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A B S T R A C T   

Understanding how energy efficient the water services are and what drives inefficiency can greatly assist water 
utilities in delivering sustainable services. This study employs a neural network (NN) approach to measure the 
energy efficiency of water services in relation to the volume of drinking water supplied and the number of 
connected properties. Unlike other non-parametric approaches, NN allows capturing the complex relationships 
and dependencies between various factors influencing energy efficiency of water companies. An empirical 
application for English and Welsh water utilities embracing water only companies (WoCs) and water and 
sewerage companies (WaSCs) over 2008–2020 was conducted. The average energy efficiency score was found to 
be 0.411, indicating that water utilities could potentially save 0.54 kWh per cubic meter of drinking water 
supplied. Notably, WaSCs exhibited better energy performance compared to WoCs, with energy efficiency scores 
of 0.559 and 0.239, respectively. Nevertheless, based on the volume of water delivered, WaSCs could save 0.65 
kWh/m3 whereas WoCs potential energy savings are 0.24 kWh/m3. Energy efficiency remained relatively stable 
across the years, with average values of 0.440, 0.388 and 0.454 for the periods 2008–2010, 2011–2015, and 
2016–2020, respectively. The analysis conducted using decision tree methods highlighted the relevance of water 
treatment quality and the source of raw water as key variables influencing the energy efficiency of water utilities. 
These findings can be valuable for policymakers, enabling them to gain a deeper understanding of the driving 
factors behind energy efficiency in water service provision.   

1. Introduction 

Energy plays a crucial role in the provision of water services, 
encompassing the entire water supply chain, from abstraction to treat
ment and distribution [1]. The utilization of energy within the water 
sector is influenced by a range of variables such as the source and quality 
of raw water and the distance to the final destination [2–4]. It could also 
be affected by the level of water lost in the network because it would 
require more water to be abstracted and thus, more energy ([95,5]). It is 
worth noting that water and energy resources are inherently inter
connected, and their interdependence is expected to grow in the coming 
years due to factors such as population growth, economic development, 
and climate change [6]. The management of these resources should 
consider their mutual relationship to ensure sustainable and efficient 
water and energy systems. 

The sustainable utilization of energy and ensuring universal access to 

clean water at an affordable cost aligns with the Sustainable Develop
ment Goals established by the United Nations in 2015 [7]. Achieving 
efficient and sustainable energy use in the provision of water services 
can yield significant economic and environmental benefits [8]. It en
ables water utilities to realize cost savings and deliver clean water to all 
individuals at affordable rates. Furthermore, it helps in mitigating the 
excessive exploitation of groundwater and surface water resources [9], 
as well as reducing the emission of greenhouse gases and air pollutants 
[10,11]. Hence, there is a growing emphasis on understanding the en
ergy use of water services and identifying the factors driving in
efficiencies within the water-energy nexus among policymakers [12]. 

Several research studies have highlighted the benefits of reducing 
energy demand and water consumption within the context of climate 
change and population growth (e.g., [13–17]). Other studies have 
focused on quantifying energy savings at water supply system level 
[18,19] or specific components of the water supply process such as 
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drinking water treatment [6,20]. However, a key limitation of these 
studies is the lack of measurement of energy efficiency in water services. 
Energy efficiency in this context refers to reducing the amount of energy 
consumed by water utilities while maintaining the same level of outputs 
(i.e., volume of drinking water) [21,22]. 

Assessing the energy efficiency of water services is crucial for un
derstanding the effectiveness of energy management practices and 
identifying areas for improvement. Measuring energy efficiency enables 
water utilities to evaluate their energy performance and identify op
portunities to optimize energy use without compromising the quality or 
quantity of water supplied [23,24]. Addressing this limitation in previ
ous studies by evaluating the energy efficiency of water services can 
provide valuable insights for policymakers, water utilities, and re
searchers. It facilitates a more comprehensive understanding of the 
energy-water nexus and supports the development of strategies and 
initiatives to enhance energy efficiency, reduce environmental impacts, 
and promote sustainable water management practices [25]. 

Within the framework of water utilities, stochastic frontier analysis 
(SFA) and data envelopment analysis (DEA) are indeed widely employed 
methodologies for assessing efficiency, although they primarily focus on 
overall efficiency rather than specifically targeting energy efficiency 
[26,27]. SFA is a parametric method that constructs an efficient frontier 
by estimating the best line that fits the data. It requires the specification 
of a functional form for the production technology and results are sen
sitive to the different assumption of the distribution of inefficiency (e.g. 
half-normal, exponential) [28,29]. On the other hand, DEA is a non- 
parametric method that uses linear programming techniques to build a 
piecewise frontier based on the observed data. Therefore, no statistical 
estimation of the frontier is performed [30,31]. 

