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A B S T R A C T   

A site-specific weed detection and classification system was implemented with a stereoscopic video camera to 
reduce the adverse effects of chemical herbicides in rice field. A computer vision and meta-heuristic hybrid NN- 
ICA classifier were used to accurately discriminate between two weed varieties and rice plants, under either 
natural light (NLC) or controlled light conditions (CLC). Preprocessing, segmentation, and matching procedures 
were performed on images coming from either right or left camera channels. Most discriminant features were 
selected from average, either arithmetic or geometric, images using a NN-PSO algorithm. Accuracy classification 
results with the stereo computer vision system under NLC were 85.71 % for the arithmetic mean (AM) and 85.63 
% for the geometric mean (GM), test set. At the same time, accuracy classification results of the computer vision 
system under CLC reached 96.95 % for the AM case and 94.74 % for the GM case, being consistently higher than 
those under NLC.   

1. Introduction 

Weeds are undesirable field plants that typically reduce crop yields 
by a range of 10 to 95 % affecting the normal growth of agricultural 
crops (Young et al. [46]). Common methods of weed control include: (1) 
chemical control with the spraying of herbicide, and (2) mechanical 
control with weeding or removal of weeds. Among these methods, 
chemical control is preferred by farmers due to the convenience, quick 
implementation, great effectiveness, and low operating cost. The main 
problem with chemical method for weed control is the implementation 
process. In conventional methods, herbicides are applied throughout the 
field. That way, there is no control over the amount of herbicide sprayed 
as a function of weed density due to the lack of uniform growth and 
distribution of weeds on fields. Therefore, even weed-free areas are 
sprayed with herbicides, which not only leads to a high consumption of 
herbicides and increased costs, but also to environmental pollution, 
including underground aquifers. 

The study main objectives follow next:  

1. To implement and automatic high accuracy weed detection and 
classification system in rice field to be potentially used later in se
lective herbicide application with precision agriculture, both 
reducing the waste of product and limiting the potential contami
nation to land and water table underneath and using the most 
effective herbicide product for each weed type.  

2. To measure advantages of using stereoscopic (binocular) camera 
vision (either arithmetic or geometric R-L channel mean) as 
compared to monocular (either R or L) ordinary camera vision.  

3. To measure the difference in classification performance when 
comparing controlled light conditions (CLC, LED) and natural light 
conditions (NLC, sunlight). 

The structure of the remainder of the paper follows: first, we perform 
some literature review; next we present our dataset material and 
methods applied to them, including stereoscopic imaging, processing 
steps for weed identification, feature extraction, selection of sub-optimal 
highly discriminant features, and classification; next results and 
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discussion are presented, including the definition of effective discrimi
native features, ternary performance classification of rice and two weed 
plants, Video frame classification examples under both NLC and CLC 
lighting conditions, proper numerical evaluation of classifier perfor
mance by the computation of ROC and precision-recall curves, as well as 
their corresponding AUC values; next we conclude and finally we pro
vide Supplementary data in the Video camera recording dataset exam
ples including both original and detected output recordings, for both 
arithmetic and geometric means, L, and R channels and both under NLC 
and CLC lighting conditions. 

1.1. Literature review 

In recent years, farmers’ interest in reducing production costs, on the 
one hand, and pressure from international institutions to reduce chem
ical pesticide emissions and their environmental impacts, on the other, 
have led researchers to review and develop site-specific management of 
weeds as a strategy to optimize and reduce herbicide application 
[8,27,34,47,39,29,15,33,32]. Site-specific strategy treats only those 
areas that are infested with weeds and affect crop yield or quality, 
leaving areas free of weed unaltered. By the selective application of 
chemical herbicides in varying doses depending on the location of weed 
infestation, a balance can be reached between production efficiency and 

environmental impact of chemical pesticide application [7]. Imple
mentation of such weed control systems requires accurate identification 
and location of weed types in crop fields. Based on research in this 
context, three methods have been used to identify weeds to date: 
airborne remote sensing, photodetector-based sensing, and machine- 
vision based sensing [25]. Nevertheless, weed identification algo
rithms and devices have been developed with high accuracy given the 
complex agricultural environment, wide variety of plant species, and 
their various growth stages [25], but we can conclude that despite great 
advances have been found in the literature, weed detection under nat
ural light conditions remains as a challenging open problem today. 

Nowadays, machine vision has been used to properly identify weeds 
[12,26,31,32,33]. Different ambient light conditions cause segmenta
tion and classification algorithms to fail due to shadows, reflections, 
different contrast levels, etc. For that reason, various studies have used 
different methods to improve the performance of automatic algorithms 
under different lighting conditions. The studies of Tang et al. [38], 
Hamuda et al. [16], Yang et al. [44], and Bai et al. [4] have used 
different color spaces. However, the proposed color space models seem 
to vary depending on target plants, and none of the models is universally 
valid, since no specific color space can be used for all plants and ambient 
imaging conditions. Besides choosing the right color space model, 
several methods have been presented to reduce the effect of different 
light conditions, such as synchronizing the global histogram in the 
preprocessing phase to minimize the effect of brightness [35] or 
improving image processing algorithms [33,32]. Another idea to reduce 
the effect of varying brightness and/or contrast is to improve the image 
quality when acquiring the images. For this reason, most studies have 
been conducted under controlled or limited light conditions on a specific 
stage of plant growth, regardless of the change in the biological char
acteristics of weeds as a function of time [33,32]. 

Recent relevant advances in the field of measurement with computer 
vision techniques applied in agriculture, weed detection [6], in plant 
leaf analysis [30], image segmentation [14], leaf disease detection 
[11,13] identification, pest monitoring [49], and Vis/NIR spectroscopic 
pesticide monitoring [18] in crop field have been developed, including 
also rice cultivar quality evaluation measurements [48] and a rice 
harvester based on Vis RGB-D imaging [37], amongst others. 

Stereoscopic (stereo) vision imaging has been previously used as an 
efficient method to study canopy structure/stage in several studies 
[5,28,41]. Andersen et al. [1] conducted studies to assess the possibility 
of computing the geometric properties of plant such as plant height and 
leaf area from stereoscopic images taken with binoculars on potted 
plants and showed that stereo vision can accurately determine those 
plant properties. Jin and Tang [19] used 3D images along with the 
extracted features from 2D images to assess corn plants at early growth 
stages. By processing depth images, the algorithm effectively identified 
corn plants with 96.7 % accuracy and in addition it also detected their 
central position. 

Li and Tang [24] used a 3D camera to detect both broccoli and green 
beans under weedy field conditions. The developed system overcame 
problems caused by foliage cover and light changes. They used the 
features extracted from 2D and 3D images, such as the gradient of 
amplitude and depth image, surface curvature, amplitude percentile 
index, normal direction, and count of neighboring points in 3D space, to 
identify both types of plants. The results of this study showed 88.3 % and 
91.2 % detection rates for broccoli and green bean leaves, respectively. 

