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A B S T R A C T   

The browning process of food products if often formed upon cutting and damage during their processing, 
transport, and storage, amongst other potential sources and reasons. Enzymic browning can be mainly due to 
polyphenol oxidase (PPO) and peroxidase (POD) enzymes. Visible/near-infrared (Vis/NIR) imaging spectroscopy 
in the range of 350–1150 nm was used in this study for automatic and non-destructive evaluation of PPO and 
POD activity levels in three bell pepper varieties (red, yellow, orange; N = 30), with a total of 30 inputs samples 
in each variety. The spectral data were then modeled by the partial least squares regression (PLSR) throughout 
the whole spectral range, without using any subset of the most effective wavelength (EW) values. Regression 
determination coefficient (R2) values for the estimation (prediction) of POD enzyme activity levels were 0.794, 
0.772, and 0.726 for red, yellow, and orange bell peppers, respectively, all over the validation set. At the same 
time, the activity levels of PPO enzyme over bell peppers showed R2 values of 0.901, 0.810, and 0.859, for red, 
yellow, and orange bell peppers, respectively, all over the validation set. In addition, a combination of support 
vector machine (SVM) with either genetic algorithms (GA), particle swarm optimization (PSO), ant colony 
optimization (ACO), or imperialistic competitive algorithms (ICA) hybrid machine learning (ML) techniques 
were used to select the optimal (discriminant) spectral EW wavelength values, and regression performance was 
consistently improved, to judge from higher regression fit R2 values. Either 14 or 15 EWs were computed and 
selected in order of their discriminative power using previously mentioned ML techniques. The hybrid SVM-PSO 
method resulted the best one in the process of selecting the most effective wavelength values (nm). On the other 
hand, three regression methods comprising PLSR, multiple least regression (MLR), and neural network (NN), 
were employed to model the SVM-PSO selected EWs. The ratio of performance to deviation (RPD), the R2 and the 
root mean square error (RMSE), over the test set, for the non-linear NN regression method exhibited better results 
as compared to the other two regression methods, being closely followed by PLSR, and therefore NN regression 
method was selected as the best approach for modeling the most effective spectral wavelength values in this 
study.   

1. Introduction 

Bell pepper (Capsicum annuum L.) is an important vegetable com-
mercial value, which is also commonly known as sweet pepper. It is rich 
in vitamins (A and C) and bioactive compounds [1,2] such as phenols, 

flavonoids, carotenoids, capsaicinoids, and for all those reasons is 
gaining commercial importance these days [3]. 

Quality and safety issues regarding food are among the major con-
cerns of food suppliers and consumers. With the ever-increasing need for 
high-capacity production and processing, the food industry is facing 
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numerous new challenges. Quality management has the greatest impact 
on marketability. Food quality is generally defined by its composition 
and physical characteristics [4]. Although manual inspections are 
cost-effective for small-scale assessments, there is always the risk of 
overlooking critical quality and safety features. This implies the need for 
real-time, automatic, rapid, and non-destructive approaches to simul-
taneously quantify each of the quality parameters to ensure food safety. 

Enzymatic browning is an oxidative-based natural process being an 
essential factor affecting food quality, such as its color, taste, and 
texture, while most fruits and vegetables are stored and processed [5]. 
Browning of food products may be caused by cuts, bruises, and damage 
during processing, transportation, and storage. Polyphenol oxidase 
(PPO) and peroxidase (POD) are responsible for enzymatic browning 
[6]. 

PPO is a copper-containing enzyme, catalyzing two reactions: hy-
drolysis produces cresolase activity, which converts monophenol into 
diphenol, and oxidation produces catecholase, which converts diphenol 
into a quinone molecule. Further polymerization of quinone may form a 
melanin compound [7]. 

Melanin is an either black, brown, or red pigment, responsible for the 
browning of the cut surface of the fruit/vegetable samples. POD is a 
heat-resistant oxidoreductase enzyme which causes browning in a wide 
variety of fruits and vegetables. It also catalyzes the oxidation of many 
phenolic compounds (substrates) which are naturally present in plants 
[8]. 

