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This paper considers an inventory model where the demand rate depends on the selling price and the
stock level. A lower price or higher stock level lead to a higher demand rate. Three decision variables
are considered: the selling price, the order-level and the reorder point. The goal is the maximization of
the return on inventory management expense (ROIME), which is defined as the ratio between the profit
and the total cost of the inventory system. The optimal values of the selling price, the order level, the
reorder point, the lot size, the maximum ROIME and the cycle time are proposed, and the condition that
ensures the profitability of the inventory system is established. The partial derivatives of these optimal
values with respect to the initial parameters are calculated to analyse the sensitivity of the optimal policy
concerning the parameters of the model. The profitability thresholds for each parameter, keeping all the
others fixed, are also evaluated. A comparison between the solution with maximum ROIME and the solu-
tion with maximum profit per unit time is illustrated by using a numerical example. The solutions can be
very different. Maximizing the return on inventory management expense leads to a zero-ending policy at
the end of an inventory cycle, so the order-level is equal to the lot size. On the other hand, maximizing the
profit per unit time requires a lower selling price, a higher lot size and a non-zero reorder point.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The literature on deterministic inventory models began by con-
sidering that the demand rate was constant along the inventory
cycle. This assumption was a serious restriction because, in real
life, the demand of an item can depend on such multiple factors
as the selling price, stock level, quality, lead time, advertising or
rebate.

Levin et al. (1972) and Silver and Peterson (1985) showed that
the demand rate of some items may be influenced by the stock
level. Indeed, large piles of goods displayed in a supermarket some-
times lead customers to buy more. This issue called into question
two common rules for inventory managers: always keep low stock
levels to minimize the costs of the inventory management, and
match a new order just when the stock is depleted. The reason
for this lies in the fact that the high stock-levels and the removal
of stock-out increase the sales of the item and the profit of the
inventory system per unit time, although the inventory costs are
also increased. Then, it might be profitable to raise the order-
level in each cycle and request a new order before the stock runs
out. Thereby, Baker and Urban (1988) devised a deterministic
inventory model with a stock-dependent demand rate, where the
goal was the maximization of the profit per unit time and two deci-
sion variables were used: the order-level and the reorder point.
Nevertheless, the objective function did not satisfy the usual
quasi-concavity condition and a general solution to the problem
in a closed-form could not be obtained. However, they solved a
numerical example by using separable programming and found
that the optimal solution had a non-zero reorder point. Since then,
many papers on inventory models have considered stock-
dependent demand rate. Urban (2005) published an overview of
the inventory-level-dependent demand literature with more than
50 papers on the subject, and many others have appeared later.
Choudhury et al. (2015), Chen et al. (2016), Pervin et al. (2017),
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Duan et al. (2017), and Pando et al. (2012), Pando et al. (2018) are
some of the most recent papers.

Another factor that clearly affects the demand is the selling
price of the item, because lower selling prices usually tend to
increase sales. There are also many research papers considering
that the demand rate is a deterministic function of the selling price.
Eliashberg and Steinberg (1987), Petruzzi and Dada (1999), Chou
and Parlar (2006), and Alfares and Ghaithan (2016) used decreas-
ing linear functions. Instead, Ray et al. (2005), Chen et al. (2006),
and Agrawal and Ferguson (2007) chose potential functions with
a negative exponent. On the other hand, Jeuland and Shugan
(1988), Hanssens and Parsons (1993), and Song et al. (2008) pre-
ferred negative exponential functions. Other inventory models
with price-dependent demand have been derived by Modak and
Kelle (2019) and Rapolu and Kandpal (2020).

However, it seems more realistic to assume that demand
depends simultaneously on both factors: the stock-level and the
selling price. A remarkable number of papers in the recent litera-
ture on inventory models have considered this topic. Teng and
Chang (2005) studied an economic production quantity model
with an additive effect of the selling price and the level of stock
on the demand rate. Dye and Hsieh (2011) used this assumption
in an EOQ model under fluctuating cost and limited capacity. Also,
Soni (2013) and Mishra et al. (2017) did the same for inventories
with deteriorating items. Instead, Pal et al. (2014), Onal et al.
(2016) and Feng et al. (2017) considered a multiplicative effect of
selling price and stock-level on the demand rate. San-José et al.
(2020) also looked at the multiplicative effect of two factors on
the demand rate, but they used the selling price and the time.

Nevertheless, all these papers are focused on the maximization
of the profit per unit time, or the minimization of the inventory
cost per unit time. Working with this type of models, we have
observed that the policy of maximum profit per unit time leads
to a great inventory cost per unit time, while on the other hand,
the optimal policy for the minimum inventory cost per unit time
results in a low profit per unit time. Thus, the inventory manager
could perhaps prefer a balance between both policies with a good
profit per unit time without a large inventory cost. That is, perhaps
the goal should be the maximization of the ratio between the profit
and the total cost of the inventory system. This ratio can be named
as the return on inventory management expense (ROIME), so that a
ROIME with value 0.40 means that the profit is 40% of the total
expense in the inventory management. In this way, if diverse
investment options are possible, the manager could allocate the
available resources to the most profitable products to get the high-
est yield from the money. Then, the ROIME is a profitability ratio
similar to the return on investment (ROI) defined as the ratio of
the net profit over the cost of an investment, which was considered
by other authors in inventory management. Profit and profitability
do not always go together. Some business can yield a high profit
per unit time but low profitability because they need a lot of
money or resources to run. The option with the maximum profit
per unit time does not always lead to the highest profitability.
Therefore, in inventory theory, it can also be interesting to know
which is the optimal policy with maximum profitability as an
alternative to the maximum profit per unit time. Thus, the man-
ager could allocate the available capital to the most profitable
products of the supply chain, instead of concentrating resources
on the product with the highest profit per unit time.

Although multiple optimization criteria have been used in
inventory theory (see, for example, Arcelus and Srinivasan, 1987),
the literature on inventory models with the aim of maximizing
profitability ratios is not so extensive. Schroeder and Krishnan
(1976) enumerated the conditions under which ROI is an appropri-
ate criterion and contrasted it with the usual cost minimization
and profit maximization criteria. Morse and Scheiner (1979)
2

proposed as objective the maximization of the residual income
(RI), which is the ratio of the excess of net income over the oppor-
tunity cost of invested capital. Later, Trietsch (1995) adapted the
economic order quantity model to the objective of maximizing
return on investment in inventory. Since then, Otake et al.
(1999), Li et al. (2008), Choi and Chiu (2012), and Hidayat and
Fauzi (2015) are some of the papers in this research line. Recently,
Pando et al. (2019) and Pando et al. (2020) obtained the optimal
policy with the maximum return on inventory management
expense in both inventory models with stock-dependent demand
rate and non-linear holding cost.

Nonetheless, all these papers with profitability ratios maxi-
mization consider that the selling price of the item is a preset
parameter of the model and the demand rate does not depend on
this value. We have not found research papers on inventory models
with price and stock-dependent demand rate that also assumes the
maximization of the return on inventory management expense as
objective. This is the gap in the published literature that this manu-
script could fill. To compare the contribution of the cited references
to the inventory theory, Table 1 collects the most relevant papers
previously cited, classifying them according to the type of demand
(constant, stock-dependent or price-dependent) and the objective
considered (profit or profitability). As far we know, it can be seen
that Table 1 shows the absence of papers with price- and stock-
dependent demand rate, which assume a profitability ratio as
objective.

The rest of the paper is organized as follows. Section 2 presents
the assumptions and notation of the model. In Section 3, the model
is formulated and the return on inventory management expense is
evaluated to obtain the objective function to maximize, using the
selling price as a decision variable along with the order-level and
the reorder point. Section 4 provides the solution of the model
for the three decision variables, and calculates the optimal return
on inventory management expense. Also, some interesting proper-
ties and profitability thresholds for the initial parameters are pro-
posed. Section 5 presents a sensitivity analysis by calculating the
partial derivatives of the optimal values with respect to the param-
eters of the model, and some interesting rules about the relative
role of the parameters on the solution are given. In Section 6,
numerical examples are presented to illustrate all the obtained
results, and to compare the optimal policy of the proposed model
with the other one for the maximization of the profit per unit time.
Finally, some conclusions and future research lines are given in
Section 7.