While SFA and DEA are valuable tools for evaluating overall effi
ciency in the context of water utilities, artificial neural networks (ANNs 
or NNs) have gained significant attention in recent years as a non- 
parametric method for estimating and predicting complex relation
ships in various fields [32]. ANNs are a type of machine learning tech
nique inspired by the functioning of the human brain [33]. ANNs have 
proven to be effective in capturing non-linear and complex patterns in 
data, making them suitable for situations where the relationships be
tween inputs and outputs are unknown or non-linear [34,35]. They 
consist of interconnected layers of artificial neurons that process and 
transform input data to produce output predictions. One of the advan
tages of ANNs is their ability to learn from data and adapt to complex 
relationships without making strong assumptions about the underlying 
functional form. This makes them particularly useful when dealing with 
non-linear relationships and capturing intricate patterns that may exist 
in the data [36]. 

Previous research has demonstrated that NNs offer a viable alter
native approach for assessing efficiency [37]. Within the context of 
water utilities, prior investigations utilizing NNs have primarily 
concentrated on predicting water leaks [38,39], evaluating customer 
satisfaction [40,41], forecasting water quality [42–45], material design 
and performance assessment for wastewater treatment [46,47], among 
others. Regarding efficiency assessment, only Nafi and Brans [48] and 
Molinos-Senante and Maziotis [49] employed NNs to evaluate the per
formance of water companies. Both studies represent notable contribu
tions in assessing the economic performance of water utilities but do not 
specifically address energy efficiency. This suggests that there is a 
research gap in utilizing NNs for evaluating the energy efficiency of 
water services provided by water utilities. 

Based on the aforementioned literature, the following hypotheses 
and research questions are proposed: 

Hypothesis 1. Artificial neural networks serve as a reliable method
ology to estimate and predict energy efficiency in water utilities, 
capturing the complex relationships and dependencies between various 
factors influencing energy efficiency. 

Hypothesis 2. English and Welsh water companies are energy 

inefficient and therefore, present potential energy savings. 

Hypothesis 3. Operational characteristics of water companies have a 
statistically significant influence on their energy efficiency. 

Research Question 1: What are the energy efficiency and potential en
ergy savings of English and Welsh water companies across different years? 

Research Question 2: Which operational variables, and to what extent, 
influence the energy efficiency of water companies in England and Wales? 

Against this background, this study has three main goals. The pri
mary aim is to utilize NNs to estimate and predict the energy efficiency 
of water services provided by various water utilities. To validate the 
accuracy and dependability of the energy efficiency scores obtained 
through NNs, a comparison is made with scores obtained from DEA. The 
second objective is to quantify the potential energy savings that could be 
achieved if water utilities were to operate with high energy efficiency in 
delivering their services. Lastly, the study aims to analyze how various 
operational characteristics of water companies influence their energy 
efficiency. This is done through the use of decision trees methods such as 
regression trees and random forest. Our empirical study focuses on the 
water services that are provided by several water utilities in England and 
Wales. 

Our contribution to the existing literature can be summarized in the 
following ways. Firstly, we assess the energy efficiency of water utilities 
by employing NNs which allows to identify hidden patterns in water- 
energy nexus that may not be evident through traditional analysis 
methods. This allows for a more accurate and comprehensive under
standing of energy efficiency factors. Water utilities often involve 
intricate nonlinear relationships between energy consumption and 
various operational parameters. NNs are capable of capturing and 
modeling such nonlinearities effectively. Finally, NNs can be utilized to 
forecast energy efficiency outcomes based on historical data and current 
operating conditions. Hence, this proactive approach will allow water 
companies to optimize their energy management strategies and make 
informed decisions. Secondly, we utilize decision tree methods to un
cover concealed interactions within the data, enabling us to comprehend 
how energy efficiency might vary based on various operational 
characteristics. 

Following this brief introduction, the structure of the article is 
organized as follows: Section 2 details the methodology used to estimate 
energy efficiency and the influence of environmental variables on effi
ciency. Section 3 describes the case study, including the presentation of 
the variables employed. Section 4 presents and discusses the main 
findings. The final section outlines the main conclusions drawn from the 
study 

2. Methodology 

2.1. Energy efficiency estimation 

The method employed in this study to assess the energy efficiency of 
water supply processes and identify its driving factors involves the use of 
NNs. Unlike traditional methods, i.e., DEA and SFA, NNs do not rely on a 
predetermined functional form to describe the relationship between 
inputs and outputs, making them non-linear and non-parametric models 
[34]. 

The specific type of NN utilized in this study is the multilayer per
ceptron (MLP) network, which consists of three layers of interconnected 
nodes or neurons: the input layer, hidden layers, and output layer [50]. 
The input layer receives the relevant input variables, while the hidden 
layers perform intermediate computations, and the output layer pro
duces the desired output, which in this case is the predicted energy 
consumption. Based on this desired output we can generate energy ef
ficiency scores [51]. 

