
olutions given in Theorem 1 are simpler, as shown in Table 4.

This model also makes it possible to find the optimum solution in
he event that the sale price is predetermined in advance, and cannot be
hosen by the inventory manager. Then, the sale price is not a decision
ariable in the model, but a fixed parameter that influences the demand
ate. In this case, the operating cost ratio only depends on the order
uantity 𝑞 through the function

(𝑞) = 𝑂 (𝑝, 𝑞) = 𝑐
𝑝
+ 𝐾

𝑝𝑞
+ 𝐴𝑝𝛼𝛾1−1𝑞𝜉−1

whose derivative is

𝑔′ (𝑞) =
−𝐾 + (𝜉 − 1)𝐴𝑝𝛼𝛾1𝑞𝜉

𝑝𝑞2

Then it is easy to prove that the absolute minimum of this function
is obtained at the unique positive solution of the equation 𝑔′ (𝑞) = 0,
which is

𝑞∗𝑝 =
(

𝐾
(𝜉 − 1)𝐴𝑝𝛼𝛾1

)1∕𝜉

ith

′′(𝑞∗𝑝 ) =
2𝐾 + (𝜉 − 1) (𝜉 − 2)𝐴𝑝𝛼𝛾1

(

𝑞∗𝑝
)𝜉

𝑝
(

𝑞∗𝑝
)3

=
𝜉𝐾

𝑝
(

𝑞∗𝑝
)3

> 0

and lim𝑞→0+ 𝑔(𝑞) = lim𝑞→∞ 𝑔(𝑞) = ∞. Then, replacing the value of 𝐴
given by (13), we have

𝑞∗𝑝 =

(

(1 − 𝛽)𝛾1 𝛬𝛾1𝐾
(𝜉 − 1) 𝛾1𝐵

(

𝛾1, 1 + 𝛾2∕ (1 − 𝛽)
)

ℎ

)1∕𝜉

(27)

where 𝛬 = 𝜆 (𝑝∕𝜂)−𝛼 . As expected, this expression for the order quantity
agrees with the other one given by Pando et al. (2019) (please see
Theorem 2 in that paper) with 𝛬 instead of 𝜆. Also, evaluating the
minimum operating expense ratio 𝑂∗

𝑝 = 𝑂
(

𝑝, 𝑞∗𝑝
)

= 𝑔
(

𝑞∗𝑝
)

, we obtain

𝑂∗
𝑝 = 𝑔

(

𝑞∗𝑝
)

= 𝑐
𝑝
+

𝐾 + 𝐴𝑝𝛼𝛾1
(

𝑞∗𝑝
)𝜉

𝑝𝑞∗𝑝
= 𝑐

𝑝
+

𝜉𝐾
(𝜉 − 1) 𝑝𝑞∗𝑝

and, as a consequence, the maximum income expense ratio for each
fixed 𝑝 is

𝑅∗
𝑝 = 1

𝑂∗
𝑝
=

𝑝

𝑐 + 𝜉𝐾
(𝜉−1)𝑞∗𝑝

(28)

These expressions can be used to evaluate the difference between
the solutions that consider the sale price as a fixed parameter or a de-
cision variable of the system. Note that the expression for the optimum
order quantity is simpler when the sale price is a decision variable
in the model. Furthermore, if the sale price is a fixed parameter, the
optimum order quantity depends on the reference price of the item 𝜂,
but not on the purchase price 𝑐. Instead, if the sale price is a decision
variable in the model, the optimum order quantity depends on the

purchase price 𝑐, but not on the reference price 𝜂.
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Table 4
Optimum solution for the model with 𝛽 = 0 and 𝜂 = 𝛾1 = 𝛾2 = 1.

Sale price Order quantity Income expense ratio Scheduling period

𝑝∗ =
(

2𝜆𝑐2

(𝛼 − 2)2 ℎ𝐾

)1∕𝛼

𝑞∗ =
(𝛼 − 2)𝐾

𝑐
𝑅∗ =

(

2 (𝛼 − 2)𝛼−2 𝜆
𝛼𝛼𝐾ℎ𝑐𝛼−2

)1∕𝛼

𝑇 ∗ = 2𝑐
(𝛼 − 2)ℎ
Table 5
Partial derivatives of 𝑝∗, 𝑞∗, 𝑅∗ and 𝑇 ∗ regarding the parameters 𝐾, ℎ, 𝜆, 𝑐, 𝜂, and 𝛼.

𝜕𝑝∗∕𝜕𝑧 𝜕𝑞∗∕𝜕𝑧 𝜕𝑅∗∕𝜕𝑧 𝜕𝑇 ∗∕𝜕𝑧

𝑧 = 𝐾
(

𝜉 − 1
𝛼𝛾1

)(

−𝑝∗

𝐾

)

𝑞∗

𝐾

(

𝜉 − 1
𝛼𝛾1

)

(−𝑅∗

𝐾

)

(

𝛾2 − 1
𝛾1

)

(−𝑇 ∗

𝐾

)

𝑧 = ℎ
(

1
𝛼𝛾1

)(

−𝑝∗

ℎ

)

0
(

1
𝛼𝛾1

)

(−𝑅∗

ℎ

)

(

1
𝛾1

)

(−𝑇 ∗

ℎ

)

𝑧 = 𝑐
(

𝜉
𝛼𝛾1

)(

𝑝∗

𝑐

)

−𝑞∗

𝑐

(

1 −
𝜉
𝛼𝛾1

)

(−𝑅∗

𝑐

)

(

𝛾2
𝛾1

)

( 𝑇 ∗

𝑐

)

𝑧 = 𝜂
𝑝∗

𝜂
0 𝑅∗

𝜂
0

𝑧 = 𝜆
( 1
𝛼

)

(

𝑝∗

𝜆

)

0
( 1
𝛼

)(𝑅∗

𝜆

)

0

𝑧 = 𝛼
(

ln
(

𝑝∗

𝜂

)

+
𝜉

𝛼𝛾1 − 𝜉

)(

−𝑝∗

𝛼

)

𝛾1𝑞∗

𝛼𝛾1 − 𝜉

(−𝑅∗

𝛼

)

ln
(

𝑝∗

𝜂

)

−𝛾2𝑇 ∗

𝛼𝛾1 − 𝜉
o

5. Sensitivity analysis

In this section, the closed expressions obtained in Theorem 1 for the
optimum values of the sale price 𝑝∗, the order quantity 𝑞∗, the income
xpense ratio 𝑅∗, and the scheduling period 𝑇 ∗ are used to develop a
ensitivity analysis by calculating the partial derivatives regarding the
arameters 𝐾, ℎ, 𝜆, 𝑐, 𝜂, and 𝛼 of the model. The parameters 𝛽, 𝛾1 and

𝛾2 have been excluded because the obtained derivatives do not ensure
the behaviour of the optimum values (they can increase or decrease
depending on the values of the other parameters). Furthermore, the
analysis is limited to the case where the inventory is profitable because
only in this case would the model be used in real practical situations.
So, we suppose that the profitability condition established by the
expression (21) is satisfied.

The partial derivatives obtained for the selected parameters are
shown in Table 5, and all the proofs are given in Appendix B.

The sensitivity analysis for the maximum income expense ratio 𝑅∗

is included in the next proposition.

Proposition 1. Suppose that the inventory system satisfies the conditions
𝛽 < 1, 𝛽 ≤ 𝛾2∕𝛾1, 𝛼𝛾1 > 𝜉, and the profitability condition (21). Then, the
maximum income expense ratio 𝑅∗ given by (19) satisfies that:

(i) 𝑅∗ decreases as the replenishing cost 𝐾, the scale parameter of
the storage cost ℎ, the unit purchase price 𝑐, or the price elasticity
coefficient of the demand rate 𝛼 increase.

(ii) 𝑅∗ increases as the population size of potential customers 𝜆, or the
reference price of the item 𝜂 increase.

