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A B S T R A C T

Background and Objective: Alzheimer’s disease (AD) is a neurological disorder that impairs brain functions
associated with cognition, memory, and behavior. Noninvasive neurophysiological techniques like magnetoen-
cephalography (MEG) and electroencephalography (EEG) have shown promise in reflecting brain changes
related to AD. These techniques are usually assessed at two levels: local activation (spectral, nonlinear, and
dynamic properties) and global synchronization (functional connectivity, frequency-dependent network, and
multiplex network organization characteristics). Nonetheless, the understanding of the organization formed by
the existing relationships between these levels, henceforth named neurophysiological organization, remains
unexplored. This work aims to assess the alterations AD causes in the resting-state neurophysiological
organization.
Methods: To that end, three datasets from healthy controls (HC) and patients with dementia due to AD were
considered: MEG database (55 HC and 87 patients with AD), EEG1 database (51 HC and 100 patients with
AD), and EEG2 database (45 HC and 82 patients with AD). To explore the alterations induced by AD in the
relationships between several features extracted from M/EEG data, association networks (ANs) were computed.
ANs are graphs, useful to quantify and visualize the intricate relationships between multiple features.
Results: Our results suggested a disruption in the neurophysiological organization of patients with AD,
exhibiting a greater inclination towards the local activation level; and a significant decrease in the complexity
and diversity of the ANs (p-value < 0.05, Mann–Whitney U -test, Bonferroni correction). This effect might
be due to a shift of the neurophysiological organization towards more regular configurations, which may
increase its vulnerability. Moreover, our findings support the crucial role played by the local activation level in
maintaining the stability of the neurophysiological organization. Classification performance exhibited accuracy
values of 83.91%, 73.68%, and 72.65% for MEG, EEG1, and EEG2 databases, respectively.
Conclusion: This study introduces a novel, valuable methodology able to integrate parameters characterize
different properties of the brain activity and to explore the intricate organization of the neurophysiological
organization at different levels. It was noted that AD increases susceptibility to changes in functional neural
organization, suggesting a greater ease in the development of severe impairments. Therefore, ANs could
facilitate a deeper comprehension of the complex interactions in brain function from a global standpoint.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder, charac-
terized by a progressive cognitive, functional, and behavioral decline.

∗ Corresponding author at: Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.
E-mail address: victor.gutierrez@gib.tel.uva.es (V. Gutiérrez-de Pablo).

It is the most frequent cause of dementia worldwide, and it is estimated
that more than 50 million people suffer from dementia nowadays [1].
Moreover, this number is expected to increase to over 150 million in
2050 [1,2]. This increase in cases is explained by the global population
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aging, as age is the main risk factor for developing AD [3]. Besides, its
economical impact worldwide was estimated to be $1.3 trillion in 2019,
and it is expected to be doubled in 2030 [2].

In order to characterize the anomalies in brain function typical of
AD, different imaging techniques have been used. Among them, elec-
trophysiological imaging approaches allow to inspect changes in neural
oscillatory activity, which are generated by synchronized neuronal
activation located in the brain cortex [4,5]. In this regard, the analysis
of magnetoencephalography (MEG) and electroencephalography (EEG)
activity has been widely employed in the last decades to study the
disruptions of these dynamics in neurodegenerative states [6,7]. The
high temporal resolution of both techniques allows an accurate tracking
of the fast brain oscillations, providing information on the brain activity
dynamics and their susceptibility to disruption by the disease [4,8].
Although the neural generators of both MEG and EEG (M/EEG) are
similar, they are not exactly equivalent: MEG is generated by intra-
cellular currents, whereas EEG is generated by extracellular ones [9].
Besides, these techniques present different characteristics, regarding
spatial resolution, signal-to-noise ratio, and volume conduction effects
influence [9].

One of the most illustrative changes associated with AD in M/EEG
signals is the slowing of neural activity. M/EEG spectral components
were found to shift towards lower frequency bands [10,11], which
can be quantified by different spectral parameters [12]. Moreover,
using nonlinear measures, a loss of complexity and irregularity of
brain oscillations has been observed [13–15]. Dynamical properties of
M/EEG activity have also been assessed by means of different metrics,
such as Hjorth parameters and different order moments [16–18]. All
these spectral, nonlinear, and dynamical features are computed from
the M/EEG signals recorded at individual sensors (i.e., local activation
evel).

To analyze the interactions between multiple brain regions, a sub-
tantial amount of research has focused on examining global synchro-
ization of brain activity, which evaluates the functional association
etween two or more brain regions [4,19]. Functional connectivity
FC) approaches have revealed that AD is associated with increased
onnectivity in low frequency bands and decreased connectivity in high
requency bands [20,21]. Network science offers a mathematical frame-
ork to study the organization of these connections, namely functional
etwork, which has been shown to be altered in AD [22–24]. Addition-
lly, multiplex network organization properties of the cerebral network
an be analyzed as another branch of global synchronization, which in-
egrates the interrelationship between functional networks at different
requency bands [25,26]. FC, frequency-dependent network, and multi-
lex network organization metrics assess the degree of synchronization
r coupling between brain regions (i.e., global synchronization level).

As previously mentioned, existing literature demonstrates the im-
act of AD in individual neurophysiological features and the potential
f M/EEG-based analyses to characterize AD disruption [12,14,17,
0,24,26]. However, AD is a complex neurological disease, in which
solated approaches are probably not enough to understand its intricate
europhysiological fingerprint. Thus, the analysis of brain activity inte-
rating multiple features derived from neural activity may provide new
nformation about the effect of AD in brain dysfunction. The features
hat build local activation and global synchronization levels have been
tudied separately in previous research works [10,12,14,17,20,27].
owever, in this study we propose a novel methodology to integrate

hese parameters in a single, cohesive, holistic framework that is able
o display global and intricate associations in the map of existing
elationships between functional neural organization, henceforth called
he neurophysiological organization. To the best of our knowledge,
his is the first time that ANs have been employed to provide a novel
erspective of functional neural organization, allowing the assessment
f brain disruption in AD from a global picture and revealing new
nsights into how these levels relate between each other [28,29]. In
2

ddition, using three databases containing information on both M/EEG a
ignals provides substantial robustness to the study, allowing for the
valuation of outcome replicability to address the existing scientific
risis [30].

In light of this, we hypothesize that AD alters the neurophysiological
rganization, leading to changes in the patterns of relationships; these
lterations can be assessed using our novel integrative approach. This
ould enable the characterization of neurodegenerative states with a
igh level of detail. Therefore, the study objectives are twofold: Firstly,
o present an innovative approach for evaluating and quantifying the
nderlying neurophysiological organization of the resting-state neural
ctivity, and secondly, to investigate the impact of alterations from both
global and a level-based standpoint in AD.

. Materials and methods

In the present study, we introduce a novel methodology based
n ANs to integrate a great amount of information and quantify the
ntricate structure of interactions associated with neural activity. Par-
icularly, ANs provide a new and scalable framework from network
heory, useful to understand the complex relationships between dif-
erent properties derived from brain activity, characterized by diverse
arameters that have been typically analyzed individually [12,14,17,
0,26,31,32]. To the best of our knowledge, this is the first study that
imultaneously considers all the signal processing methods that have
een employed in previous works. Furthermore, the present research
nvolves three databases to assess the replicability and consistency of
he results, even considering different neurophysiological techniques
i.e., EEG and MEG).

The workflow of the study was split into three steps which are
described in the following sections and summarized in Fig. 1. Firstly
(1), the levels of analysis (local activation and global synchronization)
were characterized by computing different sublevels of features (spec-
tral, nonlinear, and dynamic features; and FC, frequency-dependent
network, and multiplex network organization characteristics) from the
M/EEG data. Then (2), association networks (ANs) were generated by
means of 50 bootstrap iterations. To minimize the sample size effect on
the results, 45 participants were randomly selected on each bootstrap
iteration, as 45 is the number of participants in the smallest group of
all databases included in the study. ANs summarize the relationships
between all the previous parameters, providing the map of relationships
which is called ‘‘neurophysiological organization’’. In order to compute
the relationships between M/EEG parameters, Spearman’s partial cor-
relation coefficient, corrected by age and sex, was calculated. Finally,
once all relationships were computed, a threshold of 0.8 was set to
solely show 0.8 to 1 absolute correlation values. Afterwards (3a),
ifferent network parameters were computed to characterize the ANs
lterations caused by the disease (i.e., segregation, integration, central-
ty, modularity, diversity, and complexity) [19,33,34]. Next (3b), the
adii for each sublevel of parameters were computed on each complete
ootstrapped network in order to obtain a distribution of values. Af-
erwards, the sublevel-network alterations manifested in patients with
D were statistically analyzed, comparing them with the radii values
f the healthy controls (HC) group. Finally (3c), a classification stage
as conducted in order to evaluate the potential of ANs to differentiate
etween HC subjects and patients with AD.

.1. Participants

Three databases were analyzed in this study: a MEG database and
wo EEG databases. In the case of the MEG database, which was
egistered at the Hokuto Hospital (Obihiro, Japan) and at the Ku-
agaya General Hospital (Kumagaya, Japan), 132 participants were

nrolled, divided into 55 HC individuals and 87 patients with dementia
ue to AD. The first EEG database, named EEG1, which comprised
esidents of the North of Portugal or the autonomous region of Castile

nd Leon (Spain), consisted of 151 participants, divided into 51 HC
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Fig. 1. Analysis-steps of the study. (1) Computation of the parameters that characterize the different brain activity levels of analysis: local activation (spectral, nonlinear, and
dynamic features), and global synchronization (FC, frequency-dependent network parameters, and multiplex organization). (2) Computation of the ANs through 50 bootstrap
iterations. (3a) and (3b) Global and level-based analyses, respectively, to assess the alterations that AD elicits in the neurophysiological organization of the resting-state activity.
In (3a) a global analysis was carried out to quantify diverse network properties: segregation, integration, centrality, modularity, diversity, and complexity. In (3b) a level-based
analysis was performed, calculating the radii of each sublevel cluster. In (3c) a classification stage was performed to test the capability of the methodology to discriminate between
groups.
individuals and 100 patients with dementia due to AD. The second
EEG database, named EEG2, which was registered at the Department
of Clinical Neurophysiology of the ‘‘Río Hortega’’ University Hospital
(Valladolid, Spain), was formed by 127 participants, divided into 45
HC individuals and 82 patients with dementia due to AD. These three
databases were employed to analyze replicability not only between
M/EEG recordings, but also between EEG databases (see Section 1
3

for further information). Patients were diagnosed following the stan-
dardized criteria of the National Institute of Aging and Alzheimer’s
Association (NIA-AA) [35]. If required, these examinations were com-
plemented with additional analyses, including neuroimaging and blood
samples. In addition, the cognitive and functional capabilities of the
participants were assessed with the Mini-Mental State Examination
(MMSE) [36] and Functional Assessment Staging (FAST) [37]. Control
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Table 1
Socio-demographic and clinical data for each database. AD: Alzheimer’s disease; HC:
Healthy control; m: median; IQR: interquartile range; M: male; F: female; MMSE:
Mini-Mental State Examination score.

