
Computers and Operations Research 120 (2020) 104940 

Contents lists available at ScienceDirect 

Computers and Operations Research 

journal homepage: www.elsevier.com/locate/cor 

A new approach to maximize the profit/cost ratio in a 

stock-dependent demand inventory model 

Valentín Pando 

a , b , ∗, Luis A. San-José c , d , Joaquín Sicilia 

e 

a Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Spain 
b Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Spain 
c Instituto Universitario de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Spain 
d Departamento de Matemática Aplicada, Universidad de Valladolid, Spain 
e Departamento de Matemáticas, Estadística e Investigación Operativa, Universidad de La Laguna, Spain 

a r t i c l e i n f o 

Article history: 

Received 25 September 2019 

Revised 23 January 2020 

Accepted 15 March 2020 

Available online 20 March 2020 

Keywords: 

Inventory 

Profit/cost ratio maximization 

Stock-dependent demand rate 

Non-linear holding cost 

a b s t r a c t 

This work analyzes an inventory system with stock-dependent demand and non-linear holding cost. It 

presents a new approach to maximize the return on investment, that is, the profit/cost ratio. When an 

inventory manager can invest in different projects and the resources are limited, it seems sensible to se- 

lect those projects that provide a higher return on investment. Thus, the goal of the manager will be to 

find the inventory policy that gives a major return on investment. Note that the solution for the max- 

imum profit per unit time does not necessarily match the solution of the maximum profit/cost ratio. 

Consequently, a new procedure to obtain the inventory policy that maximizes the return on investment 

should be proposed. In this paper, it is proved that maximizing the profit/cost ratio is equivalent to mini- 

mizing the inventory cost per unit of an item, instead of minimizing the inventory cost per unit time. The 

optimal policy can be obtained in a closed form and the replacement should be done when the stock is 

depleted. Thus, the inventory manager does not need to process a new order while there are items avail- 

able in stock. This optimal solution is different from the other policies proposed for the problems of 

minimum cost or maximum profit per unit time. Finally, numerical examples are solved to illustrate the 

theoretical results and the solution methodology proposed in the work. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper presents an economic order quantity model (EOQ)

here the demand rate and the holding cost rate both depend on

he inventory level. Since the 1980s, many models have appeared

n the inventory literature that use one of these two assumptions.

ome consider the aim of minimizing the inventory cost per unit

ime, while others focus on maximizing the profit per unit time.

he two approaches may be appropriate depending on the ulti-

ate goal of the inventory manager. We have cited the ones that

nspired this work in Table 1 and we have classified them accord-

ng to which of the two assumptions they assume and which ob-

ective function is considered. 

Specifically, in this paper, we assume that the demand rate is

 concave power function on the stock level, and that the holding
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ost rate per unit time is a convex power function on the quantity

f items held in stock. The Model B of Goh (1994) already consid-

red these two assumptions simultaneously in an inventory model

ocusing on the minimization of the inventory cost per unit time.

owever, it is known that, when the demand rate depends on the

tock level, the revenues can be increased by maintaining a higher

evel of inventory, even though the inventory costs increase. There-

ore, if the aim is to maximize the profit per unit time, the best

nventory policy can be different from the other one with the min-

mum inventory cost per unit time. 

Pando et al. (2012b) solved an inventory model from the maxi-

um profit per unit time approach, proving that the best solution

as different from the one for the minimization of the inventory

ost per unit time. The comparison of these two models leads to

he observation that the solution of the minimum inventory cost

er unit time carries a low profit per unit time, while the maxi-

um profit per unit time solution carries high purchasing and in-

entory costs per unit time. This issue could be expected, as each

odel only takes into account one of the two targets, forgetting

he other. However, in many real situations, the inventory man-

https://doi.org/10.1016/j.cor.2020.104940
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Table 1 

Inventory models with stock-dependent demand or stock-dependent holding cost 

Model 

Objective: Demand rate 

dependent on the stock 

level 

Holding cost rate 

dependent on the stock 

level Minimum Cost Maximum Profit 

Muhlemann and Valtis-Spanopoulos (1980) x x 

Baker and Urban (1988) x x 

Goh (1992) x x 

Goh (1994) x x x 

Padmanabhan and Vrat (1995) x x 

Giri and Chaudhuri (1998) x x x 

Chung et al. (2000) x x 

Chang (2004) x x x 

Dye and Ouyang (2005) x x 

Teng and Chang (2005) x x 

Berman and Perry (2006) x x 

Wu et al. (2006) x x 

Alfares (2007) x x 

Sana and Chaudhuri (2008) x x 

Urban (2008) x x 

Chang et al. (2010) x x 

Yang et al. (2010) x x 

Lee and Dye (2012) x x 

Pando et al. (2012b) x x x 

Pando et al., 2013 x x x 

Yang (2014) x x x 

Alfares (2015) x x 

Choudhury et al. (2015) x x x 

Pervin et al. (2017) x x x 

Pando et al. (2018) x x x 
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h  
ager may prefer a solution that provides a high profit per unit time

without greatly increasing the total cost invested in the inventory.

That is, perhaps the manager is more interested in maximizing

the return on the investment, which is given by the profit/cost ra-

tio of the money handled in the inventory. In this case, the for-

mulation of the model should aim to maximize the profit/cost

ratio. 

This alternative approach has been less used in inventory the-

ory. As a starting point, Schroeder and Krishnan (1976) con-

sidered the return on investment (ROI) as a criterion for in-

ventory models. Arcelus and Srinivasan (1985) adapted the EOQ

model to maximizing ROI and they obtained the optimal solu-

tion in an inventory model with price-dependent demand rate,

where the selling price is set as a markup of the unit purchas-

ing cost. Also, Trietsch (1995) developed the company-wide ROI

maximizing order quantity, proving that it does not necessar-

ily follow the square root of the demand level and that it is

bounded from above by EOQ. Other papers focused on maximiz-

ing the return on investment are Otake et al. (1999) , Chen (2001) ,

Otake and Min (2001) and Li et al. (2008) . More recently, Chen and

Liao (2014) also considered the return on investment maximization

in an inventory model for deteriorating items. 

As can be seen in Table 1 , none of the models with stock-

dependent demand rate and/or a stock-dependent holding cost are

focused on the maximization of the profit/cost ratio, that is, the

profitability of the inventory system. So, this is the gap that we aim

to fill with this paper, building an inventory model with demand

rate and holding cost both dependent on the stock level whose ob-

jective is the maximization of the profit/cost ratio in the inventory

system. In Section 2 , the notation and assumptions are established,

and the formulation of the model is presented to obtain the math-

ematical formulation of the problem. Section 3 includes the the-

oretical results leading to the resolution of the problem and the

choice of the optimal policy for the inventory system. A sensitivity

analysis of the optimal solution with respect to the main param-

eters of the model is included in Section 4 . Section 5 illustrates

the use of the model with some numerical examples. Finally, the
onclusions and future research lines on this topic are set out in

ection 6 . 

. Mathematical model 

This paper considers an inventory system for a single item

ver an infinite planning horizon. The inventory control assumes a

ontinuous review with instantaneous replenishment. We suppose

hat shortages are not allowed. Also, the unit purchasing cost, the

nit selling price, and the ordering cost are known constants. 