Proof. Taking into account that 𝛼𝛾1 > 𝜉 > 1 and 𝑝∗ > 𝑐 ≥ 𝜂 because the
inventory is profitable, the signs of the partial derivatives in the fourth
column of Table 5 prove the proposition. □

In order to analyse which parameters are more influential in the
maximum income expense ratio, it is interesting to evaluate the ratio,
in absolute value, between the relative change on the maximum income
expense ratio and the relative change on each of the parameters, that is,
|

|

|

𝜕𝑅∗∕𝜕𝑧
𝑅∗∕𝑧

|

|

|

for each parameter 𝑧. Then, from the fourth column in Table 5,

t is easily seen that
𝛼𝛾1
𝜉 − 1

)

|

|

|

|

𝜕𝑅∗∕𝜕𝐾
𝑅∗∕𝐾

|

|

|

|

= 𝛼𝛾1
|

|

|

|

𝜕𝑅∗∕𝜕ℎ
𝑅∗∕ℎ

|

|

|

|

=
(

𝛼𝛾1
𝛼𝛾1 − 𝜉

)

|

|

|

|

𝜕𝑅∗∕𝜕𝑐
𝑅∗∕𝑐

|

|

|

|

=
(

𝜕𝑅∗∕𝜕𝜂
𝑅∗∕𝜂

)

= 𝛼
(

𝜕𝑅∗∕𝜕𝜆
𝑅∗∕𝜆

)

=

|

|

|

𝜕𝑅∗∕𝜕𝛼
𝑅∗∕𝛼

|

|

|

ln (𝑝∗∕𝜂)
= 1

The following assertions are deduced from the previous equalities:
7

(i) As 𝑅∗ is linear on 𝜂 and 𝜕𝑅∗∕𝜕𝜂 = 𝑅∗∕𝜂, a relative change on
parameter 𝜂 leads to an equal relative change on the maximum income
expense ratio. That is, an 𝑚% -increase in parameter 𝜂 leads to an
𝑚%-increase in 𝑅∗.

(ii) The relative effect of parameter 𝜂 is greater than that of 𝜆, and
this is greater than or equal to that of ℎ, because 𝛼𝛾1 ≥ 𝛼 > 1.

(iii) The relative effect of parameter 𝜂 is greater than that of 𝑐, and
also greater than that of 𝐾, because 𝛼𝛾1

𝛼𝛾1−𝜉
> 1 and 𝛼𝛾1

𝜉−1 > 1.
(iv) As a particular case, if the storage cost rate per unit per time

is fixed (𝛾1 = 𝛾2 = 1), then the relative effect of parameter 𝜂 is greater
than that of 𝜆 or ℎ (which are equal except for the sign), and these are
greater than the parameter 𝐾. Indeed, if 𝛾1 = 𝛾2 = 1, then 𝜉 = 2− 𝛽 and
1 < 𝛼 < 𝛼

1−𝛽 .
In a similar way, the sensitivity analysis for the optimum sale price

𝑝∗ is given in the next proposition.

Proposition 2. Suppose that the inventory system satisfies the conditions
𝛽 < 1, 𝛽 ≤ 𝛾2∕𝛾1, 𝛼𝛾1 > 𝜉, and the profitability condition (21). Then, the
optimum sale price 𝑝∗ given by (17) satisfies that:

(i) 𝑝∗ decreases as the replenishing cost 𝐾, the scale parameter of the
storage cost ℎ, or the price elasticity coefficient of the demand rate
𝛼 increase.

(ii) 𝑝∗ increases as the population size of potential customers 𝜆, the unit
purchase price 𝑐, or the reference price of the item 𝜂 increase.

Proof. Taking into account that 𝜉 > 1 and 𝑝∗ > 𝑐 ≥ 𝜂 because the
inventory is profitable, the signs of the partial derivatives in the second
column of Table 5 prove the proposition. □

For the relative changes in absolute values we have
(

𝛼𝛾1
𝜉 − 1

)

|

|

|

|

𝜕𝑝∗∕𝜕𝐾
𝑝∗∕𝐾

|

|

|

|

= 𝛼𝛾1
|

|

|

|

𝜕𝑝∗∕𝜕ℎ
𝑝∗∕ℎ

|

|

|

|

=
(

𝛼𝛾1
𝜉

)(

𝜕𝑝∗∕𝜕𝑐
𝑝∗∕𝑐

)

=
(

𝜕𝑝∗∕𝜕𝜂
𝑝∗∕𝜂

)

= 𝛼
(

𝜕𝑝∗∕𝜕𝜆
𝑝∗∕𝜆

)

=

|

|

|

𝜕𝑝∗∕𝜕𝛼
𝑝∗∕𝛼

|

|

|

ln (𝑝∗∕𝜂) + 𝜉
𝛼𝛾1−𝜉

= 1

As a consequence, the following assertions are deduced:
(i) As 𝑝∗ is linear on 𝜂 and 𝜕𝑝∗∕𝜕𝜂 = 𝑝∗∕𝜂, a relative change on

parameter 𝜂 leads to an equal relative change on the optimum sale
price. That is, an 𝑚%-increase on parameter 𝜂 leads to an 𝑚%-increase
n 𝑝∗.

(ii) The relative effect of parameter 𝜂 is greater than that of 𝜆, and
this is greater than or equal to that of ℎ, because 𝛼𝛾 ≥ 𝛼 > 1.
1
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(iii) The relative effect of parameter 𝛼 is greater than that of 𝑐, and
his is greater than that of 𝐾. Indeed, as 𝛼𝛾1 > 𝜉 and 𝑝∗ > 𝜂, then
𝛼𝛾1
𝜉−1 > 𝛼𝛾1

𝜉 > 𝛼𝛾1−𝜉
𝜉 > 1

ln(𝑝∗∕𝜂)+ 𝜉
𝛼𝛾1−𝜉

.

(iv) The relative effect of parameter 𝑐 is greater than that of ℎ, and
t is lower than that of 𝜂, because 𝛼𝛾1 >

𝛼𝛾1
𝜉 > 1.

(v) As a particular case, if the storage cost rate per unit per time
s fixed (𝛾1 = 𝛾2 = 1) and parameter 𝛼 is excluded, then parameter

has the greatest relative effect on the sale price, then parameter 𝑐,
hen parameters 𝜆 and ℎ (which are equal except for the sign), and
inally parameter 𝐾. Indeed, if 𝛾1 = 𝛾2 = 1, then 𝜉 = 2 − 𝛽 and
< 𝛼

2−𝛽 < 𝛼 < 𝛼
1−𝛽 .

For the optimum order quantity 𝑞∗, the following proposition pro-
vides the sensitivity analysis regarding the parameters 𝐾, ℎ, 𝜆, 𝑐, 𝜂,
and 𝛼.

Proposition 3. Suppose that the inventory system satisfies the conditions
𝛽 < 1, 𝛽 ≤ 𝛾2∕𝛾1, 𝛼𝛾1 > 𝜉, and the profitability condition (21). Then, the
optimum order quantity 𝑞∗ given by (17) satisfies that:

(i) 𝑞∗ does not depend on the scale parameter of the demand rate ℎ, or
the population size of potential customers 𝜆, or the reference price of
the item 𝜂.

(ii) 𝑞∗ increases as the replenishing cost 𝐾 or the price elasticity coeffi-
cient 𝛼 increase.

(iii) 𝑞∗ decreases as the unit purchase price 𝑐 increases.

Proof. Taking into account that 𝛼𝛾1 > 𝜉, the signs of the partial
derivatives in the third column of Table 5 prove the proposition. □

The relative changes in absolute values for the three parameters 𝐾,
𝑐, and 𝛼 satisfy the equalities
𝜕𝑞∗∕𝜕𝐾
𝑞∗∕𝐾

=
|

|

|

|

𝜕𝑞∗∕𝜕𝑐
𝑞∗∕𝑐

|

|

|

|

=
(

1 −
𝜉
𝛼𝛾1

)(

𝜕𝑞∗∕𝜕𝛼
𝑞∗∕𝛼

)

= 1

Then the following assertions are deduced:
(i) As 𝑞∗ is linear on 𝐾 and 𝜕𝑞∗∕𝜕𝐾 = 𝑞∗∕𝐾, a relative change

n parameter 𝐾 leads to an equal relative change on the optimum
rder quantity 𝑞∗. That is, an 𝑚% -increase on parameter 𝐾 leads to
n 𝑚%-increase in 𝑞∗.

