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A B S T R A C T   

Hourly resolution is essential to realistically address the matching of supply and demand for fluctuating energy 
sources like solar and wind. This work introduces a novel method to model energy variability in an Integrated 
Assessment Model building upon a previous work, where regression analysis was utilized to extract hourly-level 
information from an energy system model. The enhancements include: (1) improved experimental design and 
more efficient computing, and (2) modelling the management of variability in an integrated assessment model by 
(i) incorporating a portfolio of flexibility options, and (ii) offering the ability to regulate system curtailment by 
limiting the expansion of renewables. The scenarios focus on the electricity sector, mirroring current EU27’s 
policies that aim for higher renewable energy and electrification contributions by 2050. Without any variability 
control measures, significant curtailment (up to 60 %) is observed, the introduction of flexibility options 
reducing it to half (30 %). Controlling the capacity expansion of renewables is introduced to avoid this unre-
alistically high curtailment, allowing the model to achieve a penetration of renewables in electricity of 80 % and 
a 53 % reduction in greenhouse gas emissions compared to 2015 levels in the electricity system. In conclusion, 
the methodology employed yields broadly consistent outcomes.    

Acronym Definition 

IAM Integrated assessment model 
WILIAM WIthin Limits IAM 
VRES Variable renewable energy source 
PHES Pumped hydropower energy storage 
COP Coefficient of performance 
CF Capacity factor 
CHP Combined heat and power 
GDP Gross domestic product 
PV Photovoltaic 
LUE Land-use efficiency 
CEEP Critical Excess of Electricity Production   

1. Introduction 

The 2030 Sustainable Development Agenda was adopted during the 
70th session of the United Nations General Assembly in 2015. Goal 

number 7 was defined as “by 2030, increase substantially the share of 
renewable energy in the global energy mix” (subsections 7.2 in Ref. [1]). 
Addressing this challenge, the power sector is usually identified as the 
primary driver for many decarbonization strategies, fostering synergies 
among various energy sectors [2]. 

Integrated assessment models (IAMs) play a crucial role in evaluating 
global mitigation pathways to address anthropogenic climate change. 
These models emerge from an interdisciplinary field that integrates 
climate, land and water usage, economy, energy, natural resources, and 
demography into a shared framework of practical knowledge (chapter 
16 [3]). 

The challenge of energy variability has been a recurring theme in the 
evolution of IAMs [4]. It is essential for demand and supply to match in 
every time step of the simulation. Historically, fast backup plants fuelled 
by natural gas and oil were commonly used to cover the gap of less 
flexible units such as hydropower, coal, and nuclear power plants. 
Nevertheless, the research community and global energy policies are 
increasingly advocating for alternative pathways that heavily rely on the 
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exploitation of intermittent energy sources across regions worldwide. 
Flexibility should include technological and demand-side solutions to 
effectively manage and leverage this intermittency over time. 

There is an increasing concern about technical curtailment, which 
refers to the dispatch-down of renewable energy due to network or 
system reasons. The bankability of projects and the size and distribution 
of power plants depend on this key cost indicator. The International 
Energy Agency recently published actual data on curtailment (figure 
included in page 81 [5]). In 2023, the curtailment rate for variable 
renewable energy sources surpassed 5 % in all countries mentioned in 
the report, with the exception of China and Italy. The report predicts 
that these rates will rise to over 10 % by 2028. 

Energy modelling provides valuable insights on this topic. However, 
there is a discrepancy regarding the appropriate temporal resolution for 
the analysis in global models, with many operating at an annual scale 
[6]. IAMs typically use time slices representing typical days (e.g., sum-
mer weekdays, winter holidays) or the residual load duration curve 
approach (RLDC) to determine the generation mix, and requirements of 
supply capacity [6]. The existing literature widely recommends, at least, 
hourly analysis to avoid inconsistencies. Hancheng et al. [7] utilized 
data from an hourly power sector model to enhance the representation 
of curtailment and storage in AIM (Asia-Pacific integrated model), 
asserting the importance of incorporating hourly fluctuations in IAMs. 
Research in Spain highlighted issues with managing combined cycles gas 
turbines due to the hourly dynamics of the electricity market [8]. 
Conversely, Brouwer et al. [9] proposed establishing a minimum hourly 
reserve level in contingency plans following surveys made to system 
operators. A methodological review concluded that an adequate accu-
racy of at least 8 h is sufficient for assessing the energy mix, costs, 
emissions, and curtailment [10]. The annual carbon emissions were 
underestimated by 12.75 % when comparing the 1-h and 8-h temporal 
resolutions. 

Challenges associated with modelling VRES (variable renewable 
energy sources) in large models have been pointed out [11]. Firstly, 
using a too coarse time-step may lead to inaccurate system operation 
estimates, such as overestimating the among of demand met by fluctu-
ating renewables and their financial attractiveness (section 3.2 in 
Ref. [11]). Secondly, the computational costs can become prohibitive 
when extending detailed simulations up to 2050. Thirdly, the 
complexity arises from the interconnection between different sectors 
(electricity, heating/cooling, industry, transportation) to increase the 
share of renewables in primary energy. Ringkjøb et al. [12] suggest 
addressing these issues by either linking a short-term operational model 
with a long-term holistic model or by directly integrating capabilities 
within a single model. A fourth challenge highlighted in Ref. [11] per-
tains to the transparency and uncertainty surrounding model parameters 
and policy decisions. Lastly, capturing the human dimension (public 
acceptance, human behaviour, etc.) poses another significant challenge 
to address. 

The first and third challenges have been fixed through the integra-
tion of MESSAGEix (Model for Energy Supply Strategy Alternatives and 
their General Environmental Impact) and GLOBIOM (Global Biosphere 
Management model). Together, these models represent the only IAM 
currently capable of considering hourly production profiles of variable 
renewable energy sources. Regarding technologies that introduce flex-
ibility into the power system balance, IAMs vary in the number of op-
tions they incorporate. For example, GCAM (Global Change Analysis 
Model) includes backup technologies, while POLES (Prospective 
Outlook on Long-term Energy Systems) offers a broader range, including 
demand-side management, vehicle-to-grid connections, power-to-heat/ 
hydrogen, storage, and grid batteries ([6], table A.2). 

A compelling solution that balances the trade-off between accuracy 

and computational cost (first and second challenges) was proposed by 
Welsch et al. [13]. They suggest that the outcomes of operational hourly 
models (such as PLEXOS, an energy modelling software) can be repli-
cated in lower-resolution energy models (OSeMOSYS, Open Source en-
ergy MOdelling SYStem, monthly model) by incorporating operational 
constraints (e.g., maximum instantaneous wind generation share) 
derived from data analysis on PLEXOS results. This approach mirrors the 
concept outlined in the current work. 

To enhance global policy assessment on climate change and energy 
transitions, the H2020 Locomotion project has been initiated to develop 
a new integrated assessment model following the legacy of MEDEAS 
(Modelling the Energy Development under Environmental And Socio-
economic constraints [14]). The new model, named Within Limits In-
tegrated Assessment Model (WILIAM [15]). This model is available in 
Python, open source [16]. A synthesis and scenario assessment of 
WILIAM can be found in Ref. [17]), is a system dynamics simulation tool 
that captures complex feedback loops and nonlinear relationships 
among energy, economic, material, social, and environmental factors. 
WILIAM expands on the interactions between the Earth and human 
systems by incorporating eight modules: society, demographics, econ-
omy, finance, energy, materials, land and water, and climate. Through a 
combination of top-down and bottom-up modelling approaches, 
WILIAM enables the exploration of long-term socio-ecological transition 
pathways while considering the planetary boundaries and 
socio-economic constraints. 

In a previous work [6], we successfully developed a statistical 
approach to reduce the computational complexity and efforts needed for 
estimating annual indicators in the energy module of IAMs through a 
concise set of analytical equations. However, certain methodological 
limitations were identified. Firstly, the use of machine learning and 
artificial intelligence was not possible due to the constraints of the IAM 
being developed, WILIAM. The software used to develop this model, 
Vensim, does not contain a machine learning toolkit. From a conceptual 
standpoint, system dynamics emphasizes transparency to ensure clear 
information tracing, whereas some machine learning methods, like 
neural networks, employ “black-box approaches”, which can be seen as 
a drawback in terms of ethical practices [18]. Secondly, the exponential 
growth of combinations poses a challenge. As the number of inputs in-
creases, the number of simulations required to capture the information 
grows exponentially according to the formula xn, where x represents the 
number of values per input, and n represents the number of predictors. 
To address these issues, the current work incorporates the first two 
conclusions of [6] namely, the implementation of parallel processing 
and machine learning algorithms for the feature selection step, and in-
troduces a new strategy for generating statistical data to avoid the 
exponential increase in computational burden. 