Moreover, we assume that the demand rate at time t is a known

unction D ( t ), which depends on the inventory level I ( t ) at each

ime. As in Baker and Urban (1988) , we suppose that this function

s given by D (t) = λ[ I(t) ] 
β
, with λ > 0 and 0 ≤ β < 1. Then, the

emand rate is a concave power function of the inventory level.

ith this functional form, as time goes by, the inventory level de-

reases and so does the demand rate. The coefficient λ is the scale

arameter, and the exponent β is known as the elasticity of the

emand rate with respect to the inventory level, which is a mea-

ure of the responsiveness of the demand rate to changes in the in-

entory level. Obviously, the basic case with constant demand rate

s obtained if β = 0 . 

With this assumption for the demand rate, it could be interest-

ng to set a new order before the stock is depleted, thus leading to

n increase in the demand rate. Therefore, the profit is improved

nd this could offset the higher ordering and holding costs. In fact,

aker and Urban (1988) found that the maximum profit per unit

ime in an inventory model with this demand rate function is ob-

ained with a non-zero order point, which implies that the optimal

ength of the inventory cycle is strictly shorter than the length of

he cycle τ that would be necessary to deplete the inventory. Now,

e want to explore whether this statement is also true when the

im is to maximize the return on investment of the inventory sys-

em, which is calculated as the ratio between the profit and the

otal cost invested to obtain it. 

In addition, the holding cost rate per unit time for x items

eld in stock is assumed as the convex power function H(x ) = hx γ ,
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Table 2 

Notation for the model 

τ Time period over which there is stock in the inventory, decision variable ( τ > 0) 

T Length of the inventory cycle, decision variable (0 < T ≤ τ ) 

t Elapsed time in the inventory (0 ≤ t ≤ T ) 

x Quantity of items in stock ( x ≥ 0) 

I ( t ) Inventory level at time t ( I ( t ) ≥ 0) 

q Lot size, that is, q = I(0) − I(T ) ( q > 0) 

p Unit purchasing cost ( p > 0) 

v Unit selling price ( v > p ) 

K Ordering cost per order ( K > 0) 

h Scale parameter of the holding cost ( h > 0) 

γ Elasticity parameter of the holding cost ( γ ≥ 1) 

H ( t ) Holding cost rate per unit time, H(t) = h [ I(t) ] 
γ

λ Scale parameter of the demand rate ( λ > 0) 

β Elasticity parameter of the demand rate with respect to the stock level (0 ≤ β < 1) 

D ( t ) Demand rate at time t , D (t) = λ[ I(t) ] 
β
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here h > 0 is the scale parameter and γ ≥ 1 is the elasticity pa-

ameter. Thus, the holding cost rate is non-linear with respect to

he quantity of stored items when γ > 1. In the inventory system,

he number x of items in stock at time t is given by the inventory

evel I ( t ). Therefore, the holding cost rate per unit time is h [ I ( t )] γ ,

ust as in Goh (1994) , Giri and Chaudhuri (1998) , Chang (2004) and

ando et al. (2012b) . 

Two decision variables are considered in the model: the length

f the inventory cycle T , and the time τ where the inventory level

ould be depleted (that is, I(τ ) = 0 ). As shortages are not allowed,

he condition T ≤ τ must be considered. Table 2 includes the no-

ation used in the paper. 

For 0 ≤ t < τ , the inventory level curve I ( t ) is obtained by solv-

ng the differential equation 

dI(t) 

dt 
= −λ[ I(t) ] 

β
(1) 

ith the condition I(τ ) = 0 . The solution can be written as 

(t) = [ (1 − β) λ(τ − t) ] 
1 / (1 −β) 

(2) 

Then, the holding cost in an inventory cycle, HC ( τ , T ), can be

valuated as 

C ( τ, T ) = 

∫ T 

0 

h [ I(t) ] 
γ

dt 

= h [ (1 − β) λ] 
γ / (1 −β) 

∫ T 

0 
( τ − t ) 

γ / (1 −β) dt = 

= A 

[
τ 1+ γ / (1 −β) − ( τ − T ) 

1+ γ / (1 −β) 
]

(3) 

ith 

 = 

h [ (1 − β) λ] 
γ / (1 −β) 

1 + γ / (1 − β) 
(4) 

As I(0) = [ (1 − β) λτ ] 
1 / (1 −β) 

and I(T ) = [ (1 − β) λ(τ − T ) ] 
1 / (1 −β) 

,

he lot size is 

 = I(0) − I(T ) = B 

[
τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 

]
(5)

ith 

 = [ (1 − β) λ] 
1 / (1 −β) 

(6) 

The income obtained in each inventory cycle is vq . The total

ost is the sum of the purchasing cost pq , the ordering cost K , and

he holding cost HC ( τ , T ). Then, the total cost per unit time TC ( τ ,

 ) is 

 C ( τ, T ) = 

pq + K + HC(τ, T ) 
(7) 

G ( τ, T ) = 

(v − p) B 

[
τ 1 / (1 −β) − (τ −
T 
The profit per unit time G ( τ , T ) is given by 

 (τ, T ) = 

(v − p) q − K − HC(τ, T ) 

T 
(8) 

nd the profit/cost ratio R ( τ , T ) for the inventory model is given by

 ( τ, T ) = 

G (τ, T ) 

T C ( τ, T ) 
= 

v 
p + r ( τ, T ) 

− 1 , (9) 

here 

 ( τ, T ) = 

K + HC(τ, T ) 

q 
= 

K + A 

[
τ 1+ γ / (1 −β) − ( τ − T ) 

1+ γ / (1 −β) 
]

B 

[
τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 

]
(10) 

Note that, if we define the inventory cost to be the sum of the

rdering cost and the holding cost, then the function r ( τ , T ) eval-

ates the average inventory cost per unit of an item. Moreover, as

 ( τ , T ) > 0, it is clear that −1 < R ( τ, T ) < v /p − 1 . 

The aim of the model is to maximize the profit/cost ratio R ( τ ,

 ). Therefore, the mathematical problem is 

max 
τ> 0 
 <T ≤τ

R ( τ, T ) (11) 

hich is equivalent to 

min 

τ> 0 
 <T ≤τ

r ( τ, T ) (12) 

From (3), (5) and (8) , it follows that the profit per unit time

 ( τ , T ) can be evaluated as 

 / (1 −β) 
]

− K − A 

[
τ 1+ γ / (1 −β) − ( τ − T ) 

1+ γ / (1 −β) 
]

T 
(13) 

In a similar way, the inventory cost per unit time (that is, the

um of the ordering cost and the holding cost per unit time) can

e expressed as 

 ( τ, T ) = 

K + HC(τ, T ) 

T 
= 

K + A 

[
τ 1+ γ / (1 −β) − ( τ − T ) 

1+ γ / (1 −β) 
]

T 

(14) 

Note that, if the demand rate is constant (that is, β = 0 ), then

 ( τ, T ) = λ(v − p) − λr ( τ, T ) and C ( τ, T ) = λr ( τ, T ) . As a conse-

uence, if β = 0 , then the solution of the problem (12) is equal to

he solution for the problem of the minimization of the inventory

ost per unit time, and is also the same solution for the problem

f the maximum profit per unit time. But this is not true if β > 0,

hat is, if the demand rate depends on the inventory level. Then,

he purpose of this paper is to obtain the optimal solution for the

roblem of the maximum profit/cost ratio. 
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3. Problem solution 

In order to solve the problem (12) , we begin by proposing a first

result which will be used in the search for the optimal inventory

policy. 