Dandrifosse et al. [9] presented several challenges and solutions 
related to the identification of plant structure under natural farm light 
conditions. They used leaf area, mean leaf angle, leaf angle distribution, 
and canopy height traits of winter wheat in their study. The images were 
taken in field using a stereo camera. Then, using a machine learning 
(ML) based algorithm and RGB and HSV color spaces, segmentation of 
soil and plant was performed under variable lighting conditions. The 
mean spike top height was measured in this study with an accuracy of 
97.1 %. Leaf area estimation showed a root mean square error (RMSE) of 

Fig. 1. Image of rail path built for imaging purposes in rice (R), Tarom-Fajr 
var., field: both rails and stereo camera are visible in picture (natural light 
conditions, NLC): about 2400–3000 lx (cd sr m− 2). 

Fig. 2. Imaging under controlled light conditions (CLC) covering stereo video 
camera platform rails: artificial light was generated within the imaging space 
from a LED source with an illuminance of 460 lx (cd sr m− 2), approx. 
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0.37 due to the effect of overlap between leaves. The mean leaf angle 
was calculated from 53◦ to 62◦ during the whole growing season. For 
each time point during the growing stage, the mean angle measurement 
varied less than 1.5 %, indicating that the method is accurate. 

Dadashzadeh et al. [10] used a stereo vision system for distinguish
ing between rice and two types of weeds in a rice field by using machine 
learning techniques, comprising neural networks (NN) and two meta
heuristic algorithms: a metaheuristic approach of particle swarm opti
mization (PSO) was used for selecting the most effective features and a 
bee algorithm (BA) was used to optimize the NN for accurately classi
fying rice plants from weeds. Research results showed an accuracy of 
about 90 % in stereo vison mode using an automatic classification 
algorithm. 

Kamath et al. [20] used a deep learning-based semantic segmenta
tion method for detecting and identifying two types of weeds from 
paddy crop and showed promising results with an accuracy over 90 %. 
In recent years, deep learning algorithms, as a new area of ML, has been 
used in several agriculture applications and has been developed into 
powerful methods for image classification, object detection, and local
ization, resulting in effective weed detection [21,17]. 

At the same time, [22] presented an IoT-Fog computing equipped 
robotic system for the categorization of weeds and soy plants during 
both the hazy and normal season. Results show a 97 % accuracy in 
classifying weeds and crops under a hazy environment. Although deep 

learning methods have achieved good results in weed and crop classi
fication, so-called traditional (shallow) ML methods need a small sample 
size, short training time and are believed to better generalize to the 
disjoint (empty intersection) test set. In addition, shallow ML have a 
lower requirement for graphic processing units [43], for obvious 
reasons. 

Given it is often difficult to obtain appropriate information about rice 
plants, especially under real farm/field environment conditions with 
variable natural light intensity due to overlapping and shadows caused 
by vegetation density, this study attempted to use a new processing 
technique based on the information fusion coming from two separate 
sources (stereo images) together with a combination of artificial intel
ligence and metaheuristic algorithms to better distinguish weeds from 
rice plants. Moreover, extensive experiments were conducted to eval
uate the performance of the proposed method under two lighting con
ditions: either natural light imaging or controlled light imaging. 

2. Materials and methods 

To discriminate rice crops from weeds in rice field, the high-yielding 
Tarom-Fajr rice (R) crop variety was imaged in Mazandaran, Iran 
(36◦37′48.71″N, 52◦30′11.39″E) in 2017 with two dominant weed 
plants: Cyperus rotundus (C), from Cyperaceae family, and Echinochloa 
crus-galli (E), from Poaceae family. The common method of rice 

Fig. 3. Images from four of the most appropriate color spaces and their components under natural light conditions (NLC): RGB, YIQ, YCbCr, and HSV color spaces.  
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cultivation in the region is traditional transplanting, which begins in 
mid-April. The traditional method for weed control was mainly chemical 
control in the form of drip spraying in field water in early stage of 
emerging weeds and spraying on weeds foliage after growth, together 
with manual (by hand) mechanical weeding. Besides the high con
sumption of herbicides, drip spraying (water-mixing method) is associ
ated with massive environmental contamination. In addition, foliar 
spraying in rice fields is a costly method due to the need of a lot of 
herbicide application and might require great care because of the spe
cific farm conditions. By taking advantage of intensive farming and 
intelligent spraying systems, the efficiency of this method is expected to 
be increased. 

2.1. Stereoscopic imaging method 

A stereoscopic digital camera (Fujifilm FinePix Real 3D-W3, Tokyo, 
Japan) equipped with a 10-megapixels CCD sensor recording stereo 
Videos in AVI format (NTSC), ISO 400 sensitivity, frame resolution of 
480 × 440 pixels, 30 frames per second, was used for imaging under 
different light conditions. Data were collected as stereo Videos and 
finally the right (R) and left (L) channels of each 3D frame were 
extracted. To move the camera over the farm field, a rail platform was 
designed, and hand built, as shown in Fig. 1. The camera was moved at a 
height of 70 cm above the soil surface using a conveyor with the lowest 

vibration possible (approximately 30 cm from the top of plant leaf). The 
imaging process was performed over a length of three meters with a 
movement speed of 0.13 m/s approx. To create controlled light condi
tions, the entire path of the camera movement was covered with 
tarpaulin, to avoid sunlight to enter in the recording field. In addition, 
artificial light was generated within the imaging space from a LED 
source with an illuminance of approx. 460 lx (cd sr m− 2), as shown in 
Fig. 2. Data analysis was performed using MatLab software (Mathworks, 
Natick, MA) on a personal computer system equipped with an Intel Core 
i5-2540 m 2.6 GHz processor and 4 GB of RAM memory, running under a 
64-bit operating system. The Videos were recorded during the third and 
fourth weeks after transplanting, when herbicide application reduces 
weed competition. Illuminance of natural light during imaging opera
tions was about 2400–3000 lx (cd sr m− 2). 

2.2. Processing steps to identify weeds 

Almost all available methods for weed identification involve two 
main steps: 1) segmentation of vegetation against background (soil and/ 
or residue) and computation of features from objects extracted after 
segmentation; 2) classification of plant pixels as either desired crop or 
undesired weed plants [40]. 

Fig. 4. Image samples from four of the most convenient color spaces and their elements under controlled light conditions (CLC): RGB, YIQ, YCbCr, and HSV 
color spaces. 
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Fig. 5. Detection of the green components (weeds and rice crop) of sample video frames in the selected S channel under natural light conditions (NLC): two video 
frame examples are depicted; the numbers shown inside black circles in the sample video frames represent the number of green components extracted. 
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Fig. 6. Detection of the green components (weeds and rice crop) of sample video frames in the selected Cb channel under controlled light condition (CLC): two video 
frame examples are depicted; the numbers shown inside white circles in the sample video frames represent the number of green components extracted. 

Table 1 
NN-PSO Effective selected features under natural light conditions (NLC) for 
detecting weeds in high-yielding Fajr rice plant variety crop field.  