2. Assumptions and notation

This paper considers an inventory system with the following
basic assumptions: (i) there is a single item, (ii) the planning hori-
zon is infinite, (iii) the inventory is continuously reviewed, (iv) the
replenishment is instantaneous, and (v) shortages are not allowed.
Also, the unit purchasing cost, c > 0, the ordering cost, K > 0, and
the holding cost per unit and per unit time, h > 0, are all fixed,
regardless of the order size.

Moreover, the demand rate for the item depends on the selling
price, p, and the quantity of items in stock, x, by the following func-
tion Dðp; xÞ ¼ ke�apxb, with k > 0;a > 0 and 0 6 b < 1. As a conse-
quence, the demand rate is greater with a low price and a high
stock level. Note that a ¼ � @Dðp;xÞ=@p

Dðp;xÞ and this parameter represents

the relative decrease in the demand rate per unit of increase in
the selling price. Similarly, b ¼ @Dðp;xÞ=@x

Dðp;xÞ=x and it represents the rela-

tive increase in the demand rate per unit of the relative increase
in the level of stock. For example, if a ¼ 0:01 and b ¼ 0:1, the
demand rate decreases by 1% if the selling price increases one unit
and it increases by 0:1% if the inventory level increases by 1%. As it



Table 1
Summary of most relevant literature cited in this paper.

Demand rate: Objective function:

Paper Constant Stock-dependent Price-dependent Profit Profitability

Schroeder and Krishnan (1976) U U U

Morse and Scheiner (1979) U U U

Arcelus and Srinivasan (1987) U U U

Eliashberg and Steinberg (1987) U U

Baker and Urban (1988) U U

Trietsch (1995) U U

Otake et al. (1999) U U

Chou and Parlar (2006) U U

Li et al. (2008) U U

Pando et al. (2012) U U

Soni (2013) U U U

Pal et al. (2014) U U U

Alfares and Ghaithan (2016) U U

Chen et al. (2016) U U

Onal et al. (2016) U U U

Mishra et al. (2017) U U U

Feng et al. (2017) U U U

Pando et al. (2018) U U

Pando et al. (2019) U U

San-José et al. (2020) U U

Pando et al. (2020) U U

This paper U U U

V. Pando, L.A. San-Jose, J. Sicilia et al. Computers and Operations Research 127 (2021) 105134
was proposed by Feng et al. (2017), the k coefficient is the scale
parameter, and it can be seen as the maximum number of potential
consumers, because the demand rate would be k if there was only
one item in stock and it was free. Thus, varying the three parame-
ters of the demand rate, a lot of real practical situations can be
modelled by the manager.

Denoting by t the elapsed time in the inventory, and by IðtÞ the
inventory level at time t, three decision variables are considered in
the model: the order-level S (inventory level to order-up-to) with
S > 0, the reorder point s (inventory level to set an order) with
0 6 s < S, and the selling price p. Then, the lot size is q ¼ S� s, it
is clear that S ¼ limt!0þ IðtÞ ¼ Ið0þÞ and the length of the inventory
cycle T is given by the equation IðT�Þ ¼ s, where
IðT�Þ ¼ limt!T� IðtÞ.

The notation used in this paper is resumed in Table 2.
3. Model formulation

Taking into account the assumptions described in previous sec-
tion, it follows that, for 0 6 t < T, the inventory level curve IðtÞ is
obtained by solving the differential equation
Table 2
Notation for the inventory model.

c Unit purchasing cost ðc > 0Þ
K Ordering cost per order ðK > 0Þ
h Holding cost per unit and per unit time h > 0ð Þ
T Length of the inventory cycle ðT > 0Þ
t Elapsed time in the inventory ð0 6 t 6 TÞ
IðtÞ Inventory level at time t
x Quantity of items in stock at time t ðx ¼ IðtÞÞ
p Unit selling price, decision variable ðp > cÞ
S Order level, decision variable ðS > 0Þ
s Reorder point, decision variable ð0 6 s < SÞ
q Lot size ðq ¼ S� sÞ
k Scale parameter of the demand rate ðk > 0Þ
a Elasticity parameter of the demand rate regarding the selling price

ða > 0Þ
b Elasticity parameter of the demand rate regarding the stock level

ð0 6 b < 1Þ
Dðp; xÞ Demand rate with selling price p and x items in stock

ðDðp; xÞ ¼ ke�apxbÞ

3

d
dt

IðtÞ ¼ �ke�ap IðtÞð Þb ð1Þ

with initial condition Ið0þÞ ¼ S. The solution can be written as

IðtÞ ¼ S1�b � ð1� bÞke�apt
� �1=ð1�bÞ

ð2Þ

Moreover, as IðT�Þ ¼ s, the value for the cycle time is given by

T ¼ S1�b � s1�b

ð1� bÞke�ap ð3Þ

and the holding cost H p; S; sð Þ along an inventory cycle can be eval-
uated as

H p; S; sð Þ ¼
Z T

0
hIðtÞdt ¼ �h

ke�ap

Z T

0
IðtÞð Þ1�bdIðtÞ

¼
h S2�b � s2�b
� �
ð2� bÞke�ap ð4Þ

The income obtained in each inventory cycle is pq ¼ p S� sð Þ.
The total inventory management expense is the sum of the pur-
chasing cost c S� sð Þ, the ordering cost K, and the holding cost
Hðp; S; sÞ. Then, the total inventory management expense per unit
time C p; S; sð Þ is

C p; S; sð Þ ¼ cðS� sÞ þ K þ Hðp; S; sÞ
T

ð5Þ

The profit or gain per unit time Gðp; S; sÞ is given by

Gðp; S; sÞ ¼ ðp� cÞðS� sÞ � K � Hðp; S; sÞ
T

ð6Þ

and the return on inventory management expense, named as
R p; S; sð Þ, is the ratio between these two quantities, that is,

R p; S; sð Þ ¼ Gðp; S; sÞ
C p; S; sð Þ ¼

p
c þ r p; S; sð Þ � 1; ð7Þ

where

r p; S; sð Þ ¼ K þ Hðp; S; sÞ
S� s

¼ K
S� s

þ
h S2�b � s2�b
� �

ke�apð2� bÞðS� sÞ ð8Þ
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depicts the average inventory cost for each item (excluding the pur-
chasing cost), instead of the inventory cost per unit time mostly
used in inventory theory. Moreover, as r p; S; sð Þ > 0, the next bounds
for R p; S; sð Þ can be established: �1 < R p; S; sð Þ < p=c � 1.

Remark 1. From the perspective of financial investment, the
management of an inventory system is acceptable if the return
on inventory management expense is positive (that is, if the
inventory system is profitable), otherwise, it is rejectable. Thus,
from (7) it is clear that if p 6 c, then Rðp; S; sÞ < 0 for any ðp; S; sÞ,
and, from the perspective of financial investment, the management
of the inventory system is rejectable. For this reason, the usual case
in the literature, p > c, is considered.

The goal of the inventory model is to maximize the return on
inventory management expense R p; S; sð Þ. Therefore, the mathe-
matical problem is

max
p;S;sð Þ2X

R p; S; sð Þ ð9Þ

where X ¼ p; S; sð Þ 2 R3=p > c; S > 0;0 6 s < S
� �

is the feasible
region.

4. Solution of the model

From (7) it is clear that, for each given value of the selling price
p, maximizing the function RpðS; sÞ ¼ R p; S; sð Þ is equivalent to min-
imizing the function rpðS; sÞ ¼ r p; S; sð Þ given by (8). Moreover, if

0 < s < S then K=ðS� sÞ > K=S and S2�b � s2�b > S2�b � S1�b

s ¼ S1�b S� sð Þ and, therefore,

rpðS; sÞ > rpðS;0Þ ¼ K
S
þ hS1�b

ke�apð2� bÞ ð10Þ

As a consequence, for each given value p, the optimal reorder
point is s�p ¼ 0 and the optimal order-level S�p can be obtained by
minimizing the function rpðS;0Þ given by (10). The following
lemma gives the solution to this problem.