PPO and POD are responsible for enzymatic browning of agricultural 
products which has a negative impact on the commercial value of 
several crops such as cucumber [9], eggplant [10], and potato [11], 
among others. 

Non-destructive automatic methods have been recently used to 
evaluate the quality of agricultural products, as these methods are 
suitable for online, reliable, and relatively low-cost inspection according 
to recent advances in sensor technology [12]. Some studies have 
addressed the use of near-infrared spectroscopy (NIR) to evaluate the 
qualitative characteristics of fruits and vegetables such as the prediction 

of the soluble solid content (SSC) in peach [13], the estimation of the 
maturity level of different types of fruits [14], the prediction of sugar 
content of citrus fruits [15], the non-destructive prediction of the total 
soluble solids content in strawberries [16], prediction of the properties, 
cultivar and geographical origin in lemon [17], or determining the in-
ternal qualitative characteristics of pomegranate [18]. 

Various studies have also addressed the non-destructive estimation 
of enzymatic activity of agricultural and food products. Baltacıoglu et al. 
[19] used Fourier transform infrared (FTIR) spectroscopy to examine the 
secondary structure and conformational change of mushroom poly-
phenol oxidase during heat treatment. For this purpose, FTIR spectros-
copy and comparisons were used to assess the variations in enzyme 
activity during heat treatment at different combinations of power (60, 
80, and 100 %), temperatures (20–60 ◦C), and time (0–30 min). Enzyme 
inactivation above 99 % was achieved in the range of 100 % at 60 ◦C for 
10 min. FTIR studies showed distinct spectral changes after ultra-
sonication at 20 ◦C. 

Nadafzadeh et al. [20] developed a computer vision system to 
evaluate the browning process of banana skin using genetic program-
ming (GP) modeling to predict peroxidase and polyphenol oxidase en-
zymes activity. To check enzymatic browning in bananas, images of 
fruits were first taken at 25 ◦C for nine days. These images were then 
analyzed by digital image processing to predict and evaluate POD and 
PPO enzymes during the browning process of banana fruit skin. To this 
end, seventeen color parameters were extracted from each image as 
non-destructive parameters, then PPO and POD were experimentally 
measured. Finally, two equations were obtained by GP modeling, which 
can be used to predict and detect changes in the activity of PPO and POD 
enzymes during fruit storage. 

Yang et al. [21] proposed a novel approach to use hyperspectral 
imaging (HSI) techniques with a weighted combination of spectral data 
and image features by fuzzy neural network (FNN) for real-time pre-
diction of PPO activity in litchi pericarp. Litchi images were attained by 
a hyperspectral reflectance imaging system in the range of 400–1000 
nm. To improve the prediction accuracy, a decision strategy was 

Fig. 1. Non-destructive estimation of polyphenol oxidase and peroxidase enzyme levels in pepper. System block diagram and implementation flowchart.  
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developed based on the weighted combination of spectral data and 
image features, where the optimal weights were determined by FNN to 
better estimate PPO activity. The results showed a hybrid 
decision-making model as the best hybrid decision-making model for 
calibration and PPO activity estimation. 

It is also known that the levels of activity of oxidation enzymes such 
as PPO and POD might be affected by the rate of respiration as well as 
the content of vitamin C, anthocyanin, and the type and number of 
phenolic compounds in the product [22,23]. Also, the amount of 
peroxidase activity in climacteric fruits is thought to be proportional to 
the volume of ethylene released by, and during the time of ethylene 
release, the peroxidase enzyme activity level increases [24]. 

To the best of our knowledge, no research has been carried out to 
date for the automatic non-destructive simultaneous prediction of the 
activity of both PPO and POD enzymes in bell pepper cultivars. The 
purpose of this research is to explore the applicability of a visible and 
near-infrared (vis-NIR) imaging spectroscopy method for the non- 
destructive estimation of the activity of these two PPO and POD en-
zymes in three bell pepper varieties. 