(ii) As 𝜕𝑞∗∕𝜕𝑐 = −𝑞∗∕𝑐, a small relative increase on parameter 𝑐
eads to an equal relative decrease in the optimum order quantity 𝑞∗.

(iii) The relative effect of parameter 𝛼 is greater than that of
arameters 𝐾 or 𝑐 (which are equal except for the sign), because
𝛾1 > 𝜉.

Finally, the sensitivity analysis for the scheduling period 𝑇 ∗ is
rovided in the next proposition.

roposition 4. Suppose that the inventory system satisfies the conditions
< 1, 𝛽 ≤ 𝛾2∕𝛾1, 𝛼𝛾1 > 𝜉, and the profitability condition (21). Then, the
ptimum scheduling period 𝑇 ∗ given by (20) satisfies that:

(i) 𝑇 ∗ does not depend on the population size of potential customers 𝜆,
or the reference price of the item 𝜂.

(ii) 𝑇 ∗ decreases as the replenishing cost 𝐾, or the scale parameter of
the storage cost ℎ, or the price elasticity coefficient 𝛼 increase.

(iii) 𝑇 ∗ increases as the unit purchase price 𝑐 increases.

roof. As 𝛼𝛾1 > 𝜉 and 𝛾2 ≥ 1, the signs of the partial derivatives in the
ast column of Table 5 prove the proposition. □

Note that, if 𝛾2 = 1, then 𝜕𝑇 ∗∕𝜕𝐾 = 0 because the optimum
cheduling period 𝑇 ∗ does not depend on 𝐾.

For the relative changes in absolute values we have that, if 𝛾2 > 1,
𝛾1

𝛾2 − 1

)

|

|

|

|

𝜕𝑇 ∗∕𝜕𝐾
𝑇 ∗∕𝐾

|

|

|

|

= 𝛾1
|

|

|

|

𝜕𝑇 ∗∕𝜕ℎ
𝑇 ∗∕ℎ

|

|

|

|

=
(

𝛾1
𝛾2

)(

𝜕𝑇 ∗∕𝜕𝑐
𝑇 ∗∕𝑐

)

=
(

𝛾1 − 𝜉∕𝛼
)

|

|

|

𝜕𝑇 ∗∕𝜕𝛼 |
|

|

= 1
8

𝛾2 |
𝑇 ∗∕𝛼

|

Then the following assertions are deduced:
(i) As 𝛾1−𝜉∕𝛼

𝛾2
< 𝛾1

𝛾2
≤ min

(

𝛾1,
𝛾1

𝛾2−1

)

, the parameter 𝛼 has the greatest
relative effect, then the parameter 𝑐, which is greater than or equal to
that of ℎ, and, if 𝛾2 > 1, than that of 𝐾.

(ii) If 𝛾2 = 1, then the relative effect of the parameters ℎ and 𝑐 are
equal except for the sign.

(iii) If 𝛾1 = 𝛾2, then 𝜕𝑞∗∕𝜕𝛼
𝑞∗∕𝛼 = −

(

𝜕𝑇 ∗∕𝜕𝛼
𝑇 ∗∕𝛼

)

= 𝛼𝛾1
𝛼𝛾1−𝜉

and, promptly,
a relative increase on parameter 𝛼 leads to a relative increase in the
optimum order quantity 𝑞∗, which is equal to the relative decrease in
the optimum scheduling period 𝑇 ∗.

6. Numerical results

This section illustrates all the obtained results with a double objec-
tive: (i) solving a numerical example that includes a sensitivity analysis
regarding all the initial parameters, and (ii) comparing the maximum
profitabililty policy with the maximum profit per unit time policy. This
comparison is an interesting question taking into account the fact that
both solutions are not always equal, because profit and profitability are
different objectives. The income expense ratio 𝑅 (𝑝, 𝑆, 𝑠) used in this
paper is given by

𝑅 (𝑝, 𝑆, 𝑠) =
𝐼𝑁 (𝑝, 𝑆, 𝑟)
𝑇𝐶 (𝑝, 𝑆, 𝑟)

(29)

hile the profit per unit time is given by

(𝑝, 𝑆, 𝑟) =
𝐼𝑁 (𝑝, 𝑆, 𝑟) − 𝑇𝐶 (𝑝, 𝑆, 𝑟)

𝑇 (𝑝, 𝑆, 𝑟)
(30)

here 𝑇 (𝑝, 𝑆, 𝑟), 𝑇𝐶 (𝑝, 𝑆, 𝑟), and 𝐼𝑁 (𝑝, 𝑆, 𝑟) are those given by (5), (7)
nd (8), respectively.

The maximization of the function 𝐺 (𝑝, 𝑆, 𝑟) has already been studied
n the inventory theory, and it is known that the optimum solution
an be obtained with 𝑟 ≠ 0, both when 𝑝 is a parameter (see, for
xample, Baker and Urban (1988)), and when it is a decision variable
see, for example, Chang et al. (2010)).

As the solution of the model can be obtained directly for any values
f the initial parameters, they will be chosen simply so that they can
e reasonable for a hypothetical situation. Thus, using a week as the
nit time and a euro (e) as the currency unit, let us suppose that
he replenishing cost, the reference price and the purchase price are,
espectively, 𝐾 = 500e, 𝜂 = 18e and 𝑐 = 20e. Consider that the storage
ost of one item during a week is ℎ = 3e, and the population size of

potential consumers for a week is 𝜆 = 800. The elasticity coefficients
for the storage cost are 𝛾1 = 1.2 and 𝛾2 = 1.5, that is, the cumulative
storage cost increases 1.2% if the time in stock increases 1%, and it
increases 1.5% if the stock level increases 1%. Regarding the demand
rate, consider that the elasticity coefficients are 𝛼 = 4 and 𝛽 = 0.2, that
is, a 1% increase in the sale price leads to a 4% decrease in the demand
rate, and a 1% increase in the stock quantity leads to a 0.2% increase
in the demand rate. Finally, let us suppose that the inventory manager
needs to obtain the inventory policy with the maximum income expense
ratio.

With these input data, 𝐵
(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

= 𝐵 (1.2, 2.875) = 0.2488
and the values for the parameters 𝐴, 𝜉 and 𝛥 given by (13), (14) and
(22) are, respectively, 𝐴 = 3.6257 ⋅10−10, 𝜉 = 2.46 and 𝛥 = 0.0175. Then,
the conditions 𝛽 < 1, 𝛽 ≤ 𝛾2∕𝛾1, and 𝛼𝛾1 > 𝜉 considered in Section 4.3
are true, and Theorem 1 can be used to obtain the optimum policy.
Then, the optimum order quantity given by (16) is 𝑞∗ = 40.07 items, the
optimum sale price given by (17) is 𝑝∗ = 47.14e, and the reorder point
is, as we know, 𝑟∗ = 0. The minimum operating expense ratio given
by (18) is 𝑂∗ = 0.8703, that is, the inventory system needs 0.8703e
for each entered euro. Furthermore, the operating cost of the system
is 87.03% of the income. As a consequence, the maximum income
expense ratio is 𝑅∗ = 1∕𝑂∗ = 1.1490, that is, the profitability of the
inventory system is 14.9%. The optimum scheduling period, given by

∗
(20), is 𝑇 = 1.41 weeks (about 10 days).
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Table 6
Profitability thresholds for the parameters of the system.

𝐾 ℎ 𝑐 𝜂 𝜆 𝛼 𝛽 𝛾1 𝛾2
Actual value 500 3 20 18 800 4 0.2 1.2 1.5
Profitability threshold < 789.5 < 5.8 < 26.5 > 15.7 > 458.9 < 4.8 > 0.02 ≥ 1 < 1.8
Table 7
Absolute and relative changes to 𝑝∗, 𝑞∗, 𝑅∗, 𝑇 ∗ regarding 𝐾, ℎ, 𝑐, 𝜆, 𝜂, 𝛼.