MEG Group

Patients with AD HC individuals

Number of participants 87 55
Age (years) (m[IQR]) 83.0[76.0, 86.0] 75.0[69.2, 78.7]
Sex (M:F) 35:52 26:29
MMSE (m[IQR]) 19[14, 22] 29[28, 30]

EEG1 Group

Patients with AD HC individuals

Number of participants 100 51
Age (years) (m[IQR]) 82.0[76.0, 86.0] 79.0[75.0, 85.5]
Sex (M:F) 28:72 26:25
MMSE (m[IQR]) 20[13, 22] 29[28, 30]

EEG2 Group

Patients with AD HC individuals

Number of participants 82 45
Age (years) (m[IQR]) 81.6[76.3, 83.5] 75.6[73.9, 78.6]
Sex (M:F) 34:48 14:31
MMSE (m[IQR]) 21[18, 24] 29[28, 30]

groups were formed by elderly individuals with no history of neurolog-
ical or psychiatric disorders. Additional inclusion and exclusion criteria
were defined for patients with AD. Inclusion requirement was ages
older than 65. Exclusion criteria included clinical history of neoplasia,
clinical history of other neurological or psychiatric diseases, advanced
dementia, recent surgery, hypercatabolic states, vascular pathology and
medication that could have a tangible effect on M/EEG activity. As
the participants were elderly individuals, resting-state recordings were
employed. During the resting-state condition, participants were not re-
quired to perform any specific tasks, simplifying the acquisition process
and ensuring a more comfortable experience [24]. Participants’ clinical
and socio-demographic data are summarized in Table 1. Differences
in age and sex were assessed for each database, obtaining statistically
significant differences in age for MEG and EEG2 databases (p-value

0.01, Mann–Whitney U -test) and in sex for EEG1 database (p-value
0.01, Chi-square test). To account for potential biases arising from

ge and sex, partial correlations were employed (see Section 2.6 for
urther information).

Informed consent was given by the enrolled participants, legal
epresentatives, family or caregivers to join the study, in accordance
ith the recommendations of the Code of Ethics of the World Medical
ssociation (Declaration of Helsinki). The protocol was approved by

hree organizations: (i) for MEG database by the Ethics Committee of
umagaya General Hospital in Kumagaya, Japan, and Hokuto Hospi-

al in Obihiro, Japan (097-01); (ii) for EEG1 database by the Ethics
ommittee of the University of Porto, Portugal (38/CEUP/2018); and
iii) for EEG2 database by the Ethics Committee of the ‘‘Río Hortega’’
niversity Hospital in Valladolid, Spain (36/2014/02).

.2. MEG recordings and pre-processing

A MEG database was employed in this study. MEG signals consist of
ive minutes of resting-state brain activity recorded with a 160-channel
okogawa Electric MEG Vision PQ1160C axial gradometers system at
he Hokuto Hospital, and a 160-channel RICOH 160-1 (RICOH Co.
td., Tokyo, Japan) axial gradiometers system at the Kumagaya Gen-
ral Hospital. The acquisition sampling frequency was set at 1000 Hz
nd 2000 Hz, respectively. Additionally, a 200 Hz low-pass filter was
pplied. Subsequently, the MEG signals were downsampled to 500 Hz
o match the highest sampling frequency of the EEG databases and min-
mize computational overhead. Head position was registered employing
ive fiducial markers placed on the head of each patient during the MEG
ecording: 40 mm above the nasion point, 10 mm in front of the tragus
4

on each side of the head, in the left pre-auricular, and in the right pre-
auricular. Participants were asked to remain calm and awake with eyes
closed in a supine position during the acquisition. MEG recordings were
monitored in real time for security reasons, and to prevent somnolence
as well.

The signals were preprocessed according to the following steps [8,
38]: (i) artifact removal employing the SOUND algorithm [39]; (ii)
notch filtering at 50 Hz to remove power-line noise; (iii) finite impulse
response (FIR) filtering: a 1–70 Hz band-pass to limit the noise band-
width, and a band-stop to erase line noise; (iv) independent component
analysis (ICA) to remove artifacted components related with other
biomedical signals, such as heartbeat or blinks; and (v) visual rejection
of artifacted epochs.

2.3. EEG recordings and pre-processing

Two different EEG databases were used in this study. The EEG1
database was recorded using a 19-channel Nihon Kohden Neurofax JE-
921A EEG system with a sampling frequency of 500 Hz, while the EEG2
database was recorded using a 19-channel XLTEK® Natus Medical EEG
system with a sampling frequency of 200 Hz. In both databases, EEG
activity was recorded from 19 electrodes: F3, F4, F7, F8, Fp1, Fp2,
T3, T4, T5, T6, C3, C4, P3, P4, O1, O2, Fz, Cz, and Pz, following
the international 10–20 system. During EEG1 database acquisition,
common average reference was employed. For EEG2 database, bipolar
registration was used, re-referencing those recordings to a common
average reference during the preprocessing stage.

In both databases, five minutes of resting-state EEG activity were
obtained. Participants were asked to remain awake and relaxed during
the procedure, which was monitored in real time to avoid episodes of
sleepiness. Subsequently, the signals underwent the following prepro-
cessing steps [8,38]: (i) mean removal; (ii) notch filtering at 50 Hz
to remove power-line noise; (iii) Hamming-window bandpass filter
between 1 and 70 Hz to limit spectral content; (iv) independent compo-
nent analysis (ICA) to remove artifacted components related with other
biomedical signals, such as heartbeat or blinks; (v) segmentation into
5 s epochs; and (vi) visual inspection to remove artifacted epochs.

2.4. Source localization: sLORETA

Once the M/EEG recordings were acquired and preprocessed,
source-level activity was computed employing the standardized Low-
Resolution Brain Electromagnetic Tomography (sLORETA) source local-
ization algorithm [40], in order to set a common workspace to all three
databases employed in this study. sLORETA allows the computation of
3D linear solutions for the inverse problem, which permits to remove
the volume conduction effects caused by the different permittivity and
permeability coefficients of the brain, skull, and scalp tissues. More-
over, sLORETA restricts the solutions assuming that the correlation
between neighbor neural generators is maximal, achieving spatially
smoothed solutions. An identity matrix was used as noise covariance, as
there were no available noise recordings. While performing sLORETA
algorithm, the source-level neural generators were grouped in 68
regions of interest (ROIs) according to the Desikan-Killiany atlas, a
gyrus-based schema of different brain regions corresponding to their
dominant functionalities [41]. The main limitation of EEG is its spatial
resolution, as the activity estimated in different ROIs could be affected
by leakage from other brain regions. This effect could lead to spurious
connectivity outcomes [42]. Due to the different number of sensors
employed on each database (the MEG database was recorded using 160
electrodes, and both EEG databases were acquired using 19 electrodes),
the Desikan-Killiany atlas with 68 ROIs was employed to obtain a
good trade-off between the spatial resolution at source level and the
number of sensors used by each neurophysiological technique [43–47].
This source localization analysis was performed using the Brainstorm
toolbox (http://neuroimage.usc.edu/brainstorm) [48].

http://neuroimage.usc.edu/brainstorm
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2.5. M/EEG analyses

Diverse signal processing techniques have been widely employed in
the literature to characterize the brain activity using M/EEG record-
ings [29,49]. In this study, these different parameters were categorized
into two main levels of analysis: (i) local activation, which measures
the activation of individual brain regions [50]; and (ii) global syn-
chronization, which allows to measure the synchronization or temporal
correlation between different brain regions [21]. Likewise, these two
levels of analysis were further subdivided into different sublevels.
Local synchronization can be grouped in three categories: (a) spectral
sublevel, which includes parameters that evaluate the spectral content
of the signals; (b) nonlinear sublevel, which comprises parameters that
quantify the nonlinear properties of M/EEG signals; and (c) dynamic
sublevel, which covers parameters that quantify the time-varying prop-
erties of M/EEG signals. Similarly, global synchronization was divided
into three categories: (a) FC sublevel, which includes connectivity pa-
rameters to quantify the synchrony or coupling between different brain
regions; (b) frequency-dependent network sublevel, which encompasses
parameters from graph theory to summarize the functional organi-
zation of the brain network; and (c) multiplex network organization
sublevel, which consists of parameters that integrate the information
from different frequency-dependent FC networks. In this study, a wide
variety of parameters from the aforementioned levels and sublevels
were computed to comprehensively characterize the properties of the
neurophysiological activity. The calculation of these parameters was
carried out using MATLAB® (R2020b version, Mathworks, Natick, MA).

dditional information about the parameters involved in the study is
rovided in the Supplementary Material.

.5.1. Local activation level
This level comprises different parameters that characterize the prop-

rties of each M/EEG source independently. Specifically, the local
ctivation properties that have been analyzed in this study are:

• Spectral sublevel. Metrics in this sublevel parameterize the
intrinsic features of the spectral content of the signal. They were
computed from the normalized power spectral density (PSDn).
These metrics can quantify information about the frequency
rhythms (relative power, RP; median frequency, MF; individual
alpha frequency, IAF; transition frequency, TF; 95% spectral
edge frequency, SEF95) [51–53]; others can provide information
of the spectrum variability and diversity (spectral entropy, SE;
Tsallis entropy, TsE; Escort-Tsallis entropy, ETsE; Rènyi entropy,
RE) [14,53–55]; and others can be used to analyze different
shape-related properties of PSDn (spectral variance, skewness,
and kurtosis) [17].

• Nonlinear sublevel. The brain exhibits nonlinear behavior due
to threshold and saturation phenomena governing the dynamics
of individual neurons [13]. As a result, traditional linear methods
may not be sufficient to fully comprehend abnormal dynamics in
M/EEG signals. Instead, nonlinear dynamical analysis techniques
offer a complementary approach [50]. These nonlinear parame-
ters provide relevant information from different perspectives, in-
cluding complexity (Lempel–Ziv complexity, LZC; Higuchi’s frac-
tal dimension, HFD; Katz’s fractal dimension, KFD) [14,56–60],
variability (central tendency measure, CTM) [56], predictability
(auto-mutual information, AMI) [52], and irregularity (approx-
imate entropy, ApEn; sample entropy, SampEn; fuzzy entropy,
FuzzyEn) [52,61,62].

• Dynamic sublevel. Both M/EEG signals are generated by a in-
herently, highly dynamic system, in which time-varying features
provide useful information about the fluctuations of brain ac-
tivity. These parameters can measure the variability (Hjorth’s
activity), diversity (Hjorth’s mobility), and similarity to a pure
sine wave (Hjorth’s complexity) [16] of the signal, and its first
and second derivatives. Besides, the different shape-related prop-
erties of the temporal distribution of the signals were computed
(time variance, skewness, and kurtosis) [17].
5

2.5.2. Global synchronization level
This level comprises different parameters that characterize the syn-

chronization or coupling degree between two or more brain regions.
The global synchronization properties that have been analyzed in this
study are listed below:

• FC sublevel. AD is identified as a disconnection syndrome [50];
thereby the analysis of FC alterations between neuronal popula-
tion is useful to study the impairments that the disease provokes.
In this study, FC analysis has been carried out in each canonical
frequency band (delta: 1–4 Hz; theta: 4–8 Hz; alpha: 8–13 Hz;
beta 1: 13–19 Hz; beta 2: 19–30 Hz; gamma: 30–70 Hz), obtaining
a grand-average value for each pair of ROIs. Specifically, we
analyzed both the phase-based (phase lag index, PLI) [63,64] and
amplitude-based FC patterns (amplitude envelope correlation,
AEC) [64].