A system block diagram including flowchart, is depicted in Fig. 1 
summarizing the whole processes involved in this research study. 

2. Materials and methods 

2.1. Sample selection 

In this study, three varieties of bell pepper including red (Pasarella 
RZ F1), yellow (Kaliroy RZ F1), and orange (Bachata RZ F1) bell peppers 
were purchased from local greenhouses. A total of 30 samples were 
selected from each cultivar with uniform size, shape, and color, free 
from any sign of mechanical or fungal issues. Before measurements, the 
samples were kept at 25 ◦C during 2 h to reach room temperature. 

2.2. Non-destructive tests 

2.2.1. Vis/NIR imaging spectroscopy 
Vis/NIR imaging spectroscopic tests were performed using a PS-100 

spectrometer (Apogee Instruments Inc., Logan, Utah, USA) equipped 
with a CCD detector, 2048 pixels, at a resolution of 1 nm with a halogen- 
tungsten light source in the wavelength range of 350–1150 nm. The 
spectrometer was connected to the computer through a USB port and the 
resulting spectra were recorded by the SpectraWiz software. Before 
spectrometry, dark and white spectra were first defined and saved as 
reference. In this way, the dark spectrum was first recorded by turning 
off light source; then, with the light source on, a standard Teflon disc 
was used to obtain the reference white spectrum. Spectroscopic mea-
surements were performed at several different location points of each 
sample and the data were recorded. 

2.3. Investigation of enzymatic properties 

2.3.1. Preparation of enzyme extracts 
For this purpose, 10 g of fruit pulp was transferred into a blender and 

completely homogenized. The resulting pulp was then added to a 20 ml 
of enzyme extract solution containing sodium phosphate buffer 0.4 M 
(pH = 6.5) containing 4 % (w/v) Polyvinylpyrrolidone (Merck, Ger-
many) and 1 % (v/v) Triton X-100 (Merck, Germany) and thoroughly 
mixed using a vortex (Labtron LS-100, Iran). The resulting solution was 
centrifuged at 4 ◦C for 10 min and 4000 rpm (LISA 2.5L centrifuge AFI, 
France) and the resulting supernatant was used to assess the enzymic 
activity [25]. 

2.3.2. Polyphenol oxidase (PPO) activity 
To determine the activity of PPO, 75 μl of enzyme extract was mixed 

with 3 ml of 0.05 M sodium phosphate buffer (pH = 6.5) containing (w/ 
v) 0.05 M catechol (Merck, Germany). The control sample was prepared 

in a similar way by using water instead of enzyme extract. The absor-
bance value was then measured at 450 nm and 25 ◦C for 10 min using a 
spectrophotometer (NanoDrop™ OneC, Thermo Fisher Scientific, USA) 
in the kinetic mode. Enzyme activity was expressed as absorbance var-
iations per minute per gram of sample [26]. 

2.3.3. Peroxidase (POD) activity 
To assess POD activity, 500 μl of enzyme extract was mixed with 1 ml 

of 0.05 M sodium phosphate buffer (pH = 6.5). Then, to start the re-
action, 1 ml of 0.05 M sodium phosphate buffer (pH = 6.5) containing 
50 μl of hydrogen peroxide (H2O2) (Merck, Germany) at 1.5 % (v/v) and 
1 ml of p-phenyldiamine (Merck, Germany) at 1 % (w/v) was added. The 
control sample was prepared in the same way by substituting the 
enzyme extract with water. The absorbance value was measured at 485 
nm for 10 min at 25 ◦C using a spectrophotometer (NanoDrop™ OneC, 
Thermo Fisher Scientific, USA) under kinetic mode. Enzyme activity was 
expressed as absorbance changes per minute per gram of sample [27]. 