Lemma 1. Let the function f ðxÞ ¼ K
x þ hx1�b

ke�apð2�bÞ with x > 0. The

minimum value of f ðxÞ is obtained for

x� ¼ ð2� bÞKke�ap
1� bð Þh

� �1=ð2�bÞ

with

f ðx�Þ ¼ ð2� bÞK
1� bð Þx� ¼ Aeap=ð2�bÞ

where

A ¼ ð2� bÞK
1� b

� �ð1�bÞ=ð2�bÞ h
k

� �1=ð2�bÞ
ð11Þ
Proof. Please see the proof in Appendix A. h

From this lemma, it is clear that, for each given value p, the opti-
mal order-level S�p is

S�p ¼
ð2� bÞKke�ap

1� bð Þh
� �1=ð2�bÞ

ð12Þ

and the optimal ROIME is

R�ðpÞ ¼ Rðp; S�p;0Þ ¼
p

c þ Aeap=ð2�bÞ � 1 ð13Þ
4

Therefore, it is only necessary to find the best selling price p
which maximizes the function given by (13). To do this, the follow-
ing lemma introduces an auxiliary parameter in the model which
will be useful for finding the stationary points of the function R�ðpÞ.

Lemma 2. (Auxiliary parameter B) Let the function
uðxÞ ¼ ce�x þ Að1� xÞ with c > 0 and A > 0. Then, the equation
uðxÞ ¼ 0 has a unique real root B. Moreover, it satisfies that

1 < B <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c=A

p
.

Proof. Please see the proof in Appendix A. h

In order to evaluate this root B, the Newton-Fourier method for
solving equations can be used with the following iteration function

x� uðxÞ
u0ðxÞ ¼ xþ ce�x þ Að1� xÞ

ce�x þ A
¼ 1þ cx

c þ Aex

Next, a numerical algorithm to evaluate the auxiliary parameter
B with this method is provided. It can be easily implemented with
any programming software.

Algorithm 1. (Evaluation of the auxiliary parameter B)
Step 1 Calculate A ¼ ð2�bÞK
1�b

� �ð1�bÞ= 2�bð Þ
h
k

	 
1=ð2�bÞ
.

Step 2 Define the function uðxÞ ¼ ce�x þ Að1� xÞ.
Step 3 Select the tolerance TOL > 0 for the evaluation of B.
Step 4 Start with the initial value xo ¼ 1.
Step 5 Calculate xi ¼ 1þ cxi�1

cþAexi�1 for i ¼ 1;2;3; . . ., until
uðxi þ TOLÞ < 0 is satisfied.
Step 6 Take B ¼ xi.

The next theorem uses the auxiliary parameters A and B to find
the best selling price which maximizes the return on inventory
management expense R� pð Þ given by (13).

Theorem 1. (Optimal selling price) Consider the univariate real
valued functions gðpÞ ¼ p

cþAeap=ð2�bÞ and uðxÞ ¼ ce�x þ A 1� xð Þ, with

p > 0;A > 0; c > 0;a > 0 and 0 6 b < 1. Let B be the only value with
uðBÞ ¼ 0. Then, the global maximum of the function gðpÞ on 0;1ð Þ is
obtained at the point
p� ¼ 2� bð ÞB
a

ð14Þ

and it satisfies that 2�b
a < p� <

2�bð Þ
ffiffiffiffiffiffiffiffiffiffi
1þc=A

p
a .
Proof. Please see the proof in Appendix A. h

Once the optimal selling price p� has been obtained, the optimal
order-level S� can be evaluated with the expression (12):

S� ¼ S�p� ¼ ð2�bÞKk
1�bð Þh

� �1=ð2�bÞ
e�B ¼ ð2�bÞKk

1�bð Þh

� �1=ð2�bÞ
A B�1ð Þ

c

¼ ð2�bÞKk
1�bð Þh

� �1=ð2�bÞ ð2�bÞK
1�b

� �ð1�bÞ=ð2�bÞ
h
k

	 
1=ð2�bÞ B�1
c

	 
 ¼ ð2�bÞ B�1ð ÞK
1�bð Þc

ð15Þ

Since the optimal reorder point is s� ¼ 0, the optimal lot size q�

coincides with the optimal order-level S� given by (15).



V. Pando, L.A. San-Jose, J. Sicilia et al. Computers and Operations Research 127 (2021) 105134
Remark 2. Since a feasible selling price must be in the region X,
from now on we assume that the parameters of the model satisfy
that ac < ð2� bÞB. This condition ensures that p� > c and, there-
fore, the point ðp�; S�p� ; 0Þ belongs to X and it is the solution of the
problem (9).
Also, taking into account that AeB ¼ c=ðB� 1Þ, the optimal
ROIME can be evaluated with the expression (13), obtaining the
following value:

R� ¼ R� p�ð Þ ¼ p�

c þ AeB
� 1 ¼ 2� bð ÞB=a

c þ c=ðB� 1Þ � 1 ¼ 2� bð Þ B� 1ð Þ
ac

� 1

ð16Þ
Therefore, the condition that ensures the profitability of the

inventory system is

a <
2� bð Þ B� 1ð Þ

c
ð17Þ

Thus, from Remark 2, if 2� bð Þ B� 1ð Þ=c 6 a < 2� bð ÞB=c, then
the inventory system is unprofitable regardless of the selling price
p > c. As a consequence, the manager should also give up the
investment in the inventory in this case. Note that, for the limit
case with a ¼ 2� bð Þ B� 1ð Þ=c, the equality ð2� bÞB ¼ ac þ 2� b
is satisfied, and the optimal selling price is p� ¼ c þ 2� bð Þ=a, with
R� ¼ 0. Then, if the inventory system is profitable, the optimal sell-
ing price satisfies that

c þ 2� b
a

< p� <
2� bð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c=A
p
a

ð18Þ

The optimal average inventory cost per each item (excluding
the purchasing cost), given by (8), is r� ¼ r p�; S�;0ð Þ ¼
AeB ¼ c=ðB� 1Þ. That is, c is the unit purchasing cost and
c=ðB� 1Þ is the optimal average inventory cost per item. Then,
r�= c þ r�ð Þ ¼ B�1 and, therefore, B�1 is the ratio between the inven-
tory cost and the total expense per item.

Furthermore, as B ¼ ap�=ð2� bÞ and e�B ¼ AðB� 1Þ=c, using the
expressions (3), (11) and (12), the optimal length of the cycle time
can be evaluated as:

T� ¼ S�ð Þ1�b

1� bð Þke�ap� ¼
2�bð ÞK
1�b

� �ð1�bÞ=ð2�bÞ
h
k

	 
1=ð2�bÞ k
h

	 

1� bð Þke�ap�=ð2�bÞ

¼ A

ð1� bÞhe�B ¼ c
ð1� bÞ B� 1ð Þh

ð19Þ

Note that the optimal lot size q� and the optimal cycle time T�

do not depend on the parameter a, because the auxiliary parame-
ters A and B do not depend on a. Thus, the optimal inventory policy
does not change if the dependence degree of the demand rate con-
cerning the selling price changes. On the other hand, however, the
optimal selling price and the ROIME naturally change.

Table 3 summarizes all the expressions for the optimal policy of
the inventory system, based solely on the initial parameters and
the auxiliary parameter B. The five columns contain, respectively,
the optimal values for the selling price, the reorder point, the order
Table 3
Optimal values for the maximum ROIME policy.

p� s� S� ¼ q�

ð2�bÞB
a

0 ð2�bÞ B�1ð ÞK
1�bð Þc

5

level (which coincides with the lot size), the maximum ROIME, and
the cycle time.

