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Color modulation in organometallic dyes. Purple-colored acyclic carbenes 
derived from 2-isocyanoazulene gold(I) complexes 
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A B S T R A C T   

This study reports new carbene azulene gold(I) complexes [AuCl{C(NHAz)(NR2)}] (R = Me (1) and nBu (2)) and 
[Au(C6F4OC10H21){C(NHAz)(NR2)}] (R = Me (3) and nBu (4)) prepared by reaction of 2-isocyanoazulene gold(I) 
complexes [AuX(CNAz)] (X = Cl and C6F4OC10H21) with the corresponding secondary amines. Their photo
physical properties were investigated by absorption and emission spectroscopies, and by TD-DFT calculations. All 
the compounds display an intense coloration based on HOMO-LUMO transitions, dominated by the azulene core. 
Gold-isocyanide complexes show a slight bathochromic shift related to azulene, while a hypsochromic shift was 
observed after formation of carbene complexes. Thus, the transformation of the gold-isocyanide group into the 
gold-carbene functionality produces a substantial color change from blue to deep purple. This different electronic 
behavior is mainly due to the stabilization of the LUMO orbital in the isocyanide complexes, and to the stabi
lization of the HOMO in the carbene derivatives. These carbene gold complexes show fluorescence in solution 
associated with the azulene core. This work illustrates how the synthetically easy isocyanide-carbene trans
formation open new perspectives to a fine color modulation in organometallic azulene dyes.   

1. Introduction 

Azulene is a 10-π-electron isomer of naphthalene with a large per
manent dipole moment of 1.08 D related to the resonance delocalization 
of azulene, which shows an electron-poor seven-membered ring and an 
electron rich five-membered ring [1]. Many studies show that azulene 
derivatives display interesting physical and chemical properties, making 
them an interesting building block for colorimetric sensors [2–4], 
stimuli-responsive photo-switches [5], stimuli-responsive for imaging 
[6], advanced materials for optoelectronic [7–10], nonlinear optical 
materials [11,12], photovoltaic cells [13,14], and liquid crystals 
[15–20]. They are also used in cosmetics, baby skincare products, as 
well as in numerous biomedical applications due to their antioxidant 
and anti-inflammatory effects [21]. 

Their properties can be modulated through the tailoring of the azu
lene core with a variety of functional groups, which have a pronounced 
influence on the electronic and optical properties of these systems. There 
are many reports on the effects of introducing different types of organic 
substituents in different positions of the azulene core and the structure/ 
property relationship is relatively well established, particularly con
cerning color and emission behavior [1,10,22–29]. Metal-organic 

substituents have also been used for this purpose, but the number of 
reports is much lower. There are a few complexes involving multi-hapto 
coordination of the azulenic framework to the metal [30–33], azuli
porphyrin derivatives [34–41], and some isocyanoazulene complexes 
[42–47]. In this sense, we have recently reported blue dyes based on 
2-isocyanoazulene gold(I) complexes [AuX(CNAz)] (Az = azulene; X =
halide, perhalophenyl), which display mesomorphic behavior when 
they contain long substituents [48]. 

Among the rich diversity of functional groups that can act as ligands 
to form metal complexes, acyclic diaminocarbenes (ADCs) [49], which 
can be easily synthesized via metal-templated addition of protic nitro
gen nucleophiles to isocyanides [50], constitute an excellent kind of 
scaffolding efficiently employed as a ligand in gold compounds with 
applications in catalysis [51–56], medicine [57–60], and optical mate
rials [61,62]. Surprisingly, to date and to the best of our knowledge, the 
great potential of the diaminocarbene functionality has not been used to 
modulate the properties of azulene systems. 