• Frequency-dependent network sublevel. The analyzed con-
nectivity patterns between different brain regions can be also
interpreted as an estimation of the functional brain network,
whose properties can be quantified using different parameters
from the graph theory. These properties are useful to summarize
information about node characterization (average node degree,
ND; average node strength, NS; global density, D) [19,33,65],
integration (characteristic path length, PL), irregularity (graph
entropy, GE), segregation (clustering coefficient, ClC) [25], cen-
trality (closeness centrality, CC; betweenness centrality, BC) [19],
and Small World properties (small world index, SW) [19,66].

• Multiplex organization sublevel. There is evidence of diverse
interactions between the neural oscillations in different frequency
bands [26]. This can be also observed from frequency-dependent
brain networks, in which a multilayer structure can be com-
puted by considering the functional network at each canonical
frequency band [26]. Using this approach, different multiplex
properties can be computed to explore the organization of the
brain network across levels for both phase- (PLI) and amplitude-
based (AEC) coupling metrics. Specifically, in this study, we
quantified the role of each ROI as a multiplex hub (overlapping
weighted degree, OWD) and the homogeneity of the connectivity
contribution of a ROI with the rest among layers (participation
coefficient, P) [26].

2.6. Association networks generation

ANs are graphs that summarize the pairwise relationships between
diverse variables of interest [67]. ANs are composed by nodes, which
in our study are the parameters described in Section 2.5 computed
in different ROIs; and edges, which quantify the existing relationships
between them. To ensure participant-wise consistency, a bootstrap
procedure with 50 iterations was conducted to build the correlation
matrices from each database. The smaller group size (45 participants)
was used to calculate the bootstrapped samples. Participants were
randomly selected with uniform probability and participant repetition
on each bootstrap iteration. The median value of the 50 iterations was
used to generate each AN. In total, 6 ANs were obtained to characterize
the neurophysiological organization (2 groups × 3 databases). The
Spearman’s partial correlation was calculated between each pair of
M/EEG features, adjusted by sex and age due to their observed statis-
tically significant differences (see Section 2.1 for further information).
Each calculation resulted in a correlation matrix of n × n dimensions,
being n the number of variables. Secondly, due to the large number
of edges, only the highest absolute values of associations were kept;
thereby, statistically significant absolute values of correlation equal or
higher than 0.8 were retained. Afterwards, they were displayed using
the Gephi software [68]; particularly, the Force Atlas 2 algorithm was
applied, which builds embedded network layouts based on a attractor
or repulsor factor driven by the node degree [69]. In this study,
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the color of the nodes represents the different parameter sublevels,
depicting local activation level as cold colors (spectral — grayish blue,
nonlinear — dark blue, dynamic — light blue), and global synchroniza-
tion level as warm colors (FC — brown, frequency-dependent network
— yellow, and multiplex network organization — orange), whereas
edges width and color depend on the intensity of the correlation and
the variables that edge is connecting, respectively. Additionally, node
width represents the weighted node degree, assigning bigger nodes to
higher values of weighted node degree, and vice versa.

2.7. Network analysis

Diverse graph properties were extracted from the ANs in order to
evaluate the characteristics of the whole neurophysiological organiza-
tion, which was represented by the ANs, and how are they altered due
to AD development [33,34]: (i) segregation (estimated by means of
the clustering coefficient), that quantifies the presence of clusters with
high intraconnectivity; (ii) centrality (by means of the eigenvector cen-
trality), that measures the ability of a node to maintain the structural
integrity of the network; (iii) modularity, which indicates the network
ability to be divided into clusters with high intraconnectivity and low
interconnectivity; (iv) integration (calculated with the characteristic
path length), which is the degree of interconnection between pairs
of nodes; (v) irregularity (estimated with the graph entropy), which
measures the diversity of nodes weights; and (vi) complexity (computed
with the graph complexity), which evaluates the ability of a graph
to store meaningful information, also representing a balance between
‘‘information’’ and ‘‘order’’ [70]. Before computing these parameters,
disconnected nodes were removed from each bootstrapped network,
and then they were normalized by their density in order to remove the
effect of different size. Finally, due to the different range of values of
each graph parameter, a normalization was applied by employing the
HC group from each database as reference.

2.8. Level-based evaluation

In order to assess the AD-inducing alterations to the different sub-
levels of parameters, a level-based evaluation was performed. Particu-
larly, the radius, which is a metric derived from eccentricity, of each
sublevel cluster was calculated. Radius is defined as the minimum
eccentricity value of the entire network [71], being the eccentricity the
maximum distance (i.e., the maximum shortest path length) between
two nodes [71]. In this regard, the radius could be a measure of
integration. Thus, all sublevels of analysis were assessed in terms of
integration.

2.9. Classification stage

To assess the capability of the ANs to discriminate HC subjects
and patients with AD, a classification approach has been applied. This
methodology is based on the Mantel’s test, which allows to measure the
degree of similarity between adjacency matrices [72], combined with a
Leave-One-Out Cross-Validation (LOO-CV) method [73]. To fulfill this
task, on each iteration, a subject is removed (from HC or AD group),
and then 50 bootstrapped ANs of each group were computed, before
and after adding the previously removed subject again. Afterwards,
the changes in the structure of the AN are assessed using the Man-
tel’s test, which quantifies the similarity between correlation matrices
obtained for the two ANs (i.e., before and after removing a given
subject) [72]. Finally, once the similarity was calculated, a LOO-CV step
was performed to test the robustness of the classifier.
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2.10. Statistical analysis

The ANs were constructed using Spearman’s partial correlation to
eliminate the effects of age and sex. The graphs that show the statisti-
cally significant differences between groups in terms of distance were
generated with Gephi (https://gephi.org/) [68].

Afterwards, as the measures did not meet parametric assumptions,
Mann–Whitney U -tests were conducted to determine statistically sig-
nificant differences between HC individuals and patients with AD for
all the computed metrics, including graph parameters and radii. The
significance threshold was set to with 𝛼 = 0.05. In order to control
type I error, Bonferroni correction was performed in these pairwise
comparisons. Signal processing and statistical analysis were carried out
using MATLAB® (R2020b version, Mathworks, Natick, MA).

3. Results

3.1. Global analysis

The obtained ANs, which represent the neurophysiological organiza-
tion of each group under study, are displayed in Fig. 2. Graph properties
were computed for the bootstrap ANs in order to characterize how
the distribution of these parameters is modified due to the AD, and to
establish a statistical comparison between groups. A threshold of 0.8
was applied to those ANs. Fig. 3 depicts the mean and the standard
deviation of the normalized parameters that represent ANs properties,
obtained from MEG, EEG1, and EEG2 databases. In addition, Figure
S1, provided in Supplementary Material, displays the distribution of
each parameter computed for all bootstrap iterations and the three
databases.

This analysis is helpful to assess how the neurophysiological orga-
nization is altered due to AD. For all databases, statistically significant
differences were found in ClC, modularity, graph complexity, and graph
entropy, which show lower values for patients with AD compared to
HC individuals (p-values < 0.05, Mann–Whitney U -tests, Bonferroni
orrection). The opposite tendency is observed for eigenvector central-
ty, which obtains higher values for patients with AD compared to HC
ndividuals, and statistically significant differences between groups (p-
alues < 0.05, Mann–Whitney U -tests, Bonferroni correction). Finally,
L is the only parameter that does not obtain statistically signifi-
ant differences for all databases. As observed in Fig. 3, averaged
L shows higher values in patients with AD than in HC, but only
tatistically significant differences for MEG and EEG2 databases (p-
alues < 0.05, Mann–Whitney U -tests, Bonferroni correction). Table S1,
hich is available in the Supplementary Material, displays the exact
-values that have been obtained.

.2. Level-based analysis

In order to assess how AD alters the different levels of analysis and
ublevels of parameters, a level-based analysis was performed. Fig. 2
epicts that the local activation level is concentrated in a main cluster,
hereas the global synchronization level is split in smaller clusters. It is

hown that the general tendency for the three databases reflects higher
imilarity between the different sublevels of parameters of the local
ctivation level, and higher dispersion between global synchronization
arameters.

Fig. 4 shows that, for all databases, there is a statistically signifi-
ant increase of the radius in the dynamic and network sublevels for
atients with AD, and a statistically significant decrease in the nonlin-
ar sublevel for patients with AD compared to HC (p-values < 0.05,
ann–Whitney U -tests, Bonferroni correction). On the other hand,

he spectral sublevel shows different tendencies for each database: a
ignificant lower radius for patients with AD in the MEG database, and
he opposite tendency in the EEG2 database (p-values < 0.05, Mann–

hitney U -tests, Bonferroni correction). Finally, FC and multiplex

https://gephi.org/
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Fig. 2. Median ANs obtained for HC and AD groups on each database after bootstrapping. Cold colors represent local activation level: (i) grayish blue: Spectral sublevel; (ii) dark
blue: Nonlinear sublevel; (iii) light blue: Dynamic sublevel. Warm colors depict global synchronization level: (i) brown: FC sublevel; (ii) yellow: Frequency-dependent network
sublevel; (iii) orange: Multiplex organization sublevel. Node size represents the weighted node degree, depicting a larger width as the weighted node degree increases, and vice
versa.
organization sublevels display the same trend for all databases, with
higher radii in patients with AD compared to HC, although reflecting
the former statistically significant differences in EEG databases and the
latter in MEG and EEG1 databases (p-values < 0.05, Mann–Whitney U -
tests, Bonferroni correction). Table S2, available in the Supplementary
Material, displays the exact p-values that have been obtained.
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3.3. Classification stage

Finally, a classifier was designed to discriminate between HCs and
patients with AD. In this regard, sensitivity, specificity, and accuracy
values were computed for all databases. For the MEG database, an
accuracy of 83.91% (91.31% sensitivity, 77.63% specificity) was ob-
tained, overcoming the accuracy values of the EEG databases (for EEG1:
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Fig. 3. Polygonal plots with the normalized values of the network parameters, where the blue line represents HC group, and the red line displays patients with AD group. (a)
MEG database. (b) EEG1 database. (c) EEG2 database. Asterisks represent statistically significant differences between groups (p-value < 0.05, Mann–Whitney U -test, Bonferroni
correction).
Fig. 4. Radius values for each parameter sublevel on each database. (a) MEG database. (b) EEG1 database. (c) EEG2 database. Asterisks represent statistically significant differences
between groups (p-value < 0.05, Mann–Whitney U -test, Bonferroni correction).
93.28% sensitivity, 35.06% specificity, and 73.68% accuracy; for EEG2:
83.48% sensitivity, 52.91% specificity, and 72.65% accuracy).

4. Discussion

In this study, we introduced a novel methodology to explore the
alterations of the neurophysiological organization in AD by analyzing
8

the relationships between different sublevels of parameters extracted
from M/EEG signals. Our results show that patients with AD exhibit
alterations in neurophysiological organization at various levels of ab-
straction: global and level-based evaluations; when compared to HC
individuals. Crucially, these results reflect a high degree of replicability,
particularly for the global analysis.
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4.1. Disruption of the neurophysiological organization

The ANs can be considered the map of the existing relationships
that form the neurophysiological organization of the neural activity.
This global representation allows for the interpretation of the brain
functionality as a system characterized by different properties, such as
integration, segregation, modularity, centrality, complexity, and diver-
sity. To evaluate how these properties are altered due to AD, several
graph parameters were computed from resting-state M/EEG record-
ings. As observed in Fig. 3, network parameters have proven useful
to quantify the alterations that AD induces in the neurophysiological
organization compared to HC individuals. Our results revealed that the
neurophysiological organization in AD is characterized by increased PL,
centrality, graph complexity, and graph entropy, as well as decreased
ClC and modularity, in comparison with HC individuals. ClC and PL
quantify segregation and integration, respectively, so taken together
can be used to measure the small-worldness (SW). On the other hand,
modularity and centrality measure the specialization capability of a
network. Finally, graph complexity and graph entropy give further
insight into graph diversity.