Lemma 1. Let K > 0, τ > 0 and T > 0 with T < τ . Then the following

inequalities are held: 

(i) 
K 

τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 
> 

K 

τ 1 / (1 −β) 

ii) 
τ 1+ γ / (1 −β) − ( τ − T ) 1+ γ / (1 −β) 

τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 
> τ 1+ ( γ −1 ) / ( 1 −β) 

Proof. The inequality (i) is obvious and (ii) follows from 

τ 1+ γ / (1 −β) − ( τ − T ) 
1+ γ / (1 −β) 

τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 

> 

τ 1+ γ / (1 −β) − τ 1+ ( γ −1 ) / ( 1 −β) ( τ − T ) 
1 / (1 −β) 

τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 

= 

τ 1+ ( γ −1 ) / ( 1 −β) 
[
τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 

]
τ 1 / (1 −β) − (τ − T ) 1 / (1 −β) 

= τ 1+ ( γ −1 ) / ( 1 −β) �

Therefore, from Lemma 1 , the function r ( τ , T ) satisfies that 

r ( τ, T ) > 

K + Aτ 1+ γ / (1 −β) 

Bτ 1 / (1 −β) 
= r ( τ, τ ) (15)

for every ( τ , T ), with 0 < T < τ . 

As a consequence, the minimum of the function r ( τ , T ) is ob-

tained when T = τ . Thus, considering the function 

�( τ ) = r ( τ , τ ) = 

(
1 

B 

)[ 
K 

τ 1 / (1 −β) 
+ Aτ 1+ ( γ −1 ) / ( 1 −β) 

] 
(16)

we only need to solve the problem 

min 

τ> 0 
�( τ ) (17)

to obtain the optimal solution of the problem (12) . �

The following proposition gives the solution for the problem

(17) : 

Proposition 1. Consider the function �( τ ) given by (16) with τ > 0

and the auxiliary parameters A and B given by (4) and (6) respec-

tively. Then, the minimum value for the function �( τ ) is obtained at

the point 

τ ∗ = 

(
K 

A ( γ − β) 

)( 1 −β) / ( γ +1 −β) 

(18)

and the minimum value is 

�∗ = �( τ ∗) = 

(
K ( γ + 1 − β) 

B ( γ − β) 

)(
K 

A ( γ − β) 

)−1 / ( γ +1 −β) 

(19)

Proof. Taking into account that β ∈ [0, 1) and γ ≥ 1, it is easily

seen that lim τ→ 0 + �( τ ) = lim τ→∞ 

�( τ ) = ∞ . Moreover, the first

two derivatives of this function are: 

�′ ( τ ) = 

(
1 

( 1 − β) B 

)[ 
− K 

τ 1+1 / ( 1 −β) 
+ A ( γ − β) τ ( γ −1 ) / ( 1 −β) 

] 
= 

−K + A ( γ − β) τ 1+ γ / (1 −β) 

( 1 − β) Bτ 1+1 / ( 1 −β) 

and 

�′′ ( τ ) = 

( 2 − β) K + ( γ − β) ( γ − 1 ) Aτ 1+ γ / (1 −β) 

B ( 1 − β) 
2 τ 2+1 / ( 1 −β) 

> 0 
Therefore, � is a strictly convex function and the only root of

he equation �′ ( τ ) = 0 is 

∗ = 

(
K 

A ( γ − β) 

)( 1 −β) / ( γ +1 −β) 

Then, the minimum of the function �( τ ) is obtained at τ ∗, and

he minimum value is 

∗ = �( τ ∗) = 

K + A ( τ ∗) 1+ γ / ( 1 −β) 

B ( τ ∗) 1 / ( 1 −β) 
= 

(
K ( γ + 1 − β) 

B ( γ − β) 

)
( τ ∗) −1 / ( 1 −β

= 

(
K ( γ + 1 − β) 

B ( γ − β) 

)(
K 

A ( γ − β) 

)−1 / ( γ +1 −β) 

hich proves the proposition. �

From this last result, the solution of the equivalent problems

11) and (12) are given in the next theorem, which establishes

he optimal policy that maximizes the profit/cost ratio R ( τ , T ) or,

quivalently, minimizes the average inventory cost per unit of an

tem r ( τ , T ). 

heorem 1. Consider the functions R ( τ , T ) and r ( τ , T ) given by

9) and (10) respectively. Then, the following statements are satisfied

or the equivalent problems (11) and (12) : 

(i) The optimal solution is reached at the point ( τ ∗, T ∗), where 

T ∗ = τ ∗ = 

(
K ( γ + 1 − β) 

h (1 − β) ( γ − β) [ (1 − β) λ] 
γ / (1 −β) 

)(1 −β) / (γ +1 −β) 

(20)

ii) The minimum inventory cost per unit of an item r ∗ is given by 

r ∗ = r(τ ∗, τ ∗) = 

(
K ( γ + 1 − β) 

γ − β

)(
λK ( γ + 1 − β) 

h ( γ − β) 

)−1 / (γ +1 −β) 

(21)

ii) The maximum profit/cost ratio R ∗ is given by 

R 

∗ = R (τ ∗, τ ∗) = 

v 
p + r ∗

− 1 (22)

v) The optimal lot size q ∗ is given by 

q ∗ = 

(
λK ( γ + 1 − β) 

h ( γ − β) 

)1 / (γ +1 −β) 

(23)

roof. If we take into account the expression (16) for �( τ ), the

tatement (i) follows directly from Proposition 1 using the expres-

ions (18) and (4) . Similarly, from (19), (4) and (6) , the statement

ii) is easily seen. The statement (iii) is obtained from the expres-

ion (9) for the function R ( τ , T ). Finally, using the expressions (5),

6) and (20) , the optimal lot size is given by (23) and the proof is

nished. �

Note that, if β = 0 and γ = 1 , from (20) , the optimal inventory

ycle is T ∗ = 

√ 

2 K/ (hλ) and, from (23) , the economic lot size is

 

∗ = 

√ 

2 Kλ/h , as in the basic EOQ model. 

It could also be interesting for inventory managers to know the

ptimal policy with minimum inventory cost per unit time, which

an be obtained by solving the problem 

min 

τ> 0 
 <T ≤τ

C ( τ, T ) (24)

here C ( τ , T ) is given by (14) . The following result provides the

ptimal solution of the problem (24) . 
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Table 3 

Partial derivatives of T ∗ and R ∗

x ∂ T ∗/∂ x ∂ R ∗/ ∂ x 

K 
( 1 − β) T ∗

( γ + 1 − β) K 
> 0 

−v r ∗( γ − β) 

( p + r ∗) 2 K ( γ + 1 − β) 
< 0 

h 
−( 1 − β) T ∗

( γ + 1 − β) h 
< 0 

−v r ∗

( p + r ∗) 2 h ( γ + 1 − β) 
< 0 

λ
−γ T ∗

( γ + 1 − β) λ
< 0 

v r ∗

( p + r ∗) 2 λ( γ + 1 − β) 
> 0 

v 0 
1 

p + r ∗
> 0 

p 0 
−v 

( p + r ∗) 2 
< 0 

T  

fi  
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(

roposition 2. The solution for the problem (24) is obtained at the

oint (τ# , T # ) , with 

 