Arithmetic Mean 
(AM) 

ExH-HSV, CIVE- CMYY, correlation- 45◦, correlation- 90◦, 
variance- 90◦ , PTB 

Geometric Mean 
(GM) 

Gn-RGB, HV I-HSV, ExR-RGB, SS-HSV, information measure 
of correlation-135◦, convexity  

Table 2 
NN-PSO Effective selected features under controlled light conditions (CLC) for 
detecting weeds in high-yielding Fajr rice plant variety crop field.  

Arithmetic Mean 
(AM) 

Difference entropy- 135◦, correlation- 0◦, correlation- 45◦, RBI- 
RGB, GB-RGB, SRAD(5) 

Geometric Mean 
(GM) 

Sum entropy- 135◦ , contrast- 135◦, Homogeneity- 0◦, SANG 
(4), Std-H, B-avr  
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2.2.1. Vegetation segmentation 
Segmentation attempts to extract pixels belonging to vegetation from 

other components of the image were carried out. To achieve that goal, 
this study first performed preprocessing of the recorded images. 

Initially, the right (R) and left (L) channels of the stereo Video recorded 
over farm rice field were separated and the frames belonging to both 
channels were extracted by coding in MatLab software. Around 1250 
Video frames were extracted from each recorded channel. Due to the 

Table 3 
Description of the effective discriminant features for detecting weeds in rice field: name and formal definitions.  

Formal Description Selected Feature Name 

Excess Hue from HSV color space ExH-HSV 

Color index for extracted vegetation cover in CMY color space CIVE-CMY 

Ng(i, j) =
g(i, j)

∑
i
∑

jg(i, j)

Correlation =

∑
i
∑

j(i − μi)(j − μj)Ng(i, j)
σiσj 

Correlation-X0 

Ration of Perimeter to Enclosing Rectangle PTB 

Gn = G/(R + G + B), (The normalized secend component of RGB) Gn − RGB 

HVI = (Hn − Vn)/(Hn + Vn)

Hn = H/(H+ S+ V), Vn = V/(H+ S+ V)
HVI-HSV 

EXR = 1.4× Rn − Gn ExR-RGB 

Average Saturation from HSV color space SS-HSV 

IMC =
ENT − HXY1
max(Hx,Hy)

HXY1= −
∑n− 1

i=0
∑n− 1

j=0 Ng(i, j)ln[Nx(i).Ny(j) ],

Nx (i)=
∑n− 1

i=0 Ng(i, j), Ny(j)=
∑n− 1

j=0 Ng(i, j)́ , HX: Entropy of Nx and Hy: Entropy of Ny 

Information measure of correlation-X0 

A measure of the curvature Convexity 

Difference entropy = − Σpx− y(i)ln[px− y(i)],  
px-y(k)=

∑
i,j:[i− j]=kNg(i, j)fork = 0,⋯,N(g − 1)

Difference entropy-X0 

RBI = (Gn − Bn)/(Gn + Bn)

Bn = B/(R+ G+ B)
RBI-RGB 

GB = (Gn − Bn) GB-RGB 

mpq =
∑

x
∑

yxpyqf(x,y)p,q = 0,1,2, ...

ηpq = μpq/μγ
00p,q = 0,1,2,⋯, γ =

p + q
2

+ 1 

p + q = 2,3,⋯ϕ5 = [(η30 − 3η12)(η30 + η12)[(η30 + η12)
2
− 3(η21 + η03)

2
] + (3η21 − η03)(η21 + η03)[3(η30 + η12)

2
− (η21 + η03)

2
]

SRAD (5) 
(moment invariants 5) 

px+y(k) =
∑

i,j:i+j=kNg(i, j)fork = 2,3,⋯,2L 

Sum Entropy = −
∑2L

i=2px+y(i)log(px+y(i))

Sum entropy-X0 

Ng(i, j) =
g(i, j)

∑
i
∑

jg(i, j)

Contrast =
∑

i
∑

j(i − j)2Ng(i, j)

Contrast- X0 

Homogeneity =
∑

i
∑

j
Ng(i, j)

1 + |i − j|
Homogeneity-X0 

ϕ4 = (η30 + η12)
2
+ (η21 + η03)

2, SANG (4) 
Difference of moment invariants-4 

Standard deviation of Hue from HSV color space Std-H 

Average Blue from RGB color space B-avr  

Table 4 
Confusion matrix and percentage classification for test data in NLC stereo mode as arithmetic mean (AM): test set.  

Predicted/Real class Rice Cyperus r. Echinochloa c-g Classification error (%) Classification accuracy (%) 

Rice 90 7 1  8.16  
Cyperus r. 5 48 11  25.00  85.71 
Echinochloa c-g 4 17 34  38.18   

Table 5 
Confusion matrix and percentage classification for test data in NLC stereo mode as geometric mean (GM): test set.  

Predicted/Real class Rice Cyperus r. Echinochloa c-g Classification error (%) Classification accuracy (%) 

Rice 86 8 4  12.24  
Cyperus r. 4 45 15  29.68  85.63 
Echinochloa c-g 5 10 40  27.18   
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sensitivity of segmentation and its effect on other subsequent stages of 
the machine vision system in distinguishing weeds from crop under 
different lighting conditions, an attempt was made to select color space 
for optimal segmentation purposes. For this reason, six color spaces, 
comprising RGB, HSV, YIQ, CMY, HSI, and YCbCr, and their respective 
channels were investigated, with resulting examples of four of the most 
appropriate color spaces under both natural light (NLC) and controlled 
light (CLC) conditions, shown in Figs. 3 and 4, respectively. 

As shown in Fig. 3, the third channel (Q) of the YIQ color space and 
the second and third channels components (S,V) of the HSV and (Cb,Cr)
of the YCbCr color spaces have good segmentation capabilities for im
aging conditions under natural light, and after further testing with more 
images, the S channel was selected as the optimal segmentation channel 
under NLC. To judge from images in Fig. 4, the third channel (Q) of YIQ 
color space and the second and third channels (Cb,Cr) of YCbCr color 
space, again have good segmentation capabilities for imaging under 
CLC, and after further testing with additional images, the Cb channel 
was finally selected as the optimal segmentation channel under CLC. At 
the same time, Figs. 5 and 6 show sample frames on which the green 
components are segmented. The numbers shown inside circles in the 
sample Video frames represent the number of green components 
extracted. 

Then, by examining different Video frames, a fixed segmentation 
threshold level of 125 was selected as the best threshold to separate 
image objects under NLC imaging conditions and a fixed segmentation 
threshold level of 180 was selected under CLC conditions. By separating 
plant parts from plant background (soil) and residue, the color, texture, 
and shape features of the segmented objects under both imaging con
ditions were extracted and passed to the classification algorithms to 
discriminate rice from weed plants. A total of 302 features were 
extracted from the segmented objects. 