From (5) and (8), the total cost per unit time for the optimal
solution is

C p�; S�;0ð Þ ¼ c þ r�ð ÞS�
T� ¼

c þ c
B�1

	 
 ð2�bÞ B�1ð ÞK
ð1�bÞc

� �
c

ð1�bÞ B�1ð Þh
¼ ð2� bÞ B� 1ð ÞBKh

c

and the profit per unit time is

G p�; S�;0ð Þ ¼ p��c�r�ð ÞS�
T� ¼

p��c� c
B�1ð Þ ð2�bÞ B�1ð ÞK

ð1�bÞc

� �
c

ð1�bÞ B�1ð Þh

¼ p�� cB
B�1ð Þð2�bÞ B�1ð Þ2Kh

c2 ¼ p� 1�B�1ð Þ
c � 1

� �
C p�; S�;0ð Þ

From (14), p�B�1 ¼ 2� bð Þ=a and the optimal ROIME can also be
calculated as

R� ¼ G p�; S�;0ð Þ
C p�; S�;0ð Þ ¼

p� � 2�b
a

c
� 1 ð20Þ

Moreover, from (20) and (18), an acceptable inventory system
satisfies that

0 < R� <
2� bð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c=A
p � 1
� �

ac
� 1

Note that, the value p�=c � 1 would be the return on inventory
management expense, if there was no inventory cost. Therefore, if
there was no inventory cost, to obtain the same ROIME, a decrease
in the selling price of magnitude 2� bð Þ=a could be made. Thus,
2� bð Þ=ðacÞ is the loss of profitability caused by the inventory cost.

Furthermore, taking into account that r�S� ¼ 2� bð ÞK= 1� bð Þ,
the ratio between the average ordering cost per item and the aver-
age inventory cost per item for the optimal solution can be evalu-
ated as

K=S�

r�
¼ 1� b

2� b
6 0:5

and the ordering cost is less than or equal to 50% of the total inven-
tory cost. Therefore, the ordering cost is less than or equal to the
holding cost for the solution of the maximum return on inventory
management expense. If the demand rate does not depend on the
inventory level, that is b ¼ 0, then the ordering cost is equal to
the holding cost, just as in the basic EOQ model with a preset selling
price.

In order to obtain the acceptability condition for the other
parameters of the model, the following result is provided.

Lemma 3. The inventory system is acceptable if, and only if, the initial
parameters of the model satisfy the following inequality:

K1�bh
k

<
C
eac

ð21Þ

with

C ¼ 2� bð Þ 1� bð Þ1�b

a2�be2�b
ð22Þ
R� T�

2�bð Þ B�1ð Þ
ac � 1

c
ð1�bÞ B�1ð Þh



Table 4
Profitability thresholds for the initial parameters of the inventory system.

Parameter K h c k a

Threshold
< kC

heac

� �1=ð1�bÞ < kC
K1�beac

<
ln kC

K1�bh

� �
a

> K1�bheac

C < 2�bð Þ B�1ð Þ
c
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Proof. Please see the proof in Appendix A. h

Note that C is an auxiliary parameter which only depends on
the elasticity parameters of the model.

Then, the expressions (21) and (22) can be used to obtain the
acceptability conditions for the parameters K;h; k, and c, and to
evaluate the profitability threshold for each parameter, keeping
all the others fixed. The results are given in Table 4.

5. Sensitivity analysis

In this section, the expressions given in Table 3 are used to
develop a sensitivity analysis by calculating the partial derivatives
of p�; q�;R� and T� with respect to all the parameters of the model.
Table 5 shows the expressions for all these partial derivatives, and
all the proofs can be found in Appendix B.

where

D ¼ 1þ ln
1� bð Þh
2� bð ÞKk

� �
ð23Þ

From these expressions, the next lemma provides the sensitiv-
ity analysis for the best selling price p� with respect to all the
parameters of the inventory system.

Lemma 4. Let p� be the optimal selling price given by (14), and the
auxiliary parameters D and B given by (23) and Lemma 2, respectively.
Then, it is satisfied that:

(i) p� decreases as one of the parameters K;h, or a increases.
(ii) p� increases as one of the parameters c or k increases.

(iii) If D < � 2�bð ÞB2
B�1 then p� increases as the parameter b increases.

In any other case, p� decreases as b increases.
Proof. (i) and (ii) follow directly from the second column of
Table 5. Also, taking into account that 1�Bð ÞD

2�bð ÞaB � B
a > 0 if, and only

if, D < � 2�bð ÞB2
B�1 , the assertion (iii) is proven. h

Also, from Table 5 and (14), it is easily seen that
@p�=@a
p�=a ¼ �1; @p

�=@c
p�=c ¼ B�1

B2
and

� 1
1� b

� �
@p�=@K
p�=K

� �
¼ � @p�=@h

p�=h

� �
¼ @p�=@k

p�=k

� �

¼ 1
2� b

� �
@p�=@c
p�=c

� �
¼ B� 1

2� bð ÞB2

Then, as B�1
2�bð ÞB2 <

B�1
B2

< 1 and 1� b 6 1, the comparison leads to
Table 5
Partial derivatives of p�; q� ;R� and T� with respect to the parameters of the model.

@p�=@x @q�=@x

x ¼ K 1�bð Þ 1�Bð Þ
aBK < 0 2�bð ÞðB�1Þ B� 1�b

2�bð Þð Þ
cð1�bÞB > 0

x ¼ h 1�B
aBh < 0 �K B�1ð Þ

chð1�bÞB < 0

x ¼ k B�1
aBk > 0 K B�1ð Þ

ckð1�bÞB > 0

x ¼ c 2�bð ÞðB�1Þ
acB > 0 �Kð2�bÞ B�1ð Þ2

1�bð Þc2B < 0

x ¼ a � 2�bð ÞB
a2 < 0 0

x ¼ b 1�Bð ÞD
2�bð ÞaB � B

a K B�1ð Þ 1� 1�bð ÞD
2�bð ÞB

� �
c 1�bð Þ2

6

@p�=@K
p�=K

����
���� 6 @p�=@h

p�=h

����
���� ¼ @p�=@k

p�=k
<

@p�=@c
p�=c

<
@p�=@a
p�=a

����
����

Note that, each of these fractions is the ratio between the rela-
tive change in the best selling price and the relative change in each
of the parameters. Therefore, from a comparative point of view,
and in a decreasing order of degree of sensitivity, the optimal sell-
ing price is more sensitive to changes in the value of the parameter
a, then to changes in the value of c, and then to changes in k or h.
The optimal selling price is less sensitive with respect to K. If the
demand rate does not depend on the stock level, that is b ¼ 0,
the relative effects of the parameters K;h and k are equal except
for the sign. Also, if b ¼ 0, the comparative effect of the purchasing
cost c on the optimal selling price is around two times the relative
effects of the parameters K;h or k.

In a similar way, the next lemma provides the sensitivity anal-
ysis for the optimal lot size q� with respect to all the parameters of
the inventory system.

Lemma 5. Let q� be the optimal lot size given by (15), and the
auxiliary parameters D and B given by (23) and Lemma 2, respectively.
Then, it is satisfied that:

(i) q� increases as one of the parameters K or k increases.
(ii) q� decreases as one of the parameters h or c increases.
(iii) q� does not depend on the parameter a.
(iv) If D < 2�bð ÞB

1�b then q� increases as the parameter b increases.
In any other case, q� decreases as b increases.
Proof. (i), (ii) and (iii) follow directly from the third column of
Table 5. Also, taking into account that 1�bð ÞD

2�bð ÞB < 1 if, and only if,

D < 2�bð ÞB
1�b , the assertion (iv) is proven. h

For the relative changes, using the partial derivatives and the
expression (15), you can see that
@q�=@K
q�=K

� �
1þ 2� bð Þ B� 1ð Þ ¼ � @q�=@h

q�=h

� �
¼ @q�=@k

q�=k

� �

¼ �
@q�=@c
q�=c

2� bð Þ B� 1ð Þ

 !
¼ 1

2� bð ÞB
@R�=@x @T�=@x

1�bð Þ 1�Bð Þ
caKB < 0

c
2�bð Þ B�1ð ÞBKh > 0

1�B
cahB < 0 �c 1� 1

2�bð ÞB

� �
ð1�bÞ B�1ð Þh2 < 0

B�1
cakB > 0 �c

ð1�bÞ 2�bð Þ B�1ð ÞBhk < 0

� 2�bð Þ B�1ð Þ2
ac2B < 0

1
hð1�bÞB > 0

� 2�bð Þ B�1ð Þ
ca2 < 0 0

1�Bð Þ 1þ D
2�bð ÞB

� �
ca

c 1þ ð1�bÞD
2�bð Þ2B

� �
h 1�bð Þ2 B�1ð Þ
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Then, the comparison leads to

@q�=@h
q�=h

����
���� ¼ @q�=@k

q�=k
<

@q�=@K
q�=K

and

@q�=@c
q�=c

����
���� < @q�=@K

q�=K

Therefore, from a comparative point of view, the optimal lot
size is more sensitive to a relative change in K than in the param-
eters c; k or h. Also, it is equally sensitive with respect to h and k,
but with the opposite sign. The relative changes with respect to
the parameter c can be higher or lower than with respect to h or k.