Actual value 𝐾 = 500 ℎ = 3 𝑐 = 20 𝜂 = 18 𝜆 = 800 𝛼 = 4

𝑧 = 𝐾 𝑧 = ℎ 𝑧 = 𝑐 𝑧 = 𝜂 𝑧 = 𝜆 𝑧 = 𝛼

𝜕𝑝∗∕𝜕𝑧 −0.03 −3.27 1.21 2.62 0.01 −23.74
(𝜕𝑝∗∕𝜕𝑧) ∕ (𝑝∗∕𝑧) −0.30 −0.21 0.51 1 0.25 −2.01

𝜕𝑞∗∕𝜕𝑧 0.08 0 −2.00 0 0 20.55
(𝜕𝑞∗∕𝜕𝑧) ∕ (𝑞∗∕𝑧) 1 0 −1 0 0 2.05

𝜕𝑅∗∕𝜕𝑧 −0.0007 −0.08 −0.03 0.06 0.0004 −0.28
(𝜕𝑅∗∕𝜕𝑧) ∕ (𝑅∗∕𝑧) −0.30 −0.21 −0.49 1 0.25 −0.96

𝜕𝑇 ∗∕𝜕𝑥 −0.001 −0.39 0.09 0 0 −0.90
(𝜕𝑇 ∗∕𝜕𝑧) ∕ (𝑇 ∗∕𝑧) −0.42 −0.83 1.25 0 0 −2.56
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For this optimum policy, the storage cost in a scheduling period is
∕(𝜉 − 1) = 342.47e, and the total expense in a scheduling period is
𝛾1𝐾∕(𝜉−1) = 1643.85e. Then, the costs distribution is 342.47∕1643.85 =
0.83% for the storage cost, 500∕1643.85 = 30.42% for the replenishing
ost, and the other 48.75% for the purchase cost. The income in a cycle,
iven by (8), is 𝐼𝑁 (47.14, 40.07, 0) = 1888.89e, and the total expense in
scheduling period, given by (7), is 𝑇𝐶 (47.14, 40.07, 0) = 1643.85e,

which coincides with the previous value given by 𝛼𝛾1𝐾∕(𝜉 − 1). The
quotient between these two quantities is the optimum income expense
ratio, that is, 𝑅 (47.14, 40.07, 0) = 1.1490, which coincides with the value
given by expression (19). Also, for this optimum solution, the profit per
unit time, given by (26) or (30), is 𝐺 (47.14, 40.1, 0) = 174.05e per week,
and the total cost per unit time, given by (24), is 𝐶 (47.14, 40.07, 0) =
1167.55 e per week.

Using the expressions given in Table 3 with 𝛥 = 0.0175, the prof-
itability thresholds for each of the parameters 𝐾, ℎ, 𝑐, 𝜆, and 𝜂, keeping
all the others fixed, have been calculated and included in Table 6. In
addition, the profitability thresholds for the elasticity coefficients of the
model have numerically been evaluated for this example, taking into
account that this inventory system is profitable because condition (21)
is satisfied.

To illustrate the sensitivity analysis, the partial derivatives of the
optimum values for 𝑝∗, 𝑞∗, 𝑅∗ and 𝑇 ∗ have been evaluated, in absolute
and relative values, and are included in Table 7.

The optimum sale price 𝑝∗ decreases with parameters 𝐾, ℎ and 𝛼,
and it increases with parameters 𝑐, 𝜂 and 𝜆. Parameter 𝛼 has the highest
relative effect, then parameter 𝜂, then parameter 𝑐, and parameters 𝐾,
𝜆 and ℎ have a lower effect. The optimum order quantity 𝑞∗ does not
depend on parameters ℎ, 𝜂 and 𝜆, it increases with 𝐾 and 𝛼, and it
ecreases with parameter 𝑐. Parameter 𝛼 also has the highest relative
ffect, and parameters 𝐾 and 𝑐 have an equal relative effect, but with
he opposite sign. Regarding the maximum income expense ratio 𝑅∗, it

decreases with parameters 𝐾, ℎ, 𝑐 and 𝛼, and increases with parameters
and 𝜆. The highest relative effect is obtained with parameter 𝜂, then
arameter 𝛼, then parameter 𝑐, while parameters 𝐾, ℎ and 𝜆 have
lower effect. Finally, the optimum scheduling period 𝑇 ∗ does not

epend on parameters 𝜂 and 𝜆, it increases with 𝑐, and decreases with
arameters 𝐾, ℎ and 𝛼. Also now, the highest relative effect is obtained
or parameter 𝛼, then parameter 𝑐, while parameters 𝐾 and ℎ have

lower effect. All these remarks agree with the results obtained in
ection 5.

The sensitivity analysis has been completed solving the model with
ercentage changes between −50% and 50% in each of the parameters,
eeping all the others fixed. Then, the percentage changes in the sale
rice 𝑝∗, the order quantity 𝑞∗, the maximum income expense ratio 𝑅∗,
nd the optimum scheduling period 𝑇 ∗ have been evaluated and plotted
9

n Fig. 1.
The second objective in this section is the comparison of the opti-
um solutions to the problems of the maximum income expense ratio

nd the maximum profit per unit time for this numerical example.
o do that, for each fixed 𝑝 ∈ (20, 60) with a step of one-hundredth,
he optimum solution for the maximum income expense ratio problem
as been evaluated by using the expressions (27) for the optimum
rder quantity 𝑞∗𝑝 , and (28) for the maximum income expense ratio
∗
𝑝 . Furthermore, the optimum scheduling period 𝑇 ∗

𝑝 and the profit per
nit time 𝐺𝑅

𝑝 = 𝐺
(

𝑝, 𝑞∗𝑝 , 0
)

for this optimum solution were evaluated
ith the expressions (5) and (30), respectively. For the maximum profit
er unit time problem, the algorithm included in Pando Fernández
2014) (Algoritmo 2, p. 64) has been used to obtain the optimum order
evel 𝑆𝐺

𝑝 , the optimum reorder point 𝑟𝐺𝑝 , the optimum order quantity
𝐺
𝑝 = 𝑆𝐺

𝑝 − 𝑟𝐺𝑝 , the optimum scheduling period 𝑇𝐺
𝑝 = 𝑇

(

𝑝, 𝑆𝐺
𝑝 , 𝑟

𝐺
𝑝

)

,

nd the maximum profit per unit time 𝐺∗
𝑝 = 𝐺

(

𝑝, 𝑆𝐺
𝑝 , 𝑟

𝐺
𝑝

)

. The income

xpense ratio for this solution 𝑅𝐺
𝑝 = 𝑅

(

𝑝, 𝑆𝐺
𝑝 , 𝑟

𝐺
𝑝

)

was also evaluated

ith the expression (29). Then, the point
(

𝑝, 𝑆𝐺
𝑝 , 𝑟

𝐺
𝑝

)

with the greatest
alue of 𝐺∗

𝑝 provides the optimum sale price 𝑝𝐺, the optimum order
evel 𝑆𝐺, the optimum reorder point 𝑟𝐺 and the maximum profit per
nit time 𝐺∗. The order quantity 𝑞𝐺 = 𝑆𝐺 − 𝑟𝐺, the scheduling period

𝑇𝐺 = 𝑇
(

𝑝𝐺 , 𝑆𝐺 , 𝑟𝐺
)

, and the income expense ratio 𝑅𝐺 = 𝑅
(

𝑝𝐺 , 𝑆𝐺 , 𝑟𝐺
)

for this optimum solution were evaluated to compare them with the
optimum values 𝑞∗, 𝑇 ∗ and 𝑅∗. The profit per unit time for the max-
imum income expense ratio solution was denoted by 𝐺𝑅 = 𝐺𝑅

𝑝∗ =
(𝑝∗, 𝑞∗, 0) = 174.05. All these quantities are included in Table 8.
Both optimum solutions are only near the reorder point 𝑟, which is 0

n the maximum profitability problem, and roughly 0 in the maximum
rofit per unit time problem. In fact, in this example, for every 𝑝 ∈
20, 60) the reorder point 𝑟𝐺𝑝 is roughly 0, although this is not true in
ll cases (see for example Pando et al., 2019). The maximum profit per
nit time is obtained with a sale price of 𝑝𝐺 = 33.82, which is 28%

lower than the optimum sale price with a maximum income expense
ratio, which is 𝑝∗ = 47.14. In addition, the optimum order quantity
for the solution with a maximum profit per unit time is 𝑞𝐺 = 79.30,
which is 98% higher than the optimum order quantity 𝑞∗ = 40.07 for
the maximum income expense ratio solution. The scheduling period
with a maximum profit per unit time is 𝑇𝐺 = 0.64 weeks, which is
55% lower than the optimum scheduling period with the maximum
income expense ratio, which is 𝑇 ∗ = 1.41 weeks. The maximum profit
per unit time is 𝐺∗ = 346.34 e, while the profit per unit time for the
solution with maximum income expense ratio is 𝐺𝑅 = 174.05e, which is
roughly 50% lower. Note that the total sales with the maximum profit
solution are 𝑞𝐺∕𝑇𝐺 = 123.9 items per week, while the total sales with
the maximum income expense ratio policy are 𝑞∗∕𝑇 ∗ = 28.9 items per

eek, considerably lower.
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Fig. 1. Percentage changes in 𝑝∗, 𝑞∗, 𝑅∗ and 𝑇 ∗ versus percentage changes in each parameter.
Table 8
Optimum solutions for the problems of maximum profitability and maximum profit per week.