First, the ANs show a decrease in segregation and integration prop-
erties in patients with AD compared to HC individuals, represented
by lower ClC and higher PL values, respectively. The ratio between
ClC and PL defines the SW properties of the network [19]. Networks
with high SW values are characterized by high local clustering and low
average distance between nodes [74]. These characteristics correspond
to neither regular nor random network configurations, but strike a
balance between them. SW networks are considered to reflect optimal
equilibrium in terms of local correlations and global communication in
comparison to other network configurations [75]. It has been suggested
that ‘‘a well-designed anatomical network’’ displays SW properties [19].
In line with that, we can assume that a healthy brain displays SW
properties, and thus divergences in this organization could be perceived
as pathological. The interpretation of divergences from maximal SW
values is two-fold depending on the stochasticity, which is related with
distributions of more or less random associations: ANs with increased
stochasticity lead to random networks, while those with decreased
stochasticity result in regular networks [50,75]. In this regard, graph
entropy values are lower in the AD group than in the HC group;
hence, we can infer that ANs in patients with AD show more lattice-
wise regular organization. This observation could be interpreted as a
reorganization of the neurophysiological organization in AD towards a
less stochastic configuration. Such reorganization could be the result of
a decreased presence of complex patterns due to cell damage in diverse
neural populations, associated with different functions that are altered
in AD [76].

Second, graph entropy and graph complexity showed decreased val-
ues in ANs for patients with AD. As mentioned beforehand, the decrease
in graph entropy suggests a less uniform correlations distribution in AD.
It is important to note that drawing conclusions from solely entropy
values should be conducted with caution. Given that entropy values
are not strictly measuring ‘‘structural richness’’ [77], complementary
metrics such as complexity must be considered. Complexity is the
ability of a system to store meaningful information, and it provides
additional insights to evaluate this ‘‘structural richness’’ [77,78]. The
relationship between entropy and complexity is a convoluted topic that
nowadays is still under debate. An accepted standpoint is that highly
complex systems are characterized by values of entropy that are not
maximum nor minimum, but rather display intermediate values [77].
This perspective results in a relation between entropy and complexity
manifested as a bell function [15,70]. For this reason, if patients with
AD show decreasing values of entropy and complexity, their neurophys-
iological organization exhibits less diversity properties towards lower
portions of the curve. Presuming that HC manifest optimal relationships
configurations, healthy brain functionality might be richer in terms of
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information processing. Therefore, the decreased diversity and com-
plexity observed in the neurophysiological organization of patients with
AD could be identified as a pathological sign.

Third, modularity and centrality are appropriate parameters for
describing network specialization. Centrality reflects the tendency of
a network to contain nodes that are critical in its organization. These
nodes, also called ‘‘hubs’’, play a key role in network resilience against
disruptions [19]. On the other hand, modularity quantifies the presence
of smaller functional sub-groups within a network [65]. Lower modu-
larity in ANs of patients with AD suggests a loss of specialized groups
of parameters and regions that interact in more meaningful ways than
with others. This could be due to an increment of aberrant M/EEG
activity elicited by damaged neural pools. Another possibility could be
lack of anatomical pathways led by neural atrophy, which aligns with
the ‘‘disconnection syndrome’’ ascription of AD [50,65]. Furthermore,
centrality has been observed to increase in ANs from patients with
AD. This insight is the result of an increased hub density of the
network. That is, an increased number of nodes present hub properties,
configuring patients with AD’ ANs with star-shaped topologies. In these
configurations, hub nodes are characterized by a high node degree. If
these nodes were altered, the structural integrity of the network would
be compromised. Thus, these networks configurations present higher
vulnerability, as hub nodes are pivotal in its structural integrity [79].
From AN standpoint, this could indicate fewer parameters and/or ROIs
that are much more correlated with the other parameters and/or ROIs,
but also a lack of correlation between them. This lack of correlation
between secondary nodes (i.e., nodes with lower hub properties) leads
to more vulnerable ANs, which could be associated with pathological
states. Additionally, the loss of centrality can be associated with a
loss of hierarchical features of the relationships between different sub-
levels. High centrality values, accompanied by low SW values could
mean a shifting of the graph structure towards less hierarchical ANs.
Noteworthy, healthy brain functional networks have been suggested
to present hierarchical modular structures [80–82]. It is observed that
the ANs of the patients with AD show anti-SW properties and a loss
of diversity, therefore diverging from the optimal state that HC are
presumed to display. Thus, the deviation that the ANs of the patients
with AD show regarding those of HC reflect could be interpreted as a
pattern of disruption the disease provokes. It could be also interpreted
as alterations that some cognitive functions, represented as parameters
and/or ROIs, display. These alterations could reflect that the ‘‘hub’’
nodes have to assume the functions secondary nodes lost, as a result
of brain plasticity mechanisms [83].

Finally, from a level-based perspective, patients with AD ANs shows
higher radius values in the global synchronization sublevels. As the
radius measures the lowest maximum distance between nodes, global
synchronization level presents higher distances between nodes. Hence,
that increment could be interpreted as a decreased integration of the
global synchronization level. These alterations could reflect not only
a reduced correlation between FC, frequency-based network organiza-
tion, and multiplex network organization parameters, but decreased
correlations between brain regions as well. In the former case, it has
been observed that there is not a solid consensus estimating those pa-
rameters; hence, different or contradictory outcomes could be obtained,
which may weaken the correlation between global synchronization
parameters [20]. On the other hand, the lack of correlation between
brain regions could be supported by the disconnection syndrome hy-
pothesis [50]. However, local activation sublevels do not show similar
tendencies. Nonlinear sublevel displays lower radius values in patients
with AD compared to HC individuals, whilst dynamic sublevel shows
higher radius values in patients with AD. Of note, spectral sublevel does
not show similar tendencies between databases, offering disagreeing
results. Lower radius values in the spectral subgroup were observed
in MEG database, which indicates higher correlations between nodes
and, thus, a higher integration in the spectral parameters cluster.

This insight may be due to different reasons. Firstly, it can be due
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to the high signal-to-noise ratio (SNR) that MEG recordings present,
providing a cleaner signal than EEG [84]. The spectral parameters
could be especially affected by this issue, which might be reflected in
the obtained outcomes. Secondly, the effect of the sampling frequency
(500 Hz for MEG, 500 for EEG1, and 200 for EEG2 databases) could
affect the spectral resolution of the techniques, which may modify
the relationships between the spectral properties [85]. And thirdly,
EEG2 displayed an opposite trend in its spectral cluster radius, which
exhibited a significant increase compared to MEG and EEG1 databases.
It turns out that the conditions that outlined the acquisition protocol
that gave rise to EEG2 fitted clinical standards for diagnostic purposes.
For this reason, the SNR of the EEG signals in this database is generally
lower than in the recordings of MEG and EEG1 databases. Thus, the
association between the presence of noise that may disturb spectral
correlations and the radius in this cluster becomes apparent. This,
nonetheless, highlights the usefulness of association networks, as they
are able to dilute the effect of noise in the signal. This allows for
establishing means of analysis that are more robust to discrepancies
in acquisition conditions. Finally, the higher integration observed in
the nonlinear sublevel could be a sign of more predictable and linear
neural oscillations on the whole brain. Due to the increased linearity
and predictability of the brain activity, it could be suggested that the
dynamic sublevel become increasingly important, as they can reflect
the changes of these impaired time series and differentiate between HC
individuals and patients with AD [17].

4.2. Replicability between M/EEG databases

Our results reflect similar tendencies between M/EEG in the graph
parameters computed on the ANs, as it can be seen in Figs. 3 and S1.
The consistency of the obtained results supports the replicability of
both M/EEG data. This reflects that, although these two signals present
intrinsic differences, its combined use can provide a more complete
understanding of the brain function [86]. Moreover, the replicability of
the results obtained from M/EEG data is crucial in establishing a robust
methodology for the study of brain disorders. The replication crisis in
science highlights the importance of obtaining consistent and repro-
ducible results, and the use of different neurophysiological techniques
such as M/EEG can contribute to achieving this goal [30].

However, the level-based evaluation showed lower degree of repli-
cability between databases than the global analysis. As it can be ob-
served in Figure S2 (see Supplementary Material for further informa-
tion), analyzing the stability of the neurophysiological organization
from a global perspective the ANs display a high stability. In this
assessment, the correlation values used to carry out the evaluation and
its confidence interval do not overlap with zero, which means that
the existing relationships are not due to chance. It can be suggested
that the high stability, and hence the high degree of replicability,
could have been achieved due to the plethora of parameters that have
been included. Nevertheless, as observed in Fig. 4, even though the
level-based analysis has shown its utility in distinguishing between
groups, its replicability has been found to be comparatively lower than
that of global analysis. This suggests that integrative approaches, like
the one proposed in this study, provide smoothing on the variations
that the level-based analysis would show. The sublevel metrics could
display higher sensitivity to subtle analysis conditions, such as pre-
processing stages or acquisition process. That could be the reason
why previous studies found contradictory outcomes while assessing the
same parameter [20,87]. With the use of ANs, the impact of these
factors is reduced, which supports the robustness of our methodology
in depicting alterations in the neurophysiological organization due to
AD.

It is evident that the methodology proposed in this study has the
potential to provide a more comprehensive understanding of the al-
terations in the neurophysiological organization of patients with AD.
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The results indicate that alterations in local activation parameters,
specially in nonlinear and dynamic sublevels, and global synchroniza-
tion measures are consistent across M/EEG databases, suggesting a
shift towards a more centralized topology in patients with AD. This
result may indicate that the local activation level plays a more criti-
cal role in maintaining the global stability of the neurophysiological
organization in patients with AD. These findings have significant im-
plications for our understanding of AD pathology and provide new
insights into functional neural organization that may aid in the de-
velopment of new approaches to characterize alterations due to AD,
and differentiate pathological states from healthy cognition. Overall,
the proposed methodology offers a new perspective on neural signal
analysis, reflecting the potential to facilitate further progress in the field
of neuroscience.

4.3. Classification performance

MEG database provides better classification outcomes than the EEG
databases, which may be due to the higher signal-to-noise ratio that
MEG presents, compared to EEG [84]. Other studies have tested dif-
ferent approaches to discriminate between HCs and patients with AD.
These studies have employed different Machine Learning (ML) ap-
proaches, including Linear Discriminant Analysis (LDA), Quadratic Dis-
criminant Analysis (QDA), and Support Vector Machine (SVM) [52,88,
89], and Deep Learning (DL) architectures, such as Convolutional Neu-
ral Networks (CNN) [90]. Ruiz-Gómez et al. [52] reported sensitivity,
specificity, and accuracy values ranging from 64.71% to 82.35% (LDA),
64.71% to 79.41% (QDA), and 70.59% to 82.35% (MultiLayer Percep-
tron, MLP). Nobukawa et al. [89] employed SVM-based classifiers to
reach an accuracy value of 100% using functional connectivity features
and an accuracy of 73.5% using complexity features. In another study,
Miltiadous et al. [88] obtained an accuracy value of 78.5% for AD
detection using decision trees. Finally, Amini et al. [90] reached an
accuracy of 82.3% with CNN architectures. The classification results
that have been obtained in the current work for the EEG databases
are comparable to those obtained in other studies, but in some cases
are lower; however, it is important to note that the purpose of the
methodology proposed in the current paper, and thus the objective of
our work, is not to perform classification, but to assess the alterations
that AD could induce in the neurophysiological organization of the
brain functional organization. On the other hand, previous studies
have employed ML and DL approaches, which are powerful tools for
classification.