The sensitivity analysis for the maximum return on inventory
management expense R� is given by the next lemma.

Lemma 6. Let R� be the optimal return on inventory management
expense given by (16), and the auxiliary parameters D and B given by
(23) and Lemma 2, respectively. Then, it is satisfied that:

(i) R� decreases as one of the parameters K;h; c, or a increases.
(ii) R� increases as the parameter k increases.
(iii) If D < � 2� bð ÞB then R� increases as the parameter b in-
creases. In any other case, R� decreases as b increases.
Proof. (i) and (ii) follow directly from the fourth column of Table 5.
Also, taking into account that D

2�bð ÞB þ 1 < 0 if, and only if,

D < � 2� bð ÞB, the assertion (iii) is proven. h

For the relative changes, the relationship is

�
@R�=@K
R�=K

1� b

 !
¼ � @R�=@h

R�=h

� �
¼ @R�=@k

R�=k

� �
¼ �

@R�=@a
R�=a

2� bð ÞB

 !

¼ �
@R�=@c
R�=c

2� bð Þ B� 1ð Þ

 !

and, taking into account that 1� b 6 1 < 2� bð ÞB, the comparison
leads to

@R�=@K
R�=K

����
���� 6 @R�=@h

R�=h

����
���� ¼ @R�=@k

R�=k
<

@R�=@a
R�=a

����
����

and

@R�=@c
R�=c

����
���� < @R�=@a

R�=a

����
����

Then, from a comparative point of view, the maximum return
on inventory management expense R� is more sensitive to a rela-
tive change in the parameter a than in the parameters c;K; k or
h. Also, the sensitivity with respect to h and k are equal again,
but with the opposite sign. The relative changes with respect to
the parameter c can be higher or lower than with respect to K;h
or k. Furthermore, now, if the demand rate does not depend on
the stock level, that is, b ¼ 0, the relative effects of the parameters
K;h and k are equal except for the sign.

Finally, the sensitivity analysis for the optimal length of the
inventory cycle T� is provided in the next lemma.

Lemma 7. Let T� be the optimal length of the inventory cycle given by
(19), and the auxiliary parameters D and B given by (23) and Lemma
2, respectively. Then, it is satisfied that:

(i) T� increases as one of the parameters K or c increases.
(ii) T� decreases as one of the parameters h or k increases.
7

(iii) T� does not depend on the parameter a.

(iv) If D < � 2�bð Þ2B
1�b then T� decreases as the parameter b increases.

In any other case, R� increases as b increases.
Proof. (i), (ii) and (iii) follow directly from the last column of
Table 5. Also, taking into account that 1þ ð1�bÞD

2�bð Þ2B < 0 if, and only

if, D < � 2�bð Þ2B
1�b , the assertion (iv) is proven. h

Now, the relationship for the relative changes is:

@T�=@K
T�=K

1� b
¼ �

@T�=@h
T�=h

2� bð ÞB� 1

 !
¼ � @T�=@k

T�=k

� �
¼

@T�=@c
T�=c

ð2� bÞðB� 1Þ

 !

¼ 1
2� bð ÞB

with 1� b 6 1; 1� b < 2� bð ÞB� 1 and
ð2� bÞðB� 1Þ < 2� bð ÞB� 1. Then, the comparison between them

leads to @T�=@h
T�=h

��� ��� > @T�=@c
T�=c ; @T�=@h

T�=h

��� ��� > @T�=@K
T�=K and @T�=@k

T�=k

��� ��� � @T�=@K
T�=K . Therefore,

the optimal length of the inventory cycle is more sensitive with
respect to a change in the parameter h, than in the parameters c
or K, and more sensitive with respect to k than K.
6. Computational results

In this section, the proposed model and the solution methodol-
ogy are illustrated with a numerical example. Furthermore, a
numerical comparison between the optimal solution of the prob-
lem with maximum return on inventory management expense,
given by the function R p; S; sð Þ, and the optimal solution of the
problem with maximum profit per unit time, given by the function
G p; S; sð Þ, is also shown.

Let us suppose, as input data for the numerical example, that
the purchasing cost for the item is c ¼ 20 currency units, the order-
ing cost for a new order is K ¼ 1000 currency units, and the hold-
ing cost per unit and per unit time (a month) for the inventory
system is h ¼ 15 currency units. Consider that the parameters for
the demand rate are k ¼ 6000;a ¼ 0:1 and b ¼ 0:3. That is, the
quantity of potential consumers is 6000, the demand rate
decreases 10% if the selling price increases a currency unit, and
the demand rate increases 0:3% if the stock level increases 1%.

First of all, the auxiliary parameters A;C and D are evaluated
with the expressions (11), (22) and (23). Also, the parameter B is
calculated with the Algorithm 1. The results are:
A ¼ 0:7300;C ¼ 12:1260;D ¼ �12:7865 and B ¼ 2:7505. With this
value B, the condition (17) is satisfied and the inventory system
is acceptable. Then, the optimal selling price given by the expres-
sion (14) leads to p� ¼ 46:8 currency units; the reorder point is,
as always, s� ¼ 0; the order-level, which coincides with the lot size
given by (15), is S� ¼ q� ¼ 212:6 items; and the cycle time, given by
(19), is T� ¼ 1:09 months.

For this optimal solution, the holding cost in a cycle, given by
(4), is H 46:8;212:6;0ð Þ ¼ 1428:57. The total expense of the system
per unit time, given by (5), is C 46:8;212:6;0ð Þ ¼ 6138:8 currency
units, and the profit per unit time, given by (6), is
G 46:8;212:6;0ð Þ ¼ 2995:2 currency units. The optimal return on
inventory management expense is the rate between these two last
quantities, that is, R 46:8;212:6;0ð Þ ¼ 2995:2=6138:8 ¼ 0:4879,
which coincides with the value given by the expression (16). That
is, the profitability of the inventory system is 48:79%. Note that the
holding cost (1428:57) is greater than the ordering cost (1000).
Also, the average holding cost per item is 1428:57=212:6 ¼ 6:7,
the average ordering cost per item is 1000=212:6 ¼ 4:7, and the
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average inventory cost per item is r 46:8;212:6;0ð Þ ¼ 11:4. Then,
the ratio between the inventory cost per item (11:4) and the total
cost per item (20þ 11:4 ¼ 31:4) is 0:3631, which coincides with
B�1 ¼ 0:3631. That is, the inventory cost is 36:31% of the total
expense of the system.