2.4. Data analysis 

2.4.1. Partial least squares regression (PLSR) and seeking the most effective 
(optimal) wavelengths (EW) 

The practical application of spectroscopic non-destructive methods 
with a full range of wavelengths is difficult as they are costly and time- 
consuming. Thus, it is often necessary to find the effective wavelengths 
and limit their range to the minimum possible level. In this research, 
first, a PLSR model was applied on full data. In order to validate the 
ability of the developed models, the input data were uniform randomly 
divided into two disjoint (empty intersection) subset categories: either 
calibration or validation, with a ratio of 70 %–30 % split of the total 
number of samples, respectively. For this purpose, the validation of 
regression (estimation) models was done by computing three well- 
known performance indices: the root mean square error (RMSE), the 
coefficient of determination (R2), and the ratio of performance to de-
viation (RPD), as defined next in Eqs. (1)–(3): 

RMSE=
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is the standard deviation (SD) of 
measured data, RMSE the root mean square error between predicted and 
measured (reference) data as defined in (1), di are the reference (actual 
or measured) data values, pi are the predicted data values, d is the 
average (mean) of the reference (measured) data values, and N is the 
total number of input sample components (either the number of refer-
ence or predicted components). 

RPD was computed and the performance of the regression (estima-
tion) system classified following the recommendation value ranges 
given by Chang et al. [28]. In principle, if RPD <1, the model is very 
weak and not accurate. If 1.4>RPD >1 the model is considered a weak 
one, if 1.8 > RPD >1.4 it is a suitable model and can be used for eval-
uation and prediction, if 2 >RPD>1.8 it is a considered a good model 
and is possible for quantitative accurate predictions, if 2.5 > RPD >2 it is 
very good model and finally if RPD>2.5 it is a great model. 

2.4.2. Modeling based on the effective wavelengths (EWs) 
PLSR, MLR, and non-linear NN regression models were implemented 
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to find the best fitting model for the relationship between the EWs and 
the level of activity of PPO and POD enzymes in bell peppers. As 
mentioned in previous section, the statistical performance regression 
indices of RPD, R2 and RMSE, see Eqs. (1)–(3), were employed to find 
the best fit model. A multilayer perceptron (MLP) neural network (NN) 
based on the well-known back-propagation learning algorithm including 
an input layer whose number of neurons is equal to the number of 
effective wavelengths and an output layer with one neuron (estimated 
activity of PPO and POD enzymes) and either one or two hidden layers 
with 10 neurons in each, was also used. The Levenberg-Marquardt 

Table 1 
Activity levels of PPO and POD enzymes for three bell pepper varieties (absor-
bance/min g): red, yellow, and orange bell pepper.  

Enzyme level Pepper Variety Mean SD Minimum Maximum  

Red 71.597 4.273 58.789 78.181 
POD Yellow 67.460 14.150 8.300 80.400  

Orange 61.891 4.876 48.762 69.809  
Red 1.4710 0.9380 0.3190 5.1310 

PPO Yellow 1.0808 0.4279 0.5166 2.0749  
Orange 2.7620 1.6730 0.2840 8.0500  

Fig. 2. Correlation between the actual and predicted values for calibration 
(blue dots) and validation (red dots) sets in estimation of POD enzyme activity 
based on the regression model of PLS; A) red, B) yellow, and C) orange pepper 
varieties: RMSE, R2 and RPD performance indices computed. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 3. Correlation between the actual and predicted values for calibration 
(blue dots) and validation (red dots) set in the estimation PPO enzyme activity 
based on the regression model of PLS: A) red, B) yellow, and C) orange pepper 
varieties: RMSE, R2 and RPD performance indices computed. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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algorithm was applied to update the weights of the MLP NN, which is 
one of the most common algorithms used in the field due to its fast 
training of the network and minimum error level. Data analysis was 
performed by Unscrambler X 10.4 (CAMO Software) and MatLab2022a 
software (MathWorks). 

3. Results and discussion 

The measured activity PPO and POD enzymes are shown next in 
Table 1 for the three bell pepper varieties. 