# = τ # = 

(
K ( γ + 1 − β) 

hγ [ (1 − β) λ] 
γ / (1 −β) 

)(1 −β) / (γ +1 −β) 

(25) 

oreover, the value for the minimum cost per unit time is 

 

∗ = C 
(
τ # , T # 

)
= 

K ( γ + 1 − β) 

γ T # 
(26) 

roof. Taking into account the expression (14) of the function C ( τ ,

 ), it is easily seen that, if 0 < T < τ , then 

 ( τ, T ) = 

K + A 

[
τ 1+ γ / (1 −β) − ( τ − T ) 

1+ γ / (1 −β) 
]

T 

> 

K 

τ
+ 

A 

[
τ 1+ γ / (1 −β) − ( τ − T ) τ γ / (1 −β) 

]
T 

= 

K 

τ
+ Aτ γ / (1 −β) = C(τ, τ ) 

hus, we only need to solve the problem min 

τ> 0 
C ( τ, τ ) . This function

atisfies that lim τ→ 0 + C(τ, τ ) = lim τ→∞ 

C(τ, τ ) = ∞ and 

d 

dτ
C(τ, τ ) = 

−K + 

(
Aγ

1 −β

)
τ 1+ γ / (1 −β) 

τ 2 

s a consequence, the optimal solution is obtained solving the

quation 

d 
dτ

C(τ, τ ) = 0 , whose only root T # is given by (25) , if we

se the expression (4) for the auxiliary parameter A . Finally, using

he values τ = τ# and T = T # in the expression (14) , we obtain 

 

∗ = C 
(
τ # , T # 

)
= 

K + A 

(
T # 

)1+ γ / ( 1 −β) 

T # 

= 

K + 

K ( 1 − β) 

γ

T # 
= 

K ( γ + 1 − β) 

γ T # 

nd the proof is finished. �

Theorem 1 and Proposition 2 prove that the optimal inventory

ycle of the maximum profit/cost ratio and the optimal inventory

ycle of the minimum cost per unit time are different, and the ra-

io between the two solutions is given by 

T ∗

T # 
= 

(
γ

( γ − β) ( 1 − β) 

)(1 −β) / (γ +1 −β) 

(27) 

hich verifies that T ∗/T # > 1 if 0 < β < 1. Then, when the de-

and rate depends on the inventory level with elasticity parame-

er β > 0, the optimal length of the inventory cycle is larger for the

olution of the maximum profit/cost ratio than the optimal length

f the inventory cycle for the minimum cost per unit time solution.

owever, both solutions are equal if, and only if, β = 0 , that is, if

he demand rate is constant. For the two problems, the solution is

lways obtained for T = τ, that is, the cycle time is extended un-

il the stock is depleted. Moreover, both solutions do not depend

n the purchasing cost p or the selling price v . Thus, the inven-

ory manager does not need to change the cycle time when these

rices change, if the objective is maximizing the profit/cost ratio

r minimizing the inventory cost per unit time. 

Nevertheless, if γ = 1 , Baker and Urban (1988) proved that the

olution for the problem of the maximum profit per unit time is

btained when a new order is requested before the stock is de-

leted (that is, T < τ ). Furthermore, in that case, the solution de-

ends on the purchasing cost and the selling price. 

From (3) and (20) we can ensure that 

C ( τ ∗, T ∗) = A ( T ∗) 1+ γ / (1 −β) = 

K 

γ − β
(28) 
hus, the optimal policy that maximizes the profit/cost ratio satis-

es the equality (28) . Therefore, for the optimal solution with the

aximum profit/cost ratio, the holding cost is higher than the or-

ering cost if γ < 1 + β (expensive storage). On the other hand,

he holding cost is less than the ordering cost if γ > 1 + β (cheap

torage). Obviously, if γ = 1 + β, then the ordering cost is equal to

he holding cost, as in Harris’ rule of the basic EOQ model. 

Also, from (22) , the optimal profit/cost ratio is positive ( R ∗ > 0),

f and only if the selling price v satisfies that v > p + r ∗. Taking into

ccount (21) , it follows that 

p + r ∗ = p + 

(
K ( γ + 1 − β) 

( γ − β) 

)(
λK ( γ + 1 − β) 

h ( γ − β) 

)−1 / (γ +1 −β) 

hen, we obtain a profitability condition for the inventory model:

 > p + 

(
K(γ − β + 1) 

γ − β

)( γ −β) / ( γ +1 −β) (
h 

λ

)1 / (γ +1 −β) 

(29) 

Thus, the inventory manager can know the minimum selling

rice that ensures the profitability of the inventory system, solely

rom the parameters of the model. 

The evaluation of the inventory cost per unit time and the profit

er unit time for the maximum profitability solution leads to 

(τ ∗, T ∗) = 

r ∗q ∗

T ∗
= 

K ( γ + 1 − β) 

T ∗( γ − β) 
(30)

nd 

 (τ ∗, T ∗) = 

( v − p ) q ∗

T ∗
− C(τ ∗, T ∗) 

= ( v − p ) B ( T ∗) β/ ( 1 −β) − K ( γ + 1 − β) 

T ∗( γ − β) 
(31) 

These expressions can be used to compare the solution ob-

ained for the maximum profit/cost ratio with the minimum cost

er unit time solution or with the maximum profit per unit time

olution. 

. Sensitivity analysis 

In this section, we use the closed expressions (20) and (22) to

evelop a sensitivity analysis of the optimal solution, by calculating

he partial derivatives of the optimal cycle time T ∗ and the maxi-

um profit/cost ratio R ∗ with respect to the main parameters of

he inventory system. Specifically, these partial derivatives are ob-

ained in the Appendix of this paper and are included in Table 3 . 

The sensitivity of the optimal cycle time with respect to these

arameters is analyzed in the next theorem, both in absolute and

elative terms. 

heorem 2. Let T ∗ be the optimal inventory cycle given by (20) .

hen: 

i) T ∗ increases as the ordering cost K increases. 
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ii) T ∗ decreases as the unit holding cost h or the scale parameter of

the demand rate λ increase. 

ii) T ∗ does not change if the unit selling price v or the unit purchasing

cost p vary. 

v) The relative changes in T ∗ with respect to a relative change in the

parameters K or h are equal, but with the opposite sign. 

v) The absolute value of the relative change in T ∗ with respect to a

relative change in λ is greater than the relative changes with re-

spect to the parameters K or h, except when β = 0 and γ = 1 , in

which case they are equal. 

Proof. 

(i)-(ii) The first two assertions follow directly from the sign of

the partial derivatives with respect to K, h and λ, given in

Table 3 . 

(iii) The expression (20) for T ∗ allows the fact that this value

does not depend on the values of the parameters v and p to

be confirmed. 

(iv) The relative change in T ∗ with respect to the relative change

in a parameter x is given by 
∂ T ∗/∂ x 

T ∗/x 
. Then, b y using the

partial derivatives included in Table 3 , we deduce that 

∂ T ∗/∂ K 

T ∗/K 

= −∂ T ∗/∂ h 

T ∗/h 

= 

1 − β

γ + 1 − β

and they are equal, but with the opposite sign. 