Fig. 1 provides a visual representation of the general structure of a 
MLP model, showcasing the interconnected nodes and layers. Through 
iterations and adjustments of the weights (coefficients) between the 
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neurons, the MLP learns and improves its predictive capabilities, 
allowing it to eventually estimate the energy efficiency scores based on 
the provided inputs [52]. 

The input layer includes the data sample denoted as x1,…, xj while 
the output layer includes the desired outcome (target) category and is 
denoted as y1,…, yj. In our study, the objective is to predict energy ef
ficiency, which serves as the output or target variable, based on a set of 
inputs, specifically water connected properties. The MLP model consists 
of hidden layers that act as intermediate layers, where the inputs are 
connected to each other through weights or coefficients. These weights 
are updated during the learning process, following methodologies pro
posed by Emrouznejad and Shale [53], Azadeh and Javanmardi [54], 
Ciampi and Gordini [55], and Kwon [56]. The updated weights are then 
utilized as inputs to generate the desired output, as described by 
Emrouznejad and Shale [53]. A mathematical presentation of a MLP for 
any neuron j is provided below: 

yj = f
(
uj + bj

)
(1)  

uj =
∑N

i=1
wjixi (2)  

where in Eq. (2) x1,…, xn presents inputs, wj1,…,wjn are the weights 
that connect inputs and uj is the weighted outcome of inputs. In Eq. (1) b 
captures the constant (bias) term, y is the desired output and f(.) is the 
activation function [57]. The activation functions play a crucial role in 
defining the output format of a neural network. These functions are 
mathematical forms that are continuous, bounded, differentiable, and 
monotonically increasing [34]. The choice of activation function de
termines the range of values the output can take, such as being restricted 
to positive values only or binary values between zero and one. In the 
output layer, the activation function is typically a linear function of the 
inputs, including the weights and the constant term [36,56]. Various 
functional forms can be employed as activation functions in the hidden 
layers of the neural network. 

The back-propagation (BP) method is the most common method to 
make predictions and therefore our study adopts this method [58]. The 
BP technique is a repeated process where in each iteration the predicted 
output derived from running the MLP is compared with the observed 
(actual) output. The difference between predicted and actual output 
gives the error. The error is then fed back to the model to update weights 
and predictions. The final predicted output is the one with the minimum 
error [56]. 

In MLP the dataset is separated into two datasets, the training and the 
testing dataset. The training dataset is used to fit (train) the model and 
produce in-sample results [59,60]. The testing dataset is used for pre
dictions, i.e., to produce the out-sample result. Based on these pre
dictions, efficiency scores can be estimated as well [61]. 

Determining the optimal architecture of the MLP model involves 
making decisions regarding several key aspects, including the number of 

hidden layers, the number of neurons within each hidden layer, the 
choice of activation functions, and the learning rate. Studies by Kwon 
et al. [62] and Zhu et al. [60] discuss the significance of these decisions 
in the context of model fitting. Typically, MLP has one or, at most, three 
hidden layers, with a recommendation of one hidden layer [53]. The 
determination of the number of neurons in the hidden layer was defined 
based on the minimum root-mean-squared Error (RMSE) [63,64]: 

RMSE =

(
1
n
∑n

i=1
(zi − di)

2

)1/2

(3)  

where n is the number of data in each set, zi is the network predicted 
value, and di is the desired output that the network is trying to reach. 

Different forms of activation functions can be utilized in the hidden 
layers, such as the logistic function or rectified linear unit (ReLU), 
among others. The selection of an appropriate activation function de
pends on the specific requirements and characteristics of the problem 
under consideration. The learning rate captures how slowly or quickly 
the MLP model learns the problem [65]. The best MLP model is used for 
training. Once the best MLP model has been determined and fitted, the 
predicted output is obtained using the testing dataset. Efficiency score 
(energy efficiency in our study) is then derived as follows [36]: 

Efficiency =
yactual

ŷ + max(ε) (4)  

where ε is the error, the difference between the predicted and actual 
output, ŷ is the predicted output and yactual is the observed (actual) 
output. Efficiency takes a value between zero and one. If efficiency is 
one, then the unit is on the efficient frontier, whereas a value lower than 
one indicates that the unit is inefficient and therefore, presents room for 
improvement. 