2.2.2. Feature extraction 
After identifying plant pixels, weed detection using machine vision 

methods is usually done with a combination of information about color, 
position, shape, texture, size and/or spectrum of weeds and crops. The 
use of either only one or many features depends on how images are 
taken and the type of crop and weed species [7]. In this study, a total of 
302 features comprising color, shape, and texture, were extracted for 
accurate discrimination of rice and weed plants, under both imaging 
conditions, either NLC or CLC. A total of 146 features were related to 
texture based on the co-occurrence matrix and histogram analysis, 127 
color features were computed based on the average deviation and 
standard pixel values in each of the three channels of the six color spaces 
(RGB, HIS, HSV, YIQ, CMY, and YCbCr) and vegetation indices, and 
additional 29 shape features, were computed from each object. It should 
be noted that to extract shape features, the result of the segmentation 
had to be converted into binary images, a process that is always asso
ciated with the generation of unwanted noise and holes in the image. To 
solve this problem, a morphological closing operation was used to 
connect the broken thin components and fill in the small holes [36]. 
Also, a combination of dilation and erosion operations was used as a 
closing filter to smooth object’s axes. 

Based on research objectives − to achieve high accuracy in 
discriminating rice from weeds under both natural and controlled light 
conditions- after extracting the features from right and left image 
channels, the matching operations between the R and L channels cor
responding points was performed. In order to take advantage of ste
reoscopic imaging, the arithmetic (AM) and geometric mean (GM) 
values between the corresponding points in R and L channels were 
computed, c.f. Eqs. (1) and (2). It should be noted that AM and GM are 
two mathematical concepts that usually differ in the method of calcu
lation. The AM (or simply mean) is computed by adding all the numbers 
in the dataset and dividing the result by the total number of data points, 
while the GM is calculated by multiplying the numbers in the dataset 
and taking the n-th root from the result, where n is the total number of 
data points [45]. AM and GM values were computed according to the 
following formal equations: 

Table 6 
Confusion matrix and percentage classification for test data in stereo mode as arithmetic mean (AM): test set.  

Predicted/Real class Rice Cyperus r. Echinochloa c-g Classification error (%) Classification accuracy (%) 

Rice 65 3 5 10.95  
Cyperus r. 0 40 0 0  96.95 
Echinochloa c-g 5 0 46 9.8   

Table 7 
Confusion matrix and percentage classification for test data in stereo mode as the geometric mean (GM): test set.  

Predicted/Real class Rice Cyperus r. Echinochloa c-g Classification error (%) Classification accuracy (%) 

Rice 64 4 5 12.32  
Cyperus r. 0 40 0 0  94.74 
Echinochloa c-g 4 9 38 25.49   

Table 8 
Confusion matrix and percentage classification for test data from left (L) channel of camera under controlled light conditions (CLC): test set.  

Predicted/Real class Rice Cyperus r. Echinochloa c-g Classification error (%) Classification accuracy (%) 

Rice 63 6 4 13.69  
Cyperus r. 2 30 8 25  90.80 
Echinochloa c-g 3 5 43 15.68   

Table 9 
Confusion matrix and percentage classification for test data from right (R) channel of camera under controlled light conditions (CLC): test set.  

Predicted/Real class Rice Cyperus r. Echinochloa c-g Classification error (%) Classification accuracy (%) 

Rice 63 7 4  14.68  
Cyperus r. 3 33 5  19.51  90.85 
Echinochloa c-g 7 6 39  30.95   
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Arithmetic Mean (AM) =
Right channel + Left channel

2
=

R + L
2

(1)  

Geometric mean (GM) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Right channel × Left channel

√
=

̅̅̅̅̅̅
RL

√
(2)  

2.2.3. Selection of effective discriminant features 
The various features extracted from images are not equally important 

and some of the features may even be considered as noise in the weed 
detection process. To increase the processing speed for pattern recog
nition and improve the classification accuracy, we tried to select the best 

Fig. 7. Classification result under natural light conditions (NLC) for three plant classes: 1) rice plant (R), 2) Cyperus rotundus (C) weed, and 3) Echinochloa (E) crus- 
galli weed: (a) stereo video mode with arithmetic mean (AM) computation, frame extracted from Arithmetic mean model_NLC.mp4 supplementary video file, and 
(b) stereo video mode with geometric mean (GM) computation, frame extracted from Geometric mean model_NLC.mp4 supplementary video file. 
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features to train the classifier. By reviewing previous studies that have 
used statistical techniques and artificial intelligence-based methods for 
selecting effective features [42]; Sabzi and Abbaspour Gillandeh, 2018), 
this study used a neural network with the parameters optimized by a 
particle swarm optimization algorithm (NN-PSO) to assist the search 
process and select the most appropriate (effective) features from the 

entire set of extracted features. PSO is a bio-inspired computational al
gorithm that works based on randomly selected populations called 
particle swarms. The PSO algorithm begins by creating a random pop
ulation. Each component in the population is a different set of decision 
variables whose optimal value should be satisfied. In fact, each particle 
represents a vector in the problem-solving space Kennedy [23]. In this 

Fig. 8. Classification results under controlled light conditions (CLC) for the three plant classes: 1) rice plant (R), 2) Cyperus rotundus (C) weed, and 3) Echinochloa (E) 
crus-galli weed: (a) stereo mode with arithmetic mean (AM) computation, frame extracted from Arithmetic mean model_CLC.mp4 supplementary video file, and (b) 
stereo mode with geometric mean (GM) computation, frame extracted from Geometric mean model_CLC.mp4 supplementary video file. 
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algorithm, every action and reaction affects the movement of the group 
and eventually each member of the group can benefit from the discov
eries and skills of the other members. To select the most important 
features from a total of 302 features extracted by NN-PSO, all the input 
data samples (objects) extracted from Video frames were divided into 
training (70 %), validation (15 %), and test (15 %) disjoint data sets. 
PSO algorithm was used to form feature subsets of different sizes and 
send them as input data samples at the multilayer perceptron (MLP) 
neural network. 

2.2.4. Classification 
Classification systems, such as neural networks, decision tree, near

est neighbor, support vector machines, Bayesian classifier, among 
others, are used to classify the data. Among them, neural network non- 
linear classifiers have more applications due to showing often better 
performance in developing prediction models and higher accuracy. The 
present study attempted to use a neural network classifier to discrimi
nate between rice and weeds. To improve the performance of the neural 
network, a meta-heuristic imperialist competitive algorithm (ICA) was 
used to optimize the network parameters. ICA is a well-known optimi
zation algorithm in the field of evolutionary computation. In fact, if we 
consider the optimization algorithm as the mathematical equivalence of 
the biological and natural evolutionary process in nature, this algorithm 
is equivalent to the mathematical modeling of social evolution. Like 
other evolutionary algorithms, it starts with a number of random pri
mary populations, each called a country. Some of the best elements of 
the population are selected as imperialist. The rest of the population is 
also considered as a colony. The colonies are attracted in dependence on 
the power of the imperialists. The survival of an empire depends on its 
ability to attract and dominate the colonies of rival empires (Atashpaz- 
Gargari and [3]. To classify the objects extracted from images under 
both imaging conditions (NLC and CLC), a hybrid NN-ICA classifier was 
used, with different replications. Moreover, to evaluate the performance 
of the proposed classifier, 70 % of the input data was selected for 
training the network and the remaining 30 % was selected for testing 
and validating the classification. The classification results were pre
sented in the form of a table or confusion matrix as one of the commonly 
accepted valid criteria for evaluating the performance of each classifier 
in classifying the three different plant classes: Rice, Echinochloa crus-galli 
and Cyperus rotundus. 