On these grounds, we decided to extend our initial study on isocyano 
azulene gold(I) complexes to carbene derivatives. We report here a se
ries of acyclic carbene azulene gold(I) complexes prepared by the syn
thetic methodology of the nucleophilic attack of amines to isocyano 
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azulene gold(I) complexes. We have studied in depth their optical 
properties, particularly their intense purple color and emission proper
ties. In contrast to the bathochromic shift observed in the electronic 
spectra when functionalizing azulene with the gold-isocyanide moiety, 
the introduction of the gold-carbene fragment in the azulene system 
produces the opposite effect. These results reveal a different electron 
donor/acceptor character of the isocyanide-gold and the carbene-gold 
fragments as substituents in the 2-position of the azulene molecule. 

2. Results and discussion 

2.1. Synthesis and characterization 

The N-acyclic carbene azulene gold(I) complexes [AuCl{C(NHAz) 
(NR2)}] (R = Me (1) and nBu (2)) and [Au(C6F4OC10H21){C(NHAz) 
(NR2)}] (R = Me (3) and nBu (4)) were prepared from the corresponding 
gold isocyanide complexes by nucleophilic attack of the appropriate 
amine to the α-carbon atom of the coordinated isocyanide, as reported 
for similar compounds [51] (Scheme 1). 

The gold(I) compounds were isolated in good yield, as air-stable 
purple solids. C, H, N analyses, yields, MALDI-TOF mass spectra, and 
1H, 19F and 13C NMR spectroscopic data for the complexes are given in 
the Experimental Section. 

The IR spectra shows the typical carbene bands at 3255-3384 cm− 1 

for ν(N–H), and at 1510-1550 cm− 1 for ν(C––N) (overlapped with azu
lene bands), instead of the ν(C ––– N) band at ca. 2200 cm− 1, typical of 
coordinated isocyanide. The 1H NMR spectra show the characteristic 
pattern of the azulene group, similar to that of the free isocyanide ligand 
[45]. In addition, a broad singlet is observed in the range 7.89–8.08 ppm 
(NH), as well as non-equivalent Me or nBu resonances. The 19F NMR 
spectra of the fluorophenyl derivatives 3–4 display the typical pattern of 
two pseudodoublets from an AA’XX’ spin system with JAA’ ≈ JXX’, at ca. 
− 117.7 (Fortho) and − 157.4 ppm (Fmeta). 

In these acyclic N-carbenes, because of the restriction to rotation 
about the carbene C–N bond (which has considerable multiple char
acter), two isomers are possible (Fig. 1) depending on the arrangement 
of the azulene group relative to the gold substituent. However, only one 
isomer was observed in the 1H NMR spectra at room temperature. A 
nuclear Overhauser effect (NOE) between the NH-carbene (7.9–8.2 
ppm) and the NCH3 or NCH2 (nBu) groups supports the less hindered 
isomer A (Fig. 2). 

All the carbene complexes melt directly to an isotropic liquid at low 
temperatures, particularly the n-butyl derivatives 2 and 4 that bear a 
long alkoxy substituent (24 and 70 ◦C, respectively). Consequently, in 
contrast to the corresponding isocyanide complexes, none shows liquid 
crystal behavior. Most likely this behavior is associated to the higher 
molecular width of the carbene molecules compared with the isocyanide 
compounds. 

3. Photophysical studies 

The UV–Vis absorption spectra of in dichloromethane (10− 5 M) of 

azulene, the isocyanide gold precursors and carbene complexes 1–4 are 
shown in Table 1, and Fig. 3 and S19 (Supplementary Data). 

All the electronic absorption spectra are very similar and show a 
spectral pattern with typical absorption bands and extinction co
efficients of the azulene group. The spectra are dominated by highly 
intense absorption bands in the UV region, with maxima from 280 to 
306 nm, and a second set of intense absorption bands also in the UV 
region with maxima in the range 328–381 nm. In addition, in the visible 
region, the spectra display a weak and structured absorption band with 
wavelength maxima at 592 and 601 nm for the isocyanide gold com
pounds, but from 538 to 541 nm for the carbene gold complexes 1–4, 
which is assigned to the HOMO → LUMO excitation [45]. For azulene 

Scheme 1. Synthesis of carbene azulene gold(I) complexes.  