In this article, we have devised an approach utilizing regression 
analysis to endogenously estimate the capacity factors of variable re-
newables in WILIAM depending on the state of the energy system, 
including the capacity mix of power and heat generation plants, avail-
ability of flexibility options, and the structure of final energy demands. 
By integrating this approach with other modules, the IAM is able to 
establish a standardized method capable of incorporating hourly im-
pacts throughout the energy transformation processes, crucial in deep 
decarbonization scenarios. Additionally, this study examines and con-
firms the reliability of regression analysis when applied to the 27 
countries forming the current European Union (EU27 hereafter) within a 
global modelling framework developed using the system dynamics 
methodology. 

Research question: does integrating regression models that exact 
hourly information from an energy model into an IAM provide consis-
tent results? 
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The article is structured as follows. Section 2 explains the novelties, 
logic, and scope of the updated model. Section 3 details the results of 
scenarios developed for this study. Lastly, section 4 outlines the con-
clusions and suggests new ways for further research. 

2. Materials and methods 

Fig. 1 illustrates graphically the workflow implemented to represent 
energy variability in the IAM. Four main steps.  

1. Initially, the user defines the inputs and outputs of the hourly energy 
model that depicts the issue of curtailment. This task includes a range 
per input for the uniform distributions applied during the randomi-
zation of simulations (first two boxes in Fig. 1).  

2. Then, a procedure automatically generates all the input files for the 
energy model, runs the model as many times as input files exist 
through a parallel processing approach, and creates the database 
including the valuable information for the next step.  

3. Following this, the procedure conducts multiple logistic regression 
analysis with the content of the database. From the selection of in-
puts (features) to estimating the weights of the analytic equations 
that relate them with the outputs (regression models). 

4. Finally, the integrated assessment model has been modified to suc-
cessfully incorporate the analytic equations. So the user only needs to 
introduce the weights as part of the inputs for the IAM. 

It is essential to note that while the method can be replicated in other 
models, it has been tailored for EnergyPLAN (an hourly energy system 
model) and WILIAM (an integrated assessment model). Additionally, 
there are interconnections between the steps. For instance, limitations 
on the number of simulations impact the experimental design. The 
interaction of the IAM with the analytical equations illustrates a feed-
back loop between regression analysis and the IAM’s methodology 
(system dynamics). Several information loops were necessary to deter-
mine the optimal parameters. 

2.1. Regression analysis 

This section comprises selecting inputs and outputs of EnergyPLAN, 
defining the range of values for these inputs, creating and simulating files 
with EnergyPLAN, and organizing the results for computing logistic 
regression models. 

2.1.1. Design of the experiment 
The IAM used in this study aims to evaluate energy transitions to-

wards 100 % renewable energy systems. The experiment is designed to 
estimate potential energy curtailment based on the state of the energy 
system, including the capacity mix of power and heat generation plants, 
availability of flexibility options (storage, power-to-X, etc.), and the 
structure of final energy demands. The final energy demand is divided 
into four economic sectors: electricity, heat, transport, and industry. All 
decarbonization measures, based on renewables and flexibility options, 
are focused on the power system. To simplify the analysis, certain as-
sumptions were made. The heating sector is represented as a regional 
district network with interconnected entities, including total heat de-
mand, contributions from combined heat and power units (CHP), and 
two power-to-heat flexibilities (heat pumps and electric boilers). 
Transport flexibility is achieved through vehicles with smart charge- 
discharge technology for power exchange between the grid and batte-
ries. Industries are assumed to rely on synthetic fuels based on hydrogen, 
with considerations for demand and electrolyser capacity to enable 
flexible fuel production instead curtailment. 

The relationship between the system’s state and immediate conse-
quences is quantified through regression analysis. This method aims to 
discuss whether logistic models better capture potential curtailment 
effects than our previous work, where wind and solar power generations 

where found critical technologies of the problem [6]. EnergyPLAN1 

calculates the critical excess of electricity production (CEEP, potential 
curtailment). In this model, the last option to manage CEEP is curtail-
ment in solar and wind power plants, resulting in reduced capacity 
factors due to insufficient system flexibility. Decreasing capacity factors 
of solar and wind power plants occur when there is high installed ca-
pacity of these technologies but limited flexibility options. 

In order to provide data for regression analysis, the method requires 
data generation. To precisely depict curtailment on an hourly basis, the 
following process was implemented. 

1. Identify the most influencing demands and technologies for deter-
mining curtailment. 

2. Verify EnergyPLAN includes sufficient inputs to represent the vari-
ables identified in the previous step. 

3. Group the inputs logically to ensure coherent changes based on hy-
potheses. For example, the heat demand and infrastructure (such as 
large heat pumps and boilers) in district heating networks are 
interrelated.  

4. Assign numerical values (ranges and constants) to all inputs. These 
values are determined based on data collection and expertise in en-
ergy modelling. 

The concept of selecting a generalized case study for the experiment 
has facilitated the design’s independence from the specific region. In this 
approach, a constant legacy electricity demand. In this work, it is named 
“legacy” electricity demand the one originated from the historical year 
and its projection, in such a way that total electricity demand is the same 
plus new demands coming from flexible electricity demand (daily, 
weekly and monthly) [6]. Legacy demand serves as the basis for all in-
puts and outputs, in a way that the inputs and outputs are rescaled ac-
cording to this reference in the IAM. However, hourly distributions, 
specific to each region, are assumed as constant in all simulations. So, 
simulations would need to be repeated if these distributions would 
change. The values ranging from almost zero to very high numbers 
encompass and validate regressions across a wide scenario space. Zero 
values are excluded from the ranges to prevent an abundance of NaN 
values during regression analysis. 

A relevant methodological novelty respected to the previous publi-
cation [6] involves the strategy for creating the files intended to be 
executed with EnergyPLAN. After defining the numerical inputs, uni-
form probability distributions are utilized to introduce stochastic vari-
ability among independent cases, thereby preventing of biased criteria. 
In this study, we utilized 13 clusters of input data combined to generate 
12,800 simulations within a reasonable time frame (approximately 6 h 
on our machine2). To address this challenge, we organized inputs by 
identifying a representative one of them and then establishing propor-
tional or constant relation with the others. These groupings, called 
clusters, along with the corresponding equations and values used for this 
process are detailed in table A. 1. 

2.1.2. Simulations with the energy model 
Building upon the methods outlined in the previous article [6], sig-

nificant enhancements have been made to the code. The complete 
updated script is now open and accessible through an at a Gitlab re-
pository.3 To optimize the execution and minimize the runtime, parallel 

1 It is an energy module, open-access in the use, and very disseminated across 
literature (read the introduction section of [6]). The documentation of Ener-
gyPLAN is available at [58], and reference studies are [19,59].  

2 AMD Ryzen 7 4800H CPU @ 2.9 GHz (8 cores). RAM: 16 GB.  
3 https://urldefense.com/v3/__https://github.com/lher 

c7/LOCOMOTION__;!!D9dNQwwGXtA!RtVm4Fwq2MkXjOQ4QVrQPp8KQY 
mseF0Zz2HrE93bdu1KerAUG6_ZmAJQ8RE2265UDtiF0hbjSRaGRmKF0LkCME 
o$. 
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Fig. 1. The methodology overview in this work begins with selecting EnergyPLAN inputs and concludes with modelling in the IAM.  