Problem 𝑝 𝑆 𝑟 𝑞 𝑇 𝐺 𝑅

𝑅 (𝑝, 𝑆, 𝑟) 𝑝∗ = 47.14 𝑆∗ = 40.07 𝑟∗ = 0 𝑞∗ = 40.07 𝑇 ∗ = 1.41 𝐺𝑅 = 174.05 𝑅∗ = 1.1490
𝐺 (𝑝, 𝑆, 𝑟) 𝑝𝐺 = 33.82 𝑆𝐺 = 79.31 𝑟𝐺 = 0.01 𝑞𝐺 = 79.30 𝑇 𝐺 = 0.64 𝐺∗ = 346.34 𝑅𝐺 = 1.0906
Furthermore, the income expense ratio for the maximum profit
per unit time solution is 𝑅𝐺 = 1.0906 (9.1% profitability), while the
maximum income expense ratio is 𝑅∗ = 1.1490 (14.9% profitability).
Then, the solution with a maximum income expense ratio yields a
profit per unit time 50% lower, but 5.8% more profitability. Conse-
quently, the optimum policy proposed in this paper provides higher
profitability with lower sales but less profit per week. Evaluating the
total expense for the maximum profit per unit time solution we obtain
𝐶 (33.82, 79.30, 0.01) = 3821.06e per week, with a profit 𝐺∗ = 346.34e
per week. On the other hand, as we said before, the maximum income
expense ratio solution yields a profit of 𝐺 (47.14, 40.1, 0) = 174.05e per
week with a total expense of 𝐶 (47.14, 40.07, 0) = 1167.55e per week.
Then, the difference in total expense, 3821.06−1167.55 = 2653.51e could
be invested in other items with profitability greater than 9.1%, which
yields the maximum profit per unit time solution. For example, if the
inventory manager markets other items with 14.9% profitability, the
profit per week would reach the value of (3821.06) (0.149) = 569.34e,
which is 64% higher than 𝐺∗ = 346.34 e. Consequently, the inventory
manager might prefer to diversify the monetary resources in the most
profitable items, instead of using all of them in the solution with
the maximum profit per unit time for one of them. In this way, the
inventory manager would increase the total profit per unit with the
sum of the profits from the other items. For this numerical example
the increase could reach 64%, which is a significant amount. However,
if there are no other investment options, the maximum profit per unit
time policy might be a better option. Therefore, both policies may be
necessary depending on each particular case.
10
Besides that, this numerical example suggests that, regarding the
solution of maximum profit per unit time, the solution with the max-
imum income expense ratio requires higher values for the sale price
and the scheduling period, and smaller values for the order quantity
and the total cost per unit time in the inventory system. Similar results
were obtained by Pando et al. (2020) when the demand rate depends
exponentially on the sale price, but the storage cost rate per unit per
time is constant.

Finally, for each 𝑝 ∈ (25, 60) with increments of one-hundredth,
Fig. 2 plots the 𝐺∗

𝑝 -quantities in the left vertical axis, and the 𝑅∗
𝑝-

quantities in the right vertical axis. This plot shows that everything is
right.

7. Conclusions and managerial insights

This paper analyses an inventory system focused on profitability
maximization with two significant characteristics: (i) the demand rate
depends simultaneously and isoelastically on the sale price and the
stock quantity; and (ii) the storage cost is simultaneously non-linear
in time and stock quantity, also with an isoelastic dependence on both
variables. The obtained results lead to the following list of conclusions
which are also managerial implications for the inventory manager:

(a) The optimum reorder point is always equal to zero, that is, the
replenishment should be done when the stock is depleted.

(b) The optimum order quantity is given in a closed form, and it
only depends on the purchase price, the replenishing cost and
the four elasticity coefficients of the model.
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Fig. 2. Maximum profit per unit time and maximum income expense ratio for each 𝑝.
(c) The optimum sale price, the maximum income expense ratio,
and the optimum scheduling period are also obtained with ex-
plicit expressions regarding the initial parameters.

(d) The previous statements make the applicability of the model in
a real-life engineering setting does not have any obstacles or
limitations. The inventory manager only needs to evaluate the
closed expressions for the decision variables and the maximum
profitability. However, to implement this solution in practice,
the inventory manager should estimate the four elasticity coef-
ficients of the model as best as possible. It could be done using
data previously obtained during inventory management.

(e) Excluding the elasticity coefficients of the model, we obtain
profitability thresholds for each of the parameters.

(f) The optimum order quantity is proportional to the replenishing
cost and inversely proportional to the unit purchase price.

(g) The optimum sale price increases with the unit purchase price,
the reference price of the item, and the population size of
potential customers. Nevertheless, it decreases with the replen-
ishing cost, the price elasticity of the demand rate and the scale
parameter of the storage cost.

(h) The maximum income expense ratio decreases with the replen-
ishing cost, the unit purchase price, the price elasticity of the
demand rate, and the scale parameter of the storage cost. On
the other hand, it increases with the reference price of the item
and the population size of potential customers.

(i) The optimum scheduling period increases with the unit purchase
price, and decreases with the replenishing cost, the price elastic-
ity of the demand rate, and the scale parameter of the storage
cost. Furthermore, it does not depend on the reference price of
the item or the population size of potential customers.

(j) Numerical results suggest that, regarding the maximum profit
per unit time policy, the optimum policy for profitability max-
imization leads to higher values for the sale price and the
scheduling period, and lower values for the order quantity and
the total sales per unit time.

(k) If the inventory manager diversifies the monetary resources in
items with greater profitability, the total profit per unit time
could be increased with respect to investing all of them in the
maximum profit per unit time policy for one of the items.

Future research topics extending this model could be: (i) to consider
perishable or deteriorating items; (ii) to include a unit purchase price or
a replenishing cost depending on the order quantity; and (iii) to study
inventory systems with multiple items.
11
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Appendix A

In this appendix, all the proofs for the results given in this paper are
included.