Fig. 1. A and B stereoisomers for carbene gold(I) complexes.  

Fig. 2. 1H–1H NOESY 2D NMR of complex [Au(C6F4OC10H21){C(NHAz) 
(NMe2)}] (3). 

Table 1 
UV–Visible absorption data for [AuX(CNAz)] (X = Cl, C6F4OC10H21), [AuCl{C 
(NHAz)(NR2)}] (R = Me (1) and nBu (2)) and [Au(C6F4OC10H21){C(NHAz) 
(NR2)}] (R = Me (3) and nBu (4)) in dichloromethane (10− 5 M) at 298 K.  

Compound λ(nm) (10− 3 ε)/dm3 mol− 1 cm− 1 

[AuCl(CNAz)] 657a (0.2), 592 (0.7), 567 (0.6), 357 (13.6), 340 (8.8), 333 (8.4), 
296 (74.4), 287 (67.8) 

[Au(TFP) 
(CNAz)]b 

656a (0.3), 601 (0.7), 564 (0.7), 357 (17.7), 341 (11.6), 333 
(11.2), 296 (70.7), 288 (68.2) 

1 624a (0.1), 576 (0.3), 541 (0.4), 379 (12.5), 363 (9.5), 349 (7.1), 
303 (80.0), 294 (64.6) 

2 626a (0.2), 576 (0.5), 539 (0.6), 381 (13.8), 364 (9.8), 343 (6.0), 
305 (82.5), 292 (66.0) 

3 628a (0.3), 576 (0.5), 541 (0.5), 382 (14.3), 365 (10.0), 349 (7.0), 
305 (78.8), 296 (64.0) 

4 625a (0.2), 573 (0.5), 538 (0.6), 381 (15.4), 367 (11.0), 349 (7.0), 
306 (82.3), 298 (66.0)  

a Shoulder. 
b TFP: C6F4OC10H21. 
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itself this transition occurs at λ max 576 nm in dichloromethane (Fig. 3), 
therefore the functionalization of the azulene molecule in the position 2 
with an [-NCAuX] (X = Cl, C6F4OC10H21) group produces a slight 
bathochromic shift (16–25 nm) of the absorption band in the visible 
region, as a consequence of the stabilization of LUMO relative to HOMO. 
This behavior is in accordance with the electron withdrawing character 
of the coordinated isocyanide group on the azulene core [28,48]. In 
contrast, the transformation of the isocyanide complexes into the cor
responding carbene derivatives leads to a hypsochromic shift of 35–38 
nm compared to the unfunctionalized azulene. Thus, the carbene com
plexes display a purple color, which clearly differs from that of the blue 
isocyanide precursors, and azulene itself. 

The molecules under study can be considered as azulene derivatives 
with a substituent -NCAuX or –N(H)C(NR2)AuX at the 2-position of the 
azulene core. In order to gain a deeper insight into the effect of such 
substituents on the absorption spectra, mainly on the observed color, 
Density Functional Theory (DFT) calculations were performed on the 
azulene molecule, two isocyanide gold complexes [AuCl(CNAz)] and 
[Au(C6F4OCH3)(CNAz)], and the corresponding carbene gold 

derivatives [AuCl{C(NHAz)(NMe2)}] (1) and [Au(C6F4OCH3){C(NHAz) 
(NMe2)}] (model for 3). All DFT calculations were performed using the 
ORCA software [63]. The ground-state structures of all systems were 
optimized using the B3LYP functional in combination with the triple -ζ 
basis set 6-311+G(d,p) for C, H, N, F and Cl, while Au was represented 
by the aug-cc-pVTZ-pp basis set, including the associated core pseudo
potential. Geometry optimizations, as well as TD-DFT calculations, were 
performed considering dichloromethane solvent effects. For carbene 
gold(I) complexes, we focused on the most stable stereoisomer, with the 
optimized geometries in concordance with the structures determined by 
X-Ray diffraction. Using these optimized geometries, the twenty-first 
excites states were computed through the TD-DFT approach with 
several DFT methods (see supplementary information for more details). 
The calculated electronic absorption energies (ΔETD), main contribu
tions to the electronic transitions and their oscillator strength (f) as well 
as the energies and contours of the HOMO and LUMO molecular orbitals 
are gathered in the supporting material (see Tables S1–S6, and Fig. S27). 
All the DFT methods employed in this study yielded similar trends. 
Although transition energies are underestimated, the deviations from 
the experimental values fall within the range of error expected for the 
computational protocol employed [64]. Here, we have focused our 
attention on the absorption band in the visible region, which, as stated 
above, is essentially attributed to one-electron excitation from HOMO to 
LUMO. 