4.4. Limitations and future research lines

Despite the fact that the present study has yielded remarkable
findings, some limitations need to be mentioned.

Firstly, in this study, a plethora of parameters have been included
on each sublevel of analysis (i.e., spectral, nonlinear, dynamic, FC,
frequency-based network organization, and multiplex network organi-
zation). These features have provided a great potential to characterize
different properties of the functional neural organization. Nevertheless,
they are only a sample of the great amount of other parameters that
have been used in previous research works. In this regard, as a future
prospect, other M/EEG parameters could be included in the analysis.

Secondly, the use of both M/EEG confers great robustness to our
results, which allowed us to characterized the whole functional neural
organization from its electromagnetic activity since these two sig-
nals are closely linked [7]. However, to fully characterize the global
neurophysiological fingerprint of the disease, integrating additional in-
formation is of paramount importance. In that sense, the addition of in-
formation obtained from other brain imaging techniques, such as mag-
netic resonance image or near infrared spectroscopy, as well as socio-
demographic data, clinical information, and genetics would enable the
depiction of a complete image of AD by combining different perspec-
tives into one element. This fingerprint would provide a complete
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representation of the different elements involved in AD development,
integrating all the information from an intuitive approach.

Finally, this novel methodology have proved useful to characterize
the neurophysiological organization of the brain and to analyze its
alterations due to AD. Notwithstanding, it can be also employed to pro-
vide further comprehension of the alterations that the functional neural
organization may suffer due to different neurological and psychiatric
pathologies.

5. Conclusions

In the present study, we proposed a novel methodology to analyze
the neurophysiological organization of the functional neural organi-
zation, and characterize its alterations due to AD. The relationships
between local activation and global synchronization features were
assessed to that purpose. Our approach revealed that AD causes a
disruption in the neurophysiological organization, showing a more cen-
tralized organization towards the local activation level. Additionally,
the neurophysiological organization leads to more regular dispositions
in patients with AD, characterized by more centralized and less complex
topologies. These alterations could reflect more simple patterns of
relationships, increasing the vulnerability of the system in AD. We
believe that this work provides a new perspective to integrate the
different functional neural organization properties from an integrative
standpoint, and illustrates how AD alters the structure of relationships
these characteristics form.

CRediT authorship contribution statement

Víctor Gutiérrez-de Pablo: Conceptualization, Data curation, For-
al analysis, Investigation, Methodology, Software, Visualization, Writ-

ng – original draft. Jesús Poza: Conceptualization, Data curation,
Funding acquisition, Methodology, Supervision, Visualization, Writ-
ing – review & editing. Aarón Maturana-Candelas: Data curation,
Resources, Writing – review & editing. Víctor Rodríguez-González:
Formal analysis, Writing – review & editing. Miguel Ángel Tola-
Arribas: Data curation, Resources, Writing – review & editing. Mónica
Cano: Data curation, Writing – review & editing. Hideyuki Hoshi:

ata curation, Resources, Writing – review & editing. Yoshihito Shigi-
ara: Data curation, Resources, Writing – review & editing. Roberto
Hornero: Conceptualization, Funding acquisition, Writing – review
& editing. Carlos Gómez: Conceptualization, Data curation, Funding
acquisition, Methodology, Supervision, Visualization, Writing – review
& editing.

Declaration of competing interest

None Declared.

Acknowledgments

This research has been developed under the grant PID2022-138286
NB-I00 funded by ‘‘Ministerio de Ciencia e Innovación/Agencia Es-
tatal de Investigación/10.13039/501100011033/’’, by ‘‘ERDF A way
of making Europe’’, and by ‘‘CIBER en Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Spain’’ through ‘‘Instituto de Salud Car-
los III’’ co-funded with ERDF funds. Víctor Gutiérrez-de Pablo was
in receipt of a PIF-UVa grant from the ‘‘University of Valladolid,
Spain’’. Aarón Maturana-Candelas was in receipt of a PIF grant by the
‘‘Consejería de Educación de la Junta de Castilla y León, Spain’’.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
11

at https://doi.org/10.1016/j.cmpb.2024.108197.
References

[1] M. Vaz, S. Silvestre, Alzheimer’s disease: Recent treatment strategies, Eur.
J. Pharmacol. 887 (2020) 173554, http://dx.doi.org/10.1016/j.ejphar.2020.
173554.

[2] Alzheimer’s Disease International, World Alzheimer Report 2022 – Life after
diagnosis: Navigating treatment, care and support, Tech. rep.

[3] G. Livingston, J. Huntley, A. Sommerlad, D. Ames, C. Ballard, S. Banerjee,
C. Brayne, A. Burns, J. Cohen-Mansfield, C. Cooper, S.G. Costafreda, A. Dias,
N. Fox, L.N. Gitlin, R. Howard, H.C. Kales, M. Kivimäki, E.B. Larson, A.
Ogunniyi, V. Orgeta, K. Ritchie, K. Rockwood, E.L. Sampson, Q. Samus, L.S.
Schneider, G. Selbæ k, L. Teri, N. Mukadam, Dementia prevention, intervention,
and care: 2020 report of the lancet commission, Lancet 396 (2020) 413–446,
http://dx.doi.org/10.1016/S0140-6736(20)30367-6.

[4] G.C. O’Neill, P. Tewarie, D. Vidaurre, L. Liuzzi, M.W. Woolrich, M.J. Brookes,
Dynamics of large-scale electrophysiological networks: A technical review,
NeuroImage 180 (May 2017) (2018) 559–576, http://dx.doi.org/10.1016/j.
neuroimage.2017.10.003.

[5] C. Babiloni, R. Lizio, N. Marzano, P. Capotosto, A. Soricelli, A.I. Triggiani, S.
Cordone, L. Gesualdo, C. Del Percio, Brain neural synchronization and functional
coupling in alzheimer’s disease as revealed by resting state EEG rhythms, Int.
J. Psychophysiol. 103 (2016) 88–102, http://dx.doi.org/10.1016/j.ijpsycho.2015.
02.008.

[6] M.X. Cohen, Where does EEG come from and what does it mean? Trends
Neurosci. 40 (4) (2017) 208–218, http://dx.doi.org/10.1016/j.tins.2017.02.004.

[7] C. Pernet, M.I. Garrido, A. Gramfort, N. Maurits, C.M. Michel, E. Pang, R.
Salmelin, J.M. Schoffelen, P.A. Valdes-Sosa, A. Puce, Issues and recommendations
from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG
research, Nature Neurosci. 23 (12) (2020) 1473–1483, http://dx.doi.org/10.
1038/s41593-020-00709-0.

[8] P. Núñez, J. Poza, C. Gómez, V. Rodríguez-González, A. Hillebrand, P. Tewarie,
M.Á. Tola-Arribas, M. Cano, R. Hornero, Abnormal meta-state activation of dy-
namic brain networks across the alzheimer spectrum, NeuroImage 232 (January)
(2021) 117898, http://dx.doi.org/10.1016/j.neuroimage.2021.117898.

[9] J. Gross, Magnetoencephalography in cognitive neuroscience: A primer, Neuron
104 (2) (2019) 189–204, http://dx.doi.org/10.1016/j.neuron.2019.07.001.

[10] R. Wang, J. Wang, H. Yu, X. Wei, C. Yang, B. Deng, Power spectral density and
coherence analysis of alzheimer’s EEG, Cogn. Neurodyn. 9 (3) (2015) 291–304,
http://dx.doi.org/10.1007/s11571-014-9325-x.

[11] M.M. Engels, A. Hillebrand, W.M. Van Der Flier, C.J. Stam, P. Scheltens, E.C.
Van Straaten, Slowing of hippocampal activity correlates with cognitive decline
in early onset alzheimer’s disease. An MEG study with virtual electrodes, Front.
Hum. Neurosci. 10 (MAY2016) (2016) 1–13, http://dx.doi.org/10.3389/fnhum.
2016.00238.

[12] A.H. Meghdadi, M.S. Karic, M. McConnell, G. Rupp, C. Richard, J. Hamilton,
D. Salat, C. Berka, Resting state EEG biomarkers of cognitive decline associated
with alzheimer’s disease and mild cognitive impairment, 16, 2021,

[13] C.J. Stam, T. Montez, B.F. Jones, S.A. Rombouts, Y. Van Der Made, Y.A.
Pijnenburg, P. Scheltens, Disturbed fluctuations of resting state EEG synchro-
nization in alzheimer’s disease, Clin. Neurophysiol. 116 (3) (2005) 708–715,
http://dx.doi.org/10.1016/j.clinph.2004.09.022.

[14] A.H.H. Al-Nuaimi, E. Jammeh, L. Sun, E. Ifeachor, Complexity measures for
quantifying changes in electroencephalogram in alzheimer’s disease, Complexity
2018 (2018) 1–12, http://dx.doi.org/10.1155/2018/8915079.

[15] R. Bruña, J. Poza, C. Gómez, M. García, A. Fernández, R. Hornero, Analysis of
spontaneous MEG activity in mild cognitive impairment and alzheimer’s disease
using spectral entropies and statistical complexity measures, J. Neural Eng. 9 (3)
(2012) http://dx.doi.org/10.1088/1741-2560/9/3/036007.

[16] B. Hjorth, EEG analysis based on time domain properties, Electroen-
cephalogr. Clin. Neurophysiol. 29 (1970) 306–310, http://dx.doi.org/10.1016/
0013-4694(70)90143-4.

[17] M.S. Safi, S.M.M. Safi, Early detection of alzheimer’s disease from EEG signals
using hjorth parameters, Biomed. Signal Process. Control 65 (February 2020)
(2021) 102338, http://dx.doi.org/10.1016/j.bspc.2020.102338.

[18] A.M. Tăuctan, E.P. Casula, M.C. Pellicciari, I. Borghi, M. Maiella, S. Bonni, M.
Minei, M. Assogna, A. Palmisano, C. Smeralda, S.M. Romanella, B. Ionescu, G.
Koch, E. Santarnecchi, TMS-EEG perturbation biomarkers for alzheimer’s disease
patients classification, Sci. Rep. 13 (1) (2023) 1–13, http://dx.doi.org/10.1038/
s41598-022-22978-4.

[19] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses
and interpretations, NeuroImage 52 (3) (2010) 1059–1069, http://dx.doi.org/10.
1016/j.neuroimage.2009.10.003.

[20] C.T. Briels, D.N. Schoonhoven, C.J. Stam, H. De Waal, P. Scheltens, A.A. Gouw,
Reproducibility of EEG functional connectivity in alzheimer’s disease, Alzheimer’s
Res. Therapy 12 (1) (2020) 1–14, http://dx.doi.org/10.1186/s13195-020-00632-
3.