3.1. Partial least squares regression (PLSR) for PPO and POD enzyme 
activity levels over the whole spectral range 

The well-known PLSR linear regression method was employed to 
evaluate the correlation between the spectral data and the activity of 
either PPO or POD enzymes. The modeling was carried out on the full 
spectral data. Figs. 2 and 3, depict the correlation between the actual 
and predicted values of the POD and PPO enzymes activity using PLSR 
regression method. Accordingly, the R2 values for the prediction of POD 
activity in red, yellow, and orange varieties were 0.794, 0.772, and 
0.726, respectively and having 2>RPD>1.8, on average. For the pre-
diction of PPO activity, the R2 values were 0.901, 0.810, and 0.859, in 
red, yellow, and orange varieties, respectively and having 2.5>RPD>2, 
on average. The results show the ability of this methodology to accu-
rately predict the activity levels of both peroxidase and polyphenol 

oxidase enzymes. 

3.2. Optimization search of the most effective spectral wavelength (EW) 
values 

Combinations of support vector machine (SVM) with either genetic 
algorithms (GA) [29], particle swarm optimization (PSO) [30], ant 
colony optimization (ACO) [31], or imperialistic competitive algorithm 
(ICA) [32] were adopted to find the sub-optimal EW values [33]. Either 
14 or 15 wavelengths were extracted using each of the algorithms. 
Rajabi et al. [34] used a range of meta-heuristic algorithms to identify 
the optimal wavelengths for seed viability assessment, including world 
competitive contest (WCC), league championship algorithm (LCA), ge-
netics (GA), PSO, ACO, ICA, learning automata (LA), heat transfer 
optimization (HTS), forest optimization (FOA), discrete symbiotic or-
ganisms search (DSOS), and cuckoo optimization (CUK). The results 
showed that all algorithms achieve a significant accuracy in predicting 
the allometric coefficient of seeds and reached correlation coefficients of 
more than 0.985 and errors below 0.0036, respectively. 

Tables 2 and 3 show the effective wavelengths of POD and PPO en-
zymes based on different algorithms, respectively. Based on the main 
overtone bands [35], the bell pepper samples can be separated accord-
ing to their enzymic activity in terms of the third OH overtone in 
wavelength around 770 nm and the second OH overtone in around 920 
nm. 

Two mean convergence performance indices were used to evaluate 

Table 2 
EWs for POD based on various ML algorithms over the three bell pepper varieties 
under study.  

Pepper 
Variety 

Spectral 
Range (nm) 

ML 
Methods 

No. of 
EWs 

Selected EWs (nm) 

Red 580–980 SVM-GA 15 969 ،611 ،947 ،973.5 ،970 
،810.5 ،948.5 ،671.5 ،797 ،943 
،908 ،972 ،875.5 ،872 ،929 

SVM-PSO 15 917.5 ،952 ،668.5 ،980 ،973.5 
،967 ،972 ،942 ،950.5 ،956.5 
،975.5 ،929.5 ،967.5 ،979.5 
،963.5 

SVM- 
ACO 

15 955.5 ،973.5 ،784 ،819 ،939 
،951 ،830.5 ،970 ،807 ،947.5 
،973 ،867 ،664.5 ،952 ،965.5 

SVM-ICA 14 972 ،959.5 ،931 ،849 ،954 
،977 ،967.5 ،729 ،782.5 ،979 
،713 ،974 ،940 ،920.5 

Yellow 525–1000 SVM-GA 14 998.5 ،991 ،578 ،995 ،816 
،950 ،677 ،996.5 ،607.5 ،541 
،989 ،661.5 ،917.5 ،633.5 

SVM-PSO 15 988.5 ،1000 ،992.5 ،953.5 
،594 ،973 ،993 ،998.5 ،905.5 
،818.5 ،999 ،597.5 ،661 ،771 
،989.5 

SVM- 
ACO 

15 998 ،536.5 ،667 ،998.5 ،993 
،974.5 ،908 ،999 ،811.5 ،906.5 
،601.5 ،820.5 ،990.5 ،965.5 
،981.5 