Fig. 4 displays calculated frontier molecular orbitals and their en
ergies using the B3LYP functional. For the four metal complexes studied, 
both the HOMO and LUMO orbitals are predominantly localized over 
the azulene group. The contribution from azulene core exceeds than 
96% to HOMO, while the LUMO is also extended over the isocyanide or 
carbene groups (contribution from these moieties to LUMO orbital lies 
between 13% for carbene gold derivatives and 24% for isocyanide gold 
complexes). In the case of the gold isocyanide complexes there is a small 
contribution from the gold atom, which is not observed in the carbene 
derivatives (see Fig. 4). 

Functionalization at the 2-position of azulene with the isocyanide 
gold fragments (-NCAuCl and -NCAuC6F4OCH3), which are electron- 
withdrawing groups, causes a notable stabilization of both HOMO and 
LUMO orbitals (Fig. 4). Meanwhile, the transformation of the isocyanide 
complexes into the corresponding carbene derivatives produces a 
destabilization of both frontier orbitals, but this effect is smaller for the 
HOMO orbitals. Consequently, the HOMO-LUMO gap in the carbene 
complexes is larger than for the isocyanide derivatives. However, if the 

Fig. 3. Selected absorption spectra recorded in CH2Cl2 solution (10− 5 M) at 
room temperature. Inset: enlargement of absorption in the visible region 
(10− 4 M). 

Fig. 4. Frontier molecular orbitals energies along molecular contours (isovalue = 0.05 a.u.). Values in parenthesis represent the percentage contribution from the 
azulene moiety to the molecular orbital. 
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carbenes and unfunctionalized azulene are compared, the energies of 
the LUMO orbital of both systems do not display significant energy 
changes, and the main difference is a slight stabilization of the HOMO 
orbital in the carbene-gold complexes respect to azulene. As a result, the 
HOMO-LUMO gap in the azulenic system increases in the order gold 
isocyanide derivatives < azulene < carbene complexes. Consequently, 
the gold isocyanide complexes show a blue color, while the carbene 
derivatives are purple. These results suggest that the isocyanide-gold 
and carbene-gold fragments behave as substituents in the 2-position of 
the azulene molecule with a different electron donor/acceptor char
acter. Considering the long-accepted rule that the introduction of an 
electron-withdrawing substituents in an even position of the azulene 
molecule produces a bathochromic spectral shift, and an electron- 
donating group causes the opposite effect, the carbene-gold fragment 
should act as an electron-donating substituent of the azulene core. Since 
gold contribution is not observed in the HOMO and LUMO orbitals in the 
carbene complexes, the –N(H)C(NR2)AuX group could be formally 
considered as an amino substituent, whose electron donating character 
(+M effect) is well known. However, a recent calculation on the related 
molecule 2-(diphenylamino)azulene at the B3LYP/6–31(d) level [27], 
leads to a destabilization of the HOMO and LUMO energy levels) with 
respect to azulene, which is the opposite effect to that found in our 
carbene-complexes. Consequently, although the functionalization of 
azulene with a gold diaminocarbene fragment produces a hypsochromic 
spectral shift, according to DFT calculations the carbene-gold fragment 
cannot be considered as an electron-donating substituent of the azulene 
core. 