Fig. 2. Flow chart of the process to generate the input files for EnergyPLAN, simulate all the cases, and save the results of interest in an orderly manner.  
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processing of EnergyPLAN [19] simulations has been implemented, 
leveraging 16 cores simultaneously. The simulations are executed using 
a modified spool function via the command terminal. While the clusters 
remain unchanged in the previous approach, uniform probability dis-
tributions are now employed to determine their values for every simu-
lation, being them limited by a lower and upper bound. This process is 
illustrated in Fig. 2 (pseudocode provided in Table 8). The boundaries of 
the parameter values are established in a manner similar to the data 
utilized in prior research [6]. The distributions are presented in table A1. 
In many instances, the ranges are broader, particularly on the lower end, 
as this approach allows for the evaluation of scenarios with limited or no 
definitive options. For certain cases, such as the generation capacity for 
wind and solar energy, the upper limits were expanded through an 
iterative process. This adjustment was necessary to consider unprece-
dented additions of capacities to exploit renewable energy sources that 
may be assumed in green scenarios. 

The EnergyPLAN inputs were parametrized similarly to previous 
work [6]. The base case scenario file was created, and then the possible 
changes in the values for some variables were defined. These changes 
include 13 clusters of values that change in unison within each cluster. 
These clusters are related to the capacities of solar PV, wind, dis-
patchable non-fossil fuel generators such as nuclear, geothermal, and 
hydro. Additionally, the static storage has its own cluster with values for 
storage capacity, input, and output capacity. 

The following cluster pertains to heat demand and is presented by a 
single value for the total heat demand in district heating. Subsequently, 
the cluster related to the capacities in cogeneration power plants is 
defined. This cluster provides information on the capacities of thermal 
power plants in operation mode when supplying heat to the district 
heating network, in operation mode when supplying only electricity, as 
well as the thermal capacity. 

Heat pump cluster specifies the capacities of heat pumps in district 
heating and the size of the heat storage. Similarly, the capacity of the 
electric boiler and associated thermal storage is defined. 

The electric vehicles cluster outlines the demand for charging elec-
tric vehicles in the smart charge mode, including factors such as 
charging capacity, storage capacity and demand for other transport 
technologies such as internal combustion engines. The vehicle-to-grid 
(V2G) capacity is defined separately. 

The hydrogen demand and supply are specified in two different 
clusters. 

Within the hydrogen supply cluster, electrolyser capacity and 
hydrogen storage are defined. 

The last cluster pertains to flexible demand, where the total sum of 
flexible demand is inputted along with the flexible capacity that can be 
utilized. 

The process commences with establishing the fundamental param-
eters of the energy system, setting them as constant assumptions for 
consistency throughout the regional case study. These constants include 
the CEEP strategy, the hourly distribution profiles of electricity, heating, 
and transport and demands, and the variable energy generation distri-
bution profiles. These values do not change across iterations, leading to 
the development of a foundational or reference simulation that serves as 

the basis for subsequent steps. 
The upgraded version of the spool function executes all the cases 

using EnergyPLAN. Initially, the list of cases is divided into a set of in-
stances, with each instance determining the simultaneous runs activated 
on the machine. Additionally, the total number of cases to be executed is 
specified by the user. 

In each instance, the option to load 10, 50 or 100 cases simulta-
neously per core in the parallel spool functions is available. After the 
runs in each spool function are completed, post-processing of the results 
takes place. The relevant data is saved to the designated folder, while 
any excess data is removed. 

The more files per run, the greater the memory demand and pro-
cessing time. Thus, the number of files represents a trade-off between 
time efficiency and hardware resources. 

Considering the possibility of having a combination count that is not 
divisible by an even number of multiprocessing cores, the final instance 
adapts by the remaining number of cases. 

Values updated according to recent studies.  

• The average annual distance driven with an electric vehicle (EV) has 
been increased to 150,000 km [20].  

• The average autonomy of an EV has been reduced to 250 km [21]. 

A second round of simulations was necessary to examine the impacts 
of low-flexibility configurations on the outputs, particularly focusing on 
the decrease in the capacity factor of solar and wind power plants. In this 
study, utilizing a probability distribution approach proved beneficial, 
leading to a reduction in the number of cases run from the 3,188,646 in 
the previous experiment to just 12,800. 

Hourly profiles were tailored to accurately depict the variable re-
newables technologies and demands specific to the analyzed region, 
encompassing the 27 countries forming the current European Union 
(EU27). These profiles are visually accessible in appendix B. 

2.1.3. Fitting multiple logistic regression models 
In comparison to the previous study, separate logistic regressions 

(equation (1)) were developed for the capacity factors of wind and solar 
technologies. This approach was chosen because these variables are 
constrained to values between 0 and 1, constraining the regression 
training. 

The regression process begins with co-linearity and correlation 
analysis on the covariates. Subsequently, univariate models are con-
structed for each of the technologies (wind and solar capacity factors), to 
evaluate the individual statistical significance of the corresponding 
covariates. A significant threshold of 5 % (p-value) is set for this 
assessment. Upon identifying statistically significant covariates, logistic 
regression models are developed with a polynomial factor of two for 
covariates to explore non-linear associations, along with the inclusion of 
two-way interactions. 

The coefficients (sign) of each final covariates and interaction in the 
model are evaluated to confirm their impact on reducing capacity fac-
tors as outlined in the literature. Logistic regression proved superiority 
over alternative regression approaches such as linear regression when 

Table 1 
Pseudocode for the process in Python and EnergyPLAN.  

The modeller creates the base input file for EnergyPLAN that will be used in simulations. 
The modeller creates the table that contains the lower and upper values for the considered technologies. 
Python script reads the table containing the data on the lower and upper bounds. 
Load a default EnergyPLAN model case of input file. 
Creation of the predetermined number of EnergyPLAN input files based on the base EnergyPLAN file and randomly generated values from a given range. 
Create the list of input files. 
Load subsequent lists with the names of the files into spool function. 
Run the function. 
Save the results. 
From results data, perform postprocessing to extract only parts of the data of value to the further process. 
Delete the rest of the data to save on space.  
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evaluated based on prediction accuracy. The model validation was 
conducted using metrics such as R-squared, Mean Squared Error (MSE), 
and assessment of residual normality. 

Table 2 summarizes this comparison between multiple linear and 
logistic regression models based on the same predictors. Both were 
trained with the same inputs and data. The logistic shape enhances the 
accuracy, as the higher R-squared statistic and lower mean squared error 
show. Consequently, only the significant coefficients of the logistic 
regression models were finally integrated into the IAM called WILIAM. 

p(x)=
1

1 + e
−

(

β0+
∑n

i=1
βi•xi

) (1) 

Providing a more detailed explanation of the performance of the 
logistic models necessitates further analysis. Each point in Figs. 3 and 5 
points out the coordinates of two values: the output from EnergyPLAN 
(y-axis) and the output from the logistic regression model (x-axis). A 
perfect accuracy is indicated by a straight red line extending from 0 to 1. 
A uniform cloud of points around the red line is observed, showing no 
specific preference or non-linear trend. The goodness is further evi-
denced by the histogram of residuals in Figs. 4 and 6, where the majority 
of cases centre around zero (this was not the case for linear regression 
models). Specifically, Table 4 and Table 6 present a summary of the 
numerical residuals, with median values of − 0.02452 for solar, and 
0.07593 for wind power plants (see Table 5). 

Table 3 displays the coefficients used to calculate the reduction in the 
capacity factor of solar power plants. The absence of significance 
(considered at a p-value of 5 %) for stationary storage is unexpected. 
Following tests conducted with EnergyPLAN, it was deduced that this 
lack of significance stems from the low priority given to this technology 
in the merit order curve for hourly electricity supply. Consequently, 

EnergyPLAN underestimates the impact of stationary storage, including 
hydropower and utility grid batteries. Similarly, electrolysers 
(HYDROGEN_SUPPLY) did not exhibit significance in the fitting process 
as a main effect. However, the interaction between HYDROGEN_SUPPLY 
and Solar appears as significant. 

2.2. Regression models in an integrated assessment model 

The following section overviews the energy module of WILIAM 
before delving into the necessary modifications to integrate the regres-
sion models and their effects. 

2.2.1. The energy module of the integrated assessment model 
Ensuring an accurate representation of energy is crucial for evalu-

ating future sustainability pathways. The main objective of the devel-
oped energy module is to calculate the primary energy requirements and 
associated greenhouse gas (GHG) emissions needed to meet economic 
demand. Fig. 7 illustrates the submodules that make up the energy 
module of WILIAM, highlighting the principal interrelationships across 
modules. 

This module is structured into seven sub-modules.  