It is also interesting to know the optimal solution for the prob-
lem of maximizing the profit per unit time given by the function
Gðp; S; sÞ. This problem is not solved in a closed form within the lit-
erature on inventory models. Supposing that the selling price is a
preset parameter, instead of a decision variable, Baker and Urban
(1988) studied the model. They only could give a numerical algo-
rithm to obtain an approximate solution with fixed values for the
parameters. This method showed that the optimal policy with
maximum profit per unit time is reached with a non-zero reorder
point. Hence, in order to compare the solutions for the problems of
the maximum return on inventory management expense and the
maximum profit per unit time, a numerical study has been devel-
oped for this particular example, using the following methodology.
For each fixed p 2 20;75ð Þ with a step of one-tenth, the problem of
maximum profit per unit time is solved by using a numerical algo-
rithm (as in, Baker and Urban, 1988) to obtain the optimal order-
level SGp , the optimal reorder point sGp , the maximum profit per unit

time G�
p ¼ G p; SGp ; s

G
p

� �
, and the return on inventory management

expense for this optimal solution RG
p ¼ R p; SGp ; s

G
p

� �
. The point

p; SGp ; s
G
p

� �
with a greater value of G�

p provides the optimal selling

price pG, the optimal order-level SG, the optimal reorder point sG

and the maximum profit per unit time G�. Also, for this optimal
solution, the return on inventory management expense

RG ¼ R pG; SG; sG
� �

, the lot size qG ¼ SG � sG, the cycle time

TG ¼ T pG; SG; sG
� �

, the average inventory cost per item

rG ¼ r pG; SG; sG
� �

, and the total expense of the system per unit time

CG ¼ C pG; SG; sG
� �

are evaluated. All these quantities are included

in Table 6, together with the corresponding quantities for the opti-
mal solution with the maximum return on inventory management
expense.

Both optimal solutions are so different. The selling price with
the maximum profit per unit time is pG ¼ 31:2, which is 33% lower
than the optimal selling price with the maximum ROIME, which is
p� ¼ 46:8. The order-level and the reorder point with the maxi-
mum profit per unit time are, respectively, SG ¼ 916:2 and
sG ¼ 59:5. Note that now the reorder point is not zero, and the
lot size is qG ¼ 856:7, which is 303% higher than the optimal lot
size with the maximum ROIME, which is q� ¼ 212:6. Also, the cycle
time with the maximum profit per unit time is TG ¼ 0:54 months,
which is 50% lower than the optimal cycle time with the maxi-
mum ROIME, which is T� ¼ 1:09 months. The average inventory
cost per item is much smaller in the solution with maximum profit
per unit time (rG ¼ 5:3) than in the solution with maximum
ROIME, where it is r� ¼ 11:4. Nevertheless, the total inventory
management expense per unit time is much larger in the solution
with maximum profit per unit time, CG ¼ 39890:3, than in the
solution with maximum ROIME, where it is C p�; S�;0ð Þ ¼ 6138:8.
The maximum profit per unit time is G� ¼ 9216:6, which is 208%
Table 6
Optimal solutions for the two problems, R p; S; sð Þ and G p; S; sð Þ.

Problem p S s q

R p; S; sð Þ 46:8 212:6 0 212:6
G p; S; sð Þ 31:2 916:2 59:5 856:7

8

higher than the profit per unit time for the solution with maximum
ROIME, which is GR ¼ G p�; S�; 0ð Þ ¼ 2995:2. On the other hand, the
ROIME for the solution with the maximum profit per unit time is
RG ¼ 23:10%, which is 53% lower than the maximum ROIME
R� ¼ 48:79%.

Note that, if the inventory manager had other investment alter-
natives with the same ROIME (48:79%), using the same resources
needed for the solution of maximum profit per unit time
(39890:3 currency units), he/she could obtain a profit per unit time
of 19462:5 currency units, which is 111% greater than the 9216:6
currency units that provides the solution with maximum profit per
unit time. This issue should be taken into account by the inventory
manager when choosing between the maximum profit per unit
time and the maximum ROIME policies.

Also, the results obtained in this numerical example suggest
that, concerning the solution of maximum profit per unit time,
the solution with maximum ROIME requires a higher selling price,
smaller lot size, longer cycle time, higher inventory cost per item,
and a lower total expense of the system per unit time.

To illustrate these results graphically, for each p 2 20;75ð Þ with
a step of one-tenth, Fig. 1 plots the values R�

p ¼ R�ðpÞ and RG
p in the

right vertical axis, and the values G�
p and GR

p ¼ G p; S�p;0
� �

in the left

vertical axis.
Next, a sensitivity analysis of the optimal solution with respect

to all the initial parameters of the inventory system is included. For
this sensitivity analysis, the partial derivatives of the optimal solu-
tion, concerning the initial parameters of the model, both in abso-
lute and relative values, are evaluated with the expressions in
Table 5. The results are included in Table 7.

The parameter K has an increasing effect on q� and T�, a decreas-
ing effect on p� and R�, and it is the most influential on the optimal
lot size q�. The parameter h always has a decreasing effect on all
the optimal values, and the relative rate has a major influence on
the optimal cycle time T�. The parameter c has an increasing effect
on p� and T�, a decreasing effect on q� and R�, and the relative rates
on q� and T� are equal but with opposite sign. The parameter k has
a decreasing effect on T�, an increasing effect on the other optimal
values, and its relative effect on p�; q� and R� is the same as that of
h, except for the sign. The parameter a has no effect on q� and T�,
and it is the most influential on p� and R�, with a decreasing effect.
Finally, in this numerical example, the parameter b has a decreas-
ing effect on T� and an increasing effect on the other optimal val-
ues. Everything agrees with the results given in Section 5.

Besides, Fig. 2 plots the percentual changes in the selling price,
the lot size, the return on inventory management expense, and the
cycle time for percentual changes between �50% and 50% in each
of the parameters, keeping all the others fixed. Notice that, for all
the curves, the slope at the origin of the coordinates matches the
relative values given in Table 7.

To finish the numerical results of this example, the profitability
threshold for each parameter, keeping all the others fixed, is calcu-
lated by using the expressions given in Table 4. The obtained val-
ues are shown in Table 8.

Then, the maximum purchasing cost is 36:6 and the potential
consumers must be, at least, 1151. The maximum values for the
holding cost per unit and per unit time, and the ordering cost
are, respectively, 78:3 and 10581:8 . For the parameter a, the
T r C G R

1:09 11:4 6138:8 2995:2 48:79%
0:54 5:3 39890:3 9216:6 23:10%



Fig. 1. Optimal profit per unit time and optimal ROIME for each p.
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maximum value that allows a profitable system is 0:149. Also, it is
not difficult to check that, for all b 2 ½0;1Þ, the inequality given in
(21) is satisfied and, therefore, in this numerical example, the
inventory system is always profitable for any b 2 0;1½ Þ.

7. Conclusions

This paper studies a deterministic inventory model where the
demand rate depends on both the selling price and the stock level.
A lower selling price or a higher stock level lead to a higher
demand rate. Three decision variables are considered: the selling
price p, the order-level S and the reorder point s. The goal is the
maximization of the return on inventory management expense
(ROIME), that is, the ratio between the profit and the total cost of
the system.

Many times, the maximum ROIME policy is a better alternative
to the policy of the maximum profit per unit time because,
although this criterion reduces the profit, it requires a lower
investment cost in the management of the inventory. If the man-
ager has several business options, he/she can make a better deci-
sion diversifying the available resources on the most profitable
products instead of concentrating all resources on the products
with the highest profit per unit time. This is always a good invest-
ment strategy on business, also in inventory management. The pro-
posed model in this paper allows the manager to know the optimal
inventory policy, and also the optimal selling price, which lead to
the highest profitability of the system.

The zero-ending policy at the end of an inventory cycle is opti-
mal for the maximum ROIME policy and, therefore, the replace-
ment must be done when the stock is depleted (s� ¼ 0). As a
Table 7
Absolute and relative rates of change in p�; q� ;R� and T� with respect to each parameter

x ¼ K ¼ 1000 x ¼ h ¼ 15 x ¼ c

@p�=@x �0:4E� 2 �0:42 0:5
@p�=@xð Þ= p�=xð Þ �0:10% �0:14% 0:2

@q�=@x 0:18 �3:03 �6:
@q�=@xð Þ= q�=xð Þ 0:85% �0:21% �0:6

@R�=@x �0:2E� 3 �0:2E� 1 �0:5E
@R�=@xð Þ= R�=xð Þ �0:46% �0:65% �1:9

@T�=@x 0:2E� 3 �0:6E� 1 0:3E
@T�=@xð Þ= T�=xð Þ 0:15% �0:79% 0:6
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consequence, the optimal order-level S� coincides with the optimal
lot size q�. Also, the optimal selling price p�, the optimal lot size q�,
the maximum ROIME R�, and the optimal cycle time T� are
obtained. Curiously, the optimal lot size q� and the optimal cycle
time T� do not depend on the elasticity parameter of the demand
rate regarding the selling price. Thus, the manager knows that
the optimal order policy does not change if the demand is more
o less sensitive to the selling price, which is an interesting manage-
rial insight.