Similar to the free 2-isocyanoazulene ligand and the gold-isocyanide 
complexes, the carbene derivatives show a very weak emission band in 
the range 391–395 nm with a well-defined vibronic fine structure 
(Table 2, and Fig. 5 and S20), which is characteristic of fluorescent 
azulene derivatives involving S2–S0 transitions [48]. The transformation 

of the isocyanide complexes into the corresponding carbene derivatives 
mainly leads to a slight bathochromic shift and a smaller Stockes shift. 
Photoluminescent quantum yields go from 0.4 to 1.39%, while lifetime 
is in the range 3.64–4.92 ns, close to those found for the starting gold 
isocyanide and typical for azulene derivatives. In the solid state, even at 
low temperature (77 K), and in the isotropic liquid the fluorescent 
emission results deactivated, as observed in the gold isocyanide pre
cursors [48]. 

4. Conclusions 

We have prepared a new series of acyclic diaminocarbene gold(I) 
complexes via nucleophilic addition of secondary amines to 2-isocya
noazulene gold(I) complexes. The carbene complexes display a deep 
purple color, which clearly differs from that of the blue isocyanide 
precursors. In both systems, their intense coloration (purple or blue) is 
based on one-electron excitation from HOMO to LUMO orbitals that are 
essentially localized over the azulene group. Although the electronic 
connection of the azulene core and the isocyanide/carbene substituents 
is weak, their influence on the electronic spectra is clear. Thus, in 
contrast to the bathochromic shift observed in the electronic spectra 
when functionalizing azulene with the gold-isocyanide moiety (elec
tron-withdrawing substituent), the introduction of the gold-carbene 
fragment in the azulene system leads to a hypsochromic shift. This 
different electronic behavior is mainly due to the stabilization of the 
LUMO orbital with respect to the HOMO in the isocyanide complexes 
compared with azulene, and to the stabilization of the HOMO levels in 
the carbene derivatives. This work illustrates how the synthetically easy 
transformation of coordinated isocyanides into acyclic diamino carbenes 
open new perspectives to color modulation in azulene dyes. 

Experimental Section 

Materials and general methods. All reactions were carried out 
under dry nitrogen. The solvents were purified according to standard 
procedures. Literature methods were used to prepare 2-isocyanoazuleno 
(CNAz) [45], 1-deciloxi-2,3,5,6- tetrafluorobenzene [65], [AuX(tht)] (X 
= Cl, C6F4OC10H21) [66] and [AuX(CNAz)] (X = Cl, C6F4OC10H21) [48]. 

Elemental analyses were performed the “Servicio de análisis 
elemental, CACTI, Universidad de Vigo” with an elemental micro
analyzer Fisons Carlo Erba EA1108. IR spectra were recorded on a 
Perkin-Elmer Frontier spectrometer coupled to a Pike GladiATR-210 
accessory. NMR spectra were recorded on Varian 500 instruments in 
CDCl3 (the assignment key is shown in Fig. 6). MALDI-TOF MS was 
performed using a Bruker Daltonics autoflex speed instrument equipped 
with nitrogen laser (340 nm). Positive-ion mode spectra were recorded 
using the reflective mode. The accelerating voltage was 19 kV. The 
analytical sample was obtained by mixing the dichloromethane solution 
of the sample (1 mg/mL) and a solution of the matrix in the same solvent 
(DCTB, 10 mg/mL) in a 1/5 (vol/vol) ratio. The prepared solution of the 
sample and the matrix (0.5 μL) was loaded on the MALDI plate and 
allowed to dry at 23 ◦C before the plate was inserted into the vacuum 
chamber of the MALDI instrument. UV–Vis absorption spectra were 
obtained by means of a Shimadzu UV-2550 spectrophotometer, in 
dichloromethane (~10− 5 M). Luminescence spectra were recorded with 

Fig. 5. Selected luminescence spectra recorded in CH2Cl2 solution (10− 5 M) at 
room temperature. 