(1) End-use: Translates the economic demand into final (marketed) 
energy demand using a hybrid approach that combines bottom- 
up analysis with sectoral energy intensities for different sectors. 
The following energy carriers are considered: electricity, gas, 
heat, hydrogen, liquid, solid bioenergy, and solid fossil.  

(2) Energy transformation: Maps the entire energy conversion 
chain from final to primary energy, including intermediary en-
ergy commodities and an allocation function for power plant 
utilization. 

(3) Energy capacity: Models power plant capacity stock, decom-
missioning of expired capacities, and the build-up of new ca-
pacities, with the latter driven by an allocation function. The 
allocation of new capacities of process transformation (CHP 
plants, power plants and heat plants) is determined by a one-to- 
many allocation function ALLOCATE_AVAILABLE from Vensim 
software (Vensim DSS [20]) which is governed by exogenous 
priorities that range from 0 (less priority) to 1 (maximum 
priority). 

Table 2 
Comparison between the multiple logistic regression and multiple linear 
regression models. MSE: mean squared error.    

Solar Wind  

R2 MSE R2 MSE 

Logistic model 0.927 0.000721343 0.938 0.001429833 
Linear model 0.882 0.001008413 0.882 0.002371267  

Table 3 
Statistics of the output representing the reduction in the capacity factor of solar power plants (logistic regression model).  

SOLAR_CF_REDUCTION (logistic) Coefficient Std.Error z-value Pr(>|z|)  

(Intercept) − 9.22E+00 1.25E+00 − 7.409 1.28E-13 *** 
SOLAR 1.80E-04 2.34E-05 7.66E+00 1.83E-14 *** 
SOLAR2 − 1.02E-09 1.43E-10 − 7.15E+00 8.43E-13 *** 
WIND 2.73E-05 1.17E-05 2.33E+00 0.01957 * 
WIND2 − 1.69E-10 6.92E-11 − 2.45E+00 0.01443 * 
HEAT_DEMAND − 1.48E-03 1.14E-03 − 1.29E+00 0.19706  
HEAT_DEMAND2 3.38E-07 8.61E-07 3.93E-01 0.69468  
ZERO_GHG_SEMIFLEX 2.75E-04 6.35E-05 4.33E+00 1.51E-05 *** 
ZERO_GHG_SEMIFLEX2 − 1.77E-09 1.94E-09 − 9.11E-01 0.3623  
HYDROGEN_DEMAND − 5.12E-02 1.29E-02 − 3.98E+00 6.86E-05 *** 
HYDROGEN_DEMAND2 2.06E-05 1.09E-04 1.89E-01 0.84993  
FLEXIBLE_DEMAND − 3.04E-02 9.43E-03 − 3.22E+00 0.00129 ** 
FLEXIBLE_DEMAND2 − 6.01E-05 5.87E-05 − 1.03E+00 0.30553  
V2G − 1.90E-05 3.75E-06 − 5.06E+00 4.20E-07 *** 
V2G2 − 3.77E-12 9.02E-12 − 4.18E-01 0.67618  
HYDROGEN_SUPPLY − 3.21E-05 7.88E-05 − 0.407 0.68375  
HYDROGEN_SUPPLY2 5.62E-10 4.18E-09 0.135 0.89296  
SOLAR ⋅ WIND 4.57E-11 1.06E-10 0.433 0.66533  
SOLAR ⋅ HEAT_DEMAND 5.97E-09 1.14E-08 0.525 0.59947  
SOLAR ⋅ ZERO_GHG_SEMIFLEX − 1.63E-09 5.89E-10 − 2.767 0.00566 ** 
SOLAR ⋅ HYDROGEN_DEMAND 3.56E-07 1.37E-07 2.597 0.0094 ** 
SOLAR ⋅ FLEX_DEMAND 1.46E-10 7.80E-10 0.187 0.85157  
SOLAR ⋅ V2G 1.37E-10 4.18E-11 3.29 0.001 ** 
SOLAR ⋅ HYDROGEN_SUPPLY 2.45E-07 1.01E-07 2.425 0.01531 * 
Significance codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘’ 1  
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(4) Energy Return on Energy Investment (EROI): Computes the in-
dicator of specific renewable technologies as well as for the whole 
system [22].  

(5) Variability and storage: Tracks sub-annual effects on annual 
energy balances based on the current power system setup, 
including demand-side management, storage, and sector 
coupling (the main topic of this paper).  

(6) Techno-sustainable potentials: Considers geographical, 
resource and EROI constraints of Renewable Energy Storage 
(RES).  

(7) Emissions: Calculates (direct) GHG emissions associated to the 
combustion of fossil fuels in the energy module. 

For a comprehensive overview of the energy module of WILIAM, cf 
[16,23]. An explanation of the capacity expansion and transformative 
processes of electricity is provided here to enhance understanding of the 
components and outcomes of the model developed in this work. 

In essence, the expansion of traditional power plants follows a cycle 
of influences. The process begins with the capacity stock, which serves to 
calculate the available electricity production by technology, taking into 
account maximum full load hours (subject to constraints). Following 
this, the shortfall between the available electricity and the electricity 
demanded by the economy triggers the need for new installations. 

The distribution of the energy shortfall among various technologies 
is determined by two factors. Firstly, each technology sets a maximum 
expansion limit for its supply, depending on factors like current installed 
capacity, land, capacity factors, and biomass available. Secondly, the 
allocation process is modelled throughout a dedicated function within 
the Vensim DSS software, which emulates a market with access 

priorities. This functionality present in the software utilized for 
WILIAM’s development (Vensim DSS [24]). This allocation function is 
designed to promote competitiveness, ensuring that each technology 
contributes to the supply. Generally, technologies with higher priority 
receive a larger portion of the shortfall. 

Finally, the annual installed capacity involves transforming the en-
ergy shortfall (measured in EJ/year) into new capacity (measured in 
TW/year) through unit conversions and consideration of the full load 
hours once more. 

2.2.2. Integration of the logistic regression models and flexibility options in 
WILIAM 

This implementation of regression models in WILIAM requires three 
key advances: a) Clearly depicting the energy demands and technologies 
using regression models within the IAM; b) Establishing equivalence 
between the inputs and outputs in the IAM and EnergyPLAN; c) Incor-
porating feedback loops from the outcomes of the regression models 
(outputs) back to the root causes of the issue (inputs) within the IAM, 
along with addressing any secondary effects on other components. 

New implementations were necessary in WILIAM to incorporate the 
flexibility options utilized in the regression models. These include 
hydrogen and synthetic fuels supply, stationary storage (PHES and 
electric batteries), power-to-heat (heat pumps and electric boilers), as 
well as the vehicle-to-grid capacity (V2G) and demand management. 
The stock of installed capacities is governed by the differential equation 
(2), which considers the equilibrium between the expansion capacity 
(EC) and the decommission capacity ratio (stock divided by the facility’s 
lifetime). 

Fig. 3. Output (reduction of the capacity factor in solar power generation) delivered by the logistic regression model (X axis) in comparison to the real value 
calculated in EnergyPLAN (Y axis). The output fitted a binomial probability distribution. 
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d
dt

stocki = EC −
stocki

lifetimei
(2) 

The expansion is based on both an exogenous policy assumption over 
time and an endogenous mechanism for installing new flexibilities 
(explained later). This expansion is constrained by regional potentials, 
such as the maximum hydropower capacity (PHES) or the final heat 
demand (power-to-heat technologies). The expansion of heat storage is 
directly linked to the installed capacity of heat pumps. 

Electrolysers are categorized into stationary and flexible units to 
model varying trends in capacity factor, lifetime and profitability. The 
hydrogen generated is distributed among three fuels: synthetic methane, 
synthetic methanol, and pure hydrogen. If demand of pure H2 or syn-
thetic fuels rises, any surplus production is met by new stationary plants. 
Conversely, the capacity of flexible electrolysers is increased in the 
presence of curtailment in the power system. Alternatively, the modeller 
can adjust an external policy to expand electrolyser capacity between 
specific years. 