To assess the robustness of the efficiency scores obtained from the 
MLP model, we compare them with the results obtained using the non- 
parametric DEA method. DEA is a deterministic method that evaluates 
the efficiency of units by employing linear programming techniques to 
construct a piecewise frontier based on observed data [21]. The DEA 
approach involves constructing an efficient frontier based on the 
observed data and any deviations from this frontier indicate in
efficiency. Hence, it provides a deterministic assessment of efficiency. 
The generic form of a DEA model is as follows: 

max
∑q

s=1
ωsyso (5)  

∑q

s=1
ωsysj −

∑n

i=1
μixij ≤ 0 j = 1,…, J  

∑n

i=1
μixi0 = 1  

ωs, μi ≥ 0, i = 1,…, n; s = 1,…, q  

where o presents the unit under evaluation, J is the total number of 
units, q is the total number of outputs y, n is the total number of inputs, 
and ωs and μi are the corresponding weights for outputs and inputs, 
respectively. The solution of the linear programming model produces an 
efficiency score for each unit which, as in the case of the MLP model, 
ranges between zero and one. A value of one means that the unit is fully 
efficient, whereas a value lower than one implies inefficiency. 

2.2. Influence of operational characteristics on energy efficiency 

To evaluate the impact of operating characteristics (environmental 
variables) on the energy performance of water services, we employ a 
regression tree analysis approach. This approach allows us to visualize 

Fig. 1. Architecture of a neural network based on layer perceptron.  
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the interactions between different elements of water services and study 
the role of operating characteristics in influencing energy performance 
[66]. In our analysis, we consider the energy efficiency score of each unit 
as the dependent variable, while the set of operating characteristics 
serves as the independent variables. The regression tree algorithm di
vides the dataset into multiple subsets based on thresholds determined 
for each operating characteristic. Each subset represents a distinct 
combination of operating characteristics and generates a predicted 
average value of the efficiency score based on the observations within 
that subset. This process helps uncover patterns and relationships be
tween the operating characteristics and the efficiency score [67]. One of 
the key advantages of using regression trees is that they provide visual 
representations of the importance of each independent variable, i.e., 
operating characteristic, on the dependent variable, i.e., efficiency 
score. The higher the value of an independent variable, the greater its 
impact on the efficiency score. 

To assess the robustness of the regression tree model, we employed 
another decision tree method known as random forest (RF). The RF 
method, initially developed by Ho [68] and Breiman [69], offers certain 
advantages such as reduced sensitivity to outliers and the ability to 
generate reliable predictions [70]. In the RF approach, multiple 
regression trees are estimated using bootstrap methods [71]. The pre
dicted variable at the subset is calculated as an average of the pre
dictions of all decision trees [72–74]. 

To ensure that decision trees in RF regression are not highly corre
lated with each other, the following steps are followed. In the first step, a 
bootstrap sample is randomly selected from the original training dataset. 
This process involves randomly selecting data points with replacement, 
creating a new training dataset for each decision tree. In the second step, 
each time a division is performed, the algorithm randomly selects a 
subset of m independent variables from the full set of p independent 
variables. By default, m = p/3 [66,75]. Once all decision trees are con
structed, the predicted (outcome or target) variable is estimated by 
taking the mean prediction from all the decision trees [74]. 

Similar to the regression tree approach, the RF regression also allows 
for the visualization of the importance of each independent variable on 
the dependent variable. Variables with higher values indicate a greater 
influence on the dependent variable, while variables with lower values 
have relatively less impact [66,70,74]. 

3. Case study description 

Our empirical study focuses on the drinking water services provided 
by several water utilities in England and Wales over the years 
2008–2020. Drinking water is supplied by Water and Sewerage com
panies (WaSCs) and Water only companies (WoCs) who are under pri
vate ownership and their performance is monitored by the economic 
water regulator, the Water Services Regulation Authority (Ofwat). Every 
five years Ofwat determines the future revenue that water utilities are 
allowed to recover from their customers by challenging their business 
plans (price review). 

The selection of variables in this study was based on previous 
research assessing the performance of water companies (e.g., 
[26,27,76–79]), as well as the availability of statistical data for all water 
companies for all assessed years. Considering that the main objective of 
this study is assessing the energy efficiency of water companies, the 
output variable in the MLP model was the energy consumed for the 
provision of water services. It was measured in MWh per year [80–84]. 
Past research [8,22,85–88] demonstrated that energetic performance of 
water companies presents economies of scale. Hence, the two input 
variables considered were the volume of water delivered, measured in 
megalitres per year, and the annual number of water connected prop
erties, measured in thousands per year. 

In examining the environmental variables that potentially impact the 
energy efficiency of water companies, according to specific literature for 
English and Welsh water companies, the following factors were 

analyzed. The first two operating characteristics focused on the source of 
raw water and were expressed as the percentage of water abstracted 
from reservoirs and boreholes, drawing insights from studies by Saal 
et al. [89] and Villegas et al. [90]. The subsequent three environmental 
variables pertained to the treatment quality of the water process. These 
variables were defined as the number of treatment works necessary to 
purify water sourced from surface and groundwater resources. Addi
tionally, a variable indicating the percentage of water undergoing 
extensive treatment was included, utilizing information from sources 
such as Ofwat [91] and Walker et al. [84]. The final environmental 
variable considered was density, which was measured as the population- 
to-water mains length ratio. This variable aimed to capture the rela
tionship between population density and water infrastructure [88]. 