[21] C.J. Stam, B.F. Jones, I. Manshanden, A.M. van Cappellen van Walsum, T.
Montez, J.P. Verbunt, J.C. de Munck, B.W. van Dijk, H.W. Berendse, P. Scheltens,
Magnetoencephalographic evaluation of resting-state functional connectivity in
alzheimer’s disease, NeuroImage 32 (3) (2006) 1335–1344, http://dx.doi.org/
10.1016/j.neuroimage.2006.05.033.

https://doi.org/10.1016/j.cmpb.2024.108197
http://dx.doi.org/10.1016/j.ejphar.2020.173554
http://dx.doi.org/10.1016/j.ejphar.2020.173554
http://dx.doi.org/10.1016/j.ejphar.2020.173554
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb2
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb2
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb2
http://dx.doi.org/10.1016/S0140-6736(20)30367-6
http://dx.doi.org/10.1016/j.neuroimage.2017.10.003
http://dx.doi.org/10.1016/j.neuroimage.2017.10.003
http://dx.doi.org/10.1016/j.neuroimage.2017.10.003
http://dx.doi.org/10.1016/j.ijpsycho.2015.02.008
http://dx.doi.org/10.1016/j.ijpsycho.2015.02.008
http://dx.doi.org/10.1016/j.ijpsycho.2015.02.008
http://dx.doi.org/10.1016/j.tins.2017.02.004
http://dx.doi.org/10.1038/s41593-020-00709-0
http://dx.doi.org/10.1038/s41593-020-00709-0
http://dx.doi.org/10.1038/s41593-020-00709-0
http://dx.doi.org/10.1016/j.neuroimage.2021.117898
http://dx.doi.org/10.1016/j.neuron.2019.07.001
http://dx.doi.org/10.1007/s11571-014-9325-x
http://dx.doi.org/10.3389/fnhum.2016.00238
http://dx.doi.org/10.3389/fnhum.2016.00238
http://dx.doi.org/10.3389/fnhum.2016.00238
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb12
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb12
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb12
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb12
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb12
http://dx.doi.org/10.1016/j.clinph.2004.09.022
http://dx.doi.org/10.1155/2018/8915079
http://dx.doi.org/10.1088/1741-2560/9/3/036007
http://dx.doi.org/10.1016/0013-4694(70)90143-4
http://dx.doi.org/10.1016/0013-4694(70)90143-4
http://dx.doi.org/10.1016/0013-4694(70)90143-4
http://dx.doi.org/10.1016/j.bspc.2020.102338
http://dx.doi.org/10.1038/s41598-022-22978-4
http://dx.doi.org/10.1038/s41598-022-22978-4
http://dx.doi.org/10.1038/s41598-022-22978-4
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1186/s13195-020-00632-3
http://dx.doi.org/10.1186/s13195-020-00632-3
http://dx.doi.org/10.1186/s13195-020-00632-3
http://dx.doi.org/10.1016/j.neuroimage.2006.05.033
http://dx.doi.org/10.1016/j.neuroimage.2006.05.033
http://dx.doi.org/10.1016/j.neuroimage.2006.05.033


Computer Methods and Programs in Biomedicine 250 (2024) 108197V. Gutiérrez-de Pablo et al.
[22] S. Afshari, M. Jalili, Directed functional networks in alzheimer’s disease: Disrup-
tion of global and local connectivity measures, IEEE J. Biomed. Health Inf. 21
(4) (2017) 949–955, http://dx.doi.org/10.1109/JBHI.2016.2578954.

[23] D.F. Vecchio, D.F. Miraglia, D.F. Iberite, D.G. Lacidogna, D.V. Guglielmi, D.C.
Marra, D.P. Pasqualetti, D.F.D. Tiziano, P.P.M. Rossini, Sustainable method for
alzheimer dementia prediction in mild cognitive impairment: Electroencephalo-
graphic connectivity and graph theory combined with apolipoprotein e, Ann.
Neurol. 84 (2) (2018) 302–314, http://dx.doi.org/10.1002/ana.25289.

[24] R. Cassani, M. Estarellas, R. San-Martin, F.J. Fraga, T.H. Falk, Systematic
review on resting-state EEG for alzheimer’s disease diagnosis and progression
assessment, Dis. Mark. 2018 (2018) http://dx.doi.org/10.1155/2018/5174815.

[25] C.J. Stam, W. De Haan, A. Daffertshofer, B.F. Jones, I. Manshanden, A.M. Van
Cappellen Van Walsum, T. Montez, J.P. Verbunt, J.C. De Munck, B.W. Van Dijk,
H.W. Berendse, P. Scheltens, Graph theoretical analysis of magnetoencephalo-
graphic functional connectivity in alzheimer’s disease, Brain 132 (1) (2009)
213–224, http://dx.doi.org/10.1093/brain/awn262.

[26] M. Yu, M.M. Engels, A. Hillebrand, E.C. Van Straaten, A.A. Gouw, C. Teunissen,
W.M. Van Der Flier, P. Scheltens, C.J. Stam, Selective impairment of hippocam-
pus and posterior hub areas in alzheimer’s disease: An MEG-based multiplex
network study, Brain 140 (5) (2017) 1466–1485, http://dx.doi.org/10.1093/
brain/awx050.

[27] F. Vecchio, F. Miraglia, F. Alú, A. Orticoni, E. Judica, M. Cotelli, P.M. Rossini,
Contribution of graph theory applied to EEG data analysis for alzheimer’s disease
versus vascular dementia diagnosis, J. Alzheimer’s Dis. 82 (2) (2021) 871–879,
http://dx.doi.org/10.3233/JAD-210394.

[28] J.C. McBride, X. Zhao, N.B. Munro, C.D. Smith, G.A. Jicha, L. Hively, L.S.
Broster, F.A. Schmitt, R.J. Kryscio, Y. Jiang, Spectral and complexity analysis
of scalp EEG characteristics for mild cognitive impairment and early alzheimer’s
disease, Comput. Methods Programs Biomed. 114 (2) (2014) 153–163, http:
//dx.doi.org/10.1016/j.cmpb.2014.01.019.

[29] J. Sun, B. Wang, Y. Niu, Y. Tan, C. Fan, N. Zhang, J. Xue, J. Wei, J. Xiang,
Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and
alzheimer’s disease: A review, Entropy 22 (2) (2020) 239, http://dx.doi.org/10.
3390/e22020239.

[30] G. Niso, L.R. Krol, E. Combrisson, A.S. Dubarry, M.A. Elliott, C. François, Y.
Héjja-Brichard, S.K. Herbst, K. Jerbi, V. Kovic, K. Lehongre, S.J. Luck, M.
Mercier, J.C. Mosher, Y.G. Pavlov, A. Puce, A. Schettino, D. Schön, W. Sinnott-
Armstrong, B. Somon, A.e. Šoškić, S.J. Styles, R. Tibon, M.G. Vilas, M. van Vliet,
M. Chaumon, Good scientific practice in EEG and MEG research: Progress and
perspectives, NeuroImage 257 (2022) http://dx.doi.org/10.1016/j.neuroimage.
2022.119056.

[31] Y. Chen, A.K. Fu, N.Y. Ip, Synaptic dysfunction in alzheimer’s disease: Mech-
anisms and therapeutic strategies, Pharmacol. Therapeut. 195 (2019) 186–198,
http://dx.doi.org/10.1016/j.pharmthera.2018.11.006.

[32] D.N. Schoonhoven, C.T. Briels, A. Hillebrand, P. Scheltens, C.J. Stam, A.A. Gouw,
Sensitive and reproducible MEG resting-state metrics of functional connectivity
in alzheimer’s disease, Alzheimer’s Res. Therapy 14 (1) (2022) 1–19, http:
//dx.doi.org/10.1186/s13195-022-00970-4.

[33] B.M. Tijms, A.M. Wink, W. de Haan, W.M. van der Flier, C.J. Stam, P. Scheltens,
F. Barkhof, Alzheimer’s disease: connecting findings from graph theoretical
studies of brain networks, Neurobiol. Aging 34 (8) (2013) 2023–2036, http:
//dx.doi.org/10.1016/j.neurobiolaging.2013.02.020.

[34] B. Ruhnau, Eigenvector-centrality-a node-centrality? Social Networks 22 (2000).
[35] G.M. McKhann, D.S. Knopman, H. Chertkow, B.T. Hyman, C.R. Jack Jr., C.H.

Kawas, W.E. Klunk, W.J. Koroshetz, J.J. Manly, R. Mayeux, R.C. Mohs, J.C.
Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, S. Weintraub, C.H.
Phelps, The diagnosis of dementia due to alzheimer’s disease: Recommendations
from the national institute on aging- alzheimer’s association workgroups on
diagnostic guidelines for alzheimer’s disease, Alzheimer’s Dementia 7 (3) (2011)
263–269, http://dx.doi.org/10.1016/j.jalz.2011.03.005.

[36] M.F. Folstein, S.E. Folstein, P.R. McHugh, ‘‘Mini-mental state’’, J. Psychiatr. Res.
12 (3) (1975) 189–198, http://dx.doi.org/10.1016/0022-3956(75)90026-6.

[37] B. Reisberg, Functional assessment staging (FAST), Psychopharmacol. Bull. 24
(4) (1988) 653–659.

[38] A. Maturana-Candelas, C. Gómez, J. Poza, V. Rodríguez-González, V.G. de Pablo,
A.M. Lopes, N. Pinto, R. Hornero, Influence of PICALM and CLU risk variants on
beta EEG activity in alzheimer’s disease patients, Sci. Rep. 11 (1) (2021) 1–11,
http://dx.doi.org/10.1038/s41598-021-99589-y.

[39] T.P. Mutanen, J. Metsomaa, S. Liljander, R.J. Ilmoniemi, Automatic and robust
noise suppression in EEG and MEG: The sound algorithm, NeuroImage 166
(2018) 135–151, http://dx.doi.org/10.1016/j.neuroimage.2017.10.021.

[40] R.D. Pascual-Marqui, Standardized low-resolution brain electromagnetic tomog-
raphy (sLORETA): technical details., Methods Find. Exper. Clinical Pharmacol.
24 Suppl D (2002) 5–12.

[41] R.S. Desikan, F. Ségonne, B. Fischl, B.T. Quinn, B.C. Dickerson, D. Blacker, R.L.
Buckner, A.M. Dale, R.P. Maguire, B.T. Hyman, M.S. Albert, R.J. Killiany, An
automated labeling system for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest, NeuroImage 31 (3) (2006) 968–980,
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021.
12
[42] S.R. Farahibozorg, R.N. Henson, O. Hauk, Adaptive cortical parcellations for
source reconstructed EEG/MEG connectomes, NeuroImage 169 (September)
(2018) 23–45, http://dx.doi.org/10.1016/j.neuroimage.2017.09.009.

[43] S. Allouch, A. Kabbara, J. Duprez, M. Khalil, J. Modolo, M. Hassan, Effect of
channel density, inverse solutions and connectivity measures on EEG resting-state
networks reconstruction: A simulation study, NeuroImage 271 (2023) 120006,
http://dx.doi.org/10.1016/j.neuroimage.2023.120006.

[44] X. Lin, W. Kong, J. Li, X. Shao, C. Jiang, R. Yu, X. Li, B. Hu, Aberrant
static and dynamic functional brain network in depression based on EEG
source localization, IEEE/ACM Trans. Comput. Biol. Bioinform. 20 (3) (2023)
1876–1889, http://dx.doi.org/10.1109/TCBB.2022.3222592.