Table 2 
Emission data for [AuX(CNAz)] (X = Cl, C6F4OC10H21), [AuCl{C(NHAz)(NR2)}] 
(R = Me (1) and nBu (2)) and [Au(C6F4OC10H21){C(NHAz)(NR2)}] (R = Me (3) 
and nBu (4)) in dichloromethane (10− 5 M) at 298 K.  

Compound λex/ 
nm 

λem/ 
nm 

Stokes shift/ 
nm 

τ/ns φ/% 

[AuCl(CNAz)] 287 381 94 2.26 3.14 
[Au(C6F4OC10H21) 

(CNAz)] 
299 384 85 3.50 0.5 

1 308 391 83 4.25 0.89 
2 309 393 84 4.33 0.72 
3 305 393 88 3.64 0.40 
4 308 395 87 4.92 1.39  Fig. 6. Assignment key.  
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a Perkin-Elmer LS-55 spectrometer in CH2Cl2 (~10− 5 M). Photo
luminescence quantum yield (QY) was measured with a FLS980 fluo
rescence spectrometer (Edinburgh Instruments) equipped with an 
integrating sphere. Fluorescence decays in dichloromethane, at room 
temperature. Lifetimes were obtained with the Time Correlated Single 
Photon Counting (TCSPC) and MCP-PMT counter module (TCC2) of the 
FLS980 spectrometer. Fluorescence decays were analyzed with the 
method of non-linear least squares iterative deconvolution ant the 
quality of the fits was judged by the values of the reduced Chi-square 
(c2) and the autocorrelation function of the residuals using the FAST 
(Advanced Fluorescence Lifetime Analysis Software) program provided 
by the equipment. Reconvolution Fit Analysis was used to fit a measured 
sample decay (red line in Figures) taking into account the IRF Instru
ment Response Function (black line in Figures). IRF was determined by 
using Ludox (a scatterer) instead of the sample. DSC was performed 
using a DSC Q20 from TA Instruments with samples (2− 5 mg) sealed in 
aluminum pans and a scanning rate of 10 ◦C/min under a nitrogen at
mosphere. The transition temperatures are given as peak onsets from the 
second heating DSC cycle. 

Computational details. See Supplementary Data. 
Synthesis: general procedure. To a solution of the corresponding 

isocyanide [AuX(CNAz)] (X = Cl, C6F4OC10H21) in THF (30 mL) was 
added the amine HNR2 (R = Me, n-Bu). After stirring for 30 min at rt, the 
solution shifts from blue to purple. The solvent was removed under 
vacuum to give a purple solid, which was recrystallized from dichloro
methane/hexane at − 20 ◦C. The obtained purple solid was filtered, 
washed, and dried. 

Compound [AuCl{C(NHAz)(NMe2)}] (1): [AuCl(CNAz)] (30.0 mg, 
0.078 mmol) and HNMe2 (107 μL, 0.21 mmol, 2 M THF). Yield: 26 mg, 
78 %. Purple solid. IR (cm− 1): ν(N–H) 3302 m. 1H NMR (499.72 MHz, 
CDCl3): δ 8.24 (d, 2H, 3J = 9.9 Hz, AzH4,8), 7.89 (broad, 1H, NH), 7.69 
(s, 2H, AzH1,3), 7.55 (t, 1H, 3J = 9.9 Hz, AzH6), 7.23 (t, 2H, 3J = 9.9 Hz, 
AzH5,7), 3.70 (s, 3H, NCH3), 3.18 (s, 3H, NCH3). 13C{1H} NMR (125.67 
MHz, CDCl3): δ 190.98 (Ccarbene-Au), 147.14 (CAz

2 ), 139.70 (CAz
9,10), 

135.89 (H6-CAz), 135.52 (H4,8-CAz), 124.90 (H5,7-CAz), 108.08 (H1,3- 
CAz), 49.43, 36.31 (CH3). Anal. Calcd. for C13H14N2ClAu (%): C, 36.25; 
H, 3.28; N, 6.50; found C, 36.52; H, 3.36; N, 6.26. MALDI-TOF MS 
[C13H14N2ClAu(M+)]: m/z: calculated: 430.0506; found: 430.0495. DSC 
(Data collected from the first heating cycle): Crystal-Isotropic liquid, 
161 ◦C (5.1 KJmol-1). 