3. Results and discussion 

3.1. Extraction of the most effective features using hybrid neural network- 
particle swarm optimization algorithm (NN-PSO) 

The results of using a hybrid combination in NN-PSO to find the six 
most effective features for both imaging light conditions (NLC and CLC) 
are shown in Tables 1 and 2, respectively. From a total of 302 extracted 
features (defined in Table 3), a total of 6 optimal features were selected. 

3.2. Ternary (3-class) classification of images 

As mentioned earlier, an NN-ICA classifier was used to detect weeds 
from rice crops. To obtain significant results, the classification process 
was performed with 100 random replications over train and test sets, 
under both classification stages. Train set samples must be used only 
while in the training/learning phase (weight adaption) and never used 
again when measuring the classification performance, which should be 
provided with the disjoint (empty intersection) test set, to measure the 
machine generalization capability to ex-novo test samples. 

The results of classification using the NN-ICA classifier for imaging 
under natural light conditions (NLC) are presented in Tables 4 and 5 in 
the form of the confusion matrix, for AM and GM, respectively. 

Analogous classification results using the NN-ICA classifier for im
aging under controlled light conditions (CLC) are presented in Tables 6 
and 7 in the form of the confusion matrix, for AM and GM cases, 
respectively. 

As shown in confusion matrices, Tables 4-7, the classification results 
under CLC have always a higher accuracy than those under NLC, as the 
classification accuracy for the arithmetic mean was 85.71 % under NLC 
and 96.95 % under CLC. In addition, the classification accuracy for the 
geometric mean was 85.63 % under NLC and 94.74 % under CLC. The 
reason for this difference in recognition accuracy may lie in the effects of 
ambient light on the quality of images taken on rice field under ambient 
light conditions and consequently on processing and classification. It can 

Fig. 9. Performance evaluation of classifier in Arithmetic (AM) [ROC_Arith
metic mean-natural light.fig] and Geometric (GM) [ROC_Geometric mean- 
natural light.fig] means based on the ROC curves under natural light condi
tions (NLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus rotundus 
(test set). 
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be observed that this system is able to correctly classify all Cyperus 
rotundus weed under controlled light conditions, which is due to the 
location of occurrence and growth of this type of weed, mainly among 
the rice plants. Therefore, it was well detected by removing the effects of 
natural light. 

However, because of the close resemblance of Echinochloa crus-galli 
weed with the rice crop and, on the other hand, the possibility of the 
occurrence and growth of this weed plant even among rice plants, there 
was some error in recognizing rice over this weed even under controlled 
light conditions. Also, the classification accuracy including all data by 

Fig. 10. Performance evaluation of classifier in Arithmetic (AM) [PR_Arithmetic mean-natural light.fig] and Geometric (GM) [PR_Geometric mean-natural 
light.fig] means based on the Precision & Recall curves under natural light condition (NLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus rotundus (test set). 
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Fig. 11. Performance evaluation of classifier in Right (R) [ROC_Right channel-natural light.fig] and Left (L) [ROC_Left channel-natural light.fig] channels based 
on the ROC curves under natural light conditions (NLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus rotundus (test set). 
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the arithmetic mean was always higher than that done by geometric 
mean, which is consistent with Dadashzadeh et al. [10]. 

To investigate the performance of the proposed stereoscopic vision 
method in discriminating rice from weeds, the processing and classifi
cation results for each camera channel for controlled light conditions are 
presented separately in Tables 8 and 9, for the L and R channels, 
respectively. 

It can be seen that the classification accuracy in the stereo imaging 
mode is higher than the classification accuracy in the single-channel 
processing mode, as expected, which is due to the full coverage of 
field details when stereoscopic vision is used. Classification results are 
shown for several example frames for natural light conditions in Fig. 7 
and for controlled light conditions in Fig. 8. 

Since the proposed method is new, an attempt was made to compare 

Fig. 12. Performance evaluation of classifier in Right (R) [PR_Right channel-natural light.fig] and Left (L) [PR_Left channel-natural light.fig] channels based on 
the Precision & Recall curves under natural light conditions (NLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus rotundus (test set). 
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Fig. 13. Performance evaluation of classifier in Arithmetic (AM) [ROC_Arithmetic mean-controlled light.fig] and Geometric (GM) [ROC_Geometric mean- 
controlled light.fig] means based on the ROC curves in controlled light conditions (CLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus rotundus (test set). 
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Fig. 14. Performance evaluation of classifier in Arithmetic (AM) [PR_Arithmetic mean-controlled light.fig] and Geometric (GM) [PR_Geometric mean- 
controlled light.fig] means based on the Precision & Recall curves under controlled light conditions (CLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus 
rotundus (test set). 
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the results with those of similar works. In a study conducted by Jin and 
Tang [19], it was stated that although there are some 2D vision-based 
systems for sensing corn plants in the early growth stages, some of the 
shortcomings are difficult to overcome. The biggest challenge is to 
separate corn plants on field that overlap with other plants. 

When using 2D vision, the outdoors changing light conditions and 
the presence of weeds in the background may cause problems in 
detecting corn plants. Thus, adding depth information can improve the 
performance of such a system. Therefore, a new corn plant sensing 

system was investigated using a real-time stereo vision. 
The experimental results showed that the stereo vision system 

correctly detected 96.7 % of corn plants during field experiment. 
However, the type of plant, canopy structure, and field conditions are 
different from those of rice plant. In another study, Ashrafa and Niaz 
Khan [2] presented two classification methods for weed detection in rice 
fields based on grass density. 

The first method used the texture features extracted from the gray 
level co-occurrence matrix (GLCM). They achieved 73 % accuracy in the 
detection of rice from umbrella sedge weed by using Radial basis func
tion (RBF) NN and support vector machine (SVM). The second method 
used features such as shape and anatomy, which are stable in scale and 
rotation, for classification based on grass density. The second technique 
achieved an 86 % accuracy using a random forest classifier, which 
resulted better than first technique. Although only nutgrass and rice 
were present in the images in this study and the aim was to separate both 
plants, results were less accurate (since different dataset used, one needs 
to be cautious here) than the meta-heuristic algorithm proposed in the 
present study. 

3.3. Evaluation and comparison of classifiers performance using both 
ROC and precision- recall (PR) curves AUC 

ROC curve analysis and ROC-Area Under Curve (AUC) computation 
is very desirable whenever the cost (penalty) associated to either type I 
(false positive, FP) or type II (false negative, FN) classification errors are 
not known, since in that case one cannot define and fix an optimal 
classifier working point, and there is need to evaluate how the classifier 
performs over the {FP rate, TP rate} or equivalently 
{1 − specificity, sensitivity} plane by slowly varying the output classifier 
detection threshold and computing both FPR and TPR fraction values, 
for each and every classifier output detection threshold fixed values. 

ROC curve analysis is often used to evaluate the performance of 
classification algorithms, especially in the case of binary classification 
problems in supervised machine learning, despite it can be easily 
extended to multi-class problems. 