The statistical information for the variables used in the study was 
collected from Ofwat and the annual reports of water companies. Table 1 
presents the summary statistics of these variables. 

4. Results and discussion 

4.1. Basics of the estimated neural network 

In line with previous research conducted by Wang et al. [92] and 
Liao et al. [36], the data used in the MLP was normalized using the min- 
max process. This normalization technique ensures that the data falls 
within a specific range for improved model performance: 

y =
(x − min)

(max − min)
(6) 

The dataset was divided into two separate sets: 70 % for training the 
MLP and 30 % for testing its performance. This division of data into 
training and testing sets allows for the evaluation of the model's 
generalization ability on unseen data, as suggested by Kwon [56]. For 
the MLP architecture, the input layer consisted of 2 neurons, reflecting 
the number of input variables used in the model. The output layer had 
one neuron, corresponding to the predicted energy efficiency value. A 
single hidden layer was employed in the MLP, as it has been established 
that a single hidden layer is capable of modeling any function 
adequately, as noted in the works of Azadeh et al. [35], Kwon et al. [62], 
and Kwon [56]. 

The RMSE, used to determine the optimal number of neurons in the 
hidden layer, was found to be 0.0608, as indicated in Table 2. We tested 
a range of neurons (5–12) in the hidden layer as suggested by Nabavi 
et al. [93]. Thus, the optimal number of neurons was determined to be 
five. In the appendix, additional performance metrics for the training 
and testing processes are presented in Table 1 - Appendix. These metrics 
further support the suitability of the MLP model in predicting energy 
efficiency. The activation function used in the hidden layer was Rectified 
Linear Unit (ReLU), a commonly employed activation function known 
for its effectiveness in deep learning architectures: 

f(x) = x+ = max(0, x) =
x + |x|

2
=

{
x if x > 0

0 otherwise (7)  

where x is the input to a neuron [96]. 
For the output layer, a linear activation function was applied. The 

backpropagation algorithm was employed with a maximum of 1000 
epochs (iterations). The learning rate, which determines the step size 
during the training process, was 0.01 following the approach described 
by Azadeh et al. [34]. The momentum rate was 0.02 following the 
approach described in Nabavi et al. [93] and Nabavi et al. [94]. 

4.2. Energy efficiency of water companies in England and Wales 

Based on the estimations made by the MLP, the average energy ef
ficiency of water companies in England and Wales was found to be 
0.411, as shown in Fig. 2. This indicates that, on average, there is a 
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potential for utilities to achieve energy savings of up to 55.9 % 
compared to their current energy consumption levels. The study 
revealed significant disparities in energy efficiency among the evaluated 
water companies. The utility with the lowest energy efficiency score, at 
0.084, would need to reduce its energy use by >91 % in order to provide 
water services at a more efficient level. On the other hand, the most 
energy efficient utility achieved a perfect efficiency score of 1, repre
senting 100 % efficiency. This demonstrates a substantial divergence in 
energy efficiency levels across the water companies analyzed. Conse
quently, the findings suggest that the English and Welsh water com
panies require different efforts to enhance their energy efficiency. It 
highlights the need for tailored strategies and interventions to improve 
energy efficiency based on the specific circumstances and performance 
of each utility. 

Upon comparing the performance of both types of water companies, 
the study found that, on average WaSCs exhibited higher energy effi
ciency levels compared to WoCs, as depicted in Fig. 2. WoCs, on average, 
performed poorly from an energy perspective, with a mean energy ef
ficiency score of 0.289. This indicates that there is a potential for energy 
savings of up to 71.1 % among WoCs. The most energy efficient WoC 
achieved an efficiency score of 0.575, indicating that there is room for 
improvement in the energy consumption of an average WoC. On the 

other hand, WaSCs performed relatively better with an average energy 
efficiency score of 0.559. These findings highlight the need for targeted 
energy efficiency measures and improvements for both types of water 
companies. While WoCs require substantial improvements in their en
ergy consumption, WaSCs also have room for enhancement to achieve 
even higher energy efficiency levels. 

In Fig. 2, the energy efficiency scores obtained through DEA tech
niques are presented for comparison purposes. The results obtained from 
DEA are similar to those obtained from the MLP model. The potential 
savings in energy use among water utilities were estimated to be around 
56.4 % on average. WoCs were found to be significantly less energy 
efficient than WaSCs, with mean energy efficiency scores of 0.317 and 
0.527, respectively. This suggests that both types of water companies 
need to make substantial improvements to enhance their energy 
performance. 

The Pearson correlation coefficient, as presented in Table 3, supports 
the finding that the energy efficiency scores obtained from the MLP 
model and DEA model are strongly correlated. This indicates that the 
predicted energy efficiency scores from the MLP model can serve as a 
reliable proxy for the DEA energy efficiency scores. Consequently, the 
energy efficiency scores derived from the MLP modeling approach can 
be considered as reliable, robust, and suitable for efficiency analysis 
purposes. 