Compound [AuCl{C(NHAz)(NnBu2)}] (2): [AuCl(CNAz)] (30.0 mg, 
0.078 mmol) and HNMe2 (17 μL, 0.1 mmol). Yield: 30 mg, 75 %. Purple 
solid. IR (cm− 1): ν(N–H) 3255 m. 1H NMR (499.72 MHz, CDCl3): δ 8.24 
(d, 2H, 3J = 9.9 Hz, AzH4,8), 7.95 (a, 1H, NH), 7.71 (s, 2H, AzH1,3), 7.54 
(t, 1H, 3J = 9.9 Hz, AzH6), 7.23 (t, 2H, 3J = 9.9 Hz, AzH5,7), 4.05 (t, 2H, 
3J = 7.7 Hz, NCH2), 3.47 (t, 2H, 3J = 8.0 Hz, NCH2), 1.80-1.68 (m, 4H, 
NCH2CH2), 1.51-1.39 (m, 4H, NCH2CH2CH2), 1.03 (t, 3H, 3J = 7.3 Hz, 
CH3), 0.98 (t, 3H, 3J = 7.3 Hz, CH3). 13C{1H} NMR (125.67 MHz, 
CDCl3): δ 189.93 (Ccarbene-Au), 147.33 (CAz

2 ), 139.74 (CAz
9,10), 135.72 (H6- 

CAz), 135.35 (H4,8-CAz), 124.89 (H5,7-CAz), 107.95 (H1,3-CAz), 60.59, 
47.50 (NCH2), 31.39, 29.13, 20.46, 19.87 (CH2), 13.87, 13.75 (CH3). 
Anal. Calcd. for C19H26N2ClAu (%): C, 44.33; H, 5.09; N, 5.44; found C, 
44.77; H, 5.13; N, 5.34. MALDI-TOF MS [C19H26N2ClAu(M+)]: m/z: 
calculated: 514.1445; found: 514.1427. DSC (Data collected from the 
second heating cycle): Glass-Isotropic liquid, 24 ◦C. 

Compound [Au(C6F4OC10H21){C(NHAz)(NMe2)}] (3): [Au 
(C6F4OC10H21)(CNAz)] (30.0 mg, 0.046 mmol) and HNMe2 (62 μL, 0.12 
mmol, 2 M THF). Yield: 28 mg, 87 %. Purple solid. IR (cm− 1): ν(N–H) 
3375 m. 1H NMR (499.72 MHz, CDCl3): δ 8.25 (d, 2H, 3J = 9.8 Hz, 
AzH4,8), 8.02 (broad, 1H, NH), 7.87 (s, 2H, AzH1,3), 7.53 (t, 1H, 3J = 9.8 
Hz, AzH6), 7.24 (t, 2H, 3J = 9.8 Hz, AzH5,7), 4.12 (t, 2H, 3J = 6.6 Hz, 
OCH2), 3.84 (s, 3H, NCH3), 3.15 (s, 3H, NCH3) 1.79-1.70 (m, 2H, 
OCH2CH2), 1.48-1.41 (m, 2H, OCH2CH2CH2), 1.37-1.23 (m, 12H, CH2), 
0.88 (t, 3H, 3J = 6.9 Hz, CH3). 13C{1H} NMR (125.67 MHz, CDCl3): δ 
207.86 (Ccarbene-Au), 149.80 (m, Fortho-CAr), 147.90 (CAz