For this reason, ROC curves might be used to evaluate the perfor
mance of the classifiers in this research. However, when dealing with 
highly skewed and/or imbalanced datasets, Precision & Recall (PR) 
curves provide a complimentary picture of the performance of an al
gorithm, together with ROC curves. Therefore, PR curves were also used 
to evaluate the performance of the classifiers and the AUC value of all 
three classes were computed under both ROC and precision-recall 
curves, called ROC-AUC and PR-AUC. 

Figs. 9 to 16 show the ROC and precision-recall curves for different 
imaging conditions, and Tables 10 and 11 show the computed AUC 
values for the ROC and precision-recall curves, all test set. In summary, 
the results showed that for the problem in hand, compared to the PR 
curves, the ROC curves had a very good and stable property in showing 
the performance of the classifiers, while the PR curves showed slightly 
more inconsistent AUC computed values. ROC curve allows us to mini
mize misclassifications from different classes and to measure model 
performance in a more objective way. 

The computed AUC values show that the classifiers performed better 
in classifying the classes under controlled light conditions (CLC) as 
compared to natural light conditions (NLC), as expected. Also, the per
formance of the classifiers in stereo (3D) imaging mode have been more 
favorable than corresponding 2D imaging modes, also as expected, given 
the additional information available coming from the two independent 
camera image sources. 

4. Conclusion 

The present study investigated a new technique for using stereo 
vision to detect and classify rice crops from weeds in-field under two 
imaging light conditions, either NLC or CLC. For this purpose, various 

Fig. 15. Performance evaluation of classifier in Right (R) [ROC_Right 
channel-controlled light.fig] and Left (L) [ROC_Left channel-controlled 
light.fig] channels based on the ROC curves under controlled light conditions 
(CLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus rotundus (test set). 
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Videos from rice field were taken and processed under both natural and 
controlled light conditions. To classify and recognize crop from weeds, 
detection and feature extraction from the objects extracted from the 
images were performed after separating frames related to the right (R) 
and left (L) channels of the stereoscopic camera. Then, the corre
sponding pixels between the right (R) and left (L) channels were selected 

and mean values were computed. To achieve high accuracy in classifi
cation, a hybrid meta-heuristic neural network-particle swarm optimi
zation (NN-PSO) algorithm was used to select the effective features and 
a hybrid neural network-imperialist competitive (NN-ICA) algorithm 
was used for classification under both imaging light conditions. Results 
showed that the discrimination of crop and weeds with images under 

Fig. 16. Performance evaluation of classifier in Right (R) [PR_Right channel-controlled light.fig] and Left (L) [PR_Left channel-controlled light.fig] channels 
based on the Precision & Recall curves under controlled light conditions (CLC): R = Rice, E = Echinochloa crus-galli and C = Cyperus rotundus. 
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CLC was consistently more accurate than the classification with the 
images taken under NLC, as expected. In addition, the classification 
accuracy using the proposed stereoscopic method is higher than the 
classification accuracy using the images taken by a conventional single 
source camera. Future research work may focus on investigating the 
performance of the proposed method in different crop varieties and 
other weeds. 

We believe that the main limitation of our approach has to do with 
the high variability of weed and plants that could exist in different crop 
fields, even in different rice fields around the globe, both in terms of 
weed species and sub-species and in the amount/size of extension or 
growth stage of weed species as compared to crop/rice plants for a given 
weed detection period of time. 

Even so, given the high accuracy (low error rates) achieved results, 
we are expecting that the process of weed detection and classification 
will not suffer a very severe decrease in performance and thus still be 
helpful in most rice fields under most growing stages. 
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Appendix A. Supplementary materials 

A1 Supplementary ROC and precision-recall (PR) classification curves in 
MatLab .fig source figure file format for both NLC and CLC light conditions 
from Section 3.3 

For reproducible purposes, we provide next the MatLab .fig classi
fication performance source figure files for both ROC and precision- 
recall (PR) curves for GM, AM, R, and L channels, and under both NLC 
and CLC lighting conditions, extracted from Section 3.3: 

Figure 9: ROC_Arithmetic mean-natural light.fig, ROC_Geometric 
mean-natural light.fig 

Figure 10: PR_Arithmetic mean-natural light.fig, PR_Geometric 
mean-natural light.fig 

Figure 11: ROC_Right channel-natural light.fig, ROC_Left channel- 
natural light.fig 

Figure 12: PR_Right channel-natural light.fig, PR_Left channel-nat
ural light.fig 

Figure 13: ROC_Arithmetic mean-controlled light.fig, ROC_Geo
metric mean-controlled light.fig 

Figure 14: PR_Arithmetic mean-controlled light.fig, PR_Geometric 
mean-controlled light.fig 

Figure 15: ROC_Right channel-controlled light.fig, ROC_Left chan
nel-controlled light.fig 

Figure 16: PR_Right channel-controlled light.fig, PR_Left channel- 
controlled light.fig 

A2 Supplementary original and detected video models in .mp4 file format 
under both NLC and CLC light conditions 

For reproducible purposes, we share a total of 12 .mp4 supplemen
tary video (SV) files, both including weed detected and original (no 
detection) camera recordings, with a Fujifilm FinePix Real 3D-W3 stereo 
video camera (Tokyo, Japan) equipped with a 10-megapixel CCD sensor 
recording stereo videos (NTSC, ISO 400 sensitivity, frame resolution of 
480×440 pixels, 30 fps), as detailed next: 

Natural light conditions (NLC): Arithmetic mean (Arithmetic mean 
model_NLC.mp4) Geometric mean (Geometric mean model_NLC. 
mp4), Right (Right channel model_NLC.mp4) and Left (Left channel 
model_NLC.mp4) channels weed detected videos, together with 

Table 10 
ROC-AUC and Precision & Recall-AUC values in natural light condition (NLC): test set.  

Natural Light Condition (NLC) ROC-AUC Precision & Recall-AUC 

Class Rice Cyperus rotundus Echinochloa crus-galli Rice Cyperus rotundus Echinochloa crus-galli 

Arithmetic mean (AM)  0.9139  0.8806  0.8656  0.9019  0.8551  0.8312 
Geometric mean (GM)  0.9022  0.8647  0.8988  0.9154  0.8223  0.8561 
Right channel (R)  0.9348  0.8611  0.8586  0.9414  0.8501  0.8104 
Left channel (L)  0.9252  0.8436  0.8754  0.9356  0.8175  0.8560  

Table 11 
ROC-AUC and Precision & Recall-AUC values in controlled light condition (CLC): test set.  

Controlled light 
Condition (CLC) 

ROC-AUC Precision & Recall-AUC 

Class Rice Cyperus rotundus Echinochloa crus-galli Rice Cyperus rotundus Echinochloa crus-galli 

Arithmetic mean (AM)  0.9914  1.0000  1.0000  0.9672  0.9575  1.0000 
Geometric mean (GM)  0.9982  0.9995  1.0000  0.8913  0.9324  0.9841 
Right channel (R)  0.9152  0.8992  0.8511  0.9085  0.8848  0.8568 
Left channel (L)  0.9114  0.8971  0.8723  0.9057  0.8727  0.8514  
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original R (SV_NLC_ORIG_R.mp4) and L (SV_NLC_ORIG_L.mp4) 
channel recordings (undetected). 
Controlled light conditions (CLC): Arithmetic mean (Arithmetic 
mean model_CLC.mp4) Geometric mean (Geometric mean mod
el_CLC.mp4), Right (Right channel model_CLC.mp4) and Left (Left 
channel model_CLC.mp4) channels weed detected videos, together 
with original R (SV_CLC_ORIG_R.mp4) and L (SV_CLC_ORIG_L.mp4) 
channel recordings (undetected). 