Thus, an exogenous policy assumption was implemented to depict 
the impact of flexible demand response, the progression of synthetic 
fuels in the liquid and gas shares of final energy, and the proportion of 
V2G charging capacity in the electric vehicles fleet. These policies are 
linearly phased in over time (t), starting from an initial value (Ti) and 
reaching a final value (Tf), as outlined in equation (3). 

valuet =
valueTf − valueTi

Tf − Ti
(3) 

Fig. 8 illustrates the causal loop diagram integrated into WILIAM to 
establish feedback between the inputs and outputs of the regression 
models. It displays three loops addressing the occurrence of curtailment 
in the power system. In the right loop, a greater volume of curtailed 

renewable energy (TWh) leads to a reduction in the capacity factor, 
consequently raising the average expansion capacity (ΔIC, as per 
equation (4)) needed to fulfill the electricity demand. This excess ca-
pacity is met by the installation of new suppliers within the system. 

In the left loop, flexibility options respond to curtailment by incor-
porating new installations. The determination of which technologies to 
expand is made within a market model structured around the priority- 
based ALLOCATE AVAILABLE function with the same priority to all 
flexibility options for the sake of simplicity. Greater curtailment results 
in a more substantial expansion of flexibility options to counteract 
electricity losses effectively. 

The third loop in the middle introduces a technical assumption 
regarding the capacity expansion of variable renewables. If curtailment 
surpasses a specified maximum threshold (MAX_CURTAILMENT_SP in 
equation (5)), an implemented penalty logistic function (equation (6)) 
impedes the expansion process. 

The structural validation conceptualized in Fig. 8 could not be 
assessed in the IAM due to two reasons. Firstly, there are not empirical 
public data of curtailment at EU27 level, so we cannot compare our 
results with them. Secondly, the levels of VRES simulated in this work 
have no real experience in the world. Data provided by organisms like 
the IEA’s report [5] are very valuable for this analysis. We hope to find 
enough data in the future to effectively address and compare models 
with real measurements in the power system. In general, literature has 
shown that validation of IAMs is subject to many issues in, e.g., repro-
ducing historical observations [25]. 

ΔIC=
curtailment [TWh]

8760 [h]
(4)  

Fig. 4. Histogram of residuals residuals for the logistic regression model depicting the decrease in the capacity factor of solar power plants.  
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signal curtailmenti =
share curtailment elec

MAX CURTAILMENT SP
(5)  

share lossi =
1

1 +

(
(1− signal curtailmenti)•0.5

signal curtailmenti•0.5

)2 (6) 

The modelling of power-to-heat technologies requires additions to 
the energy transformation chain. The integration leads to an increase in 
electricity usage and a reduction in heat demand for final energy de-
mands. Additionally, the adoption of electrolysers (power-to-hydrogen 
technology) results in a rise of electricity consumption and a decrease in 
the need for liquids and gaseous fuels within the system. 

The historical storage trend data was sourced from the IRENA 
database [26] for pumped hydropower storage (PHS), while data for 

Fig. 5. Output (reduction of the capacity factor in wind power generation) delivered by the logistic regression model (X axis) in comparison to the real value 
calculated in EnergyPLAN (Y axis). The output fitted a binomial probability distribution. 

Fig. 6. Histogram of residuals residuals for the logistic regression model depicting the decrease in the capacity factor of wind power plants.  

Table 4 
Statistics of residuals for the logistic regression model for the reduction in the 
capacity factor of solar power plants.  

Min 1Q Median 3Q Max 

− 0.59604 − 0.1201 − 0.02452 0.03976 0.72008  

G. Parrado-Hernando et al.                                                                                                                                                                                                                   



Energy 304 (2024) 131903

10

stationary batteries was obtained from the International Energy Agency 
[27] and a German case study [28]. The lifetime of hydropower storage 
technologies (80 years) and stationary batteries (20 years) were 
extracted from Table 2 in Ref. [29]. 

3. Scenarios 

The structure of this article is shown in Fig. 9. The study concentrates 
on the feedback generated by the regression functions within various 
segments of the energy module of the integrated assessment model, 
known as WILIAM. Consequently, a green growth scenario has been 
parametrized to illustrate the impact of this research. 

A green growth scenario is envisioned as a form of environmentally 
sustainable economic growth that aims to attain development and 
climate objectives through innovations in the supply chain and cleaner 
production processes [30]. Consistent with Hickel and Kalis [31], these 
scenarios seek to decouple the growth of economic activities, typically 
measured by the gross domestic product, from carbon emissions. This 
decoupling is achieved through extensive utilization of renewable en-
ergy sources and the electrification of human activities. 

Table 5 
Statistics of the output representing the reduction in the capacity factor of wind power plants (logistic regression model).  

WIND_CF_REDUCTION (logistic) Estimate Std.Error z-value Pr(>|z|)  

(Intercept) − 6.73E+00 6.21E-01 − 10.837 <2.0E-16 *** 
WIND 8.75E-05 1.05E-05 8.302 <2.0E-16 *** 
WIND2 − 2.07E-10 6.12E-11 − 3.379 0.000728 *** 
SOLAR 7.39E-05 8.62E-06 8.573 <2.0E-16 *** 
SOLAR2 − 2.11E-10 5.42E-11 − 3.882 0.000104 *** 
HEAT_DEMAND − 1.83E-03 6.48E-04 − 2.82 0.004797 ** 
HEAT_DEMAND2 1.16E-06 6.40E-07 1.816 0.069443 . 
ZERO_GHG_SEMIFLEX 2.39E-04 3.69E-05 6.483 8.97E-11 *** 
ZERO_GHG_SEMIFLEX2 − 2.16E-09 1.44E-09 − 1.503 0.132896  
HYDROGEN_DEMAND − 2.80E-02 7.37E-03 − 3.795 0.000147 *** 
HYDROGEN_DEMAND2 2.04E-05 8.00E-05 0.255 0.798602  
FLEXIBLE_DEMAND − 2.55E-02 5.23E-03 − 4.879 1.07E-06 *** 
FLEXIBLE_DEMAND2 1.22E-05 4.27E-05 0.286 0.775044  
V2G − 1.38E-05 2.05E-06 − 6.704 2.03E-11 *** 
V2G2 − 1.43E-12 6.50E-12 − 0.22 0.82561  
HYDROGEN_SUPPLY − 1.64E-05 3.65E-05 − 0.45 0.652774  
HYDROGEN_SUPPLY2 4.81E-10 3.09E-09 0.156 0.876365  
SOLAR ⋅ WIND − 3.71E-10 6.17E-11 − 6.014 1.81E-09 *** 
WIND ⋅ HEAT_DEMAND − 7.66E-09 5.86E-09 − 1.307 0.19115  
WIND ⋅ ZERO_GHG_SEMIFLEX − 1.26E-09 3.04E-10 − 4.124 3.73E-05 *** 
WIND ⋅ HYDROGEN_DEMAND 1.00E-07 6.79E-08 1.476 0.139971  
WIND ⋅ FLEX_DEMAND 9.63E-08 4.99E-08 1.929 0.053765 . 
WIND ⋅ V2G 8.36E-11 2.05E-11 4.074 4.62E-05 *** 

Significance codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘’ 1. 

Table 6 
Statistics of residuals for the logistic regression model for the reduction in the 
capacity factor of wind power plants.  

Min 1Q Median 3Q Max 

− 0.73477 − 0.18999 − 0.07593 0.11181 0.79293  

Fig. 7. General overview of the energy module in WILIAM.  
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For the two scenarios involving flexibility options, all policies start in 
2025. The flexible demand increases from zero to 10 % by 2030. The 
percentage of liquids and gases replaced by hydrogen-based synthetic 
fuels rises from zero to 10 % by 2040. Lastly, the proportion of vehicle- 
to-grid electricity exchange during smart charging mode escalates from 
zero to 50 % of the total electric vehicle capacity by 2050. 

The reference scenario is employed to understand the impacts of the 
green growth scenario on the model without curtailment effects or 
flexibility options (as it is defined as a low RES penetration scenario). 
After that, the green growth scenario is simulated in three distinct 
manners. First, curtailment is applied without expanding flexibility 
options. Second, curtailment is applied along with expanding flexibility 
options. Third, the latter includes a policy to restrict electricity curtail-
ment to a maximum of 5 %. This 5 % limit is recommended by some 
authors for economic reasons [32] or as an ad-hoc assumption [33]. A 
brief description of these scenarios is presented in Table 7, while the 
names and meaning of the simulations are outlined in Table 8. 