[45] M.A. Lopes, L. Junges, L. Tait, J.R. Terry, E. Abela, M.P. Richardson, M.
Goodfellow, Computational modelling in source space from scalp EEG to inform
presurgical evaluation of epilepsy, Clin. Neurophysiol. 131 (1) (2020) 225–234,
http://dx.doi.org/10.1016/j.clinph.2019.10.027.

[46] P. Zhou, Q. Wu, L. Zhan, Z. Guo, C. Wang, S. Wang, Q. Yang, J. Lin, F.
Zhang, L. Liu, D. Lin, W. Fu, X. Wu, Alpha peak activity in resting-state
EEG is associated with depressive score, Front. Neurosci. 17 (2023) 1–9, http:
//dx.doi.org/10.3389/fnins.2023.1057908.

[47] V. Rodríguez-González, C. Gómez, Y. Shigihara, H. Hoshi, M. Revilla-Vallejo,
R. Hornero, J. Poza, Consistency of local activation parameters at sensor- and
source-level in neural signals, J. Neural Eng. 17 (5) (2020) http://dx.doi.org/10.
1088/1741-2552/abb582.

[48] F. Tadel, S. Baillet, J.C. Mosher, D. Pantazis, R.M. Leahy, Brainstorm: A user-
friendly application for MEG/EEG analysis, Comput. Intell. Neurosci. 2011
(2011) http://dx.doi.org/10.1155/2011/879716.

[49] F. Vecchio, C. Babiloni, R. Lizio, F. De Vico Fallani, K. Blinowska, G. Verrienti, G.
Frisoni, P.M. Rossini, Resting state cortical EEG rhythms in alzheimer’s disease:
Toward eeg markers for clinical applications: A review, first ed., Supplements
To Clinical Neurophysiology, vol. 62, Elsevier B.V., 2013, pp. 223–236, http:
//dx.doi.org/10.1016/B978-0-7020-5307-8.00015-6.

[50] C. Stam, E. van Straaten, The organization of physiological brain networks, Clin.
Neurophysiol. 123 (6) (2012) 1067–1087, http://dx.doi.org/10.1016/j.clinph.
2012.01.011.

[51] J. Poza, C. Gómez, A. Bachiller, R. Hornero, Spectral and non-linear analyses of
spontaneous magnetoencephalographic activity in alzheimer’s disease, J. Healthc.
Eng. 3 (2) (2012) 299–322.

[52] S.J. Ruiz-Gómez, C. Gómez, J. Poza, G.C. Gutiérrez-Tobal, M.A. Tola-Arribas,
M. Cano, R. Hornero, Automated multiclass classification of spontaneous EEG
activity in alzheimer’s disease and mild cognitive impairment, Entropy 20 (1)
(2018) 1–15, http://dx.doi.org/10.3390/e20010035.

[53] V. Rodríguez-González, C. Gómez, H. Hoshi, Y. Shigihara, R. Hornero, J. Poza,
Exploring the interactions between neurophysiology and cognitive and behavioral
changes induced by a non-pharmacological treatment: A network approach,
Front. Aging Neurosci. 13 (July) (2021) 1–15, http://dx.doi.org/10.3389/fnagi.
2021.696174.

[54] J. Poza, R. Hornero, J. Escudero, A. Fernández, C.I. Sánchez, Regional analysis
of spontaneous MEG rhythms in patients with alzheimer’s disease using spectral
entropies, Ann. Biomed. Eng. 36 (1) (2008) 141–152, http://dx.doi.org/10.1007/
s10439-007-9402-y.

[55] R.P. Di Sisto, S. Martínez, R.B. Orellana, A.R. Plastino, A. Plastino, General
thermostatistical formalisms, invariance under uniform spectrum translations,
and tsallis q-additivity, Phys. A 265 (3) (1999) 590–613, http://dx.doi.org/10.
1016/S0378-4371(98)00561-5.

[56] D. Abásolo, R. Hornero, C. Gómez, M. García, M. López, Analysis of EEG
background activity in alzheimer’s disease patients with lempel-ziv complexity
and central tendency measure, Med. Eng. Phys. 28 (4) (2006) 315–322, http:
//dx.doi.org/10.1016/j.medengphy.2005.07.004.

[57] T. Higuchi, Approach to an irregular time series on the basis of the fractal theory,
Physica D 31 (1988) 277–283.

[58] C. Gómez, Á. Mediavilla, R. Hornero, D. Abásolo, A. Fernández, Use of the
Higuchi’s fractal dimension for the analysis of MEG recordings from alzheimer’s
disease patients, Med. Eng. Phys. 31 (3) (2009) 306–313, http://dx.doi.org/10.
1016/j.medengphy.2008.06.010.

[59] B.S. Raghavendra, D. Narayana Dutt, A note on fractal dimensions of biomedical
waveforms, Comput. Biol. Med. 39 (11) (2009) 1006–1012, http://dx.doi.org/
10.1016/j.compbiomed.2009.08.001.

[60] M.J. Katz, Fractals and the analysis of waveforms, Comput. Biol. Med. 18 (3)
(1988) 145–156, http://dx.doi.org/10.1016/0010-4825(88)90041-8.

[61] R. Espinosa, J. Talero, A. Weinstein, Effects of tau and sampling frequency on
the regularity analysis of ecg and eeg signals using apen and sampen entropy
estimators, Entropy 22 (11) (2020) 1–14, http://dx.doi.org/10.3390/e22111298.

[62] J. Monge, C. Gómez, J. Poza, A. Fernández, J. Quintero, R. Hornero, MEG
analysis of neural dynamics in attention-deficit/hyperactivity disorder with fuzzy
entropy, Med. Eng. Phys. 37 (4) (2015) 416–423, http://dx.doi.org/10.1016/j.
medengphy.2015.02.006.

[63] C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: Assessment of functional
connectivity from multi channel EEG and MEG with diminished bias from
common sources, Hum. Brain Mapp. 28 (11) (2007) 1178–1193, http://dx.doi.
org/10.1002/hbm.20346.

http://dx.doi.org/10.1109/JBHI.2016.2578954
http://dx.doi.org/10.1002/ana.25289
http://dx.doi.org/10.1155/2018/5174815
http://dx.doi.org/10.1093/brain/awn262
http://dx.doi.org/10.1093/brain/awx050
http://dx.doi.org/10.1093/brain/awx050
http://dx.doi.org/10.1093/brain/awx050
http://dx.doi.org/10.3233/JAD-210394
http://dx.doi.org/10.1016/j.cmpb.2014.01.019
http://dx.doi.org/10.1016/j.cmpb.2014.01.019
http://dx.doi.org/10.1016/j.cmpb.2014.01.019
http://dx.doi.org/10.3390/e22020239
http://dx.doi.org/10.3390/e22020239
http://dx.doi.org/10.3390/e22020239
http://dx.doi.org/10.1016/j.neuroimage.2022.119056
http://dx.doi.org/10.1016/j.neuroimage.2022.119056
http://dx.doi.org/10.1016/j.neuroimage.2022.119056
http://dx.doi.org/10.1016/j.pharmthera.2018.11.006
http://dx.doi.org/10.1186/s13195-022-00970-4
http://dx.doi.org/10.1186/s13195-022-00970-4
http://dx.doi.org/10.1186/s13195-022-00970-4
http://dx.doi.org/10.1016/j.neurobiolaging.2013.02.020
http://dx.doi.org/10.1016/j.neurobiolaging.2013.02.020
http://dx.doi.org/10.1016/j.neurobiolaging.2013.02.020
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb34
http://dx.doi.org/10.1016/j.jalz.2011.03.005
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb37
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb37
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb37
http://dx.doi.org/10.1038/s41598-021-99589-y
http://dx.doi.org/10.1016/j.neuroimage.2017.10.021
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb40
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb40
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb40
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb40
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb40
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://dx.doi.org/10.1016/j.neuroimage.2017.09.009
http://dx.doi.org/10.1016/j.neuroimage.2023.120006
http://dx.doi.org/10.1109/TCBB.2022.3222592
http://dx.doi.org/10.1016/j.clinph.2019.10.027
http://dx.doi.org/10.3389/fnins.2023.1057908
http://dx.doi.org/10.3389/fnins.2023.1057908
http://dx.doi.org/10.3389/fnins.2023.1057908
http://dx.doi.org/10.1088/1741-2552/abb582
http://dx.doi.org/10.1088/1741-2552/abb582
http://dx.doi.org/10.1088/1741-2552/abb582
http://dx.doi.org/10.1155/2011/879716
http://dx.doi.org/10.1016/B978-0-7020-5307-8.00015-6
http://dx.doi.org/10.1016/B978-0-7020-5307-8.00015-6
http://dx.doi.org/10.1016/B978-0-7020-5307-8.00015-6
http://dx.doi.org/10.1016/j.clinph.2012.01.011
http://dx.doi.org/10.1016/j.clinph.2012.01.011
http://dx.doi.org/10.1016/j.clinph.2012.01.011
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb51
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb51
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb51
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb51
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb51
http://dx.doi.org/10.3390/e20010035
http://dx.doi.org/10.3389/fnagi.2021.696174
http://dx.doi.org/10.3389/fnagi.2021.696174
http://dx.doi.org/10.3389/fnagi.2021.696174
http://dx.doi.org/10.1007/s10439-007-9402-y
http://dx.doi.org/10.1007/s10439-007-9402-y
http://dx.doi.org/10.1007/s10439-007-9402-y
http://dx.doi.org/10.1016/S0378-4371(98)00561-5
http://dx.doi.org/10.1016/S0378-4371(98)00561-5
http://dx.doi.org/10.1016/S0378-4371(98)00561-5
http://dx.doi.org/10.1016/j.medengphy.2005.07.004
http://dx.doi.org/10.1016/j.medengphy.2005.07.004
http://dx.doi.org/10.1016/j.medengphy.2005.07.004
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb57
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb57
http://refhub.elsevier.com/S0169-2607(24)00193-7/sb57
http://dx.doi.org/10.1016/j.medengphy.2008.06.010
http://dx.doi.org/10.1016/j.medengphy.2008.06.010
http://dx.doi.org/10.1016/j.medengphy.2008.06.010
http://dx.doi.org/10.1016/j.compbiomed.2009.08.001
http://dx.doi.org/10.1016/j.compbiomed.2009.08.001
http://dx.doi.org/10.1016/j.compbiomed.2009.08.001
http://dx.doi.org/10.1016/0010-4825(88)90041-8
http://dx.doi.org/10.3390/e22111298
http://dx.doi.org/10.1016/j.medengphy.2015.02.006
http://dx.doi.org/10.1016/j.medengphy.2015.02.006
http://dx.doi.org/10.1016/j.medengphy.2015.02.006
http://dx.doi.org/10.1002/hbm.20346
http://dx.doi.org/10.1002/hbm.20346
http://dx.doi.org/10.1002/hbm.20346


Computer Methods and Programs in Biomedicine 250 (2024) 108197V. Gutiérrez-de Pablo et al.
[64] P. Núñez, J. Poza, C. Gómez, V. Rodríguez-González, A. Hillebrand, M.A.
Tola-Arribas, M. Cano, R. Hornero, Characterizing the fluctuations of dynamic
resting-state electrophysiological functional connectivity: Reduced neuronal cou-
pling variability in mild cognitive impairment and dementia due to alzheimer’s
disease, J. Neural Eng. 16 (5) (2019) http://dx.doi.org/10.1088/1741-2552/
ab234b.