(v) In a similar way, from Table 3 , we observe that 

∂ T ∗/∂ λ
T ∗/λ

= 

−γ

γ + 1 − β

and, from the proof of the statement (iv), we have 

∂ T ∗/∂ λ
T ∗/λ

= 

γ

1 − β

∂ T ∗/∂ h 

T ∗/h 

Therefore, ∣∣∣∣∂ T ∗/∂ λT ∗/λ

∣∣∣∣ = 

γ

1 − β

∣∣∣∣∂ T ∗/∂ h 

T ∗/h 

∣∣∣∣ = 

γ

1 − β

∣∣∣∣∂ T ∗/∂ K 

T ∗/K 

∣∣∣∣ = 

γ

γ + 1 − β

�

As a consequence, if β = 0 and γ = 1 , then the absolute value

of the relative change in T ∗ with respect to a relative change in λ,

K or h is always equal to 1/2. However, when β > 0 or γ > 1, we

have γ > 1 − β and we deduce that the absolute value of the rel-

ative change in T ∗ with respect to a relative change in λ is greater

than the relative change with respect to the parameters K or h . 

In a similar way, the next theorem analyzes the changes in the

maximum profit/cost ratio with respect to the parameters of the

inventory model. 

Theorem 3. Let R ∗ be the maximum profit/cost ratio, given by (22) ,

and r ∗ the minimum inventory cost per unit of an item, given by (21) .

Then: 

(i) R ∗ decreases as the ordering cost K, or the unit holding cost h, or

the unit purchasing cost p, increase. 

ii) R ∗ increases as the scale parameter of the demand rate λ, or the

unit selling price v, increase. 

ii) R ∗ increases linearly with respect to the unit selling price v. 

v) If the inventory is profitable (that is, R ∗ > 0 ), then the absolute

value of the change in R ∗ with respect to a change in the param-

eter p is greater than with respect to an equal change in the pa-

rameter v. If the inventory is not profitable (that is, R ∗ < 0 ), the

opposite occurs. 

v) The relative change in R ∗ with respect to a relative change in the

parameters h or λ are equal, but with the opposite sign. 
i) If γ > 1 + β, then the absolute value of the relative variation in

R ∗ with respect to a relative change in the parameter K is greater

than with the parameters h or λ. The opposite occurs if γ < 1 + β .

If γ = 1 + β, then the three relative changes are equal in absolute

value. 

ii) The absolute value of the relative variation in R ∗ with respect to

a relative change in v is greater than with respect to an equal

relative change in the parameter p. 

roof. 

i)-(ii) The first two assertions follow directly from the sign of the

partial derivatives given in Table 3 . 

(iii) As r ∗ does not depend on v , then ∂ R ∗/∂ v = 1 / (p + r ∗) is a

positive constant and R ∗ increases linearly with v . 

(iv) From Table 3 , we have 

∂R 

∗

∂ p 
= − v 

p + r ∗
∂R 

∗

∂v 

Therefore, if R ∗ > 0, then v > p + r ∗ and ∣∣∣∣∂R 

∗

∂ p 

∣∣∣∣ = 

v 
p + r ∗

∂R 

∗

∂v 
> 

∂R 

∗

∂v 

and the opposite happens if R ∗ < 0. 

(v) Also, from the partial derivatives given in Table 3 , we ob-

serve that 

∂ R 

∗/∂ h 

R 

∗/h 

= −∂ R 

∗/∂ λ
R 

∗/λ

and both relative changes are equal, except for the sign. 

(vi) In a similar way, from Table 3 , we observe that 

∂ R 

∗/∂ K 

R 

∗/K 

= ( γ − β) 
∂ R 

∗/∂ h 

R 

∗/h 

Then, if γ > 1 + β, we have ∣∣∣∣∂ R 

∗/∂ K 

R 

∗/K 

∣∣∣∣ > 

∣∣∣∣∂ R 

∗/∂ h 

R 

∗/h 

∣∣∣∣ = 

∣∣∣∣∂ R 

∗/∂ λ
R 

∗/λ

∣∣∣∣
However, when γ < 1 + β, then ∣∣∣∣∂ R 

∗/∂ K 

R 

∗/K 

∣∣∣∣ < 

∣∣∣∣∂ R 

∗/∂ h 

R 

∗/h 

∣∣∣∣ = 

∣∣∣∣∂ R 

∗/∂ λ
R 

∗/λ

∣∣∣∣
Otherwise (that is, if γ = 1 + β), the three relative changes

are equal in absolute value. 

(vii) Finally, with respect to the parameters v and p ,

Table 3 shows that 

∂ R 

∗/∂ v 
R 

∗/ v 
= −

(
p + r ∗

p 

)
∂ R 

∗/∂ p 
R 

∗/p 

and, taking into account that r ∗ > 0, we deduce that ∣∣∣∣∂ R 

∗/∂ v 
R 

∗/ v 

∣∣∣∣ > 

∣∣∣∣∂ R 

∗/∂ p 
R 

∗/p 

∣∣∣∣ �

All the statements in the two previous theorems help the in-

entory manager to know how to improve the optimal profit/cost

atio, or how the changes in the parameters of the inventory sys-

em affect the optimal cycle time. 

. Numerical examples 

In this section, some numerical examples are used to illustrate

he proposed model, the solution methodology and the sensitivity

nalysis. To compare the results, we begin by considering the same

xample proposed in Pando et al. (2012b) , who solved the problem

f maximum profit per unit time using the condition T = τ . They
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Table 4 

Changes in the optimal solution ( T ∗ , R ∗) 

Parameter Absolute changes Relative changes 

x ∂ T ∗/ ∂ x ∂ R ∗/ ∂ x ∂ T ∗/∂ x 
T ∗/x 

∂ R ∗/∂ x 
R ∗/x 

K 0.1430 −0 . 0042 0.3182 −0 . 2670 

h −2 . 8598 −0 . 0701 −0 . 3182 −0 . 2225 

λ −3 . 0640 0.0350 −0 . 6818 0.2225 

v 0 0.0187 0 7.3514 

p 0 −0 . 0216 0 −6 . 8620 
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ssumed the following parameters for the inventory system: K =
0 , p = 50 , v = 62 , h = 0 . 5 , λ = 1 , γ = 1 . 5 and β = 0 . 3 . 

Then, from the expressions (4) and (6) , the auxiliary parame-

ers are A = 0 . 0741 and B = 0 . 6008 . From Theorem 1 , the optimal

ycle time is T ∗ = 4 . 49 , the minimum cost per unit of an item is

 

∗ = 3 . 57 , the lot size is q ∗ = 5 . 14 and the maximum profit/cost

atio is R ∗ = 0 . 1575 , that is, the maximum profitability of the in-

entory system is 15.75%. For this optimal solution, the inventory

ost per unit time given by (30) leads to C ( τ ∗, T ∗) = 4 . 08 , and the

rofit per unit time given by (31) is G ( τ ∗, T ∗) = 9 . 65 . Also, by us-

ng (3) , the holding cost in an inventory cycle is HC(τ ∗, T ∗) = 8 . 33 ,

hich is less than the ordering cost K = 10 because, in this case,

> 1 + β . Then, in this case, the inventory manager needs to in-

est fewer resources in storage than in order (note that, if γ <

 + β, the opposite occurs). Moreover, we observe that γ − β = 1 . 2

nd HC(τ ∗, T ∗) = K/ 1 . 2 , as in the expression (28) . Also, the to-

al cost per unit time for this optimal solution, given by (7) , is

 C ( τ ∗, T ∗) = 61 . 28 . In addition, the minimum selling price to ob-

ain a profitable system is v = p + r ∗ = 53 . 57 . 