Proof of Lemma 1. As the storage cost rate per unit per time is given
by

𝜕2

𝜕𝑡𝜕𝑥
𝐻(𝑡, 𝑥) = ℎ𝛾1𝛾2𝑡

𝛾1−1𝑥𝛾2−1

the storage cost for the region of the (𝑡, 𝑥)-plane under the inventory
level curve 𝑥 = 𝐼(𝑡), with 0 ≤ 𝑡 ≤ 𝑇 (𝑝, 𝑆, 𝑟), can be evaluated as

𝐻𝐶 (𝑝, 𝑆, 𝑟) = ∫

𝑇 (𝑝,𝑆,𝑟)

0

(

∫

𝐼(𝑡)

0
ℎ𝛾1𝛾2𝑡

𝛾1−1𝑥𝛾2−1𝑑𝑥

)

𝑑𝑡

= ∫

𝑇 (𝑝,𝑆,𝑟)

0
ℎ𝛾1𝑡

𝛾1−1 (𝐼(𝑡))𝛾2 𝑑𝑡

With the change of variable 𝑥 = 𝐼(𝑡) we have 𝑡 = 𝑆1−𝛽−𝑥1−𝛽
(1−𝛽)𝜆𝜂𝛼𝑝−𝛼 and,

using (3), 𝑑𝑥 = −𝜆𝜂𝛼𝑝−𝛼 (𝐼(𝑡))𝛽 𝑑𝑡. Then, the storage cost in a scheduling
period is

𝐻𝐶 (𝑝, 𝑆, 𝑟) =
(

ℎ𝛾1
(1 − 𝛽)𝛾1−1 (𝜆𝜂𝛼𝑝−𝛼)𝛾1

)

∫

𝑆

𝑟

(

𝑆1−𝛽 − 𝑥1−𝛽
)𝛾1−1 𝑥𝛾2−𝛽𝑑𝑥

and the proof is completed. □
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Proof of Theorem 1. For any fixed sale price 𝑝, if 𝛬 = 𝜆 (𝑝∕𝜂)−𝛼 , the
nventory model leads to the system studied by Pando et al. (2019)
ith 𝜆 = 𝛬. Then, using the assumption 𝛽 ≤ 𝛾2∕𝛾1, the first statement

s proved by Theorem 2 in that paper.
The function 𝑂(𝑝, 𝑞) given by (15) is differentiability class 𝐶2 and

atisfies that lim𝑝→0+ 𝑂(𝑝, 𝑞) = lim𝑝→∞ 𝑂(𝑝, 𝑞) = ∞ for any 𝑞 > 0, and also
im𝑞→0+ 𝑂(𝑝, 𝑞) = lim𝑞→∞ 𝑂(𝑝, 𝑞) = ∞ for any 𝑝 > 0. Then the minimum
alue of the function 𝑂(𝑝, 𝑞) in the feasible region 𝛺 is necessarily
btained at a stationary point inside the 𝛺 set.

The first partial derivatives of the function 𝑂(𝑝, 𝑞) are given by

𝜕𝑂
𝜕𝑝

= − 𝑐
𝑝2

− 𝐾
𝑝2𝑞

+
(

𝛼𝛾1 − 1
)

𝐴𝑝𝛼𝛾1−2𝑞𝜉−1 =
−𝑐𝑞 −𝐾 +

(

𝛼𝛾1 − 1
)

𝐴𝑝𝛼𝛾1𝑞𝜉

𝑝2𝑞

𝜕𝑂
𝜕𝑞

= − 𝐾
𝑝𝑞2

+ (𝜉 − 1)𝐴𝑝𝛼𝛾1−1𝑞𝜉−2 =
−𝐾 + (𝜉 − 1)𝐴𝑝𝛼𝛾1𝑞𝜉

𝑝𝑞2

Then, the stationary points are given by the solutions of the system

−𝑐𝑞 −𝐾 +
(

𝛼𝛾1 − 1
)

𝐴𝑝𝛼𝛾1𝑞𝜉 = 0
−𝐾 + (𝜉 − 1)𝐴𝑝𝛼𝛾1𝑞𝜉 = 0

}

ith 𝑝 > 0 and 𝑞 > 0.
By the second equation, we have 𝐴𝑝𝛼𝛾1𝑞𝜉 = 𝐾∕(𝜉−1), and substitut-

ng in the first equation, we have

𝑐𝑞 −𝐾 +
𝐾

(

𝛼𝛾1 − 1
)

𝜉 − 1
= 0

Then the unique solution for 𝑞 is

𝑞∗ =

(

𝛼𝛾1 − 𝜉
)

𝐾
(𝜉 − 1) 𝑐

and, using the second equation, the unique positive solution for 𝑝 is

∗ =
(

𝐾 (𝑞∗)−𝜉

(𝜉 − 1)𝐴

)1∕(𝛼𝛾1)
(31)

As a consequence, (𝑝∗, 𝑞∗) is the unique stationary point for the
unction 𝑂 (𝑝, 𝑞). To prove that it is the minimum we need to calculate
he second-order derivatives, as follows:

𝜕2𝑂
𝜕𝑝2

= 2𝑐
𝑝3

+ 2𝐾
𝑝3𝑞

+
(

𝛼𝛾1 − 1
) (

𝛼𝛾1 − 2
)

𝐴𝑝𝛼𝛾1−3𝑞𝜉−1

𝜕2𝑂
𝜕𝑞2

= 2𝐾
𝑝𝑞3

+ (𝜉 − 1) (𝜉 − 2)𝐴𝑝𝛼𝛾1−1𝑞𝜉−3

𝜕2𝑂
𝜕𝑝𝜕𝑞

= 𝐾
𝑝2𝑞2

+
(

𝛼𝛾1 − 1
)

(𝜉 − 1)𝐴𝑝𝛼𝛾1−2𝑞𝜉−2

Then, if 𝜕𝑂
𝜕𝑝 = 0, we have 𝑐

𝑝2
+ 𝐾

𝑝2𝑞
=
(

𝛼𝛾1 − 1
)

𝐴𝑝𝛼𝛾1−2𝑞𝜉−1, and also,
f 𝜕𝑂

𝜕𝑞 = 0, we have 𝐾
𝑝𝑞2

= (𝜉 − 1)𝐴𝑝𝛼𝛾1−1𝑞𝜉−2. Therefore, if 𝜕𝑂
𝜕𝑝 = 𝜕𝑂

𝜕𝑞 = 0,

the second partial derivatives are:

𝜕2𝑂
𝜕𝑝2

=
2
(

𝛼𝛾1 − 1
)

𝐴𝑝𝛼𝛾1−2𝑞𝜉−1

𝑝
+
(

𝛼𝛾1 − 1
) (

𝛼𝛾1 − 2
)

𝐴𝑝𝛼𝛾1−3𝑞𝜉−1

= 𝛼𝛾1
(

𝛼𝛾1 − 1
)

𝐴𝑝𝛼𝛾1−3𝑞𝜉−1

𝜕2𝑂
𝜕𝑞2

=
2 (𝜉 − 1)𝐴𝑝𝛼𝛾1−1𝑞𝜉−2

𝑞
+ (𝜉 − 1) (𝜉 − 2)𝐴𝑝𝛼𝛾1−1𝑞𝜉−3

= 𝜉 (𝜉 − 1)𝐴𝑝𝛼𝛾1−1𝑞𝜉−3

𝜕2𝑂
𝜕𝑝𝜕𝑞

=
(𝜉 − 1)𝐴𝑝𝛼𝛾1−1𝑞𝜉−2

𝑝
+
(

𝛼𝛾1 − 1
)

(𝜉 − 1)𝐴𝑝𝛼𝛾1−2𝑞𝜉−2

= 𝛼𝛾1 (𝜉 − 1)𝐴𝑝𝛼𝛾1−2𝑞𝜉−2

As a consequence, if 𝜕𝑂
𝜕𝑝 = 0 and 𝜕𝑂

𝜕𝑞 = 0, all these second partial
derivatives are strictly positive because 𝛼𝛾1 > 𝜉 > 1. Moreover, the
Hessian of the function 𝑂(𝑝, 𝑞) is
(

𝜕2𝑂
)(

𝜕2𝑂
)

−
(

𝜕2𝑂
)2

= 𝛼𝛾1 (𝜉 − 1)𝐴2𝑝2𝛼𝛾1−4𝑞2𝜉−4
12

𝜕𝑝2 𝜕𝑞2 𝜕𝑝𝜕𝑞
×
((

𝛼𝛾1 − 1
)

𝜉 − 𝛼𝛾1 (𝜉 − 1)
)

= 𝛼𝛾1 (𝜉 − 1)
(

𝛼𝛾1 − 𝜉
)

𝐴2𝑝2𝛼𝛾1−4𝑞2𝜉−4

Therefore, the Hessian matrix of the function 𝑂(𝑝, 𝑞) at the point
(𝑝∗, 𝑞∗) is positive definite, because 𝛼𝛾1 > 𝜉 > 1. This ensures that the
minimum of the function 𝑂(𝑝, 𝑞) is obtained at the point (𝑝∗, 𝑞∗). Then,
he order quantity 𝑞∗ is given by the expression (16) in statement (ii).
oreover, substituting the values for 𝐴 and 𝑞∗ in the expression of 𝑝∗,
e obtain the expression (17) in statement (iii). To prove statement

iv), we evaluate the function 𝑂(𝑝, 𝑞) at the point (𝑝∗, 𝑞∗) taking into
ccount the fact that 𝐾