SVM-ICA 15 656.5 ،814 ،899.5 ،992 ،991 
،609 ،641.5 ،998.5 ،993 ،985 
،1000 ،997 ،550.5 ،733 ،991.5 

Orange 565–960 SVM-GA 15 713 ،860 ،573.5 ،593.5 ،724.5 
،941 ،610.5 ،585.5 ،834.5 
،954.5 ،941.5 ،591.5 ،696.5 
،848.5 ،815.5 

SVM-PSO 15 612 ،940 ،578.5 ،754.5 ،750 
،943 ،742.5 ،592 ،803.5 ،939.5 
،585 ،858.5 ،571 ،593.5 ،942.5 

SVM- 
ACO 

15 594 ،806 ،943.5 ،829.5 ،570 
،696 ،579 ،942.5 ،832.5 ،787.5 
،819 ،589.5 ،946.5 ،611.5 ،724 

SVM-ICA 15 579 ،759 ،575 ،773.5 ،941 
،582 ،782.5 ،890.5 ،598.5 ،940 
،608.5 ،952.5 ،602 ،796.5 ،812  

Table 3 
EWs of PPO based on various ML algorithms over the three bell pepper varieties 
under study.  

Pepper 
Variety 

Spectral 
Range (nm) 

ML 
Methods 

No. of 
EWs 

Selected EWs (nm) 

Red 580–980 SVM-GA 15 977 ،905 ،810 ،855 ،911.5 
،876.5 ،923.5 ،853.5 ،961.5 
،660.5 ،854 ،935.5 ،975.5 ،931 
،852.5 

SVM-PSO 15 745.5 ،952 ،972 ،976.5 ،956 
،956.5 ،975.5 ،953 ،815.5 ،807 
،871.5 ،950.5 ،907.5 ،942 ،913 

SVM- 
ACO 

15 769 ،726.5 ،716 ،956 ،976.5 
،971.5 ،775 ،979 ،942 ،956.5 
،908 ،950.5 ،946 ،943 ،960.5 

SVM-ICA 15 605 ،816 ،931.5 ،942.5 ،974.5 
،887 ،976 ،899.5 ،848.5 ،952.5 
،926.5 ،901.5 ،850 ،807 ،952 

Yellow 525–1000 SVM-GA 15 738.5 ،900 ،982 ،666.5 ،978.5 
،670 ،874 ،964 ،857.5 ،997.5 
،969 ،824.5 ،985 ،999 ،651.5 

SVM-PSO 14 761 ،981 ،984 ،960.5 ،952 
،663.5 ،982.5 ،997.5 ،689 
،941.5 ،991.5 ،995.5 ،649 ،976 

SVM- 
ACO 

14 974.5 ،994.5 ،999 ،968.5 ،979 
،930 ،903.5 ،980 ،976.5 ،794 
،984.5 ،984 ،945.5 ،577 

SVM-ICA 15 855 ،973 ،682 ،853 ،646.5 
،970.5 ،989 ،996 ،729.5 ،999 
،983 ،971 ،982.5 ،988.5 ،638.5 

Orange 565–960 SVM-GA 15 940.5 ،734.5 ،687.5 ،913 
،917.5 ،798 ،566.5 ،943.5 ،728 
،666.5 ،821 ،875.5 ،736.5 ،920 
،942 

SVM-PSO 14 936 ،941 ،921.5 ،570 ،942 
،913 ،914.5 ،949.5 ،852.5 
،918.5 ،931.5 ،920.5 ،941.5 
،919.5 

SVM- 
ACO 

15 723.5 ،782 ،924.5 ،918 ،821.5 
،944 ،917.5 ،929.5 ،916.5 
،943.5 ،925.5 ،907 ،628.5 ،943 
،959 