[65] W. De Haan, W.M. Van der Flier, T. Koene, L.L. Smits, P. Scheltens, C.J. Stam,
Disrupted modular brain dynamics reflect cognitive dysfunction in alzheimer’s
disease, NeuroImage 59 (4) (2012) 3085–3093, http://dx.doi.org/10.1016/j.
neuroimage.2011.11.055.

[66] F. Vecchio, F. Miraglia, F. Piludu, G. Granata, R. Romanello, M. Caulo, V.
Onofrj, P. Bramanti, C. Colosimo, P.M. Rossini, ‘‘Small world’’ architecture in
brain connectivity and hippocampal volume in alzheimer’s disease: a study via
graph theory from EEG data, Brain Imaging Behav. 11 (2) (2017) 473–485,
http://dx.doi.org/10.1007/s11682-016-9528-3.

[67] D. Borsboom, A.O. Cramer, V.D. Schmittmann, S. Epskamp, L.J. Waldorp, The
small world of psychopathology, PLoS ONE 6 (11) (2011) http://dx.doi.org/10.
1371/journal.pone.0027407.

[68] M. Bastian, S. Heymann, M. Jacomy, Gephi: An Open Source Software for
Exploring and Manipulating Networks Visualization and Exploration of Large
Graphs, Tech. rep, 2009, pp. 361–362, URL www.aaai.org.

[69] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the gephi
software, PLoS ONE 9 (6) (2014) 1–12, http://dx.doi.org/10.1371/journal.pone.
0098679.

[70] J. Gomez-Pilar, J. Poza, A. Bachiller, C. Gómez, P. Núñez, A. Lubeiro, V.
Molina, R. Hornero, Quantification of graph complexity based on the edge weight
distribution balance: Application to brain networks, Int. J. Neural Syst. 28 (1)
(2018) 1–19, http://dx.doi.org/10.1142/S0129065717500320.

[71] R.A. Gutierrez Nuno, C.H.R. Chung, K. Maharatna, Hardware architecture for
real-time EEG-based functional brain connectivity parameter extraction, J. Neural
Eng. 18 (3) (2021) http://dx.doi.org/10.1088/1741-2552/abd462.

[72] M. Saggar, S.M. Hosseini, J.L. Bruno, E.M. Quintin, M.M. Raman, S.R. Kesler,
A.L. Reiss, Estimating individual contribution from group-based structural corre-
lation networks, NeuroImage 120 (2015) 274–284, http://dx.doi.org/10.1016/j.
neuroimage.2015.07.006.

[73] T.T. Wong, Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation, Pattern Recognit. 48 (9) (2015) 2839–2846,
http://dx.doi.org/10.1016/j.patcog.2015.03.009.

[74] F. Miraglia, F. Vecchio, C. Pappalettera, L. Nucci, M. Cotelli, E. Judica, F. Ferreri,
P.M. Rossini, Brain connectivity and graph theory analysis in alzheimer’s and
parkinson’s disease: The contribution of electrophysiological techniques, Brain
Sci. 12 (3) (2022) http://dx.doi.org/10.3390/brainsci12030402.

[75] X. Liao, A.V. Vasilakos, Y. He, Small-world human brain networks: Perspectives
and challenges, Neuroscience and Biobehavioral Reviews 77 (2017) 286–300,
http://dx.doi.org/10.1016/j.neubiorev.2017.03.018.
13
[76] L. Stefanovski, P. Triebkorn, A. Spiegler, M.A. Diaz-Cortes, A. Solodkin, V. Jirsa,
A.R. McIntosh, P. Ritter, Linking molecular pathways and large-scale computa-
tional modeling to assess candidate disease mechanisms and pharmacodynamics
in alzheimer’s disease, Fron. Comput. Neurosci. 13 (2019) http://dx.doi.org/10.
3389/fncom.2019.00054.

[77] M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of biological
signals, Phys. Rev. E 71 (2) (2005) http://dx.doi.org/10.1103/PhysRevE.71.
021906.

[78] L.T. Trujillo, C.T. Stanfield, R.D. Vela, The effect of electroencephalogram
(EEG) reference choice on information-theoretic measures of the complexity
and integration of eeg signals, Front. Neurosci. 11 (JUL) (2017) 1–22, http:
//dx.doi.org/10.3389/fnins.2017.00425.

[79] M.P. van den Heuvel, O. Sporns, Network hubs in the human brain, Trends Cogn.
Sci. 17 (12) (2013) 683–696, http://dx.doi.org/10.1016/j.tics.2013.09.012.

[80] O. Sporns, Structure and function of complex brain networks, Dialogues Clin.
Neurosci. 15 (3) (2013) 247–262, http://dx.doi.org/10.31887/dcns.2013.15.3/
osporns.

[81] C.J. Stam, B.F. Jones, G. Nolte, M. Breakspear, P. Scheltens, Small-world
networks and functional connectivity in alzheimer’s disease, Cerebral Cortex 17
(1) (2007) 92–99, http://dx.doi.org/10.1093/cercor/bhj127.

[82] S.J. Wang, C.C. Hilgetag, C. Zhou, Sustained activity in hierarchical modular neu-
ral networks: self-organized criticality and oscillations, Front. Comput. Neurosci.
5 (2011) http://dx.doi.org/10.3389/fncom.2011.00030.

[83] N. Sharma, J. Classen, L.G. Cohen, Neural plasticity and its contribution to
functional recovery, in: Handbook of Clinical Neurology, vol. 110, Elsevier B.V.,
2013, pp. 3–12, http://dx.doi.org/10.1016/B978-0-444-52901-5.00001-0.

[84] A.L. Fred, S.N. Kumar, A.K. Haridhas, S. Ghosh, H.P. Bhuvana, W.K.J. Sim,
V. Vimalan, F.A.S. Givo, V. Jousmäki, P. Padmanabhan, B. Gulyás, A brief
introduction to magnetoencephalography (MEG) and its clinical applications,
Brain Sci. 12 (6) (2022) http://dx.doi.org/10.3390/brainsci12060788.

[85] D.-W. Kim, C.-H. Im, Computational EEG analysis, in: C.-H. Im (Ed.), in:
Biological and Medical Physics, Biomedical Engineering, Springer Singapore,
Singapore, 2018, pp. 35–53, http://dx.doi.org/10.1007/978-981-13-0908-3.

[86] S. Rampp, H. Stefan, On the opposition of EEG and MEG, Clin. Neurophysiol.
118 (8) (2007) 1658–1659, http://dx.doi.org/10.1016/j.clinph.2007.04.021.

[87] T. Takahashi, Complexity of spontaneous brain activity in mental disorders,
Progr. Neuro-Psychopharmacol. Biol. Psychiatr. 45 (2013) 258–266, http://dx.
doi.org/10.1016/j.pnpbp.2012.05.001.

[88] A. Miltiadous, K.D. Tzimourta, N. Giannakeas, M.G. Tsipouras, T. Afrantou, P.
Ioannidis, A.T. Tzallas, Alzheimer’s disease and frontotemporal dementia: A ro-
bust classification method of eeg signals and a comparison of validation methods,
Diagnostics 11 (8) (2021) http://dx.doi.org/10.3390/diagnostics11081437.

[89] S. Nobukawa, T. Yamanishi, S. Kasakawa, H. Nishimura, M. Kikuchi, T.
Takahashi, Classification methods based on complexity and synchronization
of electroencephalography signals in alzheimer’s disease, Front. Psychiatry 11
(2020) 255, http://dx.doi.org/10.3389/fpsyt.2020.00255.

[90] M. Amini, M.M. Pedram, A.R. Moradi, M. Ouchani, Diagnosis of alzheimer’s
disease by time-dependent power spectrum descriptors and convolutional neural
network using EEG signal, Comput. Math. Methods Med. 2021 (2021) http:
//dx.doi.org/10.1155/2021/5511922.

http://dx.doi.org/10.1088/1741-2552/ab234b
http://dx.doi.org/10.1088/1741-2552/ab234b
http://dx.doi.org/10.1088/1741-2552/ab234b
http://dx.doi.org/10.1016/j.neuroimage.2011.11.055
http://dx.doi.org/10.1016/j.neuroimage.2011.11.055
http://dx.doi.org/10.1016/j.neuroimage.2011.11.055
http://dx.doi.org/10.1007/s11682-016-9528-3
http://dx.doi.org/10.1371/journal.pone.0027407
http://dx.doi.org/10.1371/journal.pone.0027407
http://dx.doi.org/10.1371/journal.pone.0027407
http://www.aaai.org
http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1142/S0129065717500320
http://dx.doi.org/10.1088/1741-2552/abd462
http://dx.doi.org/10.1016/j.neuroimage.2015.07.006
http://dx.doi.org/10.1016/j.neuroimage.2015.07.006
http://dx.doi.org/10.1016/j.neuroimage.2015.07.006
http://dx.doi.org/10.1016/j.patcog.2015.03.009
http://dx.doi.org/10.3390/brainsci12030402
http://dx.doi.org/10.1016/j.neubiorev.2017.03.018
http://dx.doi.org/10.3389/fncom.2019.00054
http://dx.doi.org/10.3389/fncom.2019.00054
http://dx.doi.org/10.3389/fncom.2019.00054
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.3389/fnins.2017.00425
http://dx.doi.org/10.3389/fnins.2017.00425
http://dx.doi.org/10.3389/fnins.2017.00425
http://dx.doi.org/10.1016/j.tics.2013.09.012
http://dx.doi.org/10.31887/dcns.2013.15.3/osporns
http://dx.doi.org/10.31887/dcns.2013.15.3/osporns
http://dx.doi.org/10.31887/dcns.2013.15.3/osporns
http://dx.doi.org/10.1093/cercor/bhj127
http://dx.doi.org/10.3389/fncom.2011.00030
http://dx.doi.org/10.1016/B978-0-444-52901-5.00001-0
http://dx.doi.org/10.3390/brainsci12060788
http://dx.doi.org/10.1007/978-981-13-0908-3
http://dx.doi.org/10.1016/j.clinph.2007.04.021
http://dx.doi.org/10.1016/j.pnpbp.2012.05.001
http://dx.doi.org/10.1016/j.pnpbp.2012.05.001
http://dx.doi.org/10.1016/j.pnpbp.2012.05.001
http://dx.doi.org/10.3390/diagnostics11081437
http://dx.doi.org/10.3389/fpsyt.2020.00255
http://dx.doi.org/10.1155/2021/5511922
http://dx.doi.org/10.1155/2021/5511922
http://dx.doi.org/10.1155/2021/5511922

	Exploring the disruptions of the neurophysiological organization in Alzheimer's disease: An integrative approach
	Introduction
	Materials and methods
	Participants
	MEG recordings and pre-processing
	EEG recordings and pre-processing
	Source localization: sLORETA
	M/EEG analyses
	Local activation level
	Global synchronization level

	Association networks generation
	Network analysis
	Level-based evaluation
	Classification stage
	Statistical analysis

	Results
	Global analysis
	Level-based analysis
	Classification stage

	Discussion
	Disruption of the neurophysiological organization
	Replicability between M/EEG databases
	Classification performance
	Limitations and future research lines

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