When implemented, the policy of flexible demand is iniciated in 

2020. It gradually increases from 0 to a portion of the existing legacy 
electricity demand by 2030 (reaching 5 % in the scenario with flexibility 
options), after which it remains constant until the conclusion of the 
simulation. 

The scenarios outlined here are not intended to mirror a realistic or 
probable future. Instead, their aim is to depict rather extreme situations 
to showcase the model’s mechanics and explore the potential and lim-
itations of the approach. Therefore, the scenarios tested aim to replicate 
current EU27 policies promoting the increase in renewable energy share 
and electfrification process. It is important to note that these scenarios 
should not be viewed as recommendations from the authors. Rather, the 
results illustrate the behaviour of the logistic functions generated by the 
regression analysis and the endougenous expansion of flexibility options 
(assigning equal priority to all technologies). 

4. Results 

To reduce complexity in figures, the 40 technologies of the energy 

Fig. 8. Causal loop diagram of the factors afecting the management of energy variability in WILIAM.  

Fig. 9. Framework of this work to study the regression analysis in WILIAM.  
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transformation submodule of WILIAM are aggregated and mapped 
under the following acronyms.  

• “WIND”: offshore and onshore wind.  
• “SOLAR”: open-space photovoltaic, urban photovoltaic, and 

concentrated solar power.  
• “BEECS”: bioenergy in combined heat and power units (CHP) and 

power plants (PP) with carbon capture and storage.  
• “Fossil_CCS”: fossil plants equipped with carbon capture and storage 

technologies.  
• “NUC”: nuclear power plants.  
• “RoRES”: rest of renewables. Geothermal, waste, biofuels (liquids, 

solids, and gases), oceanic. 

However, additional feedback mechanisms need to be considered to 
accurately capture the economic impacts of the energy transition. This 
includes endogenizing the energy transformation chain, investments 
dynamics, changes in economic structure, and more, which are areas of 
ongoing research. 

The gross domestic product shows a consistent growth of the EU27 
economy, increasing from around 13.5 billion dollars in 2015 to around 
27.3 billion dollars in the reference scenario, and to 31.6–32.5 billion 
dollars in the GG scenarios. In the current version of WILIAM (v1.2), the 
only feedback loop from energy to the economy is done through fossil 
fuel prices. In the GG scenarios, where there is a shift from fossil fuels to 
renewables, prices are expected to decrease due to decreased supply- 
demand tension and the utilization of resources of higher quality 
grade leading to lower extraction costs. However, additional feedbacks 
mechanisms need to be considered to accurately capture the economic 
impacts of the energy transition. This includes endogenizing the energy 
transformation chain, investments dynamics, changes in economic 
structure, and more, which are areas of ongoing research. 

Furthermore, the trend towards electrification in the energy sector is 
evident in Fig. 10. The reference scenario indicates a modest growth in 
final energy consumption to approximately 3600 TWh. In contrast, the 
GG scenario projects consumption exceeding 8000 TWh by 2050, 
despite the annual energy savings achieved through reduced energy 
intensities across all sectors. 

The electricity demand is met by utilizing various energy sources 
(see Fig. 11). EU27 is increasingly embracing renewables for the future. 
In the proposed reference scenario, this green transition is moderate, 
with the installation of ~1000 GW (37 % of the mix). This leads to a ten- 
point rise in the share of renewable electricity, illustrated in Fig. 12. 

Conversely, the GG scenarios presents a significant challenge due to 
the extensive electrification of the economy. The deployment of 

Table 7 
Description of key inputs and assumptions for the green growth narrative in this 
article (EU27).   

Reference (REF) Green Growth (GG) 

Substitution between of 
final energies 

Continuation of future 
trends in consumption of 
goods and services, 
along with sectoral final 
energy intensities. 

Electrification of the 
economy. Promotion of 
substitution of fuels by 
electricity. 

Capacity expansion of 
energy facilities 

Historical values remain 
constant for the future. 
High values of power 
plants fuelled by gases 
(0.8) and onshore wind 
(0.7). 

Increase the exploitation 
of renewable energy 
sources. Low values (0.2) 
for fossil fuels and high 
values for renewables 
(0.9). 

Hydrogen No promotion of 
synthetic fuels 

Implications of 
transitioning from fossil 
fuels to hydrogen 
generated by 
electrolysers for 
industrial use (as 
feedstock). To 
decarbonize, an 
additional 1400 TWh of 
electricity (equivalent to 
~0.16 TW of electrolysers 
in operation) will be 
needed by 2050. This 
shift impacts the 
production of ammonia 
and methanol in the 
chemical industry, liquids 
refinery, and steel 
production. These 
numbers are taken from 
Ref. [34]. 

Total transport passenger 
demand 

There is no reduction in transport demand by mode and 
type of powertrain compared to past trends (passenger- 
km). 

Load factor and fuel 
efficiency in transport 

The historical trend is assumed to continue, with no 
change in the intensity of people per vehicle (mode and 
type of powertrain). 

Passenger transport 
demand by mode 

Passenger transport demand includes modal share, 
transport mode, and powertrain use. From 2025 to 
2030, the policy assumes a broad transition to electric 
vehicles. Percentages vary by region. For example, in 
2030, electric vehicles are projected to reach 32 % in 
Lithuania, 13 % in Malta, 21 % in Spain, 25 % in 
Sweden, and 26 % in Germany. 

Priorities for the 
allocation of capacity 
expansion of process 
transformation 
technologies 

High values are assigned 
to renewables (0.7 for 
VRES) and lower values 
to fossil fuels (0–0.2). 

Higher values are 
assigned to renewables 
(0.7 for VRES) while 
lower values are 
designated for fossil fuels 
(0–0.2). 

Solar rooftop technologies The available space on urban building roofs is divided 
equally, with 50 % allocated for solar PV pannels and 
50 % for solar thermal systems. 

Improvement of solar-PV 
efficiency 

An annual efficiency increase of 0.0015 is assumed 
from 2022 (20.5 %) to 2050 (24.7 %). 

RES potentials RES potential modelling is documented in the wiki 
github [35]. Solar and bioenergy potentials are 
endogenosuly determined with the interaction with the 
land-use module. For more details about the modelling 
of the land availability for solar PV on ground cf [36]. 
For solar and wind the selected EROImin (standard) is 
8:1. The rest of renewables are limited as follows:  
• Onshore wind: 3.3 EJ/year  
• Offshore wind (fixed): 2.9 EJ/year  
• Geothermal: 0.14 EJ/year  
• Dammed hydropower: 1.33 EJ/year  
• Run-of-fiver hydropower: 0.43 EJ/year  
• Oceanic: 0 EJ/year 

Storage potentials  • Pumped hydropower storage (0.057 TW)  
• Utility-scale batteries (0.2 TW)  

Table 8 
Structure of simulations using the WILIAM integrated assessment model.  

Acronym Name Simulation 

A REF Business as usual without the effect of 
hourly resolution in the power system. 

B GG Green growth without hourly resolution 
impact in the power system. 

C GG_VarEffects Green growth with hourly resolution 
impact (through regression analysis) in 
the power system. 

D GG_VarEffects + FlexOpts Green growth with hourly resolution 
impact (through regression analysis) in 
the power system and the active 
mechanism for capacity expansion of 
flexibility options. 

E GG_VarEffects + FlexOpts 
+ MAXcurtailment 

Green growth with hourly resolution 
impact (through regression analysis) in 
the power system, the active mechanism 
for capacity expansion of flexibility 
options, and limitation of electricity 
curtailment (5 %).  
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Fig. 10. Electricity mix over time in EU27 (TWh). A) REF; B) GG; C) GG_VarEffects; D) GG_VarEffects + FlexOpts; E) GG_VarEffects + FlexOpts + MAXcurtailment. 
CCS: carbon capture and storage. BECCS: bioenergy with CCS. RoRES: rest of renewables. NUC: nuclear. 
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Fig. 11. Installed capacities in the power sector of EU27 over time (GW). A) REF; B) GG; C) GG_VarEffects; D) GG_VarEffects + FlexOpts; E) GG_VarEffects +
FlexOpts + MAXcurtailment. CCS: carbon capture and storage. BECCS: bioenergy with CCS. RoRES: rest of renewables. NUC: nuclear. 
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renewables surges to ~4300–5300 GW (91–96 % of the mix) to achieve 
a penetration exceeding 80 % in the electricity mix across all GG 
scenarios. 