Fig. 3 illustrates the distribution of energy efficiency scores, esti
mated using the MLP, across water companies. The majority of obser
vations related to WoCs indicate high levels of energy inefficiency, with 
none of them reporting an energy efficiency score exceeding 0.60. 
Specifically, 11 out of 30 observations (36.7 %) performed extremely 
poorly, with a mean energy efficiency score below 0.20. In contrast, 
several WaSCs demonstrated satisfactory energy performance. Among 
the 39 observations related to WaSCs, 12 (30.8 %) exhibited an energy 
efficiency score >0.61. 

To determine the statistical significance of the energy efficiency 
differences between WaSCs and WoCs, a non-parametric Mann-Whitney 
test was conducted. The resulting p-value was lower than 0.005, indi
cating that the energy efficiency disparities between the two types of 
water companies are statistically significant. These findings highlight 
the notable differences in energy efficiency performance between 
WaSCs and WoCs, with WaSCs generally outperforming WoCs. 

Fig. 4 presents the evolution of energy efficiency scores for each type 
of water utility and the overall sector, divided into three sub-periods that 
correspond to the regulatory cycles. The first sub-period, from 2008 to 
2010, corresponds to the 2004 price review, during which the regulator 
implemented various incentive schemes to encourage performance 
improvement in the water industry. As part of these schemes, water 

Table 1 
Descriptive statistics of variables to assess energy efficiency of English and Welsh water companies.  

Variables Unit of measurement Mean Std. Dev. Min. Max. 

Energy use Mwh/year  200,188  150,545  16,317  561,564 
Water connected properties 000s/year  1439  1132  120  4047 
Volumes of water delivered Ml/year  695  558  56  2169 
Water taken from rivers %  29  25  0  86 
Water taken from boreholes %  39  30  0  92 
Number of surface water treatment works nr  16  15  1  54 
Number of groundwater treatment works nr  49  40  2  127 
Water receiving high levels of treatment %  0.59  0.23  0.22  0.99 
Population density 000s/km  0.47  0.28  0.14  1.26 

Observations: 228. 

Table 2 
Estimated neural network parameters to assess energy efficiency of 
water companies in England and Wales.  

Network architecture 2–5–1 

Activation function ReLU/linear 
Algorithm Back propagation 
Epochs 1000 
Leaning rate 0.010 
Root-mean-squared error 0.0608  

Fig. 2. Average energy efficiency scores for water only companies (WoCs), 
water and sewerage companies (WaSCs) and all water companies (all) based on 
neural network (NN) and data envelopment analysis (DEA) estimations. 

Table 3 
Pearson correlation coefficient between energy effi
ciency scores estimated using MLP and DEA methods.  

All water companies  0.916 
WoCs  0.821 
WaSCs  0.935  
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utilities were allowed to retain any savings in operational costs, 
including energy costs, regardless of the year in which these savings 
were achieved [90]. The results indicate that the energy efficiency of the 
water sector was relatively low during this period, with an average ef
ficiency score of 0.440. This suggests that there was room for 
improvement in energy efficiency across the sector at that time. 

During the sub-period from 2011 to 2015, the regulator continued to 
implement the rolling incentive mechanism for operational expenditure. 
Additionally, any savings in infrastructure maintenance were shared 
between utilities and customers. However, the findings indicate a 
deterioration in energy efficiency for an average WaSC, while it 
remained unchanged for an average WoC. This suggests that there were 
no significant gains in energy efficiency during this period. The water 
industry as a whole still had a considerable way to go in terms of 
improving energy efficiency, as it would have required reducing energy 
use by >60 % to reach an efficient level. 

The period from 2016 to 2020 corresponds to the 2014 price review, 
during which the regulator implemented a set of common performance 
indicators to monitor the economic and environmental sustainability of 

all water utilities. Additionally, each water utility had the opportunity to 
report customized performance indicators after consulting with their 
customers. These indicators included metrics such as water leakage and 
pollution incidents, which were linked to financial rewards or penalties 
based on performance. Other indicators, such as greenhouse gas emis
sions, had a reputational impact on the utilities. The results of this 
period demonstrated an increase in energy efficiency for both WoCs and 
WaSCs. This indicates that water utilities made efforts to control their 
production costs and improve their overall performance. However, there 
is still room for further improvements in energy efficiency. Potential 
savings in energy could reach the level of 40 % for WaSCs and 70 % for 
WoCs, respectively. These findings suggest that there are significant 
opportunities for water utilities, particularly WoCs, to enhance their 
energy performance and reduce their energy consumption. 