Note: original AVI video format recordings were converted to .mp4 
video format for further processing with MatLab software and toolboxes 
(Mathworks, Natick, MA). 

Appendix B. Supplementary material 

Supplementary material to this article can be found online at https 
://doi.org/10.1016/j.measurement.2024.115072. 

References 

[1] H.J. Andersen, L. Reng, K. Kirk, Geometric plant properties by relaxed stereo vision 
using simulated annealing, Comput. Electron. Agric. 49 (2) (2005) 219–232. 

[2] T. Ashrafa, Y. Niaz Khan, Weed density classification in rice crop using computer 
vision, Comput. Electron. Agric. 175 (2020) 105590. 

[3] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for 
optimization inspired by imperialistic competition, IEEE Congress on Evolutionary 
Computation (2007) 4661–4667. 

[4] X. Bai, Z. Cao, Y. Wang, Z. Yu, Z. Hu, X. Zhang, C. Li, Vegetation segmentation 
robust to illumination variations based on clustering and morphology modelling, 
Biosyst. Eng. 125 (2014) 80–97. 

[5] B. Biskup, H. Scharr, U. Schurr, U. Rascher, A stereo imaging system for measuring 
structural parameters of plant canopies, Plant Cell Environ. 30 (10) (2007) 
1299–1308. 

[6] S. Bordoloi, V. Kashyap, A. Garg, S. Sreedeep, L. Wei, S. Andriyas, Measurement of 
mechanical characteristics of fiber from a novel invasive weed: a comprehensive 
comparison with fibers from agricultural crops, Measurement 113 (2018) 62–70. 

[7] X.P. Burgos-Artizzua, A. Ribeiroa, M. Guijarrob, G. Pajares, Real-time image 
processing for crop/weed discrimination in maize fields, Comput. Electron. Agric. 
75 (2011) 337–346. 

[8] M. Carrara, A. Comparetti, P. Febo, S. Orlando, Spatially variable herbicide 
application on durum wheat in sicily, Biosyst. Eng. 87 (4) (2004) 387–392. 

[9] S. Dandrifosse, A. Bouvry, V. Leemans, B. Dumont, B. Mercatoris1, Imaging wheat 
canopy through stereo vision: overcoming the challenges of the laboratory to field 
yransition for morphological features extraction, Front. Plant Sci. 11 (2020) 96. 

[10] M. Dadashzadeh, Y. Abbaspour-Gilandeh, T. Mesri-Gundoshmian, S. Sabzi, J. 
L. Hernández-Hernández, M. Hernández-Hernández, J.I. Arribas, Weed 
classification for site-specific weed management using an automated stereo 
computer-vision machine-learning system in rice fields, Plants 9 (5) (2020) 559. 

[11] G. Dhingra, V. Kumar, H.D. Joshi, A novel computer vision based neutrosophic 
approach for leaf disease identification and classification, Measurement 135 
(2019) 782–794. 

[12] M.A. Dickson, W.C. Bausch, M.S. Howarth, Classification of a broadleaf weed, a 
grassy weed and corn using image processing techniques, Proc. SPIE 2345 (1995) 
297–305. 

[13] K. Dutta, D. Talukdar, S.S. Bora, Segmentation of unhealthy leaves in cruciferous 
crops for early disease detection using vegetative indices and Otsu thresholding of 
aerial images, Measurement 189 (2022) 110478. 

[14] T.Y. Goh, S.N. Basah, H. Yazid, M.J.A. Safar, F.S.A. Saad, Performance analysis of 
image thresholding: otsu technique, Measurement 114 (2018) 298–307. 

[15] S. Hameed I. Amin Detection of weed and wheat using image processing 2018 IEEE 
International Conference on Engineering Technologies & Applied Sciences 2018 
Bangkok Thailand 22–23. 

[16] E. Hamuda, B. Mc-Ginley, M. Glavin, E. Jones, Automatic crop detection under 
field conditions using the HSV colour space and morphological operations, 
Comput. Electron. Agric. 133 (2017) 97–107. 

[17] A.S.M.M. Hasan, F. Sohel, D. Diepeveen, H. Laga, M.G.K. Jones, A survey of deep 
learning techniques for weed detection from images, Comput. Electron. Agric. 184 
(2021) 106067. 

[18] B. Jamshidi, E. Mohajerani, J. Jamshidi, Developing a Vis/NIR spectroscopic 
system for fast and non-destructive pesticide residue monitoring in agricultural 
product, Measurement 89 (2016) 1–6. 

[19] T. Jin, L. Tang, Corn plant sensing using real-time stereo vision, J. Field Rob. 26 
(6–7) (2009) 591–608. 

[20] R. Kamath, M. Balachandra, A. Vardhan, U. Maheshwari, Classification of paddy 
crop and weeds using semantic segmentation, Cogent Engineering 9 (2022) 
2018791. 

[21] A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: a survey, Comput. 
Electron. Agric. 147 (2018) 70–90. 

[22] I. Kansal, V. Khullar, J. Verma, R. Popli, R. Kumar, IoT-Fog-enabled robotics-based 
robust classification of hazy and normal season agricultural images for weed 
detection, J. Behav. Robot. 14 (2023) 20220105. 

[23] Kennedy, J. & R. Eberhart, 1995. Particle Swarm Optimization. Paper presented at 
Proceedings of the IEEE International Conference on Neural Networks, Perth, 
Australia. 

[24] J. Li, L. Tang, Crop recognition under weedy conditions based on 3D imaging for 
robotic weed control, J. Field Robotics. (2017) 1–16. 

[25] Lin, C., 2009. A Support Vector Machine Embedded Weed Identification System, 
thesis, Submitted in partial fulfillment of the requirements for the degree of Master 
of Science in Agricultural Engineering in the Graduate College of the University of 
Illinois at Urbana-Champaign. 

[26] G.E. Meyer, J.C. Neto, D.D. Jones, T.W. Hindman, Intensified fuzzy clusters for 
classifying plant, soil, and residue regions of interest from color images, Comput. 
Electron. Agric. 42 (3) (2003) 161–180. 

[27] W.M. Miller, A.W. Schumann, J.D. Whitney, S. Buchanon, Variable rate application 
of granular fertilizer for citrus test plots, Appl. Eng. Agri. 21 (5) (2005) 795–801. 

[28] M. Müller-Linow, F. Pinto-Espinosa, H. Scharr, U. Rascher, The leaf angle 
distribution of natural plant populations: assessing the canopy with a novel 
software tool, Plant Methods 11 (1) (2015) 1–16. 