The wind capacity reaches saturation in all scenarios due to a sig-
nificant constraint related to the biophysical regional potential of the 
resource. This potential is endogenously calculated considering factors 
such as available land use and the minimum (standard) energy-return- 
on-energy-invested (EROI) threshold of 8:1. For a detailed explanation 
of this method these the documentation of WILIAM (cf. section 2.4 of 

deliverable 8.4 of the H2020 Locomotion project [37]). 
Activating the curtailment feedback in the model (see Fig. 13) re-

duces the full load hours of variable renewables. As GG scenarios spe-
cifically promote these technologies, exogenous priorities were higher 
for variable renewables than other suppliers to balance the annual 
electricity demand. This increased expansion results in a higher level of 
curtailment. This creates a form of backsliding, forming a positive 
feedback loop. Scenario C, compared to B, features a higher installed 
capacity for harnessing solar energy in Fig. 11 due to this loop. In 

Fig. 12. Percentage of renewable electricity in the power system.  

Fig. 13. Percentage of curtailment in the power system (REF and GG overlap in 0% by scenario design).  
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Fig. 14. Endogenous capacity expansion of flexibility options in WILIAM. Units: TW/year. P2H: power-to-heat (electric boilers and heat pumps). ELT: flexible 
electrolysers. V2G: vehicle-to-grid capacity. STO: stationary storage (utility-scale grid batteries and pumped hydropower storage). 

Fig. 15. Stress signal in the power system. This feedback is exclusively activated for the simulation titled “GG_VarEffects + FlexOpts + MAXcurtailment”.  
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scenario C, the proportion of electricity curtailed peaks at nearly 60 % in 
2039, while scenario B assumes zero curtailment. 

The application of flexibility options in scenario D increases opera-
tional hours, thereby reducing curtailment peaks by around 30 % 3 years 
later. However, the endogenous mechanism to address curtailment falls 
short in ensuring profitability, which was initially set at a maximum of 5 
%. 

In scenario E, where curtailment is kept below 5 %, the capacity 
factor of VRES is further enhanced, alleviating the pressure for new 
installations. This leads to a slight reduction in renewable penetration 
after 2037. Scenario E proves highly effective as it requires approxi-
mately 3 TW less installed capacity than other GG scenarios (C and D) to 
achieve a similar renewable share in the electricity mix of around 80 %. 
Scenario E emerges as the most plausible among GG narratives since 
curtailment is maintained at realistic levels according to actual data 
from Ref. [5]. 

The level of curtailment in the system positively correlates with the 
intensity of flexibility options expansion, as depicted in Fig. 14. Simu-
lations C and D exhibit an exponential response to mitigate the growth of 
curtailment. The maximum annual expansion is achieved with flexible 
electrolysers, reaching approximately 150 GW by 2050 in simulation D. 

In this scenario and by the final year, stationary storage and flexible 
electrolysers approach 150 GW, while power-to-heat technologies 
(electric boilers and heat pumps) collectively reach nearly 90 GW. 
However, only vehicle-to-grid capacity showed statistical significant 
during regression analysis, thus playing a significant role in the flexi-
bility of the system. 

With an estimated 7 TW from the electrification of the transport 
sector by 2050 and the exogenous policy assumption of V2G in smart 
charge mode (set at 50 % by the final year), vehicle-to-grid capacity 
emerges as a key player in the causal loop with substantial flexibility 
impact. 

The signal used to control the growth of VRES capacities is illustrated 

in Fig. 15 for the GG scenario E. There is a significant surge in 2020 
coinciding with the onset of the energy transition. In this scenario, re-
newables progress steadily in tandem with the implementation of flex-
ibility measures. The demand for VRES remains consistently high, with 
annual expansion restrictions exceeding 50 % for the majority of the 
period. 

The environmental impact varies significantly across scenarios, as 
depicted in the annual carbon emissions from the energy transformation 
chain in Fig. 16. Initially, the business-as-usual scenario (A) reflects a 
stable trend of emissions over time. In the GG scenarios, there is an 
overall decreasing trend initially, with scenario E being an exception. 
The transition to renewable energy is insufficient to curb carbon emis-
sions post-2040, as rising energy demands from the economy lead to 
increased fossil fuel usage in the absence of adequate renewable con-
tributions (constrained by the stress signal and maximum curtailment). 
Consequently, the penalty on curtailment control results in higher car-
bon emissions in the energy sector compared to the other GG scenarios 
(B, C, and D). Scenario E showcases the fastest decarbonization pathway 
until 2040 due to the higher share of renewables in this period (cf. Fig 
12). However, after this year, the decreasing trend in CO2 emissions is 
reversed and start to increase due to the reduction in the share of re-
newables. This behaviour is determined by the trade-off between more 
installed capacities with lower capacity factors in scenarios C and D, and 
less installed capacities with higher capacity factors in scenario E. 

5. Discussion 

Curtailment poses a prevalent challenge in EU27 decarbonization 
initiatives. Various methods are currently available to illustrate its im-
pacts on different aspects of the power system. 

This work contributes to the state-of-the-art in different ways. First, 
the improved experimental design generates a continuous set of real 
values in the input files based on uniform probability distributions. 

Fig. 16. Total equivalent (direct) carbon emissions along the energy transformation chain.  
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Second, the source code (open-source, Python) has been improved with 
the integration of parallel processing algorithms. Third, incorporation of 
multiple non-linear terms and forward and backward stepwise regres-
sion to determine the optimal inputs for fitting the desired outputs. 
Fourth, modelling of flexibility options in the WILIAM model, including 
hydrogen and synthetic fuels supply, stationary storage in pumped hy-
dropower energy storage (PHES) and electric batteries, power-to-heat 
(heat pumps and electric boilers), vehicle-to-grid technologies, and the 
implementation of demand-side management policies. Fifth, assessment 
of the impacts of hourly statistics in WILIAM. 

In the experimental design, employing uniform probabilistic distri-
butions for inputs appears suitable to circumvent the computational cost 
associated with simulating EnergyPLAN across all cases (6 h with the 
described method versus 7 days in our previous work [38]). 

The use of logistic regression models has improved the accuracy of 
the estimation of the reduction of the capacity factors for solar and wind 
technologies depending on the electricity mix configuration with rela-
tion to the linear regression. The sign of the coefficients generally make 
sense, however, critical flexibility options like stationary storage and 
electrolysers were found not statistically significant. This constrain 
hinders a comprehensive evaluation of the ideal mix of flexibility op-
tions to promote in EU27. Further tests revealed that EnergyPLAN un-
derestimates the importance of stationary storage in the merit order. An 
indicative symptom is the preference in publications using this model to 
focus on heating, transport sectors [39–42], and electrolysers [43] for 
enhancing flexibility, rather than stationary storage. It should be high-
lighted that EnergyPLAN was selected when starting this line of research 
for two previous studies ([38,44]) due to its speed given that the 
combinatorial approach was highly time-consuming, hence model ac-
curacy was traded-off for speed. Moreover, the insufficient number of 
model simulations (compared to the previous study [6]) may explain the 
weak correlation with vehicle-to-grid capacity. 

Aligned with a comparable study [39], the robustness of the dataset 
used to construct region-specific hourly profiles may be enhanced by 
using load time series and several years for all countries in each model 
region. The impact of climate change on the hourly profiles of renew-
ables can significantly influence the results [45], posing a notable lim-
itation as the regression models rely on the assumption of constant 
coefficients. 

Another key limitation has been identified in using EnergyPLAN for 
this work. The physical representation of the power grid is missing, i.e., 
the simplification of the grid into a single node. Hence, the regression 
models developed do not consider analysis to, e.g., system’s stability or 
power flows, representing another optimistic assumption. This is espe-
cially relevant when considering the substantial contribution of non- 
inertial units in the green growth scenarios (solar and wind technolo-
gies). This oversight becomes critical when addressing severe events like 
blackouts and power quality loss [46]. Previous studies, like [47], have 
highlighted the value added of modelling the EU27 grid to incorporate 
network constraints, making simulated electricity production more 
aligned with official reports from power system operators. This 
discrepancy is especially noticeable in estimating the requirements of 
gas-fired power plants (used during peak demand, high marginal costs) 
and lignite/hard coal production (baseload supply, thermal restrictions 
in ramping up-down the output). In fact, EnergyPLAN has not been 
utilized to illustrate a EU27 energy transition, as the focus remains 
primarily at the country level [48]. This limitation hinders the appli-
cability of WILIAM as a robust tool in discussions concerning centralized 
vs decentralized renewable energy systems [49]. 