For the problem of the minimum cost per unit time, we have

sed Proposition 2 to evaluate the optimal solution. From (25) ,

he obtained values are T # = τ# = 3 . 74 , with a minimum cost per

nit time C ∗ = C(τ# , T # ) = 3 . 92 , which is lower than the inven-

ory cost per unit time for the solution of the maximum profit/cost

atio, C ( τ ∗, T ∗) = 4 . 08 . If we evaluate the average inventory cost

er unit of an item with (10) , the obtained value is r(τ# , T # ) =
 . 71 , which is greater that the minimum inventory cost per unit

f an item r ∗ = 3 . 57 . The profit/cost ratio for this solution, given

y (9) , is R (τ# , T # ) = 0 . 1543 , which is less than the maximum

rofit/cost ratio R ∗ = 0 . 1575 . The difference between the two solu-

ions is 0.32% in absolute terms, and 2.03% in relative terms. Also,

e observe that T # = 3 . 74 < 4 . 49 = T ∗. The relation between them

s T ∗/T # = 1 . 20 , which coincides with the right side of the equality

27) , if β = 0 . 3 and γ = 1 . 5 . 

For the problem of maximum profit per unit time, if we sup-

ose that T = τ , Pando et al. (2012b) obtained the optimal solution
 

 = 6 . 37 with a profit per unit time G ( ̃  T , ̃  T ) = 10 . 46 . Now, for the

roblem with two decision variables given by (13) , we have used

 numerical search procedure to obtain the maximum value for

he function G ( τ , T ). The obtained solution was ̂ τ = 5 . 63 and 

̂ T =
 . 81 , with a total cost per unit time T C( ̂  τ , ̂  T ) = 80 . 40 and a profit

er unit time G ( ̂  τ , ̂  T ) = 11 . 12 . As expected, this value is greater

han the profit per unit time for the solution with the maximum

rofit/cost ratio, which is G ( τ ∗, T ∗) = 9 . 65 . Instead, the profit/cost

atio for this new solution, evaluated with the expression (9) , is

 ( ̂  τ , ̂  T ) = 0 . 1383 , which is less than the maximum profit/cost ra-

io R ∗ = 0 . 1575 . The difference between them is 1.92% in absolute

erms, and 12.19% in relative terms. 

Therefore, the three solutions are different because the demand

ate depends on the inventory level with β = 0 . 3 > 0 . This does

ot happen if the demand rate is constant, that is, β = 0 . 

The optimal policy obtained maximizing the profit per unit

ime leads to a higher inventory cost per unit time, while the op-

imal policy deduced minimizing the inventory cost per unit time

ields a lower profit per unit time. This fact is expected because

he maximum profit problem is focused on income while the min-

mum cost problem forgets to consider the income. However, if the

oal is to maximize the profit/cost ratio, the optimal solution pro-

ides the best balance between profit and cost. This issue should

e taken into account by the inventory manager to select the most

nteresting option for the inventory system. 

Note that, for the solution that maximizes the profit per unit

ime, the total cost per unit time is T C( ̂  τ , ̂  T ) = 80 . 40 , which is

reater than the total cost for the maximum profit/cost solution

 C ( τ ∗, T ∗) = 61 . 28 . If the inventory manager has other investment

lternatives for the company savings, then following the optimal
rofit/cost ratio policy, he could obtain a profit per unit time of

2.67, which is 13.94% greater than the profit per unit time ob-

ained with the maximum profit solution G ( ̂  τ , ̂  T ) = 11 . 12 . This is-

ue should also be taken into account by the inventory manager

hen choosing between the maximum profit per unit time and

he maximum profit/cost ratio policies. If there are no other in-

estment alternatives maybe he/she prefers the maximum profit

er unit time solution, but otherwise, he/she probably prefers the

aximum profit/cost ratio policy. 

The sensitivity of the optimal solution ( T ∗, R ∗) with respect to

he parameters K, h, λ, v and p have been evaluated by using the

artial derivatives given in Table 3 , both in absolute terms and rel-

tive terms. The obtained results are included in Table 4 . 

All the statements given by Theorems 2 and 3 are verified. In-

eed, T ∗ increases with K , and decreases with h or λ. The rela-

ive changes with respect to K and h are equal in absolute value

0.3182), but with the opposite sign. Also, the absolute value of the

elative change with respect to λ (0.6818) is greater than with re-

pect to K or h (0.3182). Furthermore, R ∗ increases with λ or v ,

nd decreases with K, h or p . The relative change with respect to

 or λ are equal in absolute value (0.2225), but with the oppo-

ite sign. Also, the absolute value of the relative change with re-

pect to K is greater than with respect to h or λ (0.2670 > 0.2225),

s expected in this case, because γ = 1 . 5 > 1 . 3 = 1 + β . Finally, as

he inventory system is profitable ( R ∗ > 0), a decrease of 1$ in

he purchasing cost improves the optimal profit/cost ratio more

han an increase of 1$ in the selling price (0.0216 > 0.0187). In-

tead, an increase of 1% in the selling price improves the optimal

rofit/cost ratio more than a decrease of 1% in the purchasing cost

7.3514 > 6.8620). Also, we observe that R ∗ is much more sensitive

o relative changes in v and p than to the changes in the parame-

ers K, h or λ. 

In order to confirm all the previous results, we have analyzed

he inventory model, allowing changes between −50% and +50% in

ach of these parameters, keeping all the other ones fixed. For each

ystem, the optimal cycle time T ∗ and the maximum profit/cost

atio R ∗ were obtained by using Theorem 1 , while the relative

hanges were evaluated as percentages. The results are shown in

igs. 1 and 2 , respectively. As the optimal cycle time does not de-

end on v or p , in Fig. 1 we only plot the percentage changes

ith respect to the parameters K, h and λ. In Fig. 2 , as the rel-

tive changes with respect to v or p are much larger than with

espect to K, h or λ, we have used the left vertical axis for K, h or

and the right vertical axis for v or p . These graphics endorse all

he comments mentioned above. 

To quantify the changes of the optimal solution in absolute

erms, we have evaluated the optimal quantities T ∗, R ∗ and q ∗ as-

uming different values in each of the parameters while keeping

ll the others fixed. Specifically, for each parameter, we have cho-

en size drops of −15% , −10% and −5% , and increments by 5%, 10%

nd 15%. The obtained results are shown in Table 5 . The calculated

alues support the relevance of the model and allow obtaining

ore representative issues. The optimal profit/cost ratio is much

ore sensitive to changes in purchasing or selling prices than to

hanges in the other parameters, which seems to be logical. How-
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Fig. 1. Percentage changes in T ∗
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ever, the optimal values for the cycle time and the lot size do not

change when these prices vary. Also, the elasticity parameter γ of

the holding cost is more influential on the cycle time and the lot

size than the other parameters. 