𝑝∗(𝑞∗)2
= (𝜉 − 1)𝐴 (𝑝∗)𝛼𝛾1−1 (𝑞∗)𝜉−2. Thus, we get

∗ = 𝑂
(

𝑝∗, 𝑞∗
)

= 𝑐
𝑝∗

+ 𝐾
𝑝∗𝑞∗

+ 𝐴
(

𝑝∗
)𝛼𝛾1−1 (𝑞∗

)𝜉−1

= 𝑐
𝑝∗

+ 𝐾
𝑝∗𝑞∗

+ 𝐾
(𝜉 − 1) 𝑝∗𝑞∗

=
(

𝑐 +
𝜉𝐾

(𝜉 − 1) 𝑞∗

)(

1
𝑝∗

)

=
(

𝛼𝛾1
𝛼𝛾1 − 𝜉

)(

𝑐
𝑝∗

)

Then, statement (iv) is proved. Moreover, using the expression (9),
the maximum income expense ratio will be

𝑅∗ = 1
𝑂 (𝑝∗, 𝑞∗)

=
(

1 −
𝜉
𝛼𝛾1

)(

𝑝∗

𝑐

)

nd, using the expression (17) for 𝑝∗, we obtain the final expression in
19) for 𝑅∗. Then, statement (v) is also proved.

Furthermore, using the expression (5), the optimum scheduling
period is

𝑇 ∗ = 𝑇
(

𝑝∗, 𝑞∗, 0
)

=
(𝑞∗)1−𝛽 (𝑝∗)𝛼

(1 − 𝛽)𝜆𝜂𝛼

nd substituting the values for 𝑞∗ and 𝑝∗, the expression (20) in the
tatement (vi) is obtained.

Now, as the storage cost in each cycle is given by (12) and
𝜕𝑂
𝜕𝑞 (𝑝∗, 𝑞∗) = 0, then

𝐻𝐶
(

𝑝∗, 𝑞∗, 0
)

= 𝐴
(

𝑝∗
)𝛼𝛾1 (𝑞∗

)𝜉 = 𝐾
𝜉 − 1

and the total expense in each scheduling period is the sum of the
storage cost, the replenishing cost and the purchase cost, that is

𝐾
𝜉 − 1

+𝐾 + 𝑐𝑞∗ = 𝐾
𝜉 − 1

+𝐾 +

(

𝛼𝛾1 − 𝜉
)

𝐾
𝜉 − 1

=
𝛼𝛾1𝐾
𝜉 − 1

Therefore, statement (vii) is proved. From the previous expression,
the cost proportion of the storage cost on the total expense is 1

𝛼𝛾1
,

the cost proportion for the replenishing cost is 𝜉−1
𝛼𝛾1

, and the remaining
proportion for the purchase cost is 1− 𝜉

𝛼𝛾1
. As a consequence, statement

viii) is also proved and the proof of Theorem 1 is completed. □

roof of Corollary 1. For statement (i), the inventory system is
profitable if, and only if, the income expense ratio 𝑅∗ is strictly greater
than 1, that is

𝑅∗ > 1 ⇔

(

1 −
𝜉
𝛼𝛾1

)(

𝑝∗

𝑐

)

> 1 ⇔ 𝑝∗ >
(

𝛼𝛾1
𝛼𝛾1 − 𝜉

)

𝑐

Then, using the formula (17) in this expression, the inequality is
equivalent to

(𝜉 − 1)𝜉−1 (1 − 𝛽)𝛾1𝜆𝛾1 𝑐𝜉

𝛾1𝐵
(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

𝐾𝜉−1ℎ
>

(

𝛼𝛾1
)𝛼𝛾1 𝑐𝛼𝛾1

(

𝛼𝛾1 − 𝜉
)𝛼𝛾1−𝜉 𝜂𝛼𝛾1

that is,

𝐾𝜉−1𝑐𝛼𝛾1−𝜉ℎ
𝜆𝛾1𝜂𝛼𝛾1

<
(𝜉 − 1)𝜉−1 (1 − 𝛽)𝛾1

(

𝛼𝛾1 − 𝜉
)𝛼𝛾1−𝜉

𝛾1
(

𝛼𝛾1
)𝛼𝛾1 𝐵

(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

= 𝛥

s statement (i) establishes. Even more, if 𝑅∗ > 1, as 𝛼𝛾1 > 𝜉, necessarily
∗
𝑝 > 𝑐 and statement (ii) is proved. Finally, for statement (iii), as
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a

p

a

b

s

𝛼𝛾1 > 𝜉, if condition (23) is satisfied then

𝑝∗ =
(

𝐾 (𝑞∗)−𝜉

(𝜉 − 1)𝐴

)1∕(𝛼𝛾1)
=

⎛

⎜

⎜

⎜

⎝

𝐾
( (𝛼𝛾1−𝜉)𝐾

(𝜉−1)𝑐

)−𝜉

(𝜉 − 1)𝐴

⎞

⎟

⎟

⎟

⎠

1∕(𝛼𝛾1)

=

(

(𝜉 − 1)𝜉−1 𝑐𝜉
(

𝛼𝛾1 − 𝜉
)𝜉 𝐴𝐾𝜉−1

)1∕(𝛼𝛾1)
≤
(

𝑐𝛼𝛾1−𝜉𝑐𝜉
)1∕(𝛼𝛾1) = 𝑐

and the inventory system never makes a profit, because

𝑅∗ =
(

1 −
𝜉
𝛼𝛾1

)(

𝑝∗

𝑐

)

< 1

Then, the proof of the corollary is completed. □

Appendix B

The partial derivatives of the optimum order quantity 𝑞∗ given by
expression (16) are easily obtained as:
𝜕𝑞∗

𝜕𝐾
=

𝛼𝛾1 − 𝜉
(𝜉 − 1) 𝑐

=
𝑞∗

𝐾
> 0

𝜕𝑞∗

𝜕ℎ
=

𝜕𝑞∗

𝜕𝜆
=

𝜕𝑞∗

𝜕𝜂
= 0

𝜕𝑞∗

𝜕𝑐
= −

(

𝛼𝛾1 − 𝜉
)

𝐾

(𝜉 − 1) 𝑐2
=

−𝑞∗

𝑐
< 0

nd
𝜕𝑞∗

𝜕𝛼
=

𝛾1𝐾
(𝜉 − 1) 𝑐

=
𝛾1𝑞∗

𝛼𝛾1 − 𝜉
> 0

because 𝛼𝛾1 > 𝜉.
Now, the derivatives of the optimum sale price 𝑝∗, given by expres-

sion (17), will be evaluated. For the parameter 𝐾, using logarithmic
differentiation, we have

𝜕𝑝∗

𝜕𝐾
= 𝑝∗

(

𝜕 ln 𝑝∗

𝜕𝐾

)

= 𝑝∗
⎛

⎜

⎜

⎜

⎝

𝜕
(

−(𝜉−1) ln𝐾
𝛼𝛾1

)

𝜕𝐾

⎞

⎟

⎟

⎟

⎠

=
(

𝜉 − 1
𝛼𝛾1

)(

−𝑝∗

𝐾

)

< 0

In a similar way, for the parameters ℎ, 𝜆, 𝑐, and 𝜂, we obtain:

𝜕𝑝∗

𝜕ℎ
= 𝑝∗

(

𝜕 ln 𝑝∗

𝜕ℎ

)

= 𝑝∗
⎛

⎜

⎜

⎜

⎝

𝜕
(

− lnℎ
𝛼𝛾1

)

𝜕ℎ

⎞

⎟

⎟

⎟

⎠

=
(

1
𝛼𝛾1

)(

−𝑝∗

ℎ

)

< 0

𝜕𝑝∗

𝜕𝜆
= 𝑝∗

(

𝜕 ln 𝑝∗

𝜕𝜆

)

= 𝑝∗
⎛

⎜

⎜

⎜

⎝

𝜕
(

𝛾1 ln 𝜆
𝛼𝛾1

)