The heat transition in the EU27 building sector has been simplified as 
a single node. However, a recent review suggests that decarbonization 

pathways are not merely about replacing technologies. Extensive 
knowledge is beneficial to address key issues such as decentralized 
systems, individual heat pumps, and their integrability in terms of space 
and technological design [50]. EnergyPLAN is able to represent 3 district 
heating groups and final energy demands from individual consumers for 
the region under analysis. The single-node approach was established by 
the sake of simplicity, but this limitation should be addressed in future 
developments. 

Smart charge-discharge technology enables power exchange be-
tween the grid and batteries, offering flexibility from the transport 
sector. A recent review article highlights differences in terms of energy 
density (Wh/kg) and power density (W/kg) across different configura-
tions of electric vehicle and charging station [51]. Balancing cost savings 
and battery degradation is especially relevant when assessing the 
viability of this flexibility option as ancillary service in this work. An 
aspect that requires further attention in future extensions of this work. 

Two limitations are identified from the regression analysis. Due to 
the complexity of the method, we have focused on the reduction of ca-
pacity factor for the two main VRES (wind and solar photovoltaic). 
However, all capacity factors of facilities would be affected by vari-
ability, both flexibility options and the rest of power and heat plants. On 
the other hand, bringing relevant points already identified in the pre-
vious work [38] are still valid, such as clustering inputs or an excess of 
simplification for representing intermediate relationships of the energy 
chains (presence of intermediate effects). 

WILIAM v1.2 also faces some limitations that affect the obtained 
results. In particular, relevant inter-module links between energy and 
economy are missing, so the economic impact of changing the structure 
of the power system is not captured. The bottom-up modelling of 
buildings and industry is a pending task. Consequently, technologies 
such as individual boilers and heat pumps could not be included as 
flexibility options. 

Finally, scenarios only represent the electricity sector to be achieved, 
and the same priority in the allocation of flexibility options for scenario 
E is a hypothesis for the future market that may be further researched. 

Due to these limitations, the main scope of this work is methodo-
logical, and it is one element more implemented in the in-development 
WILIAM model. EU27 region was used as case study. 

When conceptualizing causal loops in the IAM, they effectively 
highlight the significant issue of curtailment and its impacts on regu-
lating the expansion of variable renewables. Curtailment affects the 
capacity factor of variable renewables, leading to an oversizing of total 
installed capacity in the system. By introducing measures such as the 
stress signal or limiting maximum curtailment, the growth of VRES can 
be controlled. Failure to account for curtailment effects in a green 
growth scenario may result in promoting renewables by default, mask-
ing a potential future decrease in their capacity factor. This oversight 
could lead to an underestimation of 2000 GW of installed capacity in 
EU27 (difference between scenarios B and C). Neglecting the 5 % 
curtailment as a security measure could overestimate the variable 
renewable penetration by about 16 % in the capacity mix, with assumed 
curtailment levels reaching up to 30 % (as seen in scenario D with 
flexibility options). Although new data is emerging [5], the lack of data 
of curtailement for the historical period hinders the validation of these 
numerical results. 

The results indicate that while regression models may have a nega-
tive impact on flexibility and curtailment, the current model version 
enables users to implement an exogenous policy. This policy ensures 
that electricity generation does not exceed the maximum recommended 
waste electricity threshold of 5 % for a profitable and sustainable 
development. 
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This study incorporates fast feedback loops between the capacity 
expansion and curtailment. A. Shivakumar et al. [52] have examined the 
current drivers influencing the expansion of VRES in EU27. Factors such 
as profitability, governmental policies, disruptions in other regions 
(global financial crisis, nuclear catastrophe, etc.), and social resistance 
were identified but not integrated into the IAM WILIAM. Exploring 
system dynamics approaches by researchers Bolin Yu et al. [53] could 
enhance the existing loops by introducing new variables and 
relationships. 

5.1. Future work may follow different paths 

(1) With the improved experimental design based on uniform dis-
tributions further work could use more sophisticated energy 
planning models such as H2RES [54], PyPSA [55], or PLEXOS 
[56].  

(2) The future availability of empirical data about curtailment could 
allow to improve model validation.  

(3) This topic is surrounded by uncertainties, hence an uncertainty 
analysis considering the CI of the coefficients of regressions, the 
inter-annual and due to climate change impacts variability of the 
hourly profiles, as well as different combinations of the priorities 
for the allocation of the PROFLEX could be very promising.  

(4) Soft-/Hard-linking between the hourly model and WILIAM, as 
identified in Ref. [6]. Other frameworks can better seize the op-
portunity to focus directly on specific aspects of the energy sys-
tem transition by linking models [57].  

(5) In order to design a sustainable energy scenario many aspects left 
out in this paper should be integrated, which are beyond the 
scope of the current research: mineral requirements, socioeco-
nomic and net energy metabolic effects of using such a low 
threshold for solar PV potential (EROImin = 8:1) or the transition 
to RES in other sectors than electricity, as well as a more ambi-
tious scenario for transport (e.g., see Fig. 16, where GHG emis-
sions are far to reach net zero by 2050 for the scenario E). That 
exercise is a very ambitious currently ongoing work requiring the 
joint contribution of WILIAM developers. 

6. Conclusions 

The ongoing climate emergency is driving the promotion of decar-
bonization initiatives centred around variable renewable projects, 
electrification of the economy, and balancing technologies for demand 
and supply. This paper follows up a set of methods to address potential 
disruptions in the efficiency of power systems within IAMs by parame-
trizing the impact of energy variability on the growth of wind and solar 
power technologies. 

The entire process involves complex steps but relies on open pro-
gramming codes accessible to the research community. Starting from 
input and output selection, proceeding with parallel processing of files 
using EnergyPLAN, conducting logistic regression analysis, and culmi-
nating in integration into the IAM, this proposal is now fully developed. 

If the impact of curtailment is disregarded, our model indicates that a 
green growth scenario would haphazardly boost renewables, resulting 
in an underestimation of the installed capacity and energy harnessed for 
the transition. Limiting the maximum system curtailment allows to 
accelerate the decarbonization in the first decades; however, after 2040 
the emissions would increase again. 

Further investigation is needed to determine whether using uniform 
distributions to generate input values for EnergyPLAN improves the 
stochastic representation of the system. This addresses the question of 
how many simulations would be necessary. Moreover, the integration of 
new regression models could enhance the evaluation of the system’s 
performance. For example, incorporating a grid stability indicator and 
capacity factors of other energy facilities would be beneficial. A critical 
task that remains is comparing this approach with others in the research 
field. Specifically, selecting a case study to harmonize inputs and test the 
approach employed in this study against other approaches like the Re-
sidual Load Duration Curve (RLDC), time slices, and hard-linking be-
tween EnergyPLAN and WILIAM. 
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variability. Íñigo Capellán-Pérez also acknowledges financial support 
from a Juan de la Cierva-Incorporación Research Fellowship of the 
Ministry of Economy and Competitiveness of Spain (No. IJC2020- 
046215-I).  

APPENDIX A. Inputs and values selected for the simulations with EnergyPLAN 

Table A.1. Inputs selected from EnergyPLAN to create the clusters. Values and the reason for selecting the inputs is included, based on a system 
with a legacy electricity demand (LegElecDem_TWh) of 100 TWh. Yellow-coloured cells corresponds to representative inputs of clusters. “X” is an ad- 
hoc factor to estimate the values.  
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. (continued). 
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APPENDIX B. Hourly profiles for the EU27 in the reference simulation 

Fig. B.1. Hourly profile of legacy electricity demand over the year (MWh) for EU27 for the reference simulation.

Fig. B.2. Hourly profile of heat demand in the district heating group for EU27 for the reference simulation. 

. (continued).  
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Fig. B.3. Hourly profile of solar-PV production over the year for EU27 for the reference simulation.

Fig. B.4. Hourly profile of wind production over the year for EU27 for the reference simulation.
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