It is also interesting to check how the inventory model behaves

when the initial parameters are random variables. To analyze this

topic, we have calculated the optimal solution of the model when
ne of the parameters has a uniform probability distribution and

ll others remain fixed. Table 6 contains the obtained values for

he mean, the standard deviation and the variation coefficient of

he optimal values for the cycle time, the profit/cost ratio and the

ot size, using a random sample with size 100. The mean values are

lways similar to those obtained in the model with fixed parame-

ers. Only the elasticity parameter γ of the holding cost and the
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Table 5 

Optimal policy of the model for different values of the initial parameters 

x �x = −15% �x = −10% �x = −5% �x = 5% �x = 10% �x = 15% 

T ∗ 4.27 4.36 4.42 4.56 4.63 4 . 70 

K = 10 R ∗ 0.1640 0.1618 0.1596 0.1554 0.1533 0.1514 

q ∗ 4.77 4.90 5.02 5.26 5.37 5.48 

T ∗ 4.73 4.65 4.57 4.42 4.36 4 . 30 

h = 0 . 5 R ∗ 0.1630 0.1611 0.1592 0.1557 0.1540 0.1524 

q ∗ 5.53 5.39 5.26 5.03 4.92 4.82 

T ∗ 5.30 4.99 4.73 4.29 4.11 3 . 95 

γ = 1 . 5 R ∗ 0.1674 0.1639 0.1606 0.1544 0.1515 0.1487 

q ∗ 6.52 5.98 5.52 4.81 4.53 4.28 

T ∗ 5.02 4.83 4.65 4.35 4.21 4 . 09 

λ = 1 R ∗ 0.1516 0.1537 0.1556 0.1591 0.1607 0.1622 

q ∗ 4.77 4.90 5.02 5.26 5.37 5.48 

T ∗ 4.41 4.44 4.47 4.52 4.55 4 . 59 

β = 0 . 3 R ∗ 0.1556 0.1562 0.1568 0.1581 0.1587 0.1593 

q ∗ 4.94 5.00 5.07 5.21 5.29 5.36 

T ∗ 4.49 4.49 4.49 4.49 4.49 4 . 49 

v = 62 R ∗ −0 . 0162 0.0417 0.0996 0.2153 0.2732 0.3311 

q ∗ 5.14 5.14 5.14 5.14 5.14 5.14 

T ∗ 4.49 4.49 4.49 4.49 4.49 4 . 49 

p = 50 R ∗ 0.3459 0.2766 0.2141 0.1058 0.0586 0.0153 

q ∗ 5.14 5.14 5.14 5.14 5.14 5.14 

Table 6 

Descriptives statistics for the solutions of the model with random parameters 

T ∗ R ∗ q ∗

Mean Std. CV (%) Mean Std. CV (%) Mean Std. CV (%) 

K �U [5, 15] 4.43 0.39 8.75 0.1591 0.0112 7.05 5.05 0.63 12 . 39 

h �U [0.25, 0.75] 4.56 0.43 9.39 0.1580 0.0098 6.22 5.26 0.71 13 . 53 

γ �U [0.75, 2.25] 5.30 1.84 34.77 0.1617 0.0183 11.32 6.74 3.44 51 . 03 

λ�U [0.5, 1.5] 4.80 0.99 20.65 0.1545 0.0109 7.03 5.03 0.67 13 . 26 

β�U [0.15, 0.45] 4.54 0.19 4.20 0.1580 0.0039 2.46 5.24 0.45 8 . 64 

v �U [57, 67] 4.49 0 0 0.1675 0.0557 33.25 5.14 0 0 

p �U [45, 55] 4.49 0 0 0.1562 0.0622 39.80 5.14 0 0 

Table 7 

Profitability threshold for the main parameters 

K h λ v p 

Actual value 10 0.5 1 62 50 

Threshold < 92.5 < 7.22 > 0.06 > 53.6 < 58.5 

s  

t  

s  

o  
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a  

r  

p  

t  

γ  

v

 

t  

e  

s  

f  

o  
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i  

e  

o  
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c  

w  

p  

t  
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s  

t

 

i  

i  

u  

u  

a  

n  

l  

s  

a  

t  

t  
elling price v seem to lead to slightly greater changes. The varia-

ion coefficient of the optimal profit/cost ratio for purchasing and

elling prices are above 30%, which again confirms the influence

f these parameters on the profitability of the inventory system.

or the other parameters, the variation coefficients are below 12%

nd, therefore, their randomness has a low effect on the profit/cost

atio. As expected, the randomness of the purchasing and selling

rices has no effect on the optimal values for the cycle time and

he lot size. Also now, the randomness of the elasticity parameter

of the holding cost leads to greater variability on the optimal

alues for the cycle time and the lot size. 

Finally, we have used the inequality given by (29) to calculate

he threshold value that leads to a profitable system ( R ∗ > 0) for

ach of these parameters, keeping all the other ones fixed. The re-

ults are included in Table 7 . Note that the inventory is profitable

or values of K lower than 92.5, values of h lower than 7.22, values

f λ greater than 0.06, values of v greater than 53.6, and values of

 lower than 58.5. 
. Conclusions 

The EOQ model studied in this paper provides some interest-

ng issues that have not been much explored in the inventory lit-

rature. Thus, the approach aimed at maximizing the profitability

f the inventory system is analyzed instead of minimizing the in-

entory cost per unit time or maximizing the profit per unit time,

hich are usually more common targets. Besides, in the inventory

odel developed in this work, the demand rate and the holding

ost rate are both dependent on the stock level, which allows a

ider range of real practical situations to be included. Also, the re-

lacement of the inventory before the stock runs out is allowed in

he model. Further, the length of the inventory cycle and the time

equired for stock depletion are used as the decision variables, in-

tead of the lot size and the reorder point, which is more usual in

he inventory literature. 

The mathematical formulation obtained for the problem makes

t possible to check that the maximization of the profit/cost ratio

s equivalent to the minimization of the average inventory cost per

nit of an item, assuming that the unit purchasing cost and the

nit selling price are not dependent on the lot size. Moreover, the

verage inventory cost per unit of an item is always greater when a

ew order is set out before the stock is depleted. Then, the optimal

ength of the cycle time must be equal to the time required for

tock depletion, and the known policy of zero stock at the end of

n inventory cycle is optimal for maximizing the profitability of

he inventory system. As expected, that policy is also optimal for

he minimization of the inventory cost per unit time. However, this
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is not the best policy if the aim is the maximization of the profit

per unit time, as shown in the numerical example included in this

paper, or as was proven by Baker and Urban (1988) for the simple

case with constant holding cost rate. 

The optimal length of the inventory cycle, the optimal lot size

and the maximum profit/cost ratio are determined in a closed

form, and the best solution for the other problem of minimum

inventory cost per unit time is also obtained. The comparison of

both solutions allows us to conclude that, if the demand rate de-

pends on the inventory level, the optimal length of the cycle time

is longer for maximizing the profit/cost ratio than for minimizing

the inventory cost per unit time. Moreover, in both cases, they do

not depend on the unit purchasing cost or the unit selling price

and, therefore, the inventory manager does not need to change the

warehouse order policy if these prices change. However, this is not

true if the goal is the maximization of the profit per unit time. 

The optimal policy which maximizes the profitability of the sys-

tem can be identified by a rule that relates the holding cost and

the ordering cost. The holding cost can be greater or lower than

the ordering cost, depending on the values for the elasticity pa-

rameters of the demand rate and the holding cost rate. If the differ-

ence between them is equal to one, then the holding cost is equal

to the ordering cost, as in Harris’ rule of the basic EOQ model. 

Another interesting condition is proposed to assure the prof-

itability of the inventory from the initial parameters of the model.