𝜕𝜆

⎞

⎟

⎟

⎟

⎠

=
( 1
𝛼

)

(

𝑝∗

𝜆

)

> 0

𝜕𝑝∗

𝜕𝑐
= 𝑝∗

(

𝜕 ln 𝑝∗

𝜕𝑐

)

= 𝑝∗
⎛

⎜

⎜

⎜

⎝

𝜕
(

𝜉 ln 𝑐
𝛼𝛾1

)

𝜕𝑐

⎞

⎟

⎟

⎟

⎠

=
(

𝜉
𝛼𝛾1

)(

𝑝∗

𝑐

)

> 0

𝜕𝑝∗

𝜕𝜂
= 𝑝∗

(

𝜕 ln 𝑝∗

𝜕𝜂

)

=
𝑝∗

𝜂
> 0

For the parameter 𝛼, we have

ln 𝑝∗ = ln 𝜂 +
(

1
𝛼𝛾1

)

ln

(

(𝜉 − 1)𝜉−1 (1 − 𝛽)𝛾1𝜆𝛾1 𝑐𝜉
(

𝛼𝛾1 − 𝜉
)𝜉 𝛾1𝐵

(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

𝐾𝜉−1ℎ

)

and

𝜕 ln 𝑝∗

𝜕𝛼
=

(

−1
𝛼2𝛾1

)

ln

(

(𝜉 − 1)𝜉−1 (1 − 𝛽)𝛾1𝜆𝛾1 𝑐𝜉
(

𝛼𝛾1 − 𝜉
)𝜉 𝛾1𝐵

(

𝛾1, 1 + 𝛾2∕(1 − 𝛽)
)

𝐾𝜉−1ℎ

)

+
(

1
𝛼𝛾1

)(

−𝛾1𝜉
𝛼𝛾1 − 𝜉

)

=
− ln (𝑝∗∕𝜂)

−
( 1)

(

𝜉
)
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𝛼 𝛼 𝛼𝛾1 − 𝜉
Then, we obtain

𝜕𝑝∗

𝜕𝛼
= 𝑝∗

(

𝜕 ln 𝑝∗

𝜕𝛼

)

=
(

ln
(

𝑝∗∕𝜂
)

+
𝜉

𝛼𝛾1 − 𝜉

)(

−𝑝∗

𝛼

)

< 0

because 𝛼𝛾1 > 𝜉 and, as the inventory is profitable, 𝑝∗ > 𝑐 ≥ 𝜂.
For the maximum income expense ratio 𝑅∗, given by (19), the

artial derivatives are:

𝜕𝑅∗

𝜕𝐾
=
(

1 −
𝜉
𝛼𝛾1

)(

𝜕𝑝∗∕𝜕𝐾
𝑐

)

=

⎛

⎜

⎜

⎜

⎝

(

1 − 𝜉
𝛼𝛾1

)

(𝜉 − 1)

𝛼𝛾1𝑐

⎞

⎟

⎟

⎟

⎠

(

−𝑝∗

𝐾

)

=
(

𝜉 − 1
𝛼𝛾1

)(

−𝑅∗

𝐾

)

< 0

𝜕𝑅∗

𝜕ℎ
=
(

1 −
𝜉
𝛼𝛾1

)(

𝜕𝑝∗∕𝜕ℎ
𝑐

)

=

⎛

⎜

⎜

⎜

⎝

(

1 − 𝜉
𝛼𝛾1

)

𝛼𝛾1𝑐

⎞

⎟

⎟

⎟

⎠

(

−𝑝∗

ℎ

)

=
(

1
𝛼𝛾1

)(

−𝑅∗

ℎ

)

< 0

𝜕𝑅∗

𝜕𝜆
=
(

1 −
𝜉
𝛼𝛾1

)(

𝜕𝑝∗∕𝜕𝜆
𝑐

)

=
⎛

⎜

⎜

⎝

1 − 𝜉
𝛼𝛾1
𝑐

⎞

⎟

⎟

⎠

(

𝑝∗

𝛼𝜆

)

=
( 1
𝛼

)

(

𝑅∗

𝜆

)

> 0

𝜕𝑅∗

𝜕𝑐
=
(

1 −
𝜉
𝛼𝛾1

)(

𝑐 (𝜕𝑝∗∕𝜕𝑐) − 𝑝∗

𝑐2

)

=
(

1 −
𝜉
𝛼𝛾1

)

⎛

⎜

⎜

⎝

𝜉𝑝∗

𝛼𝛾1
− 𝑝∗

𝑐2

⎞

⎟

⎟

⎠

=
(

1 −
𝜉
𝛼𝛾1

)(

−𝑅∗

𝑐

)

< 0

𝜕𝑅∗

𝜕𝜂
=
(

1 −
𝜉
𝛼𝛾1

)(

𝜕𝑝∗∕𝜕𝜂
𝑐

)

=
(

1 −
𝜉
𝛼𝛾1

)(

𝑝∗

𝜂𝑐

)

= 𝑅∗

𝜂
> 0

nd

𝜕𝑅∗

𝜕𝛼
=

(

𝜉
𝛼2𝛾1

)(

𝑝∗

𝑐

)

+
(

1 −
𝜉
𝛼𝛾1

)(

𝜕𝑝∗∕𝜕𝛼
𝑐

)

=

=
(

𝜉
𝛼2𝛾1

)(

𝑝∗

𝑐

)

−
(

𝛼𝛾1 − 𝜉
𝛼𝛾1

)(

ln
(

𝑝∗∕𝜂
)

+
𝜉

𝛼𝛾1 − 𝜉

)(

𝑝∗

𝛼𝑐

)

=
(

1 −
𝜉
𝛼𝛾1

)(

−𝑝∗ ln (𝑝∗∕𝜂)
𝛼𝑐

)

=
(

−𝑅∗

𝛼

)

ln
(

𝑝∗∕𝜂
)

< 0

ecause, as the inventory is profitable, 𝑝∗ > 𝑐 ≥ 𝜂.
Finally, for the optimum scheduling period 𝑇 ∗ given by (20), we use

imilar reasonings as for 𝑝∗ to obtain the following results:

𝜕𝑇 ∗

𝜕𝐾
= 𝑇 ∗

(

𝜕 ln 𝑇 ∗

𝜕𝐾

)

= 𝑇 ∗

⎛

⎜

⎜

⎜

⎝

𝜕
(

−(𝛾2−1) ln𝐾
𝛾1

)

𝜕𝐾

⎞

⎟

⎟

⎟

⎠

=
(

𝛾2 − 1
𝛾1

)(

−𝑇 ∗

𝐾

)

≤ 0

𝜕𝑇 ∗

𝜕ℎ
= 𝑇 ∗

(

𝜕 ln 𝑇 ∗

𝜕ℎ

)

= 𝑇 ∗

⎛

⎜

⎜

⎜

⎝

𝜕
(

− lnℎ
𝛾1

)

𝜕ℎ

⎞

⎟

⎟

⎟

⎠

=
(

1
𝛾1

)(

−𝑇 ∗

ℎ

)

< 0

𝜕𝑇 ∗

𝜕𝜆
= 𝜕𝑇 ∗

𝜕𝜂
= 0

𝜕𝑇 ∗

𝜕𝑐
= 𝑇 ∗

(

𝜕 ln 𝑇 ∗

𝜕𝑐

)

= 𝑇 ∗

⎛

⎜

⎜

⎜

⎝

𝜕
(

𝛾2 ln 𝑐
𝛾1

)

𝜕𝑐

⎞

⎟

⎟

⎟

⎠

=
(

𝛾2
𝛾1

)(

𝑇 ∗

𝑐

)

> 0

𝜕𝑇 ∗

𝜕𝛼
= 𝑇 ∗

(

𝜕 ln 𝑇 ∗

𝜕𝛼

)

= 𝑇 ∗

⎛

⎜

⎜

⎜

⎝

𝜕
(

−𝛾2 ln(𝛼𝛾1−𝜉)
𝛾1

)

𝜕𝛼

⎞

⎟

⎟

⎟

⎠

=
−𝛾2𝑇 ∗

𝛼𝛾1 − 𝜉
< 0

as in Table 4. □
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