SVM-ICA 15 605 ،941 ،621 ،877 ،668 ،917 
،944 ،919.5 ،908 ،922.5 ،623 
،593 ،642.5 ،943 ،922  
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the optimized algorithms: the average RMSE and the average correlation 
of all samples. Average convergence implies that the results should 
improve by enhancing the number of iterations or the time allocated to 
the algorithms. Figs. 4 and 5, respectively, show the convergence dia-
grams produced using the combination of SVM method with GA, PSO, 
ACO, and ICA algorithms for predicting the POD and PPO activities over 
the three studied pepper varieties. These diagrams compare the per-
formance of the algorithms in terms of accuracy and error score. Since 
the RMSE of the PSO and ACO algorithms showed a descending trend 
with increasing number of iterations and their average correlation is in a 
suitable range, it was concluded that these two algorithms show less 
error and more accuracy. On the other hand, as the time spent for 
analysis is one of the critical parameters, and the analysis must be 
achieved in the shortest time possible, given that the ACO algorithm 
takes more time, thus the PSO algorithm resulted more suitable in 
finding the effective wavelength values, online on real-time. 

3.3. Optimal regression modeling using only the most effective 
wavelengths (EW) selected out of the whole spectral range 

MLR, PLSR, and non-linear NN regression methods were employed to 
model the selected optimal EWs using the SVM-PSO algorithm. 

Given that the use of non-destructive methods based on spectroscopy 

imaging with a full range of wavelengths might require longer acquisi-
tion time and additional computing resources, the practical application 
of this methodology introduces limitations and implementing data 
dimensionality reduction techniques to lessen computational 
complexity is often very desirable [36]. Therefore, one should seek to 
find a way to determine the EWs and limit the number of wavelengths 
used to the minimum possible value without a great reduction in accu-
racy. In order to reach the maximum sensitivity, spectroscopic mea-
surements of absorption of substances should be performed at the 
wavelength corresponding to the absorption peak of that substance, 
since at this wavelength, absorbance per unit of concentration shows the 
largest changes and thus produces maximum accuracy. In this study, the 
PLSR method was used to model the spectral data in the full spectral 
range and in the range of EWs. The results showed that the RPD values of 
all cultivars (exception made of the red cultivar) in predicting POD 
enzyme activity in the range of EWs is higher than that in the full 
spectral range. Using the PLSR method in the range of EWs, simulta-
neously reduced the computed time and also increased the prediction 
(estimation) accuracy of the regression models. 

Tables 4 and 5 list R2, RMSE and RPD for the calibration and vali-
dation sets in PLSR and MLR regression models, respectively, based on 
effective wavelengths; at the same time, Table 6 shows R2, RMSE and 
RPD values for training, validation, and test disjoint sets by the NN 

Fig. 4. Convergence diagrams produced from the dataset of POD activity over the three studied bell pepper varieties over all input samples using SVM. Diagrams 
compare the performance of algorithms based on both accuracy and error rate. RMSE and average correlation for A) and B) red, C) and D) yellow, and E) and F) 
orange, bell pepper varieties. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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regression model. According to Tables 4 and 5, the R2 value for the 
validation in PLSR method is higher than that in MLR method, and at the 
same time the RMSE value in PLSR method validation is lower than that 
in MLR. Also, by comparing the RPD values of PLSR and MLR models, it 
can be seen that the RPD value of the PLSR model is on average higher 
than that of the MLR model. Hence, the PLSR method offered better 
results here as compared to the MLR regression method. According to 
Table 6, the R2, RMSE and RPD values for the NN non-linear method 

under the validation sub-set, exhibited better results as compared to the 
other two previously mentioned regression methods. Therefore, the NN 
method was selected as the best regression method for modeling effec-
tive wavelengths in POD and PPO enzyme activity levels estimation. 

4. Conclusions 

This work has examined the possibility of automatic, accurate, and 

Fig. 5. Convergence diagrams produced from the dataset of PPO activity over the three studied bell pepper varieties for all input samples using SVM. Diagrams 
compare the performance of algorithms based on both accuracy and error rate. RMSE and average correlation for A) and B) red, C) and D) yellow, and E) and F) 
orange, bell pepper varieties. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
POD and PPO enzyme activity levels. R2, RMSE and RPD regression values on 
three pepper varieties, over calibration and validation sets under PLSR regres-
sion model by using only effective (optimal) discriminative wavelengths (EWs). 
(cf. Tables 2 and 3).  