It can be used to establish the minimum selling price that should

be fixed to obtain a profit in the inventory system or to evaluate

the profitability threshold for each of the parameters, while keep-

ing all the other ones fixed. 

The sensitivity analysis of the optimal solution of the model

shows that the optimal length of the inventory cycle decreases as

the scale parameter of the holding cost or the scale parameter of

the demand rate increase. Instead, the inventory cycle increases as

the ordering cost increases. As we said before, it does not change

if the unit purchasing cost or the unit selling price change. In ad-

dition, the absolute value of the relative change in the inventory

cycle with respect to a relative change in the ordering cost is equal

to that with an equal relative change in the scale parameter of the

holding cost. Furthermore, this common value can be greater or

lower than with an equal relative change in the scale parameter

of the demand rate, depending on the elasticity parameters of the

model. 

Regarding the maximum profit/cost ratio, this decreases as the

ordering cost, the purchasing cost or the scale parameter of the

holding cost increase. However, it increases if the scale parame-

ter of the demand rate or the unit selling price increase. Moreover,

the maximum profit/cost ratio increases linearly with respect to

the selling price. Also, the absolute value of the relative change in

the maximum profit/cost ratio with respect to a relative change in

the scale parameter of the demand rate is equal to that with an

equal relative change in the scale parameter of the holding cost.

This common value can be greater or lower than with an equal

relative change in the ordering cost, depending on the elasticity

parameters of the model. Also, the maximum profit/cost ratio is

more sensitive to relative changes in the unit purchasing cost, or

the unit selling price, than to relative changes in the ordering cost,

or the scale parameters of the demand rate and the holding cost.

Finally, the absolute value of the relative change in the maximum

profit/cost ratio with respect to a relative change in the unit pur-

chasing cost is lower than to a relative change in the unit selling

price. 

Finally, several future works on this research line could be pro-

posed. Thus, this model could be extended by considering other

mathematical functions for the demand rate or the holding cost.

It would be interesting to study the inventory system with a unit

purchasing cost dependent on the lot size, or a time-dependent
olding cost. Furthermore, it could be interesting to develop the

nventory model with a price-dependent demand rate, while still

eing dependent on the stock level. 
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ppendix A 

In this appendix, we calculate the partial derivatives of T ∗ and

 

∗ with respect to the parameters K, h, λ, v and p . 

First of all, from (20) , we have 

 

∗ = 

(
K 

1 −βh 

−(1 −β) λ−γ
)1 / (γ +1 −β) 

× ( 1 − β) 
−1 

(
γ + 1 − β

γ − β

)(1 −β) / (γ +1 −β) 

nd therefore 

n T ∗ = 

( 1 − β) ln K − ( 1 − β) ln h − γ ln λ

γ + 1 − β
− ln ( 1 − β) 

+ 

(
1 − β

γ + 1 − β

)
ln 

(
γ + 1 − β

γ − β

)
(32)

Also, from (21) , we can observe that 

 

∗ = 

(
K 

γ −βhλ−1 
)1 / ( γ +1 −β) 

(
γ + 1 − β

γ − β

)( γ −β) / ( γ +1 −β) 

nd therefore 

n r ∗ = 

( γ − β) ln K + ln h − ln λ

γ + 1 − β
+ 

(
γ − β

γ + 1 − β

)
ln 

(
γ + 1 − β

γ − β

)
(33)

Now, from (32) , by derivation with respect to the parameter K ,

e have 

∂T ∗

∂K 

= T ∗
∂ ( ln T ∗) 

∂K 

= 

( 1 − β) T ∗

( γ + 1 − β) K 

> 0 (34)

nd, from (22) and (33) , we obtain 

∂R 

∗

∂K 

= 

−v 
( p + r ∗) 2 

∂r ∗

∂K 

= 

−v r ∗

( p + r ∗) 2 
∂ ln r ∗

∂K 

= 

−( γ − β) v r ∗

( γ + 1 − β) K ( p + r ∗) 2 
< 0 (35)

In a similar way, by derivation with respect to the parameter h ,

e obtain 

∂T ∗

∂h 

= T ∗
∂ ( ln T ∗) 

∂h 

= 

−( 1 − β) T ∗

( γ + 1 − β) h 

< 0 (36)

nd, from (22) and (33) , we have 

∂R 

∗

∂h 

= 

−v r ∗

( p + r ∗) 2 
∂ ln r ∗

∂h 

= 

−v r ∗

( γ + 1 − β) h ( p + r ∗) 2 
< 0 (37)
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Likewise, by derivation with respect to the parameter λ, we

ave 

∂T ∗

∂λ
= T ∗

∂ ( ln T ∗) 
∂λ

= 

−γ T ∗

( γ + 1 − β) λ
< 0 (38)

nd 

∂R 

∗

∂λ
= 

−v r ∗

( p + r ∗) 2 
∂ ln r ∗

∂λ
= 

v r ∗

( γ + 1 − β) λ( p + r ∗) 2 
> 0 (39) 

These partial derivatives allow us to evaluate the absolute in-

tant changes in T ∗ and R ∗ with respect to the parameters K, h and

. Furthermore, they show the following relations for the relative

nstant changes in T ∗ and R ∗: 

∂ T ∗/∂ λ
T ∗/λ

= 

−γ

γ + 1 − β
= 

(
γ

1 − β

)
∂ T ∗/∂ h 

T ∗/h 

= 

( −γ

1 − β

)
∂ T ∗/∂ K 

T ∗/K 

nd 

∂ R 

∗/∂ K 

R 

∗/K 

= 

−( γ − β) v r ∗

( γ + 1 − β) ( p + r ∗) 2 R 

∗

= ( γ − β) 
∂ R 

∗/∂ h 

R 

∗/h 

= ( β − γ ) 
∂ R 

∗/∂ λ
R 

∗/λ

herefore, 

∂ R 

∗/∂ K 

R 

∗/K 

∣∣∣∣ = ( γ − β) 

∣∣∣∣∂ R 

∗/∂ h 

R 

∗/h 

∣∣∣∣ = ( γ − β) 

∣∣∣∣∂ R 

∗/∂ λ
R 

∗/λ

∣∣∣∣
= 

( γ − β) v r ∗

( γ + 1 − β) ( p + r ∗) 2 | R 

∗| 
As T ∗ and r ∗ do not depend on the parameters v or p , it is sure

hat ∂ T ∗/∂ v = ∂ T ∗/∂ p = 0 and ∂ r ∗/∂ v = ∂ r ∗/∂ p = 0 . As a conse-

uence, deriving the expression (22) with respect to v , we obtain 

∂R 

∗

∂v 
= 

1 

p + r ∗
> 0 

nd, deriving with respect to p , we have 

∂R 

∗

∂ p 
= 

−v 
( p + r ∗) 2 

< 0 

Then, for the relative instant changes, we get 

∂ R 

∗/∂ v 
R 

∗/ v 
= 

v 
( p + r ∗) R 

∗ = −
(

p + r ∗

p 

)
∂ R 

∗/∂ p 
R 

∗/p 

nd, in consequence 

∂ R 

∗/∂ v 
R 

∗/ v 

∣∣∣∣ = 

(
p + r ∗

p 

)∣∣∣∣∂ R 

∗/∂ p 
R 

∗/p 

∣∣∣∣ = 

v 
( p + r ∗) | R 

∗| = 

1 + R 

∗

| R 

∗| 
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