Overall, the results of the study highlight the high levels of energy 
inefficiency within the water sector in England and Wales. The less 
energy efficient utilities in the industry have a significant gap to bridge 
in order to improve their energy performance and reach the level of the 
most efficient utilities. This finding emphasizes the need for both 

Fig. 3. Histogram of energy efficiency scores for English and Welsh water only companies (WoCs) and water and sewerage companies (WasCs).  

Fig. 4. Evolution of energy efficiency of English and Welsh water companies.  
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regulators and regulated utilities to take action in addressing and 
eliminating energy inefficiencies. By implementing measures and stra
tegies aimed at improving energy efficiency, regulators can set guide
lines and incentives to encourage utilities to prioritize energy 
conservation and sustainable practices. At the same time, utilities 
themselves need to invest in technologies, processes, and infrastructure 
that promote energy efficiency and reduce energy consumption. 
Addressing energy inefficiencies in the water sector not only leads to 
cost savings for the utilities but also contributes to environmental sus
tainability and resource conservation. It is crucial for both regulators 
and utilities to collaborate and work towards eliminating energy in
efficiencies, ensuring a more efficient and sustainable water industry in 
England and Wales. 

4.3. Potential energy use savings in the provision of drinking water 

Based on the energy efficiency scores ranging between 0 and 1, the 
potential savings in energy use can be estimated by comparing the 
current energy use of water companies with the energy use that would 
be expected if the companies were fully efficient.1 The total potential 
energy savings for the 228 evaluated observations were 5,688,192 MWh 
based on DEA estimations and 5,417,825 MWh based on MLP estima
tions. These estimations suggest that there is significant potential for 
energy savings in the water sector. Although WaSCs performed better in 
terms of energy efficiency compared to WoCs, the higher savings in 
energy could still be achieved by WaSCs on average. This is attributed to 
the larger size of WaSCs compared to WoCs. On average, WoCs could 
potentially reduce their energy use by 53,261 MWh per year to align 
with the most energy-efficient companies in the industry. On the other 
hand, the average potential energy savings for WaSCs were estimated to 
be 97,949 MWh per year, indicating a greater scope for energy 
reduction. 

Based on the volume of drinking water supplied by each water 
company and their energy efficiency, potential energy savings per cubic 
meter of water were estimated (Fig. 5). On average, the English and 
Welsh water companies could potentially save around 0.54 kWh/m3 of 
water. However, significant variations exist between different water 
companies, with the minimum estimated value being 0.0 kWh/m3 for 
the most energy-efficient company, and the maximum value being 2.05 
kWh/m3. The observed differences in potential energy savings per cubic 

meter of water are attributed to both the current energy use and the 
energy efficiency of water companies. The variability in potential energy 
savings is evident for both WaSCs and WoCs. According to the energy 
efficiency estimations from the MLP model, WoCs could potentially save 
an average of 0.24 kWh/m3, while WaSCs have a higher potential for 
energy savings, with an average of 0.65 kWh/m3. 

These findings highlight the importance of considering energy effi
ciency in the water sector, as it has a direct impact on the energy con
sumption per unit of water supplied. By implementing energy-saving 
measures and improving energy efficiency, water companies can 
significantly reduce their energy use per cubic meter of water, leading to 
cost savings and environmental benefits. 

4.4. Influence of environmental variables on energy efficiency of water 
companies 

The influence of various operating characteristics on energy effi
ciency of water companies was analyzed using a regression tree and the 
results are presented in Fig. 6. In the regression tree, each branch rep
resents a specific condition, and the mean predicted energy efficiency 
score is displayed at the bottom of each branch. Based on the results, it 
was found that three operating characteristics had the highest impact on 
influencing energy efficiency: treatment works when water is taken from 
groundwater (WGW), water treatment quality (wtq), and water taken 
from rivers (wriver). These factors were identified as significant pre
dictors of energy efficiency in the water sector. To gain a more detailed 
understanding of the relationships between these operating character
istics and energy efficiency, please refer to the Appendix - Fig. 2 for a 
comprehensive visualization.1 

According to the analysis (Fig. 6), the number of groundwater 
treatment works plays a significant role in energy efficiency. When the 
number of treatment works is below 12 on average, energy efficiency is 
relatively low at 0.14. This suggests that a higher energy input is 
required at the initial stages of the treatment process to ensure basic 
water treatment from groundwater sources. As the number of treatment 
works increases, energy can be used more efficiently. The complexity of 
the treatment process is also important. If >12 treatment works are 
needed to clean water from groundwater resources and <74 % of water 
receives high levels of treatment, the average energy efficiency score can 
reach 0.62. This indicates that utilities can benefit from economies of 

Fig. 5. Potential energy savings for water only companies (WoCs), water and 
sewerage companies (WaSCs) and all water companies (all) based on data 
envelopment analysis (DEA) and neural network (NN) and estimations. 