Enzyme Pepper 
Variety 

Calibration Validation 

R2 RMSE RPD R2 RMSE RPD 

POD Red 0.8334 1.7146 2.27 0.6606 2.5317 1.46 
Yellow 0.9105 4.1614 3.24 0.8097 6.2773 1.99 
Orange 0.8423 1.8980 2.35 0.7964 2.2433 1.95 

PPO Red 0.9427 0.2205 4.13 0.9230 0.2645 3.29 
Yellow 0.8769 0.1475 2.71 0.8463 0.1705 2.40 
Orange 0.9058 0.5032 3.16 0.8672 0.6214 2.53  

Table 5 
POD and PPO enzyme activity levels. R2, RMSE and RPD regression values on 
three pepper varieties, over calibration and validation sets under MLR regression 
model by using only effective (optimal) discriminative wavelengths (EWs). (cf. 
Tables 2 and 3).  

Enzyme Pepper 
Variety 

Calibration Validation 

R2 RMSE RPD R2 RMSE RPD 

POD Red 0.9404 1.5013 2.76 0.6045 2.6870 1.86 
Yellow 0.9438 4.8251 2.84 0.6905 7.8704 1.78 
Orange 0.9422 2.1051 2.68 0.6132 2.4542 1.82 

PPO Red 0.9892 0.1398 6.67 0.6895 0.5225 1.41 
Yellow 0.9268 0.1608 2.56 0.6294 0.2604 1.60 
Orange 0.9705 0.4327 3.80 0.6690 0.9621 1.85  
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non-destructive evaluation (estimation) of both POD and PPO enzyme 
activity levels in three bell pepper varieties using Vis/NIR imaging 
spectroscopy. Absorbance spectroscopy was conducted in the wave-
length range of 350–1150 nm. The full spectra range data were modeled 
without pre-processing using the PLSR method. 

Given that the use of non-destructive methods based on imaging 
spectroscopy with a full range of wavelengths often need longer acqui-
sition time and further resources, the practical application of this 
methodology introduces limitations, so a combination of support vector 
machine (SVM) with four machine learning algorithms (GA, PSO, ACO, 
and ICA) were proposed and employed to find the most effective 
(optimal) wavelengths (EWs). Each of these algorithms led to either 14 
or 15 EWs, on average. Regarding the proper range of R2 and RMSE 
values in the SVM-PSO method by increasing the number of iterations, 
this approach was selected as the winning algorithm to find the EWs. 

Three regression methods were used and evaluated, MLR, PLSR, and 
non-linear NN, and were then used to model the EWs by SVM-PSO al-
gorithm. To judge from results computed, the NN regression method 
shown the best results in modeling the consistent selection of EW values. 

We believe that the difference in the activity of oxidation enzymes in 
the various pepper cultivars here considered might be due to the dif-
ferences in those cultivars in terms of respiration rate, ethylene pro-
duction, as well as vitamin C content, amongst others, despite further 
investigation is needed to confirm previous hypothesis. 

To our best knowledge, the main potential limitations of proposed 
approach have to do with both the spectral limited resolution of the 
hyperspectral camera used in the analysis and the limited number N of 
input samples dataset used, since increased N values would lead to 
statistically more valid and accurate numerical results. 

Main achievement follows next to conclude: after learning phase 
took place over the train set, automatic (machine learning) and accurate 
(as compared with reference values measured by common destructive 
chemical methodologies) estimation of both polyphenol oxidase and 
peroxidase enzyme activity levels (oxidative-based natural browning 
processes known to play a key factor degrading fruits and vegetables 
quality while being stored and processed) were computed in three bell 
pepper varieties from Vis/NIR imaging spectroscopy data, over the 
disjoint (empty intersection) test set. 
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