[29] A. Paikekari, V. Ghule, R. Meshram, V.B. Raskar, Weed detection using image 
processing, Int. Res. J. Eng. Technol. 3 (3) (2016) 1220–1222. 

[30] H. Rahimikhoob, M. Delshad, R. Habibi, Leaf area estimation in lettuce: 
comparison of artificial intelligence-based methods with image analysis technique, 
Measurement 222 (2023) 113636. 

[31] K. Sabanci, C. Aydin, Smart robotic weed control system for sugar beet, J. Agric. 
Sci. Technol. 19 (2017) 73–83. 

[32] S. Sabzi, Y. Abbaspour-Gilandeh, using video processing to classify potato plant 
and three types of weed using hybrid of artificial neural network and particle 
swarm algorithm, Measurement 126 (2018) 22–36. 

[33] S. Sabzi, Y. Abbaspour-Gilandeh, G. Garcia-Mateos, A fast and accurate expert 
system for weed identification in potato crops using metaheuristic algorithms, 
Comput. Ind. 98 (2018) 80–89. 

[34] A.W. Schumann, W.M. Miller, Q.U. Zaman, K. Hostler, S. Buchanon, S. Cugati, 
Variable rate granular fertilization of citrus groves: spreader performance with 
single-tree prescription zones, Appl. Eng. Agric. 22 (1) (2006) 19–24. 

[35] M. Siddiqi, S. Lee, A. Khan, Weed image classification using wavelet transform, 
stepwise linear discriminant analysis and support vector machines for an automatic 
spray control system, J. Inf. Sci. Eng. 30 (2014) 1253–1270. 

[36] D.C. Slaughter, D.K. Giles, D. Downey, Autonomous robotic weed control systems: 
a review, Comput. Electron. Agric. 6 (1) (2008) 63–78. 

[37] J. Sun, J. Zhou, Y. Wang, Y. He, H. Jia, A cutting width measurement method for 
the unmanned rice harvester based on RGB-D images, Measurement 224 (2024) 
113777. 

[38] J. Tang, X.Q. Chen, R.H. Miao, D. Wang, Weed detection using image processing 
under different illumination for site-specific areas spraying, Comput. Electron. 
Agric. 122 (2016) 103–111. 

[39] V.K. Tewari, A.A. Kumar, B. Nare, S. Prakash, A. Tyagi, Microcontroller based 
roller contact type herbicide applicator for weed control under row crops, Comput. 
Electron. Agric. 104 (2014) 40–45. 

[40] A. Wang, W. Zhang, X. Wei, A review on weed detection using ground-based 
machine vision and image processing techniques, Comput. Electron. Agric. 158 
(2019) 226–240. 

[41] J. Wang, Y. Zhang, R. Gu, Research status and prospects on plant canopy structure 
measurement using visual sensors based on three-dimensional reconstruction, 
Agriculture 10 (2020) 462. 

[42] M. Weis, M. Sokefeld, Detection and Identification of Weeds, in: Precision Crop 
Protection - the Challenge and Use of Heterogeneity, Springer, Netherlands, 2010, 
pp. 119–134. 

[43] Z. Wu, Y. Chen, B. Zhao, Review of weed detection methods based on computer 
vision, Sensors 21 (2021) 3647. 

[44] W. Yang, S. Wang, X. Zhao, J. Zhang, J. Feng, Greenness identification based on 
HSV decision tree, Inform. Proc. Agri. 2 (3–4) (2015) 149–160. 

[45] M. Yong, M. Warshauer, Arithmetic and geometric mean, Menemui. Mat. 24 (2) 
(2002) 17–22. 

[46] Young, D., S. Miller., H. Fisher & M. Shenk, 2017. Selecting Appropriate Weed 
Control Systems for Developing Countries. (Press), Published by: Weed Science 
Society of America and Allen Press Stable, 26(3):209–212. 

[47] Q.U. Zamana, T.J. Esaua, A.W. Schumannb, D.C. Percivalc, Y.K. Changa, S. 
M. Reada, A.A. Farooquea, Development of prototype automated variable rate 
sprayer for real-time spot-application of agrochemicals in wild blueberry fields, 
Comput. Electron. Agri. 76 (2011) 175–182. 

[48] H. Zareiforoush, S. Minaei, M.R. Alizadeh, A. Banakar, A hybrid intelligent 
approach based on computer vision and fuzzy logic for quality measurement of 
milled rice, Measurement 66 (2015) 26–34. 

[49] N. Zhao, L. Zhou, T. Huang, M.F. Taha, Y. He, Z. Qiu, Development of an automatic 
pest monitoring system using a deep learning model of DPeNet, Measurement 203 
(2022) 111970. 

M. Dadashzadeh et al.                                                                                                                                                                                                                         

https://doi.org/10.1016/j.measurement.2024.115072
https://doi.org/10.1016/j.measurement.2024.115072
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0005
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0005
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0010
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0010
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0015
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0015
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0015
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0020
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0020
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0020
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0025
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0025
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0025
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0030
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0030
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0030
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0035
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0035
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0035
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0040
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0040
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0045
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0045
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0045
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0050
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0050
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0050
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0050
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0055
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0055
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0055
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0060
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0060
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0060
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0065
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0065
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0065
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0070
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0070
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0080
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0080
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0080
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0085
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0085
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0085
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0090
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0090
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0090
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0095
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0095
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0100
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0100
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0100
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0105
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0105
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0110
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0110
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0110
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0120
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0120
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0130
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0130
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0130
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0135
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0135
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0140
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0140
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0140
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0145
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0145
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0150
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0150
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0150
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0155
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0155
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0160
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0160
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0160
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0165
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0165
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0165
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0170
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0170
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0170
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0175
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0175
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0175
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0180
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0180
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0185
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0185
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0185
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0190
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0190
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0190
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0195
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0195
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0195
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0205
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0205
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0205
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0210
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0210
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0210
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0215
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0215
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0215
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0220
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0220
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0225
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0225
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0230
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0230
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0240
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0240
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0240
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0240
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0245
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0245
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0245
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0250
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0250
http://refhub.elsevier.com/S0263-2241(24)00957-6/h0250

	A stereoscopic video computer vision system for weed discrimination in rice field under both natural and controlled light c ...
	1 Introduction
	1.1 Literature review

	2 Materials and methods
	2.1 Stereoscopic imaging method
	2.2 Processing steps to identify weeds
	2.2.1 Vegetation segmentation
	2.2.2 Feature extraction
	2.2.3 Selection of effective discriminant features
	2.2.4 Classification


	3 Results and discussion
	3.1 Extraction of the most effective features using hybrid neural network-particle swarm optimization algorithm (NN-PSO)
	3.2 Ternary (3-class) classification of images
	3.3 Evaluation and comparison of classifiers performance using both ROC and precision- recall (PR) curves AUC

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary materials
	A1 Supplementary ROC and precision-recall (PR) classification curves in MatLab .fig source figure file format for both NLC  ...
	A2 Supplementary original and detected video models in .mp4 file format under both NLC and CLC light conditions

	Appendix B Supplementary material
	References