Fig. 6. Regression tree estimations to assess the influence of environmental 
variables on energy efficiency of water companies in England and Wales. 

1 Potential Energy Savings = (1 − Energy Efficiency Score) * Current Energy 
Use. 
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scale in high-level water treatment processes. Furthermore, the treat
ment of water from rivers can impact energy use. When 14 % of water is 
abstracted from rivers, energy efficiency reaches 0.55. However, if >75 
% of water undergoes high-level treatment, energy requirements may be 
higher, resulting in a drop in energy efficiency to 0.35 on average. 

The robustness of the results from the regression tee are checked with 
the ones obtained from the random forest regression. By applying the 
random forest algorithm, a more comprehensive understanding of the 
relationship between the explanatory variables and energy efficiency in 
water companies is obtained. We had six explanatory variables so the 
optimal value of m was set to 2. The number of trees was set to 3000 so 
that we have a stable RF regression [74]. The optimal number of trees, 
determined by reaching the minimum prediction error, was found to be 
100. This suggests that after 100 trees, the random forest regression 
model's performance doesn't significantly improve. It's important to note 
that the choice of the number of trees can depend on the specific dataset 
and research context (additional details are provided at Appendix – 
Fig. 2). 

According to the analysis (Fig. 7), treatment works for cleaning 
water from groundwater and surface resources, water treatment quality, 
and water taken from rivers were identified as the most important fac
tors influencing energy efficiency. This suggests that the complexity and 
extent of treatment processes have a significant impact on energy con
sumption in water companies. Higher levels of water treatment are 
associated with higher energy use, indicating the need for optimizing 
treatment processes to improve energy efficiency. Additionally, the 
analysis highlights that water taken from boreholes and density (popu
lation per km of water main) also have an impact on energy perfor
mance, albeit to a lesser degree. Taking water from boreholes appears to 
have a positive influence on energy efficiency, possibly due to differ
ences in the quality or accessibility of groundwater resources. Moreover, 
delivering water to densely populated areas seems to enhance energy 
efficiency, implying that it may be easier to manage energy consumption 
in urban areas compared to rural areas. 

Indeed, the conclusions drawn from the random forest regression 
analysis align with the findings from the regression tree analysis, 
providing further support and robustness to the results. Both analyses 
highlight the significance of factors such as treatment works for different 
water sources (groundwater and surface resources), water treatment 
quality, water taken from rivers and boreholes, and population density 
in influencing energy efficiency in water companies. The consistency 
between the two analyses reinforces the importance of these factors in 
determining energy performance and provides a more comprehensive 
understanding of their impact. The findings emphasize the need for 

optimizing energy use during water abstraction from rivers and bore
holes, as well as the importance of efficient treatment processes to 
minimize energy consumption. Moreover, the identification of popula
tion density as a contributing factor to energy efficiency suggests that 
tailored approaches might be required for different types of areas (urban 
vs. rural) to optimize energy usage in water services. This highlights the 
need for targeted strategies in managing energy resources based on the 
characteristics of the service area. 

Water utilities and regulators have a crucial role to play to reduce 
energy inefficiencies. Some policies and actions they could carried out 
are as follows: i) invest in modernizing water infrastructure systems to 
minimize energy losses during water abstraction, treatment and, dis
tribution; ii) implement water conservation and demand management 
programs to reduce the overall energy requirements for water provision; 
iii) conduct energy audits of water treatment and distribution systems to 
identify areas of high energy consumption and inefficiency. This helps in 
pinpointing opportunities for improvement and implementing energy- 
saving measures, such as upgrading equipment, optimizing opera
tional processes, and reducing system losses; iv) provide financial in
centives to encourage water utilities and consumers to adopt energy- 
efficient practices and technologies and; v) establish and enforce regu
lations that promote energy efficiency in the water sector. Set energy 
performance standards for water infrastructure, mandate energy audits, 
and require utilities to report on their energy consumption and effi
ciency measures. 

5. Conclusions 

Assessing the energy efficiency of water services holds significant 
significance for both society and the environment. 

In contrast to previous studies, this research employs neural net
works to evaluate the energy efficiency of water companies. The 
empirical application conducted for English and Welsh water companies 
evidenced their poor energy efficiency. The mean energy efficiency 
score was 0.441 which means that the potential energy savings could 
reach the level of 55.9 %. It is found that on average WaSCs performed 
better than WoCs since their mean energy efficiency scores were 0.559 
and 0.239, respectively. Energy inefficiency in the provision of drinking 
water involves that on average water companies could save 0.54 kWh/ 
m3. It is evidenced that water treatment quality and topography had the 
major impact on energy efficiency. From a policy perspective, the 
findings of the MLP approach are proven to be a reliable alternative to 
traditional techniques used to estimate efficiency scores in the water 
sector. 

Fig. 7. Random forest regression tree.  
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