2 ), 141.01 (m, 
Fmeta-CAr), 139.89 (CAz

9,10), 135.40 (H6-CAz), 135.09 (H4,8-CAz), 134.56 

(m, CAr-OCH2), 131.17 (m, CAr-Au), 124.83 (H5,7-CAz), 107.87 (H1,3- 
CAz), 75.03 (O–CH2), 48.65, 35.86 (NCH3), 31.89, 29.89, 29.54, 29.33, 
25.64, 22.68 (CH2), 14.11 (CH3). 19F NMR (470.14 MHz, CDCl3): δ 
− 117.73 (m, 2F, Fortho), − 157.45 (m, 2F, Fmeta). Anal. Calcd. for 
C29H35N2OF4Au (%): C, 49.72; H, 5.04; N, 4.00; found C, 49.86; H, 4.86; 
N, 4.03. MALDI-TOF MS [C29H35N2OF4Au(M+)]: m/z: calculated: 
700.2346; found: 700.2327. DSC (Data collected from the second 
heating cycle): Crystal-Isotropic liquid, 107 ◦C (10.9 KJmol-1). 

Compound [Au(C6F4OC10H21){C(NHAz)(NnBu2)}] (4): [Au 
(C6F4OC10H21)(CNAz)] (30.0 mg, 0.046 mmol) and HNnBu2 (10 μL, 
0.059 mmol). Yield: 27 mg, 75 %. Purple solid. IR (cm− 1): ν(N–H) 3384 
d 1H NMR (499.72 MHz, CDCl3): δ 8.25 (d, 2H, 3J = 9.8 Hz, AzH4,8), 
8.08 (broad, 1H, NH), 7.90 (s, 2H, AzH1,3), 7.52 (t, 1H, 3J = 9.8 Hz, 
AzH6), 7.24 (t, 2H, 3J = 9.8 Hz, AzH5,7), 4.16 (t, 2H, 3J = 7.8 Hz, NCH2), 
4.13 (t, 2H, 3J = 6.7 Hz, OCH2), 3.45 (t, 2H, 3J = 8.0 Hz, NCH2), 1.90- 
1.70 (m, 6H, NCH2CH2 y OCH2CH2), 1.51-1.27 (m, 18H, CH2), 1.03 (t, 
3H, 3J = 7.3 Hz, CH3), 1.00 (t, 3H, 3J = 7.4 Hz, CH3), 0.88 (t, 3H, 3J =
6.9 Hz, CH3). 13C{1H} NMR (125.67 MHz, CDCl3): δ 207.04 (Ccarbene- 
Au), 149.80 (dm, 1JC-F = 226 Hz, Fortho-CAr), 148.12 (CAz

2 ), 140.97 (dm, 
1JC-F = 248 Hz, Fmeta-CAr), 139.95 (CAz

9,10), 135.20 (H6-CAz), 134.86 (H4,8- 
CAz), 134.51 (m, CAr-OCH2), 131.27 (t, 2JC-F = 58 Hz, CAr-Au), 124.82 
(H5,7-CAz), 107.68 (H1,3-CAz), 75.04 (O–CH2), 59.90, 47.27 (NCH2), 
31.91, 31.89, 29.90, 29.56, 29.54, 29.33, 29.30, 25.64, 22.68, 20.52, 
19.81 (CH2), 14.11, 13.88, 13.75 (CH3). 19F NMR (470.14 MHz, CDCl3): 
δ − 117.63 (m, 2F, Fortho), − 157.48 (m, 2F, Fmeta). Anal. Calcd. for 
C35H47N2OF4Au (%): C, 53.57; H, 6.04; N, 3.57. Found: C, 53.74; H, 
5.95; N, 3.57. MALDI-TOF MS [C35H47N2OF4Au(M+)]: m/z: calculated: 
784.3285; found: 784.3302. DSC (Data collected from the first heating 
cycle): Crystal-Isotropic liquid, 70 ◦C (30.5 KJmol-1). 
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Spectra for the new compounds not included in the text; DSC ther
mograms; computational data: calculated electronic absorption param
eters and frontier molecular orbitals energies in dichloromethane. 
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