The optimal selling price p� increases if the purchasing cost c, or
the scale parameter k of the demand rate, increase. On the other
hand, it decreases if the ordering cost K, the holding cost h per unit
and per unit time, or the elasticity parameter a of the demand rate
with respect to the selling price, increase. The optimal lot size q�

increases if the parameters K or k increase, and it decreases if the
parameters h or c increase. The maximum ROIME R� increases if
the parameter k increases, and it decreases if any of the parameters
K;h; c, or a increases. The optimal cycle time T� increases if the
parameters K or c increase, and it decreases if the parameters h
or k increase. Regarding the elasticity of the demand rate with
respect to the stock level b, all the optimal quantities can increase
or decrease if this parameter increases, depending on the values of
the other parameters of the model.

From a comparative point of view, the parameter K is the most
influential on the optimal lot size q�, while the parameter h is the
most influential on the optimal cycle time T�. The relative effects of
the parameter c on q� and T� are equal, but with opposite sign. The
relative effects of the parameter k on p�; q� and R� are the same as
that of h, except for the sign. Finally, the parameter a is the most
influential on p� and R�.

Profitability thresholds for each parameter, keeping all the
others fixed, are also obtained. They allow us to know the values
that ensure obtaining an acceptable inventory system.

If the demand rate is price-sensitive and the selling price is a
decision variable, the solution with the maximum return on inven-
tory management expense, and the maximum profit per unit time
solution could be very different. The computational results suggest
that, concerning the solution of maximum profit per unit time, the
maximum ROIME policy requires a higher selling price, smaller lot
size, longer cycle time, higher inventory cost per item, and a lower
total expense of the system per unit time. Then, the inventory
manager could invest the saved resources in other businesses more
profitable to obtain a greater profit per unit time. Only if there are
no other investment alternatives, the inventory manager could
prefer the maximum profit per unit time solution instead of the
maximum ROIME policy.

Some possible extensions of the model that can be future
research topics are: (i) to consider other functions for the demand
rate; (ii) to suppose a non-linear holding cost; (iii) to incorporate
discounts in the unit purchasing cost; and (iv) to study the case
of perishable or deteriorating items over time.
¼ 20 x ¼ k ¼ 6000 x ¼ a ¼ 0:1 x ¼ b ¼ 0:3

4 0:1E� 2 �467:6 20:4
3% 0:14% �1% 0:13%
76 0:8E� 2 0 520:5
4% 0:21% 0% 0:73%
� 2 0:5E� 6 �14:9 1:52
4% 0:65% �3:05% 0:93%
� 1 �0:4E� 4 0 �0:20
4% �0:21% 0% �0:05%



Fig. 2. Percentual changes in p�; q�;R� and T� versus percentual changes in each parameter.

Table 8
Profitability thresholds for the initial parameters of the analysed inventory system.

K h c k a b

Actual value 1000 15 20 6000 0:1 0:3
Profitability threshold K < 10581:8 h < 78:3 c < 36:6 k > 1150:6 a < 0:149 0 6 b < 1
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Appendix A

In this appendix, the proofs of Lemma 1, Lemma 2, Lemma 3 and
Theorem 1 are included.

Proof of Lemma 1.The function f ðxÞ satisfies that f ðxÞ > 0 for all
x > 0 and limx!0þ f ðxÞ ¼ limx!1f ðxÞ ¼ 1. Moreover, it is a differen-
tiable function with

f 0ðxÞ ¼ � 2� bð ÞKke�ap þ 1� bð Þhx2�b

c þ Aex
	 
2

and therefore

x� ¼ ð2� bÞKke�ap
1� bð Þh

� �1=ð2�bÞ

is the only stationary point. Thus, the global minimum of the func-
tion f ðxÞ is obtained at point x�, with

f x�ð Þ ¼ K
x� þ h x�ð Þ1�b

ð2�bÞke�ap ¼ ð2�bÞKke�apþh x�ð Þ2�b

ð2�bÞke�apx� ¼ h x�ð Þ2�b

ke�apx�

¼ ð2�bÞK
1�bð Þx� ¼ ð2�bÞK

1�b

� �
1�bð Þh

ð2�bÞKke�ap
� �1=ð2�bÞ

¼ Aeap=ð2�bÞ

where

A ¼ ð2� bÞK
1� b

� �ð1�bÞ=ð2�bÞ h
k

� �1=ð2�bÞ
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and the proof is finished. h

Proof of Lemma 2.If uðxÞ ¼ ce�x þ Að1� xÞ, with c > 0 and
A > 0, it is clear that uðxÞ is a continuous and twice differentiable
function, with u0ðxÞ ¼ �ce�x � A < 0 and u00ðxÞ ¼ ce�x > 0 for all
x 2 R. Moreover, limx!�1uðxÞ ¼ 1 and limx!1uðxÞ ¼ �1. There-
fore, the equation uðxÞ ¼ 0 necessarily has a unique real root B
with uðxÞ > 0 if x < B, and uðxÞ < 0 if x > B. Also, taking into
account that ex > 1þ x and e�x < 1=ð1þ xÞ if x > 0, then

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c=A

p� �
<

c

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c=A

p þ A 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c=A

p� �
¼ c þ A �c=Að Þ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c=A

p ¼ 0

Finally, as uð1Þ ¼ ce�1 > 0, we can ensure that
1 < B <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c=A

p
. �

Proof of Theorem 1.The function gðpÞ satisfies that gðpÞ > 0 for
all p > 0 and limp!0þgðpÞ ¼ limp!1gðpÞ ¼ 0. Moreover, it is a differ-
entiable function with

g0ðpÞ ¼ c þ Aeap=ð2�bÞ � ap
2�bAe

ap=ð2�bÞ

c þ Aeap=ð2�bÞ
� �2 ¼

ce�ap=ð2�bÞ þ A 1� ap
2�b

� �
e�ap=ð2�bÞ c þ Aeap=ð2�bÞ

� �2
¼ eap=ð2�bÞuð ap

2�bÞ
c þ Aeap=ð2�bÞ
� �2

Therefore, from Lemma 2, the unique stationary point p� of the
function g pð Þ is obtained when ap�

2�b ¼ B, and therefore p� ¼ 2�bð ÞB
a .

Moreover, it is necessarily the global maximum of the function
g pð Þ, because g0ðpÞ > 0 (the function gðpÞ increases) on 0; p�ð Þ,
and g0ðpÞ < 0 (the function gðpÞ decreases) on p�;1ð Þ. Furthermore,
g p�ð Þ ¼ p�

cþAeB
and, taking into account that 1 < B <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c=A

p
, it sat-

isfies that

2� b
a

< p� <
2� bð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c=A
p
a

and the proof is finished. h

Proof of Lemma 3.The inequality given by (17) can be rewrit-
ten in the following equivalent ways (take into account that
x < B if, and only if, u xð Þ > 0):

a < 2�bð Þ B�1ð Þ
c () 1þ ac

2�b < B () u 1þ ac
2�b

� �
>

0 () ce� 1þ ac
2�bð Þ > Aac

2�b

() A < 2�bð Þe� 1þ ac
2�bð Þ

a () 2�bð ÞK
1�b

� �ð1�bÞ=ð2�bÞ
h
k

	 
1=ð2�bÞ

< 2�bð Þe� 1þ ac
2�bð Þ

a

() 2�bð ÞK
1�b

� �1�b
h
k

	 

< 2�b

a

	 
2�b
e� 2�bþacð Þ () K1�bh

k < 2�bð Þ 1�bð Þ1�b

a2�be2�bþac

Therefore, the acceptability condition for the inventory system
is

K1�bh
k

<
C
eac

where

C ¼ 2� bð Þ 1� bð Þ1�b

a2�be2�b

This completes the proof. h
Appendix B

In this appendix, all the partial derivatives given in Table 5 are
calculated.
11
As a starting point, the partial derivatives of the auxiliary
parameters A and B with respect to the initial parameters are cal-
culated. For the parameter A, from (11), we have

lnA ¼ 1� b
2� b

� �
� ln

1� b
2� b

� �
þ lnK

� �
þ lnh� ln k

2� b

� �

and the logarithmic differentiation can be used to obtain:

@A
@K

¼ A
@ ln Að Þ
@K

¼ 1� bð ÞA
2� bð ÞK

@A
@h

¼ A
@ ln Að Þ

@h
¼ A

2� bð Þh

@A
@k

¼ A
@ ln Að Þ

@k
¼ �A

2� bð Þk

@A
@b ¼ A @ ln Að Þ

@b ¼ A
ln 1�b

2�bð Þ�lnK

2�bð Þ2 þ 1
2�b

� �2
þ lnh�ln k

2�bð Þ2

� �

¼ A lnð1�bÞ�lnð2�bÞ�lnKþ1þlnh�ln k

2�bð Þ2
� �

¼ DA
2�bð Þ2

where

D ¼ 1þ ln
1� bð Þh
2� bð ÞKk

� �

Parameter B is defined by the implicit equation
F K;h; k; b; c;Bð Þ ¼ 0 with

F K; h; k; b; c;Bð Þ ¼ ce�B þ Að1� BÞ
Then, by implicit differentiation, the partial derivatives of B are:

@B
@K

¼ � @F=@K
@F=@B

¼ 1� Bð Þ @A=@Kð Þ
ce�B þ A

¼ 1� Bð Þ @A=@Kð Þ
AB

¼ 1� bð Þ 1� Bð Þ
2� bð ÞBK < 0

@B
@h

¼ � @F=@h
@F=@B

¼ 1� Bð Þ @A=@hð Þ
ce�B þ A

¼ 1� Bð Þ @A=@hð Þ
AB

¼ 1� B
2� bð ÞBh < 0

@B
@k

¼ � @F=@k
@F=@B

¼ 1� Bð Þ @A=@kð Þ
ce�B þ A

¼ 1� Bð Þ @A=@kð Þ
AB

¼ B� 1
2� bð ÞBk > 0

@B
@c

¼ � @F=@c
@F=@B

¼ e�B

ce�B þ A
¼ A B� 1ð Þ=c

AB
¼ B� 1

Bc
> 0

@B
@b

¼ � @F=@b
@F=@B

¼ 1� Bð Þ @A=@bð Þ
ce�B þ A

¼ 1� Bð Þ @A=@bð Þ
AB

¼ D 1� Bð Þ
2� bð Þ2B

Now, using the expression (14), the partial derivatives of p�

with respect to the initial parameters are:

@p�

@K
¼ 2� bð Þ @B=@Kð Þ

a
¼ 1� bð Þ 1� Bð Þ

aBK
< 0

@p�

@h
¼ 2� bð Þ @B=@hð Þ

a
¼ 1� Bð Þ

aBh
< 0

@p�

@k
¼ 2� bð Þ @B=@kð Þ

a
¼ B� 1

aBk
> 0

@p�

@c
¼ 2� bð Þ @B=@cð Þ

a
¼ 2� bð ÞðB� 1Þ

acB
> 0

@p�

@a
¼ � 2� bð ÞB

a2 < 0
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@p�

@b
¼ 2� bð Þ @B=@bð Þ � B

a
¼ 1� Bð ÞD

2� bð ÞaB� B
a

In a similar way, using the expression (15), the partial deriva-
tives of the optimal lot size are:

@q�
@K ¼ 2�b

cð1�bÞ

� �
B� 1þ K @B

@K

	 
	 
 ¼ 2�b
cð1�bÞ

� �
B� 1� 1�bð Þ B�1ð Þ

2�bð ÞB

� �
¼ 2�bð Þ B�1ð Þ

ð1�bÞcB

� �
B� 1�b

2�b

� �
> 0

@q�

@h
¼ 2� bð ÞK

ð1� bÞc
� �

@B
@h

� �
¼ K 1� Bð Þ

chð1� bÞB < 0

@q�

@k
¼ K 2� bð Þ

cð1� bÞ
� �

@B
@k

� �
¼ K B� 1ð Þ

ckð1� bÞB > 0

@q�

@c
¼ Kð2� bÞ

1� b

� �
c @B

@c

	 
� B� 1ð Þ
c2

� �
¼ �Kð2� bÞ B� 1ð Þ2

1� bð Þc2B < 0

@q�
@b ¼ K

c

	 

B�1
1�bð Þ2 þ

2�b
1�b

� �
@B
@b

� �� �
¼ K

1�bð Þc

� �
B�1
1�b � D B�1ð Þ

2�bð ÞB

� �
¼ K B�1ð Þ

c 1�bð Þ2
� �

1� 1�bð ÞD
2�bð ÞB

� �
Regarding the optimal return on inventory management

expense R�, using the expression (20), it is possible to obtain:

@R�

@K
¼ 1

c

� �
@p�

@K

� �
¼ 1� bð Þ 1� Bð Þ

caKB
< 0

@R�

@h
¼ 1

c

� �
@p�

@h

� �
¼ 1� Bð Þ

cahB
< 0

@R�

@k
¼ 1

c

� �
@p�

@k

� �
¼ B� 1

cakB
> 0

@R�
@c ¼ 1

c2

	 

c @p�

@c

	 
� p� � 2�b
a

	 
	 
 ¼ 1
c2

	 
 2�bð ÞðB�1Þ
aB � 2�bð Þ B�1ð Þ

a

� �
¼ � 2�bð ÞðB�1Þ2

ac2B < 0

@R�

@a
¼ 1

c

� �
@p�

@a

� �
þ 2� b

a2

� �
¼ �ð2� bÞðB� 1Þ

ca2 < 0

@R�

@b
¼ 1

c

� �
@p�

@b

� �
þ 1
a

� �
¼ 1� Bð ÞD

2� bð ÞcaB� B� 1
ca

¼
1� Bð Þ 1þ D

2�bð ÞB

� �
ca

Finally, from the expression (19), the partial derivatives of the
optimal cycle time T� are:

@T�

@K
¼ �c @B

@K

	 

ð1� bÞ B� 1ð Þ2h

¼
c 1�bð Þ B�1ð Þ

2�bð ÞBK

� �
ð1� bÞ B� 1ð Þ2h

¼ c
ð2� bÞ B� 1ð ÞBKh > 0

@T�

@h
¼ �c B� 1þ h @B

@h

	 
	 

ð1� bÞ B� 1ð Þ2h2 ¼

�c B� 1� B�1
2�bð ÞB

� �
ð1� bÞ B� 1ð Þ2h2 ¼

�c 1� 1
2�bð ÞB

� �
ð1� bÞ B� 1ð Þh2 < 0

@T�

@k
¼ �c @B

@k

	 

ð1� bÞ B� 1ð Þ2h

¼
�c B�1ð Þ

2�bð ÞBk

� �
ð1� bÞ B� 1ð Þ2h

¼ �c
ð1� bÞð2� bÞB B� 1ð Þhk < 0
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@T�

@c
¼ B� 1� c @B

@c

	 

ð1� bÞ B� 1ð Þ2h

¼ B� 1� B�1
B

ð1� bÞ B� 1ð Þ2h
¼ 1

ð1� bÞBh > 0

@T�

@b
¼

�c �ðB� 1Þ þ ð1� bÞ @B
@b

� �� �
ð1� bÞ2 B� 1ð Þ2h

¼
�c �ðB� 1Þ þ ð1� bÞ D 1�Bð Þ

2�bð Þ2B

� �� �
ð1� bÞ2 B� 1ð Þ2h

¼
c 1þ ð1�bÞD

2�bð Þ2B

� �
ð1� bÞ2 B� 1ð Þh
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